aboutsummaryrefslogtreecommitdiff
path: root/crypt/crypt_util.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypt/crypt_util.c')
-rw-r--r--crypt/crypt_util.c946
1 files changed, 0 insertions, 946 deletions
diff --git a/crypt/crypt_util.c b/crypt/crypt_util.c
deleted file mode 100644
index daca4f7..0000000
--- a/crypt/crypt_util.c
+++ /dev/null
@@ -1,946 +0,0 @@
-/*
- * UFC-crypt: ultra fast crypt(3) implementation
- *
- * Copyright (C) 1991-2023 Free Software Foundation, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; see the file COPYING.LIB. If not,
- * see <https://www.gnu.org/licenses/>.
- *
- * @(#)crypt_util.c 2.56 12/20/96
- *
- * Support routines
- *
- */
-
-#ifdef DEBUG
-#include <stdio.h>
-#endif
-#include <atomic.h>
-#include <string.h>
-
-#ifndef STATIC
-#define STATIC static
-#endif
-
-#include "crypt-private.h"
-#include <shlib-compat.h>
-
-/* Prototypes for local functions. */
-#ifndef __GNU_LIBRARY__
-void _ufc_clearmem (char *start, int cnt);
-void _ufc_copymem (char *from, char *to, int cnt);
-#endif
-#ifdef _UFC_32_
-STATIC void shuffle_sb (long32 *k, ufc_long saltbits);
-#else
-STATIC void shuffle_sb (long64 *k, ufc_long saltbits);
-#endif
-
-
-/*
- * Permutation done once on the 56 bit
- * key derived from the original 8 byte ASCII key.
- */
-static const int pc1[56] = {
- 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
- 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
-};
-
-/*
- * How much to rotate each 28 bit half of the pc1 permutated
- * 56 bit key before using pc2 to give the i' key
- */
-static const int rots[16] = {
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
-};
-
-/*
- * Permutation giving the key
- * of the i' DES round
- */
-static const int pc2[48] = {
- 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
- 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
- 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
- 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
-};
-
-/*
- * The E expansion table which selects
- * bits from the 32 bit intermediate result.
- */
-static const int esel[48] = {
- 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
-};
-
-/*
- * Permutation done on the
- * result of sbox lookups
- */
-static const int perm32[32] = {
- 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
- 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
-};
-
-/*
- * The sboxes
- */
-static const int sbox[8][4][16]= {
- { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
- { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
- { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
- { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
- },
-
- { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
- { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
- { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
- { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
- },
-
- { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
- { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
- { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
- { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
- },
-
- { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
- { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
- { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
- { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
- },
-
- { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
- { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
- { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
- { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
- },
-
- { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
- { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
- { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
- { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
- },
-
- { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
- { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
- { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
- { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
- },
-
- { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
- { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
- { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
- { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
- }
-};
-
-#if SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28)
-/*
- * This is the initial
- * permutation matrix
- */
-static const int initial_perm[64] = {
- 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
- 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
- 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
- 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
-};
-#endif
-
-/*
- * This is the final
- * permutation matrix
- */
-static const int final_perm[64] = {
- 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
- 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
- 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
- 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
-};
-
-#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
-#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
-
-static const ufc_long BITMASK[24] = {
- 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000,
- 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000,
- 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
- 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008
-};
-
-static const unsigned char bytemask[8] = {
- 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
-};
-
-static const ufc_long longmask[32] = {
- 0x80000000, 0x40000000, 0x20000000, 0x10000000,
- 0x08000000, 0x04000000, 0x02000000, 0x01000000,
- 0x00800000, 0x00400000, 0x00200000, 0x00100000,
- 0x00080000, 0x00040000, 0x00020000, 0x00010000,
- 0x00008000, 0x00004000, 0x00002000, 0x00001000,
- 0x00000800, 0x00000400, 0x00000200, 0x00000100,
- 0x00000080, 0x00000040, 0x00000020, 0x00000010,
- 0x00000008, 0x00000004, 0x00000002, 0x00000001
-};
-
-/*
- * do_pc1: permform pc1 permutation in the key schedule generation.
- *
- * The first index is the byte number in the 8 byte ASCII key
- * - second - - the two 28 bits halves of the result
- * - third - selects the 7 bits actually used of each byte
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
-static ufc_long do_pc1[8][2][128];
-
-/*
- * do_pc2: permform pc2 permutation in the key schedule generation.
- *
- * The first index is the septet number in the two 28 bit intermediate values
- * - second - - - septet values
- *
- * Knowledge of the structure of the pc2 permutation is used.
- *
- * The result is kept with 28 bit per 32 bit with the 4 most significant
- * bits zero.
- */
-static ufc_long do_pc2[8][128];
-
-/*
- * eperm32tab: do 32 bit permutation and E selection
- *
- * The first index is the byte number in the 32 bit value to be permuted
- * - second - is the value of this byte
- * - third - selects the two 32 bit values
- *
- * The table is used and generated internally in init_des to speed it up
- */
-static ufc_long eperm32tab[4][256][2];
-
-/*
- * efp: undo an extra e selection and do final
- * permutation giving the DES result.
- *
- * Invoked 6 bit a time on two 48 bit values
- * giving two 32 bit longs.
- */
-static ufc_long efp[16][64][2];
-
-/* Table with characters for base64 transformation. */
-static const char b64t[64] =
-"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
-
-/*
- * For use by the old, non-reentrant routines
- * (crypt/encrypt/setkey)
- */
-struct crypt_data _ufc_foobar;
-
-#ifdef __GNU_LIBRARY__
-#include <libc-lock.h>
-
-__libc_lock_define_initialized (static, _ufc_tables_lock)
-#endif
-
-#ifdef DEBUG
-
-void
-_ufc_prbits (ufc_long *a, int n)
-{
- ufc_long i, j, t, tmp;
- n /= 8;
- for(i = 0; i < n; i++) {
- tmp=0;
- for(j = 0; j < 8; j++) {
- t=8*i+j;
- tmp|=(a[t/24] & BITMASK[t % 24])?bytemask[j]:0;
- }
- (void)printf("%02lx ", tmp);
- }
- printf(" ");
-}
-
-static void __attribute__ ((unused))
-_ufc_set_bits (ufc_long v, ufc_long *b)
-{
- ufc_long i;
- *b = 0;
- for(i = 0; i < 24; i++) {
- if(v & longmask[8 + i])
- *b |= BITMASK[i];
- }
-}
-
-#endif
-
-#ifndef __GNU_LIBRARY__
-/*
- * Silly rewrites of 'bzero'/'memset'. I do so
- * because some machines don't have
- * bzero and some don't have memset.
- */
-
-void
-_ufc_clearmem (char *start, int cnt)
-{
- while(cnt--)
- *start++ = '\0';
-}
-
-void
-_ufc_copymem (char *from, char *to, int cnt)
-{
- while(cnt--)
- *to++ = *from++;
-}
-#else
-#define _ufc_clearmem(start, cnt) memset(start, 0, cnt)
-#define _ufc_copymem(from, to, cnt) memcpy(to, from, cnt)
-#endif
-
-/* lookup a 6 bit value in sbox */
-
-#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
-
-/*
- * Initialize unit - may be invoked directly
- * by fcrypt users.
- */
-
-void
-__init_des_r (struct crypt_data * __restrict __data)
-{
- int comes_from_bit;
- int bit, sg;
- ufc_long j;
- ufc_long mask1, mask2;
- int e_inverse[64];
- static volatile int small_tables_initialized = 0;
-
-#ifdef _UFC_32_
- long32 *sb[4];
- sb[0] = (long32*)__data->sb0; sb[1] = (long32*)__data->sb1;
- sb[2] = (long32*)__data->sb2; sb[3] = (long32*)__data->sb3;
-#endif
-#ifdef _UFC_64_
- long64 *sb[4];
- sb[0] = (long64*)__data->sb0; sb[1] = (long64*)__data->sb1;
- sb[2] = (long64*)__data->sb2; sb[3] = (long64*)__data->sb3;
-#endif
-
- if(small_tables_initialized == 0) {
-#ifdef __GNU_LIBRARY__
- __libc_lock_lock (_ufc_tables_lock);
- if(small_tables_initialized)
- goto small_tables_done;
-#endif
-
- /*
- * Create the do_pc1 table used
- * to affect pc1 permutation
- * when generating keys
- */
- _ufc_clearmem((char*)do_pc1, (int)sizeof(do_pc1));
- for(bit = 0; bit < 56; bit++) {
- comes_from_bit = pc1[bit] - 1;
- mask1 = bytemask[comes_from_bit % 8 + 1];
- mask2 = longmask[bit % 28 + 4];
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
- }
- }
-
- /*
- * Create the do_pc2 table used
- * to affect pc2 permutation when
- * generating keys
- */
- _ufc_clearmem((char*)do_pc2, (int)sizeof(do_pc2));
- for(bit = 0; bit < 48; bit++) {
- comes_from_bit = pc2[bit] - 1;
- mask1 = bytemask[comes_from_bit % 7 + 1];
- mask2 = BITMASK[bit % 24];
- for(j = 0; j < 128; j++) {
- if(j & mask1)
- do_pc2[comes_from_bit / 7][j] |= mask2;
- }
- }
-
- /*
- * Now generate the table used to do combined
- * 32 bit permutation and e expansion
- *
- * We use it because we have to permute 16384 32 bit
- * longs into 48 bit in order to initialize sb.
- *
- * Looping 48 rounds per permutation becomes
- * just too slow...
- *
- */
-
- _ufc_clearmem((char*)eperm32tab, (int)sizeof(eperm32tab));
- for(bit = 0; bit < 48; bit++) {
- ufc_long mask1,comes_from;
- comes_from = perm32[esel[bit]-1]-1;
- mask1 = bytemask[comes_from % 8];
- for(j = 256; j--;) {
- if(j & mask1)
- eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK[bit % 24];
- }
- }
-
- /*
- * Create an inverse matrix for esel telling
- * where to plug out bits if undoing it
- */
- for(bit=48; bit--;) {
- e_inverse[esel[bit] - 1 ] = bit;
- e_inverse[esel[bit] - 1 + 32] = bit + 48;
- }
-
- /*
- * create efp: the matrix used to
- * undo the E expansion and effect final permutation
- */
- _ufc_clearmem((char*)efp, (int)sizeof efp);
- for(bit = 0; bit < 64; bit++) {
- int o_bit, o_long;
- ufc_long word_value, mask1, mask2;
- int comes_from_f_bit, comes_from_e_bit;
- int comes_from_word, bit_within_word;
-
- /* See where bit i belongs in the two 32 bit long's */
- o_long = bit / 32; /* 0..1 */
- o_bit = bit % 32; /* 0..31 */
-
- /*
- * And find a bit in the e permutated value setting this bit.
- *
- * Note: the e selection may have selected the same bit several
- * times. By the initialization of e_inverse, we only look
- * for one specific instance.
- */
- comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
- comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
- comes_from_word = comes_from_e_bit / 6; /* 0..15 */
- bit_within_word = comes_from_e_bit % 6; /* 0..5 */
-
- mask1 = longmask[bit_within_word + 26];
- mask2 = longmask[o_bit];
-
- for(word_value = 64; word_value--;) {
- if(word_value & mask1)
- efp[comes_from_word][word_value][o_long] |= mask2;
- }
- }
- atomic_write_barrier ();
- small_tables_initialized = 1;
-#ifdef __GNU_LIBRARY__
-small_tables_done:
- __libc_lock_unlock(_ufc_tables_lock);
-#endif
- } else
- atomic_read_barrier ();
-
- /*
- * Create the sb tables:
- *
- * For each 12 bit segment of an 48 bit intermediate
- * result, the sb table precomputes the two 4 bit
- * values of the sbox lookups done with the two 6
- * bit halves, shifts them to their proper place,
- * sends them through perm32 and finally E expands
- * them so that they are ready for the next
- * DES round.
- *
- */
-
- if (__data->sb0 + sizeof (__data->sb0) == __data->sb1
- && __data->sb1 + sizeof (__data->sb1) == __data->sb2
- && __data->sb2 + sizeof (__data->sb2) == __data->sb3)
- _ufc_clearmem(__data->sb0,
- (int)sizeof(__data->sb0)
- + (int)sizeof(__data->sb1)
- + (int)sizeof(__data->sb2)
- + (int)sizeof(__data->sb3));
- else {
- _ufc_clearmem(__data->sb0, (int)sizeof(__data->sb0));
- _ufc_clearmem(__data->sb1, (int)sizeof(__data->sb1));
- _ufc_clearmem(__data->sb2, (int)sizeof(__data->sb2));
- _ufc_clearmem(__data->sb3, (int)sizeof(__data->sb3));
- }
-
- for(sg = 0; sg < 4; sg++) {
- int j1, j2;
- int s1, s2;
-
- for(j1 = 0; j1 < 64; j1++) {
- s1 = s_lookup(2 * sg, j1);
- for(j2 = 0; j2 < 64; j2++) {
- ufc_long to_permute, inx;
-
- s2 = s_lookup(2 * sg + 1, j2);
- to_permute = (((ufc_long)s1 << 4) |
- (ufc_long)s2) << (24 - 8 * (ufc_long)sg);
-
-#ifdef _UFC_32_
- inx = ((j1 << 6) | j2) << 1;
- sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
- sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
- sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
-#endif
-#ifdef _UFC_64_
- inx = ((j1 << 6) | j2);
- sb[sg][inx] =
- ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
- (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
- (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
- (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
- sb[sg][inx] |=
- ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
- (long64)eperm32tab[3][(to_permute) & 0xff][1];
-#endif
- }
- }
- }
-
- __data->current_saltbits = 0;
- __data->current_salt[0] = 0;
- __data->current_salt[1] = 0;
- __data->initialized++;
-}
-
-void
-__init_des (void)
-{
- __init_des_r(&_ufc_foobar);
-}
-
-/*
- * Process the elements of the sb table permuting the
- * bits swapped in the expansion by the current salt.
- */
-
-#ifdef _UFC_32_
-STATIC void
-shuffle_sb (long32 *k, ufc_long saltbits)
-{
- ufc_long j;
- long32 x;
- for(j=4096; j--;) {
- x = (k[0] ^ k[1]) & (long32)saltbits;
- *k++ ^= x;
- *k++ ^= x;
- }
-}
-#endif
-
-#ifdef _UFC_64_
-STATIC void
-shuffle_sb (long64 *k, ufc_long saltbits)
-{
- ufc_long j;
- long64 x;
- for(j=4096; j--;) {
- x = ((*k >> 32) ^ *k) & (long64)saltbits;
- *k++ ^= (x << 32) | x;
- }
-}
-#endif
-
-/*
- * Return false iff C is in the specified alphabet for crypt salt.
- */
-
-static bool
-bad_for_salt (char c)
-{
- switch (c)
- {
- case '0' ... '9':
- case 'A' ... 'Z':
- case 'a' ... 'z':
- case '.': case '/':
- return false;
-
- default:
- return true;
- }
-}
-
-/*
- * Setup the unit for a new salt
- * Hopefully we'll not see a new salt in each crypt call.
- * Return false if an unexpected character was found in s[0] or s[1].
- */
-
-bool
-_ufc_setup_salt_r (const char *s, struct crypt_data * __restrict __data)
-{
- ufc_long i, j, saltbits;
- char s0, s1;
-
- if(__data->initialized == 0)
- __init_des_r(__data);
-
- s0 = s[0];
- if(bad_for_salt (s0))
- return false;
-
- s1 = s[1];
- if(bad_for_salt (s1))
- return false;
-
- if(s0 == __data->current_salt[0] && s1 == __data->current_salt[1])
- return true;
-
- __data->current_salt[0] = s0;
- __data->current_salt[1] = s1;
-
- /*
- * This is the only crypt change to DES:
- * entries are swapped in the expansion table
- * according to the bits set in the salt.
- */
- saltbits = 0;
- for(i = 0; i < 2; i++) {
- long c=ascii_to_bin(s[i]);
- for(j = 0; j < 6; j++) {
- if((c >> j) & 0x1)
- saltbits |= BITMASK[6 * i + j];
- }
- }
-
- /*
- * Permute the sb table values
- * to reflect the changed e
- * selection table
- */
-#ifdef _UFC_32_
-#define LONGG long32*
-#endif
-#ifdef _UFC_64_
-#define LONGG long64*
-#endif
-
- shuffle_sb((LONGG)__data->sb0, __data->current_saltbits ^ saltbits);
- shuffle_sb((LONGG)__data->sb1, __data->current_saltbits ^ saltbits);
- shuffle_sb((LONGG)__data->sb2, __data->current_saltbits ^ saltbits);
- shuffle_sb((LONGG)__data->sb3, __data->current_saltbits ^ saltbits);
-
- __data->current_saltbits = saltbits;
-
- return true;
-}
-
-void
-_ufc_mk_keytab_r (const char *key, struct crypt_data * __restrict __data)
-{
- ufc_long v1, v2, *k1;
- int i;
-#ifdef _UFC_32_
- long32 v, *k2;
- k2 = (long32*)__data->keysched;
-#endif
-#ifdef _UFC_64_
- long64 v, *k2;
- k2 = (long64*)__data->keysched;
-#endif
-
- v1 = v2 = 0; k1 = &do_pc1[0][0][0];
- for(i = 8; i--;) {
- v1 |= k1[*key & 0x7f]; k1 += 128;
- v2 |= k1[*key++ & 0x7f]; k1 += 128;
- }
-
- for(i = 0; i < 16; i++) {
- k1 = &do_pc2[0][0];
-
- v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
- v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v1 ) & 0x7f]; k1 += 128;
-
-#ifdef _UFC_32_
- *k2++ = (v | 0x00008000);
- v = 0;
-#endif
-#ifdef _UFC_64_
- v = (v << 32);
-#endif
-
- v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
- v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
- v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
- v |= k1[(v2 ) & 0x7f];
-
-#ifdef _UFC_32_
- *k2++ = (v | 0x00008000);
-#endif
-#ifdef _UFC_64_
- *k2++ = v | 0x0000800000008000l;
-#endif
- }
-
- __data->direction = 0;
-}
-
-/*
- * Undo an extra E selection and do final permutations
- */
-
-void
-_ufc_dofinalperm_r (ufc_long *res, struct crypt_data * __restrict __data)
-{
- ufc_long v1, v2, x;
- ufc_long l1,l2,r1,r2;
-
- l1 = res[0]; l2 = res[1];
- r1 = res[2]; r2 = res[3];
-
- x = (l1 ^ l2) & __data->current_saltbits; l1 ^= x; l2 ^= x;
- x = (r1 ^ r2) & __data->current_saltbits; r1 ^= x; r2 ^= x;
-
- v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
-
- v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
- v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
- v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
- v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
-
- v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
- v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
- v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
- v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
-
- v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
- v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
- v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
- v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
-
- v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
- v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
- v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
- v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
-
- res[0] = v1; res[1] = v2;
-}
-
-/*
- * crypt only: convert from 64 bit to 11 bit ASCII
- * prefixing with the salt
- */
-
-void
-_ufc_output_conversion_r (ufc_long v1, ufc_long v2, const char *salt,
- struct crypt_data * __restrict __data)
-{
- int i, s, shf;
-
- __data->crypt_3_buf[0] = salt[0];
- __data->crypt_3_buf[1] = salt[1] ? salt[1] : salt[0];
-
- for(i = 0; i < 5; i++) {
- shf = (26 - 6 * i); /* to cope with MSC compiler bug */
- __data->crypt_3_buf[i + 2] = bin_to_ascii((v1 >> shf) & 0x3f);
- }
-
- s = (v2 & 0xf) << 2;
- v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
-
- for(i = 5; i < 10; i++) {
- shf = (56 - 6 * i);
- __data->crypt_3_buf[i + 2] = bin_to_ascii((v2 >> shf) & 0x3f);
- }
-
- __data->crypt_3_buf[12] = bin_to_ascii(s);
- __data->crypt_3_buf[13] = 0;
-}
-
-#if SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28)
-
-/*
- * UNIX encrypt function. Takes a bitvector
- * represented by one byte per bit and
- * encrypt/decrypt according to edflag
- */
-
-void
-__encrypt_r (char *__block, int __edflag,
- struct crypt_data * __restrict __data)
-{
- ufc_long l1, l2, r1, r2, res[4];
- int i;
-#ifdef _UFC_32_
- long32 *kt;
- kt = (long32*)__data->keysched;
-#endif
-#ifdef _UFC_64_
- long64 *kt;
- kt = (long64*)__data->keysched;
-#endif
-
- /*
- * Undo any salt changes to E expansion
- */
- _ufc_setup_salt_r("..", __data);
-
- /*
- * Reverse key table if
- * changing operation (encrypt/decrypt)
- */
- if((__edflag == 0) != (__data->direction == 0)) {
- for(i = 0; i < 8; i++) {
-#ifdef _UFC_32_
- long32 x;
- x = kt[2 * (15-i)];
- kt[2 * (15-i)] = kt[2 * i];
- kt[2 * i] = x;
-
- x = kt[2 * (15-i) + 1];
- kt[2 * (15-i) + 1] = kt[2 * i + 1];
- kt[2 * i + 1] = x;
-#endif
-#ifdef _UFC_64_
- long64 x;
- x = kt[15-i];
- kt[15-i] = kt[i];
- kt[i] = x;
-#endif
- }
- __data->direction = __edflag;
- }
-
- /*
- * Do initial permutation + E expansion
- */
- i = 0;
- for(l1 = 0; i < 24; i++) {
- if(__block[initial_perm[esel[i]-1]-1])
- l1 |= BITMASK[i];
- }
- for(l2 = 0; i < 48; i++) {
- if(__block[initial_perm[esel[i]-1]-1])
- l2 |= BITMASK[i-24];
- }
-
- i = 0;
- for(r1 = 0; i < 24; i++) {
- if(__block[initial_perm[esel[i]-1+32]-1])
- r1 |= BITMASK[i];
- }
- for(r2 = 0; i < 48; i++) {
- if(__block[initial_perm[esel[i]-1+32]-1])
- r2 |= BITMASK[i-24];
- }
-
- /*
- * Do DES inner loops + final conversion
- */
- res[0] = l1; res[1] = l2;
- res[2] = r1; res[3] = r2;
- _ufc_doit_r((ufc_long)1, __data, &res[0]);
-
- /*
- * Do final permutations
- */
- _ufc_dofinalperm_r(res, __data);
-
- /*
- * And convert to bit array
- */
- l1 = res[0]; r1 = res[1];
- for(i = 0; i < 32; i++) {
- *__block++ = (l1 & longmask[i]) != 0;
- }
- for(i = 0; i < 32; i++) {
- *__block++ = (r1 & longmask[i]) != 0;
- }
-}
-weak_alias (__encrypt_r, encrypt_r)
-compat_symbol (libcrypt, encrypt_r, encrypt_r, GLIBC_2_0);
-
-void
-encrypt (char *__block, int __edflag)
-{
- __encrypt_r(__block, __edflag, &_ufc_foobar);
-}
-compat_symbol (libcrypt, encrypt, encrypt, GLIBC_2_0);
-
-
-/*
- * UNIX setkey function. Take a 64 bit DES
- * key and setup the machinery.
- */
-
-void
-__setkey_r (const char *__key, struct crypt_data * __restrict __data)
-{
- int i,j;
- unsigned char c;
- unsigned char ktab[8];
-
- _ufc_setup_salt_r("..", __data); /* be sure we're initialized */
-
- for(i = 0; i < 8; i++) {
- for(j = 0, c = 0; j < 8; j++)
- c = c << 1 | *__key++;
- ktab[i] = c >> 1;
- }
- _ufc_mk_keytab_r((char *) ktab, __data);
-}
-weak_alias (__setkey_r, setkey_r)
-compat_symbol (libcrypt, setkey_r, setkey_r, GLIBC_2_0);
-
-void
-setkey (const char *__key)
-{
- __setkey_r(__key, &_ufc_foobar);
-}
-compat_symbol (libcrypt, setkey, setkey, GLIBC_2_0);
-#endif /* SHLIB_COMPAT (libcrypt, GLIBC_2_0, GLIBC_2_28) */
-
-void
-__b64_from_24bit (char **cp, int *buflen,
- unsigned int b2, unsigned int b1, unsigned int b0,
- int n)
-{
- unsigned int w = (b2 << 16) | (b1 << 8) | b0;
- while (n-- > 0 && (*buflen) > 0)
- {
- *(*cp)++ = b64t[w & 0x3f];
- --(*buflen);
- w >>= 6;
- }
-}