aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
authorAndreas Schwab <schwab@linux-m68k.org>2012-02-26 15:22:53 +0100
committerAndreas Schwab <schwab@linux-m68k.org>2012-02-26 16:10:46 +0100
commitc20105c398036c4fbeb99f8480ab84077a0f6f2c (patch)
tree2b8dbcd25b235f23169345c8a27e95619dfa8dcd /sysdeps/ieee754/dbl-64
parent3134156779108fe8b46e0f4cd60d837572faaa93 (diff)
downloadglibc-c20105c398036c4fbeb99f8480ab84077a0f6f2c.zip
glibc-c20105c398036c4fbeb99f8480ab84077a0f6f2c.tar.gz
glibc-c20105c398036c4fbeb99f8480ab84077a0f6f2c.tar.bz2
Replace sysdeps/ieee754/dbl-64/k_tan.c with empty file
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/k_tan.c137
1 files changed, 1 insertions, 136 deletions
diff --git a/sysdeps/ieee754/dbl-64/k_tan.c b/sysdeps/ieee754/dbl-64/k_tan.c
index 7ef4103..cc5c205 100644
--- a/sysdeps/ieee754/dbl-64/k_tan.c
+++ b/sysdeps/ieee754/dbl-64/k_tan.c
@@ -1,136 +1 @@
-/* @(#)k_tan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
- for performance improvement on pipelined processors.
-*/
-
-#if defined(LIBM_SCCS) && !defined(lint)
-static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";
-#endif
-
-/* __kernel_tan( x, y, k )
- * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input k indicates whether tan (if k=1) or
- * -1/tan (if k= -1) is returned.
- *
- * Algorithm
- * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
- * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
- * 3. tan(x) is approximated by a odd polynomial of degree 27 on
- * [0,0.67434]
- * 3 27
- * tan(x) ~ x + T1*x + ... + T13*x
- * where
- *
- * |tan(x) 2 4 26 | -59.2
- * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
- * | x |
- *
- * Note: tan(x+y) = tan(x) + tan'(x)*y
- * ~ tan(x) + (1+x*x)*y
- * Therefore, for better accuracy in computing tan(x+y), let
- * 3 2 2 2 2
- * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
- * then
- * 3 2
- * tan(x+y) = x + (T1*x + (x *(r+y)+y))
- *
- * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
- * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
- * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
- */
-
-#include "math.h"
-#include "math_private.h"
-static const double
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
-pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
-T[] = {
- 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
- 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
- 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
- 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
- 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
- 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
- 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
- 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
- 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
- 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
- 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
- -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
- 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
-};
-
-double __kernel_tan(double x, double y, int iy)
-{
- double z,r,v,w,s,r1,r2,r3,v1,v2,v3,w2,w4;
- int32_t ix,hx;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff; /* high word of |x| */
- if(ix<0x3e300000) /* x < 2**-28 */
- {if((int)x==0) { /* generate inexact */
- u_int32_t low;
- GET_LOW_WORD(low,x);
- if(((ix|low)|(iy+1))==0) return one/fabs(x);
- else return (iy==1)? x: -one/x;
- }
- }
- if(ix>=0x3FE59428) { /* |x|>=0.6744 */
- if(hx<0) {x = -x; y = -y;}
- z = pio4-x;
- w = pio4lo-y;
- x = z+w; y = 0.0;
- }
- z = x*x;
- w = z*z;
- /* Break x^5*(T[1]+x^2*T[2]+...) into
- * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
- * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
- */
-#ifdef DO_NOT_USE_THIS
- r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
- v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
-#else
- v1 = T[10]+w*T[12]; w2=w*w;
- v2 = T[6]+w*T[8]; w4=w2*w2;
- v3 = T[2]+w*T[4]; v1=z*v1;
- r1 = T[9]+w*T[11]; v2=z*v2;
- r2 = T[5]+w*T[7]; v3=z*v3;
- r3 = T[1]+w*T[3];
- v = v3 + w2*v2 + w4*v1;
- r = r3 + w2*r2 + w4*r1;
-#endif
- s = z*x;
- r = y + z*(s*(r+v)+y);
- r += T[0]*s;
- w = x+r;
- if(ix>=0x3FE59428) {
- v = (double)iy;
- return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
- }
- if(iy==1) return w;
- else { /* if allow error up to 2 ulp,
- simply return -1.0/(x+r) here */
- /* compute -1.0/(x+r) accurately */
- double a,t;
- z = w;
- SET_LOW_WORD(z,0);
- v = r-(z - x); /* z+v = r+x */
- t = a = -1.0/w; /* a = -1.0/w */
- SET_LOW_WORD(t,0);
- s = 1.0+t*z;
- return t+a*(s+t*v);
- }
-}
+/* Not needed anymore. */