aboutsummaryrefslogtreecommitdiff
path: root/stdlib/strtod.c
diff options
context:
space:
mode:
authorUlrich Drepper <drepper@redhat.com>2004-03-14 21:12:06 +0000
committerUlrich Drepper <drepper@redhat.com>2004-03-14 21:12:06 +0000
commitccadf7b5346a3e21c692dfcbfcf38a63433bc36a (patch)
treea1e826af3345eee581925387513b1b6c76629c31 /stdlib/strtod.c
parent3bc9b83f49805969b7d139b52ef6b003e5136354 (diff)
downloadglibc-ccadf7b5346a3e21c692dfcbfcf38a63433bc36a.zip
glibc-ccadf7b5346a3e21c692dfcbfcf38a63433bc36a.tar.gz
glibc-ccadf7b5346a3e21c692dfcbfcf38a63433bc36a.tar.bz2
Update.
2004-03-14 Ulrich Drepper <drepper@redhat.com> Make the non-_l functions wrappers around the _l functions. * include/monetary.h: Declare __vstrmon_l. * include/string.h: Add libc_hidden_proto for __strcoll_l and __strxfrm_l. * include/time.h: Define ptime_locale_status. Declare __strptime_internal. * include/wchar.h: Add libc_hidden_proto for __wcscoll_l and __wcsxfrm_l. * stdlib/strfmon.c: Move the code to strfmon_l.c. Add little wrapper around __vstrfmon_l. * stdlib/strfmon_l.c: Add real implementation. Split into new function __vstrfmon_l to allow calling it from strfmon. * stdlib/strtod.c: Move real code to strtod_l.c and add wrapper. * stdlib/strtod_l.c: Add real implementation. * stdlib/strtof.c: Adjust to changed strtod.c. * stdlib/strtof_l.c: Include strtod_l.c now. * stdlib/strtold.c: New file. * stdlib/strtold_l.c: Removed. * string/strcoll.c: Move real code to strcoll_l.c: Add wrapper. * string/strcoll_l.c: Add real implementation. * string/strxfrm.c: Move real code to strxfrm_l.c: Add wrapper. * string/strxfrm_l.c: Add real implementation. * sysdeps/generic/strtol.c: Move real implementation to strtol_l.c. Add wrappers. * sysdeps/generic/strtol_l.c: Add real implementation. * sysdeps/generic/strtold.c: Removed. * sysdeps/generic/strtold_l.c: New file. * sysdeps/generic/strtoll_l.c: Include strtol_l.c now. Adjust #defines. * sysdeps/generic/strtoul_l.c: Likewise. * sysdeps/generic/strtoull_l.c: Likewise. * sysdeps/generic/wcstol_l.c: Likewise. * sysdeps/generic/wcstoll_l.c: Likewise. * sysdeps/generic/wcstoul_l.c: Likewise. * sysdeps/generic/wcstoull_l.c: Likewise. * sysdeps/ieee754/ldbl-128/strtold.c: Removed. * sysdeps/ieee754/ldbl-128/strtold_l.c: New file. * sysdeps/ieee754/ldbl-96/strtold.c: Removed. * sysdeps/ieee754/ldbl-96/strtold_l.c: New file. * sysdeps/m68k/strtold.c: Removed. * sysdeps/m68k/strtold_l.c: New file. * time/strftime.c: Move real code to strftime_l.c. Add wrapper. * time/strftime_l.c: Add real implementation. * time/strptime.c: Move real code to strptime_l.c. Add wrapper. * time/strptime_l.c: Add real implementation. * time/wcsftime.c: Simplify since only wrappers are defined in strftime.c. * time/wcsftime_l.c: Include strftime_l.c. * wcsmbs/wcscoll.c: Simplify since the file is not used by wcscoll_l.c anymore. * wcsmbs/wcscoll_l.c: Include strcoll_l.c. * wcsmbs/wcsxfrm.c: Simplify since the file is not used by wcsxfrm_l.c anymore. * wcsmbs/wcsxfrm_l.c: Include strxfrm_l.c. * wcsmbs/wcstod.c: Prepare to include new strtod.c. * wcsmbs/wcstod_l.c: Include strtod_l.c. * wcsmbs/wcstof.c: Prepare to include new strtof.c. * wcsmbs/wcstof_l.c: Include strtof_l.c. * wcsmbs/wcstold.c: Prepare to include new strtold.c. * wcsmbs/wcstold_l.c: Include strtold_l.c. * locale/uselocale.c: Use _NL_CURRENT_LOCALE instead of __libc_tsd_get. * sysdeps/generic/strcasecmp.c: Optimize a bit. It's better to get a reference to the current locale and then use the _l functions. * sysdeps/generic/strncase.c: Likewise.
Diffstat (limited to 'stdlib/strtod.c')
-rw-r--r--stdlib/strtod.c1560
1 files changed, 17 insertions, 1543 deletions
diff --git a/stdlib/strtod.c b/stdlib/strtod.c
index 63d7a4d..1d4e4a4 100644
--- a/stdlib/strtod.c
+++ b/stdlib/strtod.c
@@ -1,6 +1,6 @@
/* Read decimal floating point numbers.
This file is part of the GNU C Library.
- Copyright (C) 1995-2002, 2003 Free Software Foundation, Inc.
+ Copyright (C) 1995-2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Ulrich Drepper <drepper@gnu.org>, 1995.
The GNU C Library is free software; you can redistribute it and/or
@@ -18,1579 +18,53 @@
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
-/* Configuration part. These macros are defined by `strtold.c',
- `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
- `long double' and `float' versions of the reader. */
+#include <stdlib.h>
+#include <wchar.h>
+#include <locale/localeinfo.h>
+
+
#ifndef FLOAT
-# define FLOAT double
-# define FLT DBL
+# define FLOAT double
# ifdef USE_WIDE_CHAR
-# ifdef USE_IN_EXTENDED_LOCALE_MODEL
-# define STRTOF __wcstod_l
-# else
-# define STRTOF wcstod
-# endif
+# define STRTOF wcstod
+# define STRTOF_L __wcstod_l
# else
-# ifdef USE_IN_EXTENDED_LOCALE_MODEL
-# define STRTOF __strtod_l
-# else
-# define STRTOF strtod
-# endif
+# define STRTOF strtod
+# define STRTOF_L __strtod_l
# endif
-# define MPN2FLOAT __mpn_construct_double
-# define FLOAT_HUGE_VAL HUGE_VAL
-# define SET_MANTISSA(flt, mant) \
- do { union ieee754_double u; \
- u.d = (flt); \
- if ((mant & 0xfffffffffffffULL) == 0) \
- mant = 0x8000000000000ULL; \
- u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
- u.ieee.mantissa1 = (mant) & 0xffffffff; \
- (flt) = u.d; \
- } while (0)
-#endif
-/* End of configuration part. */
-
-#include <ctype.h>
-#include <errno.h>
-#include <float.h>
-#include <ieee754.h>
-#include "../locale/localeinfo.h"
-#include <locale.h>
-#include <math.h>
-#include <stdlib.h>
-#include <string.h>
-
-/* The gmp headers need some configuration frobs. */
-#define HAVE_ALLOCA 1
-
-/* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
- and _LONG_LONG_LIMB in it can take effect into gmp.h. */
-#include <gmp-mparam.h>
-#include <gmp.h>
-#include <gmp-impl.h>
-#include <longlong.h>
-#include "fpioconst.h"
-
-#define NDEBUG 1
-#include <assert.h>
-
-
-/* We use this code also for the extended locale handling where the
- function gets as an additional argument the locale which has to be
- used. To access the values we have to redefine the _NL_CURRENT
- macro. */
-#ifdef USE_IN_EXTENDED_LOCALE_MODEL
-# undef _NL_CURRENT
-# define _NL_CURRENT(category, item) \
- (current->values[_NL_ITEM_INDEX (item)].string)
-# define LOCALE_PARAM , loc
-# define LOCALE_PARAM_DECL __locale_t loc;
-#else
-# define LOCALE_PARAM
-# define LOCALE_PARAM_DECL
-#endif
-
-#if defined _LIBC || defined HAVE_WCHAR_H
-# include <wchar.h>
#endif
#ifdef USE_WIDE_CHAR
# include <wctype.h>
# define STRING_TYPE wchar_t
-# define CHAR_TYPE wint_t
-# define L_(Ch) L##Ch
-# ifdef USE_IN_EXTENDED_LOCALE_MODEL
-# define ISSPACE(Ch) __iswspace_l ((Ch), loc)
-# define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
-# define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
-# define TOLOWER(Ch) __towlower_l ((Ch), loc)
-# define STRNCASECMP(S1, S2, N) __wcsncasecmp_l ((S1), (S2), (N), loc)
-# define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
-# else
-# define ISSPACE(Ch) iswspace (Ch)
-# define ISDIGIT(Ch) iswdigit (Ch)
-# define ISXDIGIT(Ch) iswxdigit (Ch)
-# define TOLOWER(Ch) towlower (Ch)
-# define STRNCASECMP(S1, S2, N) __wcsncasecmp ((S1), (S2), (N))
-# define STRTOULL(S, E, B) __wcstoull_internal ((S), (E), (B), 0)
-# endif
#else
# define STRING_TYPE char
-# define CHAR_TYPE char
-# define L_(Ch) Ch
-# ifdef USE_IN_EXTENDED_LOCALE_MODEL
-# define ISSPACE(Ch) __isspace_l ((Ch), loc)
-# define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
-# define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
-# define TOLOWER(Ch) __tolower_l ((Ch), loc)
-# define STRNCASECMP(S1, S2, N) __strncasecmp_l ((S1), (S2), (N), loc)
-# define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
-# else
-# define ISSPACE(Ch) isspace (Ch)
-# define ISDIGIT(Ch) isdigit (Ch)
-# define ISXDIGIT(Ch) isxdigit (Ch)
-# define TOLOWER(Ch) tolower (Ch)
-# define STRNCASECMP(S1, S2, N) __strncasecmp ((S1), (S2), (N))
-# define STRTOULL(S, E, B) __strtoull_internal ((S), (E), 0, (B))
-# endif
-#endif
-
-
-/* Constants we need from float.h; select the set for the FLOAT precision. */
-#define MANT_DIG PASTE(FLT,_MANT_DIG)
-#define DIG PASTE(FLT,_DIG)
-#define MAX_EXP PASTE(FLT,_MAX_EXP)
-#define MIN_EXP PASTE(FLT,_MIN_EXP)
-#define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
-#define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
-
-/* Extra macros required to get FLT expanded before the pasting. */
-#define PASTE(a,b) PASTE1(a,b)
-#define PASTE1(a,b) a##b
-
-/* Function to construct a floating point number from an MP integer
- containing the fraction bits, a base 2 exponent, and a sign flag. */
-extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
-
-/* Definitions according to limb size used. */
-#if BITS_PER_MP_LIMB == 32
-# define MAX_DIG_PER_LIMB 9
-# define MAX_FAC_PER_LIMB 1000000000UL
-#elif BITS_PER_MP_LIMB == 64
-# define MAX_DIG_PER_LIMB 19
-# define MAX_FAC_PER_LIMB 10000000000000000000ULL
-#else
-# error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
#endif
-
-/* Local data structure. */
-static const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1] =
-{ 0, 10, 100,
- 1000, 10000, 100000L,
- 1000000L, 10000000L, 100000000L,
- 1000000000L
-#if BITS_PER_MP_LIMB > 32
- , 10000000000ULL, 100000000000ULL,
- 1000000000000ULL, 10000000000000ULL, 100000000000000ULL,
- 1000000000000000ULL, 10000000000000000ULL, 100000000000000000ULL,
- 1000000000000000000ULL, 10000000000000000000ULL
-#endif
-#if BITS_PER_MP_LIMB > 64
- #error "Need to expand tens_in_limb table to" MAX_DIG_PER_LIMB
-#endif
-};
-
-#ifndef howmany
-#define howmany(x,y) (((x)+((y)-1))/(y))
-#endif
-#define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
-
-#define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG)
-#define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG)
-#define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
-
-#define RETURN(val,end) \
- do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
- return val; } while (0)
-
-/* Maximum size necessary for mpn integers to hold floating point numbers. */
-#define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \
- + 2)
-/* Declare an mpn integer variable that big. */
-#define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
-/* Copy an mpn integer value. */
-#define MPN_ASSIGN(dst, src) \
- memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
-
-
-/* Return a floating point number of the needed type according to the given
- multi-precision number after possible rounding. */
-static FLOAT
-round_and_return (mp_limb_t *retval, int exponent, int negative,
- mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
-{
- if (exponent < MIN_EXP - 1)
- {
- mp_size_t shift = MIN_EXP - 1 - exponent;
-
- if (shift > MANT_DIG)
- {
- __set_errno (EDOM);
- return 0.0;
- }
-
- more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
- if (shift == MANT_DIG)
- /* This is a special case to handle the very seldom case where
- the mantissa will be empty after the shift. */
- {
- int i;
-
- round_limb = retval[RETURN_LIMB_SIZE - 1];
- round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- for (i = 0; i < RETURN_LIMB_SIZE; ++i)
- more_bits |= retval[i] != 0;
- MPN_ZERO (retval, RETURN_LIMB_SIZE);
- }
- else if (shift >= BITS_PER_MP_LIMB)
- {
- int i;
-
- round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
- round_bit = (shift - 1) % BITS_PER_MP_LIMB;
- for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
- more_bits |= retval[i] != 0;
- more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
- != 0);
-
- (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
- RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
- shift % BITS_PER_MP_LIMB);
- MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
- shift / BITS_PER_MP_LIMB);
- }
- else if (shift > 0)
- {
- round_limb = retval[0];
- round_bit = shift - 1;
- (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
- }
- /* This is a hook for the m68k long double format, where the
- exponent bias is the same for normalized and denormalized
- numbers. */
-#ifndef DENORM_EXP
-# define DENORM_EXP (MIN_EXP - 2)
-#endif
- exponent = DENORM_EXP;
- }
-
- if ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
- && (more_bits || (retval[0] & 1) != 0
- || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
- {
- mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
-
- if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
- ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
- (retval[RETURN_LIMB_SIZE - 1]
- & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
- {
- ++exponent;
- (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
- retval[RETURN_LIMB_SIZE - 1]
- |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
- }
- else if (exponent == DENORM_EXP
- && (retval[RETURN_LIMB_SIZE - 1]
- & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
- != 0)
- /* The number was denormalized but now normalized. */
- exponent = MIN_EXP - 1;
- }
-
- if (exponent > MAX_EXP)
- return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
-
- return MPN2FLOAT (retval, exponent, negative);
-}
-
-
-/* Read a multi-precision integer starting at STR with exactly DIGCNT digits
- into N. Return the size of the number limbs in NSIZE at the first
- character od the string that is not part of the integer as the function
- value. If the EXPONENT is small enough to be taken as an additional
- factor for the resulting number (see code) multiply by it. */
-static const STRING_TYPE *
-str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
- int *exponent
-#ifndef USE_WIDE_CHAR
- , const char *decimal, size_t decimal_len, const char *thousands
-#endif
-
- )
-{
- /* Number of digits for actual limb. */
- int cnt = 0;
- mp_limb_t low = 0;
- mp_limb_t start;
-
- *nsize = 0;
- assert (digcnt > 0);
- do
- {
- if (cnt == MAX_DIG_PER_LIMB)
- {
- if (*nsize == 0)
- {
- n[0] = low;
- *nsize = 1;
- }
- else
- {
- mp_limb_t cy;
- cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
- cy += __mpn_add_1 (n, n, *nsize, low);
- if (cy != 0)
- {
- n[*nsize] = cy;
- ++(*nsize);
- }
- }
- cnt = 0;
- low = 0;
- }
-
- /* There might be thousands separators or radix characters in
- the string. But these all can be ignored because we know the
- format of the number is correct and we have an exact number
- of characters to read. */
-#ifdef USE_WIDE_CHAR
- if (*str < L'0' || *str > L'9')
- ++str;
-#else
- if (*str < '0' || *str > '9')
- {
- int inner = 0;
- if (thousands != NULL && *str == *thousands
- && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
- if (thousands[inner] != str[inner])
- break;
- thousands[inner] == '\0'; }))
- str += inner;
- else
- str += decimal_len;
- }
-#endif
- low = low * 10 + *str++ - L_('0');
- ++cnt;
- }
- while (--digcnt > 0);
-
- if (*exponent > 0 && cnt + *exponent <= MAX_DIG_PER_LIMB)
- {
- low *= _tens_in_limb[*exponent];
- start = _tens_in_limb[cnt + *exponent];
- *exponent = 0;
- }
- else
- start = _tens_in_limb[cnt];
-
- if (*nsize == 0)
- {
- n[0] = low;
- *nsize = 1;
- }
- else
- {
- mp_limb_t cy;
- cy = __mpn_mul_1 (n, n, *nsize, start);
- cy += __mpn_add_1 (n, n, *nsize, low);
- if (cy != 0)
- n[(*nsize)++] = cy;
- }
-
- return str;
-}
-
-
-/* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
- with the COUNT most significant bits of LIMB.
-
- Tege doesn't like this function so I have to write it here myself. :)
- --drepper */
-static inline void
-__attribute ((always_inline))
-__mpn_lshift_1 (mp_limb_t *ptr, mp_size_t size, unsigned int count,
- mp_limb_t limb)
-{
- if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB)
- {
- /* Optimize the case of shifting by exactly a word:
- just copy words, with no actual bit-shifting. */
- mp_size_t i;
- for (i = size - 1; i > 0; --i)
- ptr[i] = ptr[i - 1];
- ptr[0] = limb;
- }
- else
- {
- (void) __mpn_lshift (ptr, ptr, size, count);
- ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
- }
-}
-
-
#define INTERNAL(x) INTERNAL1(x)
#define INTERNAL1(x) __##x##_internal
-/* This file defines a function to check for correct grouping. */
-#include "grouping.h"
-
-/* Return a floating point number with the value of the given string NPTR.
- Set *ENDPTR to the character after the last used one. If the number is
- smaller than the smallest representable number, set `errno' to ERANGE and
- return 0.0. If the number is too big to be represented, set `errno' to
- ERANGE and return HUGE_VAL with the appropriate sign. */
FLOAT
-INTERNAL (STRTOF) (nptr, endptr, group LOCALE_PARAM)
+INTERNAL (STRTOF) (nptr, endptr, group)
const STRING_TYPE *nptr;
STRING_TYPE **endptr;
int group;
- LOCALE_PARAM_DECL
{
- int negative; /* The sign of the number. */
- MPN_VAR (num); /* MP representation of the number. */
- int exponent; /* Exponent of the number. */
-
- /* Numbers starting `0X' or `0x' have to be processed with base 16. */
- int base = 10;
-
- /* When we have to compute fractional digits we form a fraction with a
- second multi-precision number (and we sometimes need a second for
- temporary results). */
- MPN_VAR (den);
-
- /* Representation for the return value. */
- mp_limb_t retval[RETURN_LIMB_SIZE];
- /* Number of bits currently in result value. */
- int bits;
-
- /* Running pointer after the last character processed in the string. */
- const STRING_TYPE *cp, *tp;
- /* Start of significant part of the number. */
- const STRING_TYPE *startp, *start_of_digits;
- /* Points at the character following the integer and fractional digits. */
- const STRING_TYPE *expp;
- /* Total number of digit and number of digits in integer part. */
- int dig_no, int_no, lead_zero;
- /* Contains the last character read. */
- CHAR_TYPE c;
-
-/* We should get wint_t from <stddef.h>, but not all GCC versions define it
- there. So define it ourselves if it remains undefined. */
-#ifndef _WINT_T
- typedef unsigned int wint_t;
-#endif
- /* The radix character of the current locale. */
-#ifdef USE_WIDE_CHAR
- wchar_t decimal;
-#else
- const char *decimal;
- size_t decimal_len;
-#endif
- /* The thousands character of the current locale. */
-#ifdef USE_WIDE_CHAR
- wchar_t thousands = L'\0';
-#else
- const char *thousands = NULL;
-#endif
- /* The numeric grouping specification of the current locale,
- in the format described in <locale.h>. */
- const char *grouping;
- /* Used in several places. */
- int cnt;
-
-#ifdef USE_IN_EXTENDED_LOCALE_MODEL
- struct locale_data *current = loc->__locales[LC_NUMERIC];
-#endif
-
- if (group)
- {
- grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
- if (*grouping <= 0 || *grouping == CHAR_MAX)
- grouping = NULL;
- else
- {
- /* Figure out the thousands separator character. */
-#ifdef USE_WIDE_CHAR
- thousands = _NL_CURRENT_WORD (LC_NUMERIC,
- _NL_NUMERIC_THOUSANDS_SEP_WC);
- if (thousands == L'\0')
- grouping = NULL;
-#else
- thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
- if (*thousands == '\0')
- {
- thousands = NULL;
- grouping = NULL;
- }
-#endif
- }
- }
- else
- grouping = NULL;
-
- /* Find the locale's decimal point character. */
-#ifdef USE_WIDE_CHAR
- decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
- assert (decimal != L'\0');
-# define decimal_len 1
-#else
- decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
- decimal_len = strlen (decimal);
- assert (decimal_len > 0);
-#endif
-
- /* Prepare number representation. */
- exponent = 0;
- negative = 0;
- bits = 0;
-
- /* Parse string to get maximal legal prefix. We need the number of
- characters of the integer part, the fractional part and the exponent. */
- cp = nptr - 1;
- /* Ignore leading white space. */
- do
- c = *++cp;
- while (ISSPACE (c));
-
- /* Get sign of the result. */
- if (c == L_('-'))
- {
- negative = 1;
- c = *++cp;
- }
- else if (c == L_('+'))
- c = *++cp;
-
- /* Return 0.0 if no legal string is found.
- No character is used even if a sign was found. */
-#ifdef USE_WIDE_CHAR
- if (c == (wint_t) decimal
- && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
- {
- /* We accept it. This funny construct is here only to indent
- the code directly. */
- }
-#else
- for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (cp[cnt] != decimal[cnt])
- break;
- if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
- {
- /* We accept it. This funny construct is here only to indent
- the code directly. */
- }
-#endif
- else if (c < L_('0') || c > L_('9'))
- {
- /* Check for `INF' or `INFINITY'. */
- if (TOLOWER (c) == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
- {
- /* Return +/- infinity. */
- if (endptr != NULL)
- *endptr = (STRING_TYPE *)
- (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
- ? 8 : 3));
-
- return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
- }
-
- if (TOLOWER (c) == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
- {
- /* Return NaN. */
- FLOAT retval = NAN;
-
- cp += 3;
-
- /* Match `(n-char-sequence-digit)'. */
- if (*cp == L_('('))
- {
- const STRING_TYPE *startp = cp;
- do
- ++cp;
- while ((*cp >= L_('0') && *cp <= L_('9'))
- || (TOLOWER (*cp) >= L_('a') && TOLOWER (*cp) <= L_('z'))
- || *cp == L_('_'));
-
- if (*cp != L_(')'))
- /* The closing brace is missing. Only match the NAN
- part. */
- cp = startp;
- else
- {
- /* This is a system-dependent way to specify the
- bitmask used for the NaN. We expect it to be
- a number which is put in the mantissa of the
- number. */
- STRING_TYPE *endp;
- unsigned long long int mant;
-
- mant = STRTOULL (startp + 1, &endp, 0);
- if (endp == cp)
- SET_MANTISSA (retval, mant);
- }
- }
-
- if (endptr != NULL)
- *endptr = (STRING_TYPE *) cp;
-
- return retval;
- }
-
- /* It is really a text we do not recognize. */
- RETURN (0.0, nptr);
- }
-
- /* First look whether we are faced with a hexadecimal number. */
- if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
- {
- /* Okay, it is a hexa-decimal number. Remember this and skip
- the characters. BTW: hexadecimal numbers must not be
- grouped. */
- base = 16;
- cp += 2;
- c = *cp;
- grouping = NULL;
- }
-
- /* Record the start of the digits, in case we will check their grouping. */
- start_of_digits = startp = cp;
-
- /* Ignore leading zeroes. This helps us to avoid useless computations. */
-#ifdef USE_WIDE_CHAR
- while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
- c = *++cp;
-#else
- if (thousands == NULL)
- while (c == '0')
- c = *++cp;
- else
- {
- /* We also have the multibyte thousands string. */
- while (1)
- {
- if (c != '0')
- {
- for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
- if (c != thousands[cnt])
- break;
- if (thousands[cnt] != '\0')
- break;
- }
- c = *++cp;
- }
- }
-#endif
-
- /* If no other digit but a '0' is found the result is 0.0.
- Return current read pointer. */
- if ((c < L_('0') || c > L_('9'))
- && (base == 16 && (c < (CHAR_TYPE) TOLOWER (L_('a'))
- || c > (CHAR_TYPE) TOLOWER (L_('f'))))
-#ifdef USE_WIDE_CHAR
- && c != (wint_t) decimal
-#else
- && ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != cp[cnt])
- break;
- decimal[cnt] != '\0'; })
-#endif
- && (base == 16 && (cp == start_of_digits
- || (CHAR_TYPE) TOLOWER (c) != L_('p')))
- && (base != 16 && (CHAR_TYPE) TOLOWER (c) != L_('e')))
- {
-#ifdef USE_WIDE_CHAR
- tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
- grouping);
-#else
- tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
- grouping);
-#endif
- /* If TP is at the start of the digits, there was no correctly
- grouped prefix of the string; so no number found. */
- RETURN (0.0, tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
- }
-
- /* Remember first significant digit and read following characters until the
- decimal point, exponent character or any non-FP number character. */
- startp = cp;
- dig_no = 0;
- while (1)
- {
- if ((c >= L_('0') && c <= L_('9'))
- || (base == 16 && (wint_t) TOLOWER (c) >= L_('a')
- && (wint_t) TOLOWER (c) <= L_('f')))
- ++dig_no;
- else
- {
-#ifdef USE_WIDE_CHAR
- if ((wint_t) thousands == L'\0' || c != (wint_t) thousands)
- /* Not a digit or separator: end of the integer part. */
- break;
-#else
- if (thousands == NULL)
- break;
- else
- {
- for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
- if (thousands[cnt] != cp[cnt])
- break;
- if (thousands[cnt] != '\0')
- break;
- }
-#endif
- }
- c = *++cp;
- }
-
- if (grouping && dig_no > 0)
- {
- /* Check the grouping of the digits. */
-#ifdef USE_WIDE_CHAR
- tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
- grouping);
-#else
- tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
- grouping);
-#endif
- if (cp != tp)
- {
- /* Less than the entire string was correctly grouped. */
-
- if (tp == start_of_digits)
- /* No valid group of numbers at all: no valid number. */
- RETURN (0.0, nptr);
-
- if (tp < startp)
- /* The number is validly grouped, but consists
- only of zeroes. The whole value is zero. */
- RETURN (0.0, tp);
-
- /* Recompute DIG_NO so we won't read more digits than
- are properly grouped. */
- cp = tp;
- dig_no = 0;
- for (tp = startp; tp < cp; ++tp)
- if (*tp >= L_('0') && *tp <= L_('9'))
- ++dig_no;
-
- int_no = dig_no;
- lead_zero = 0;
-
- goto number_parsed;
- }
- }
-
- /* We have the number digits in the integer part. Whether these are all or
- any is really a fractional digit will be decided later. */
- int_no = dig_no;
- lead_zero = int_no == 0 ? -1 : 0;
-
- /* Read the fractional digits. A special case are the 'american style'
- numbers like `16.' i.e. with decimal but without trailing digits. */
- if (
-#ifdef USE_WIDE_CHAR
- c == (wint_t) decimal
-#else
- ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != cp[cnt])
- break;
- decimal[cnt] == '\0'; })
-#endif
- )
- {
- cp += decimal_len;
- c = *cp;
- while ((c >= L_('0') && c <= L_('9')) ||
- (base == 16 && TOLOWER (c) >= L_('a') && TOLOWER (c) <= L_('f')))
- {
- if (c != L_('0') && lead_zero == -1)
- lead_zero = dig_no - int_no;
- ++dig_no;
- c = *++cp;
- }
- }
-
- /* Remember start of exponent (if any). */
- expp = cp;
-
- /* Read exponent. */
- if ((base == 16 && TOLOWER (c) == L_('p'))
- || (base != 16 && TOLOWER (c) == L_('e')))
- {
- int exp_negative = 0;
-
- c = *++cp;
- if (c == L_('-'))
- {
- exp_negative = 1;
- c = *++cp;
- }
- else if (c == L_('+'))
- c = *++cp;
-
- if (c >= L_('0') && c <= L_('9'))
- {
- int exp_limit;
-
- /* Get the exponent limit. */
- if (base == 16)
- exp_limit = (exp_negative ?
- -MIN_EXP + MANT_DIG + 4 * int_no :
- MAX_EXP - 4 * int_no + lead_zero);
- else
- exp_limit = (exp_negative ?
- -MIN_10_EXP + MANT_DIG + int_no :
- MAX_10_EXP - int_no + lead_zero);
-
- do
- {
- exponent *= 10;
-
- if (exponent > exp_limit)
- /* The exponent is too large/small to represent a valid
- number. */
- {
- FLOAT result;
-
- /* We have to take care for special situation: a joker
- might have written "0.0e100000" which is in fact
- zero. */
- if (lead_zero == -1)
- result = negative ? -0.0 : 0.0;
- else
- {
- /* Overflow or underflow. */
- __set_errno (ERANGE);
- result = (exp_negative ? 0.0 :
- negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL);
- }
-
- /* Accept all following digits as part of the exponent. */
- do
- ++cp;
- while (*cp >= L_('0') && *cp <= L_('9'));
-
- RETURN (result, cp);
- /* NOTREACHED */
- }
-
- exponent += c - L_('0');
- c = *++cp;
- }
- while (c >= L_('0') && c <= L_('9'));
-
- if (exp_negative)
- exponent = -exponent;
- }
- else
- cp = expp;
- }
-
- /* We don't want to have to work with trailing zeroes after the radix. */
- if (dig_no > int_no)
- {
- while (expp[-1] == L_('0'))
- {
- --expp;
- --dig_no;
- }
- assert (dig_no >= int_no);
- }
-
- if (dig_no == int_no && dig_no > 0 && exponent < 0)
- do
- {
- while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
- --expp;
-
- if (expp[-1] != L_('0'))
- break;
-
- --expp;
- --dig_no;
- --int_no;
- ++exponent;
- }
- while (dig_no > 0 && exponent < 0);
-
- number_parsed:
-
- /* The whole string is parsed. Store the address of the next character. */
- if (endptr)
- *endptr = (STRING_TYPE *) cp;
-
- if (dig_no == 0)
- return negative ? -0.0 : 0.0;
-
- if (lead_zero)
- {
- /* Find the decimal point */
-#ifdef USE_WIDE_CHAR
- while (*startp != decimal)
- ++startp;
-#else
- while (1)
- {
- if (*startp == decimal[0])
- {
- for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
- if (decimal[cnt] != startp[cnt])
- break;
- if (decimal[cnt] == '\0')
- break;
- }
- ++startp;
- }
-#endif
- startp += lead_zero + decimal_len;
- exponent -= base == 16 ? 4 * lead_zero : lead_zero;
- dig_no -= lead_zero;
- }
-
- /* If the BASE is 16 we can use a simpler algorithm. */
- if (base == 16)
- {
- static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
- 4, 4, 4, 4, 4, 4, 4, 4 };
- int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
- int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- mp_limb_t val;
-
- while (!ISXDIGIT (*startp))
- ++startp;
- while (*startp == L_('0'))
- ++startp;
- if (ISDIGIT (*startp))
- val = *startp++ - L_('0');
- else
- val = 10 + TOLOWER (*startp++) - L_('a');
- bits = nbits[val];
- /* We cannot have a leading zero. */
- assert (bits != 0);
-
- if (pos + 1 >= 4 || pos + 1 >= bits)
- {
- /* We don't have to care for wrapping. This is the normal
- case so we add the first clause in the `if' expression as
- an optimization. It is a compile-time constant and so does
- not cost anything. */
- retval[idx] = val << (pos - bits + 1);
- pos -= bits;
- }
- else
- {
- retval[idx--] = val >> (bits - pos - 1);
- retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
- pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
- }
-
- /* Adjust the exponent for the bits we are shifting in. */
- exponent += bits - 1 + (int_no - 1) * 4;
-
- while (--dig_no > 0 && idx >= 0)
- {
- if (!ISXDIGIT (*startp))
- startp += decimal_len;
- if (ISDIGIT (*startp))
- val = *startp++ - L_('0');
- else
- val = 10 + TOLOWER (*startp++) - L_('a');
-
- if (pos + 1 >= 4)
- {
- retval[idx] |= val << (pos - 4 + 1);
- pos -= 4;
- }
- else
- {
- retval[idx--] |= val >> (4 - pos - 1);
- val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
- if (idx < 0)
- return round_and_return (retval, exponent, negative, val,
- BITS_PER_MP_LIMB - 1, dig_no > 0);
-
- retval[idx] = val;
- pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
- }
- }
-
- /* We ran out of digits. */
- MPN_ZERO (retval, idx);
-
- return round_and_return (retval, exponent, negative, 0, 0, 0);
- }
-
- /* Now we have the number of digits in total and the integer digits as well
- as the exponent and its sign. We can decide whether the read digits are
- really integer digits or belong to the fractional part; i.e. we normalize
- 123e-2 to 1.23. */
- {
- register int incr = (exponent < 0 ? MAX (-int_no, exponent)
- : MIN (dig_no - int_no, exponent));
- int_no += incr;
- exponent -= incr;
- }
-
- if (int_no + exponent > MAX_10_EXP + 1)
- {
- __set_errno (ERANGE);
- return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
- }
-
- if (exponent < MIN_10_EXP - (DIG + 1))
- {
- __set_errno (ERANGE);
- return 0.0;
- }
-
- if (int_no > 0)
- {
- /* Read the integer part as a multi-precision number to NUM. */
- startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
-#ifndef USE_WIDE_CHAR
- , decimal, decimal_len, thousands
-#endif
- );
-
- if (exponent > 0)
- {
- /* We now multiply the gained number by the given power of ten. */
- mp_limb_t *psrc = num;
- mp_limb_t *pdest = den;
- int expbit = 1;
- const struct mp_power *ttab = &_fpioconst_pow10[0];
-
- do
- {
- if ((exponent & expbit) != 0)
- {
- size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
- mp_limb_t cy;
- exponent ^= expbit;
-
- /* FIXME: not the whole multiplication has to be
- done. If we have the needed number of bits we
- only need the information whether more non-zero
- bits follow. */
- if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
- cy = __mpn_mul (pdest, psrc, numsize,
- &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- size);
- else
- cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- size, psrc, numsize);
- numsize += size;
- if (cy == 0)
- --numsize;
- (void) SWAP (psrc, pdest);
- }
- expbit <<= 1;
- ++ttab;
- }
- while (exponent != 0);
-
- if (psrc == den)
- memcpy (num, den, numsize * sizeof (mp_limb_t));
- }
-
- /* Determine how many bits of the result we already have. */
- count_leading_zeros (bits, num[numsize - 1]);
- bits = numsize * BITS_PER_MP_LIMB - bits;
-
- /* Now we know the exponent of the number in base two.
- Check it against the maximum possible exponent. */
- if (bits > MAX_EXP)
- {
- __set_errno (ERANGE);
- return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
- }
-
- /* We have already the first BITS bits of the result. Together with
- the information whether more non-zero bits follow this is enough
- to determine the result. */
- if (bits > MANT_DIG)
- {
- int i;
- const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
- const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
- const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
- : least_idx;
- const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
- : least_bit - 1;
-
- if (least_bit == 0)
- memcpy (retval, &num[least_idx],
- RETURN_LIMB_SIZE * sizeof (mp_limb_t));
- else
- {
- for (i = least_idx; i < numsize - 1; ++i)
- retval[i - least_idx] = (num[i] >> least_bit)
- | (num[i + 1]
- << (BITS_PER_MP_LIMB - least_bit));
- if (i - least_idx < RETURN_LIMB_SIZE)
- retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
- }
-
- /* Check whether any limb beside the ones in RETVAL are non-zero. */
- for (i = 0; num[i] == 0; ++i)
- ;
-
- return round_and_return (retval, bits - 1, negative,
- num[round_idx], round_bit,
- int_no < dig_no || i < round_idx);
- /* NOTREACHED */
- }
- else if (dig_no == int_no)
- {
- const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
- const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
-
- if (target_bit == is_bit)
- {
- memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
- numsize * sizeof (mp_limb_t));
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
- }
- else if (target_bit > is_bit)
- {
- (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
- num, numsize, target_bit - is_bit);
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
- }
- else
- {
- mp_limb_t cy;
- assert (numsize < RETURN_LIMB_SIZE);
-
- cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
- num, numsize, is_bit - target_bit);
- retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
- /* FIXME: the following loop can be avoided if we assume a
- maximal MANT_DIG value. */
- MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
- }
-
- return round_and_return (retval, bits - 1, negative, 0, 0, 0);
- /* NOTREACHED */
- }
-
- /* Store the bits we already have. */
- memcpy (retval, num, numsize * sizeof (mp_limb_t));
-#if RETURN_LIMB_SIZE > 1
- if (numsize < RETURN_LIMB_SIZE)
- retval[numsize] = 0;
-#endif
- }
-
- /* We have to compute at least some of the fractional digits. */
- {
- /* We construct a fraction and the result of the division gives us
- the needed digits. The denominator is 1.0 multiplied by the
- exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
- 123e-6 gives 123 / 1000000. */
-
- int expbit;
- int neg_exp;
- int more_bits;
- mp_limb_t cy;
- mp_limb_t *psrc = den;
- mp_limb_t *pdest = num;
- const struct mp_power *ttab = &_fpioconst_pow10[0];
-
- assert (dig_no > int_no && exponent <= 0);
-
-
- /* For the fractional part we need not process too many digits. One
- decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute
- ceil(BITS / 3) =: N
- digits we should have enough bits for the result. The remaining
- decimal digits give us the information that more bits are following.
- This can be used while rounding. (Two added as a safety margin.) */
- if (dig_no - int_no > (MANT_DIG - bits + 2) / 3 + 2)
- {
- dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 2;
- more_bits = 1;
- }
- else
- more_bits = 0;
-
- neg_exp = dig_no - int_no - exponent;
-
- /* Construct the denominator. */
- densize = 0;
- expbit = 1;
- do
- {
- if ((neg_exp & expbit) != 0)
- {
- mp_limb_t cy;
- neg_exp ^= expbit;
-
- if (densize == 0)
- {
- densize = ttab->arraysize - _FPIO_CONST_OFFSET;
- memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
- densize * sizeof (mp_limb_t));
- }
- else
- {
- cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
- + _FPIO_CONST_OFFSET],
- ttab->arraysize - _FPIO_CONST_OFFSET,
- psrc, densize);
- densize += ttab->arraysize - _FPIO_CONST_OFFSET;
- if (cy == 0)
- --densize;
- (void) SWAP (psrc, pdest);
- }
- }
- expbit <<= 1;
- ++ttab;
- }
- while (neg_exp != 0);
-
- if (psrc == num)
- memcpy (den, num, densize * sizeof (mp_limb_t));
-
- /* Read the fractional digits from the string. */
- (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
-#ifndef USE_WIDE_CHAR
- , decimal, decimal_len, thousands
-#endif
- );
-
- /* We now have to shift both numbers so that the highest bit in the
- denominator is set. In the same process we copy the numerator to
- a high place in the array so that the division constructs the wanted
- digits. This is done by a "quasi fix point" number representation.
-
- num: ddddddddddd . 0000000000000000000000
- |--- m ---|
- den: ddddddddddd n >= m
- |--- n ---|
- */
-
- count_leading_zeros (cnt, den[densize - 1]);
-
- if (cnt > 0)
- {
- /* Don't call `mpn_shift' with a count of zero since the specification
- does not allow this. */
- (void) __mpn_lshift (den, den, densize, cnt);
- cy = __mpn_lshift (num, num, numsize, cnt);
- if (cy != 0)
- num[numsize++] = cy;
- }
-
- /* Now we are ready for the division. But it is not necessary to
- do a full multi-precision division because we only need a small
- number of bits for the result. So we do not use __mpn_divmod
- here but instead do the division here by hand and stop whenever
- the needed number of bits is reached. The code itself comes
- from the GNU MP Library by Torbj\"orn Granlund. */
-
- exponent = bits;
-
- switch (densize)
- {
- case 1:
- {
- mp_limb_t d, n, quot;
- int used = 0;
-
- n = num[0];
- d = den[0];
- assert (numsize == 1 && n < d);
-
- do
- {
- udiv_qrnnd (quot, n, n, 0, d);
-
-#define got_limb \
- if (bits == 0) \
- { \
- register int cnt; \
- if (quot == 0) \
- cnt = BITS_PER_MP_LIMB; \
- else \
- count_leading_zeros (cnt, quot); \
- exponent -= cnt; \
- if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
- { \
- used = MANT_DIG + cnt; \
- retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
- bits = MANT_DIG + 1; \
- } \
- else \
- { \
- /* Note that we only clear the second element. */ \
- /* The conditional is determined at compile time. */ \
- if (RETURN_LIMB_SIZE > 1) \
- retval[1] = 0; \
- retval[0] = quot; \
- bits = -cnt; \
- } \
- } \
- else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
- quot); \
- else \
- { \
- used = MANT_DIG - bits; \
- if (used > 0) \
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
- } \
- bits += BITS_PER_MP_LIMB
-
- got_limb;
- }
- while (bits <= MANT_DIG);
-
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || n != 0);
- }
- case 2:
- {
- mp_limb_t d0, d1, n0, n1;
- mp_limb_t quot = 0;
- int used = 0;
-
- d0 = den[0];
- d1 = den[1];
-
- if (numsize < densize)
- {
- if (num[0] >= d1)
- {
- /* The numerator of the number occupies fewer bits than
- the denominator but the one limb is bigger than the
- high limb of the numerator. */
- n1 = 0;
- n0 = num[0];
- }
- else
- {
- if (bits <= 0)
- exponent -= BITS_PER_MP_LIMB;
- else
- {
- if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
- BITS_PER_MP_LIMB, 0);
- else
- {
- used = MANT_DIG - bits;
- if (used > 0)
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
- }
- bits += BITS_PER_MP_LIMB;
- }
- n1 = num[0];
- n0 = 0;
- }
- }
- else
- {
- n1 = num[1];
- n0 = num[0];
- }
-
- while (bits <= MANT_DIG)
- {
- mp_limb_t r;
-
- if (n1 == d1)
- {
- /* QUOT should be either 111..111 or 111..110. We need
- special treatment of this rare case as normal division
- would give overflow. */
- quot = ~(mp_limb_t) 0;
-
- r = n0 + d1;
- if (r < d1) /* Carry in the addition? */
- {
- add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
- goto have_quot;
- }
- n1 = d0 - (d0 != 0);
- n0 = -d0;
- }
- else
- {
- udiv_qrnnd (quot, r, n1, n0, d1);
- umul_ppmm (n1, n0, d0, quot);
- }
-
- q_test:
- if (n1 > r || (n1 == r && n0 > 0))
- {
- /* The estimated QUOT was too large. */
- --quot;
-
- sub_ddmmss (n1, n0, n1, n0, 0, d0);
- r += d1;
- if (r >= d1) /* If not carry, test QUOT again. */
- goto q_test;
- }
- sub_ddmmss (n1, n0, r, 0, n1, n0);
-
- have_quot:
- got_limb;
- }
-
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || n1 != 0 || n0 != 0);
- }
- default:
- {
- int i;
- mp_limb_t cy, dX, d1, n0, n1;
- mp_limb_t quot = 0;
- int used = 0;
-
- dX = den[densize - 1];
- d1 = den[densize - 2];
-
- /* The division does not work if the upper limb of the two-limb
- numerator is greater than the denominator. */
- if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
- num[numsize++] = 0;
-
- if (numsize < densize)
- {
- mp_size_t empty = densize - numsize;
-
- if (bits <= 0)
- {
- register int i;
- for (i = numsize; i > 0; --i)
- num[i + empty] = num[i - 1];
- MPN_ZERO (num, empty + 1);
- exponent -= empty * BITS_PER_MP_LIMB;
- }
- else
- {
- if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
- {
- /* We make a difference here because the compiler
- cannot optimize the `else' case that good and
- this reflects all currently used FLOAT types
- and GMP implementations. */
- register int i;
-#if RETURN_LIMB_SIZE <= 2
- assert (empty == 1);
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
- BITS_PER_MP_LIMB, 0);
-#else
- for (i = RETURN_LIMB_SIZE; i > empty; --i)
- retval[i] = retval[i - empty];
-#endif
- for (i = numsize; i > 0; --i)
- num[i + empty] = num[i - 1];
- MPN_ZERO (num, empty + 1);
- }
- else
- {
- used = MANT_DIG - bits;
- if (used >= BITS_PER_MP_LIMB)
- {
- register int i;
- (void) __mpn_lshift (&retval[used
- / BITS_PER_MP_LIMB],
- retval, RETURN_LIMB_SIZE,
- used % BITS_PER_MP_LIMB);
- for (i = used / BITS_PER_MP_LIMB; i >= 0; --i)
- retval[i] = 0;
- }
- else if (used > 0)
- __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
- }
- bits += empty * BITS_PER_MP_LIMB;
- }
- }
- else
- {
- int i;
- assert (numsize == densize);
- for (i = numsize; i > 0; --i)
- num[i] = num[i - 1];
- }
-
- den[densize] = 0;
- n0 = num[densize];
-
- while (bits <= MANT_DIG)
- {
- if (n0 == dX)
- /* This might over-estimate QUOT, but it's probably not
- worth the extra code here to find out. */
- quot = ~(mp_limb_t) 0;
- else
- {
- mp_limb_t r;
-
- udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
- umul_ppmm (n1, n0, d1, quot);
-
- while (n1 > r || (n1 == r && n0 > num[densize - 2]))
- {
- --quot;
- r += dX;
- if (r < dX) /* I.e. "carry in previous addition?" */
- break;
- n1 -= n0 < d1;
- n0 -= d1;
- }
- }
-
- /* Possible optimization: We already have (q * n0) and (1 * n1)
- after the calculation of QUOT. Taking advantage of this, we
- could make this loop make two iterations less. */
-
- cy = __mpn_submul_1 (num, den, densize + 1, quot);
-
- if (num[densize] != cy)
- {
- cy = __mpn_add_n (num, num, den, densize);
- assert (cy != 0);
- --quot;
- }
- n0 = num[densize] = num[densize - 1];
- for (i = densize - 1; i > 0; --i)
- num[i] = num[i - 1];
-
- got_limb;
- }
-
- for (i = densize; num[i] == 0 && i >= 0; --i)
- ;
- return round_and_return (retval, exponent - 1, negative,
- quot, BITS_PER_MP_LIMB - 1 - used,
- more_bits || i >= 0);
- }
- }
- }
-
- /* NOTREACHED */
+ return INTERNAL(STRTOF_L) (nptr, endptr, group, _NL_CURRENT_LOCALE);
}
-#if defined _LIBC \
- && !(defined USE_IN_EXTENDED_LOCALE_MODEL && defined USE_WIDE_CHAR)
+#if defined _LIBC
libc_hidden_def (INTERNAL (STRTOF))
#endif
-
-/* External user entry point. */
+
FLOAT
#ifdef weak_function
weak_function
#endif
-STRTOF (nptr, endptr LOCALE_PARAM)
+STRTOF (nptr, endptr)
const STRING_TYPE *nptr;
STRING_TYPE **endptr;
- LOCALE_PARAM_DECL
{
- return INTERNAL (STRTOF) (nptr, endptr, 0 LOCALE_PARAM);
+ return INTERNAL(STRTOF_L) (nptr, endptr, 0, _NL_CURRENT_LOCALE);
}