aboutsummaryrefslogtreecommitdiff
path: root/string/strlen.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
committerUlrich Drepper <drepper@redhat.com>2004-12-22 20:10:10 +0000
commita334319f6530564d22e775935d9c91663623a1b4 (patch)
treeb5877475619e4c938e98757d518bb1e9cbead751 /string/strlen.c
parent0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff)
downloadglibc-a334319f6530564d22e775935d9c91663623a1b4.zip
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz
glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.bz2
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'string/strlen.c')
-rw-r--r--string/strlen.c153
1 files changed, 0 insertions, 153 deletions
diff --git a/string/strlen.c b/string/strlen.c
deleted file mode 100644
index 9bc9db6..0000000
--- a/string/strlen.c
+++ /dev/null
@@ -1,153 +0,0 @@
-/* Copyright (C) 1991, 1993, 1997, 2000, 2003 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Written by Torbjorn Granlund (tege@sics.se),
- with help from Dan Sahlin (dan@sics.se);
- commentary by Jim Blandy (jimb@ai.mit.edu).
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, write to the Free
- Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
- 02111-1307 USA. */
-
-#include <string.h>
-#include <stdlib.h>
-
-#undef strlen
-
-/* Return the length of the null-terminated string STR. Scan for
- the null terminator quickly by testing four bytes at a time. */
-size_t
-strlen (str)
- const char *str;
-{
- const char *char_ptr;
- const unsigned long int *longword_ptr;
- unsigned long int longword, magic_bits, himagic, lomagic;
-
- /* Handle the first few characters by reading one character at a time.
- Do this until CHAR_PTR is aligned on a longword boundary. */
- for (char_ptr = str; ((unsigned long int) char_ptr
- & (sizeof (longword) - 1)) != 0;
- ++char_ptr)
- if (*char_ptr == '\0')
- return char_ptr - str;
-
- /* All these elucidatory comments refer to 4-byte longwords,
- but the theory applies equally well to 8-byte longwords. */
-
- longword_ptr = (unsigned long int *) char_ptr;
-
- /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
- the "holes." Note that there is a hole just to the left of
- each byte, with an extra at the end:
-
- bits: 01111110 11111110 11111110 11111111
- bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
-
- The 1-bits make sure that carries propagate to the next 0-bit.
- The 0-bits provide holes for carries to fall into. */
- magic_bits = 0x7efefeffL;
- himagic = 0x80808080L;
- lomagic = 0x01010101L;
- if (sizeof (longword) > 4)
- {
- /* 64-bit version of the magic. */
- /* Do the shift in two steps to avoid a warning if long has 32 bits. */
- magic_bits = ((0x7efefefeL << 16) << 16) | 0xfefefeffL;
- himagic = ((himagic << 16) << 16) | himagic;
- lomagic = ((lomagic << 16) << 16) | lomagic;
- }
- if (sizeof (longword) > 8)
- abort ();
-
- /* Instead of the traditional loop which tests each character,
- we will test a longword at a time. The tricky part is testing
- if *any of the four* bytes in the longword in question are zero. */
- for (;;)
- {
- /* We tentatively exit the loop if adding MAGIC_BITS to
- LONGWORD fails to change any of the hole bits of LONGWORD.
-
- 1) Is this safe? Will it catch all the zero bytes?
- Suppose there is a byte with all zeros. Any carry bits
- propagating from its left will fall into the hole at its
- least significant bit and stop. Since there will be no
- carry from its most significant bit, the LSB of the
- byte to the left will be unchanged, and the zero will be
- detected.
-
- 2) Is this worthwhile? Will it ignore everything except
- zero bytes? Suppose every byte of LONGWORD has a bit set
- somewhere. There will be a carry into bit 8. If bit 8
- is set, this will carry into bit 16. If bit 8 is clear,
- one of bits 9-15 must be set, so there will be a carry
- into bit 16. Similarly, there will be a carry into bit
- 24. If one of bits 24-30 is set, there will be a carry
- into bit 31, so all of the hole bits will be changed.
-
- The one misfire occurs when bits 24-30 are clear and bit
- 31 is set; in this case, the hole at bit 31 is not
- changed. If we had access to the processor carry flag,
- we could close this loophole by putting the fourth hole
- at bit 32!
-
- So it ignores everything except 128's, when they're aligned
- properly. */
-
- longword = *longword_ptr++;
-
- if (
-#if 0
- /* Add MAGIC_BITS to LONGWORD. */
- (((longword + magic_bits)
-
- /* Set those bits that were unchanged by the addition. */
- ^ ~longword)
-
- /* Look at only the hole bits. If any of the hole bits
- are unchanged, most likely one of the bytes was a
- zero. */
- & ~magic_bits)
-#else
- ((longword - lomagic) & himagic)
-#endif
- != 0)
- {
- /* Which of the bytes was the zero? If none of them were, it was
- a misfire; continue the search. */
-
- const char *cp = (const char *) (longword_ptr - 1);
-
- if (cp[0] == 0)
- return cp - str;
- if (cp[1] == 0)
- return cp - str + 1;
- if (cp[2] == 0)
- return cp - str + 2;
- if (cp[3] == 0)
- return cp - str + 3;
- if (sizeof (longword) > 4)
- {
- if (cp[4] == 0)
- return cp - str + 4;
- if (cp[5] == 0)
- return cp - str + 5;
- if (cp[6] == 0)
- return cp - str + 6;
- if (cp[7] == 0)
- return cp - str + 7;
- }
- }
- }
-}
-libc_hidden_builtin_def (strlen)