diff options
author | Ulrich Drepper <drepper@redhat.com> | 1998-12-14 09:14:02 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 1998-12-14 09:14:02 +0000 |
commit | 4260bc7454185c4cb8c803fdab0ac8f2da655a10 (patch) | |
tree | 66a820d02d29c93b8dde42ed9bd722e1b944c665 /manual/arith.texi | |
parent | e3743e2ffdef8246aff171309aa09b65a7ccebd8 (diff) | |
download | glibc-4260bc7454185c4cb8c803fdab0ac8f2da655a10.zip glibc-4260bc7454185c4cb8c803fdab0ac8f2da655a10.tar.gz glibc-4260bc7454185c4cb8c803fdab0ac8f2da655a10.tar.bz2 |
Update.
1998-12-12 Andreas Schwab <schwab@issan.cs.uni-dortmund.de>
* timezone/Makefile: Protect inclusion of z.* by avoid-generated
and inhibit_timezone_rules instead of no_deps.
* Make-dist: Pass inhibit_timezone_rules=t when making
echo-distinfo.
1998-12-12 Andreas Schwab <schwab@issan.cs.uni-dortmund.de>
* manual/Makefile (distribute): Remove dir-add.texinfo.
* sysdeps/unix/sysv/linux/powerpc/Dist: Add sys/procfs.h and
sys/user.h.
1998-12-11 Andreas Schwab <schwab@issan.cs.uni-dortmund.de>
* manual/Makefile (stamp-summary): Use ^L as separator for
sorting.
* manual/arith.texi: Add comments before all @deffoox lines to get
them added to the summary.
* manual/creature.texi: Likewise.
* manual/math.texi: Likewise.
1998-12-13 Andreas Jaeger <aj@arthur.rhein-neckar.de>
* math/libm-test.c: Remove macro ISINF. Change all usages of
ISINF to isinf.
1998-12-13 Andreas Jaeger <aj@arthur.rhein-neckar.de>
* sysdeps/alpha/fpu/fsetexcptflg.c: Avoid -Wparentheses warning.
* sysdeps/libm-ieee754/s_expm1.c (__expm1): Avoid -Wparentheses
warning.
* sysdeps/libm-ieee754/s_log1p.c (__log1p): Likewise.
* sysdeps/libm-ieee754/e_logf.c (__ieee754_logf): Likewise.
* sysdeps/libm-ieee754/s_expm1f.c (__expm1f): Likewise.
* sysdeps/libm-ieee754/e_log.c (__ieee754_log): Likewise.
* sysdeps/libm-ieee754/s_log1pf.c (__log1pf): Likewise.
1998-12-13 Andreas Jaeger <aj@arthur.rhein-neckar.de>
* sunrpc/svc_udp.c (svcudp_bufcreate): Declare len as socklen_t.
(svcudp_recv): Likewise.
1998-12-13 Thorsten Kukuk <kukuk@vt.uni-paderborn.de>
* nis/nss-nisplus.h: Change some mappings of NIS+ errors to
NSS error codes to avoid endless loops.
1998-12-12 Geoff Keating <geoffk@ozemail.com.au>
* posix/fnmatch.c (fnmatch): Arguments to FOLD must not have
side-effects.
Diffstat (limited to 'manual/arith.texi')
-rw-r--r-- | manual/arith.texi | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/manual/arith.texi b/manual/arith.texi index 3f78c11..b95946a 100644 --- a/manual/arith.texi +++ b/manual/arith.texi @@ -152,7 +152,11 @@ not have to worry about the type of their argument. @comment math.h @comment BSD @deftypefun int isinf (double @var{x}) +@comment math.h +@comment BSD @deftypefunx int isinff (float @var{x}) +@comment math.h +@comment BSD @deftypefunx int isinfl (long double @var{x}) This function returns @code{-1} if @var{x} represents negative infinity, @code{1} if @var{x} represents positive infinity, and @code{0} otherwise. @@ -161,7 +165,11 @@ This function returns @code{-1} if @var{x} represents negative infinity, @comment math.h @comment BSD @deftypefun int isnan (double @var{x}) +@comment math.h +@comment BSD @deftypefunx int isnanf (float @var{x}) +@comment math.h +@comment BSD @deftypefunx int isnanl (long double @var{x}) This function returns a nonzero value if @var{x} is a ``not a number'' value, and zero otherwise. @@ -179,7 +187,11 @@ function for some reason, you can write @comment math.h @comment BSD @deftypefun int finite (double @var{x}) +@comment math.h +@comment BSD @deftypefunx int finitef (float @var{x}) +@comment math.h +@comment BSD @deftypefunx int finitel (long double @var{x}) This function returns a nonzero value if @var{x} is finite or a ``not a number'' value, and zero otherwise. @@ -566,7 +578,11 @@ to test for overflow on both old and new hardware. @comment math.h @comment ISO @deftypevr Macro double HUGE_VAL +@comment math.h +@comment ISO @deftypevrx Macro float HUGE_VALF +@comment math.h +@comment ISO @deftypevrx Macro {long double} HUGE_VALL An expression representing a particular very large number. On machines that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity. @@ -816,7 +832,11 @@ Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h}; @comment stdlib.h @comment ISO @deftypefun int abs (int @var{number}) +@comment stdlib.h +@comment ISO @deftypefunx {long int} labs (long int @var{number}) +@comment stdlib.h +@comment ISO @deftypefunx {long long int} llabs (long long int @var{number}) These functions return the absolute value of @var{number}. @@ -830,7 +850,11 @@ cannot be represented; thus, @w{@code{abs (INT_MIN)}} is not defined. @comment math.h @comment ISO @deftypefun double fabs (double @var{number}) +@comment math.h +@comment ISO @deftypefunx float fabsf (float @var{number}) +@comment math.h +@comment ISO @deftypefunx {long double} fabsl (long double @var{number}) This function returns the absolute value of the floating-point number @var{number}. @@ -839,7 +863,11 @@ This function returns the absolute value of the floating-point number @comment complex.h @comment ISO @deftypefun double cabs (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx float cabsf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {long double} cabsl (complex long double @var{z}) These functions return the absolute value of the complex number @var{z} (@pxref{Complex Numbers}). The absolute value of a complex number is: @@ -872,7 +900,11 @@ All these functions are declared in @file{math.h}. @comment math.h @comment ISO @deftypefun double frexp (double @var{value}, int *@var{exponent}) +@comment math.h +@comment ISO @deftypefunx float frexpf (float @var{value}, int *@var{exponent}) +@comment math.h +@comment ISO @deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent}) These functions are used to split the number @var{value} into a normalized fraction and an exponent. @@ -893,7 +925,11 @@ zero is stored in @code{*@var{exponent}}. @comment math.h @comment ISO @deftypefun double ldexp (double @var{value}, int @var{exponent}) +@comment math.h +@comment ISO @deftypefunx float ldexpf (float @var{value}, int @var{exponent}) +@comment math.h +@comment ISO @deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent}) These functions return the result of multiplying the floating-point number @var{value} by 2 raised to the power @var{exponent}. (It can @@ -909,7 +945,11 @@ equivalent to those of @code{ldexp} and @code{frexp}. @comment math.h @comment BSD @deftypefun double logb (double @var{x}) +@comment math.h +@comment BSD @deftypefunx float logbf (float @var{x}) +@comment math.h +@comment BSD @deftypefunx {long double} logbl (long double @var{x}) These functions return the integer part of the base-2 logarithm of @var{x}, an integer value represented in type @code{double}. This is @@ -931,7 +971,11 @@ the value that @code{frexp} would store into @code{*@var{exponent}}. @comment math.h @comment BSD @deftypefun double scalb (double @var{value}, int @var{exponent}) +@comment math.h +@comment BSD @deftypefunx float scalbf (float @var{value}, int @var{exponent}) +@comment math.h +@comment BSD @deftypefunx {long double} scalbl (long double @var{value}, int @var{exponent}) The @code{scalb} function is the BSD name for @code{ldexp}. @end deftypefun @@ -939,7 +983,11 @@ The @code{scalb} function is the BSD name for @code{ldexp}. @comment math.h @comment BSD @deftypefun {long long int} scalbn (double @var{x}, int n) +@comment math.h +@comment BSD @deftypefunx {long long int} scalbnf (float @var{x}, int n) +@comment math.h +@comment BSD @deftypefunx {long long int} scalbnl (long double @var{x}, int n) @code{scalbn} is identical to @code{scalb}, except that the exponent @var{n} is an @code{int} instead of a floating-point number. @@ -948,7 +996,11 @@ The @code{scalb} function is the BSD name for @code{ldexp}. @comment math.h @comment BSD @deftypefun {long long int} scalbln (double @var{x}, long int n) +@comment math.h +@comment BSD @deftypefunx {long long int} scalblnf (float @var{x}, long int n) +@comment math.h +@comment BSD @deftypefunx {long long int} scalblnl (long double @var{x}, long int n) @code{scalbln} is identical to @code{scalb}, except that the exponent @var{n} is a @code{long int} instead of a floating-point number. @@ -957,7 +1009,11 @@ The @code{scalb} function is the BSD name for @code{ldexp}. @comment math.h @comment BSD @deftypefun {long long int} significand (double @var{x}) +@comment math.h +@comment BSD @deftypefunx {long long int} significandf (float @var{x}) +@comment math.h +@comment BSD @deftypefunx {long long int} significandl (long double @var{x}) @code{significand} returns the mantissa of @var{x} scaled to the range @math{[1, 2)}. @@ -987,7 +1043,11 @@ result as a @code{double} instead to get around this problem. @comment math.h @comment ISO @deftypefun double ceil (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float ceilf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} ceill (long double @var{x}) These functions round @var{x} upwards to the nearest integer, returning that value as a @code{double}. Thus, @code{ceil (1.5)} @@ -997,7 +1057,11 @@ is @code{2.0}. @comment math.h @comment ISO @deftypefun double floor (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float floorf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} floorl (long double @var{x}) These functions round @var{x} downwards to the nearest integer, returning that value as a @code{double}. Thus, @code{floor @@ -1007,7 +1071,11 @@ integer, returning that value as a @code{double}. Thus, @code{floor @comment math.h @comment ISO @deftypefun double trunc (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float truncf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} truncl (long double @var{x}) @code{trunc} is another name for @code{floor} @end deftypefun @@ -1015,7 +1083,11 @@ integer, returning that value as a @code{double}. Thus, @code{floor @comment math.h @comment ISO @deftypefun double rint (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float rintf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} rintl (long double @var{x}) These functions round @var{x} to an integer value according to the current rounding mode. @xref{Floating Point Parameters}, for @@ -1031,7 +1103,11 @@ inexact exception. @comment math.h @comment ISO @deftypefun double nearbyint (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float nearbyintf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} nearbyintl (long double @var{x}) These functions return the same value as the @code{rint} functions, but do not raise the inexact exception if @var{x} is not an integer. @@ -1040,7 +1116,11 @@ do not raise the inexact exception if @var{x} is not an integer. @comment math.h @comment ISO @deftypefun double round (double @var{x}) +@comment math.h +@comment ISO @deftypefunx float roundf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long double} roundl (long double @var{x}) These functions are similar to @code{rint}, but they round halfway cases away from zero instead of to the nearest even integer. @@ -1049,7 +1129,11 @@ cases away from zero instead of to the nearest even integer. @comment math.h @comment ISO @deftypefun {long int} lrint (double @var{x}) +@comment math.h +@comment ISO @deftypefunx {long int} lrintf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long int} lrintl (long double @var{x}) These functions are just like @code{rint}, but they return a @code{long int} instead of a floating-point number. @@ -1058,7 +1142,11 @@ These functions are just like @code{rint}, but they return a @comment math.h @comment ISO @deftypefun {long long int} llrint (double @var{x}) +@comment math.h +@comment ISO @deftypefunx {long long int} llrintf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long long int} llrintl (long double @var{x}) These functions are just like @code{rint}, but they return a @code{long long int} instead of a floating-point number. @@ -1067,7 +1155,11 @@ These functions are just like @code{rint}, but they return a @comment math.h @comment ISO @deftypefun {long int} lround (double @var{x}) +@comment math.h +@comment ISO @deftypefunx {long int} lroundf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long int} lroundl (long double @var{x}) These functions are just like @code{round}, but they return a @code{long int} instead of a floating-point number. @@ -1076,7 +1168,11 @@ These functions are just like @code{round}, but they return a @comment math.h @comment ISO @deftypefun {long long int} llround (double @var{x}) +@comment math.h +@comment ISO @deftypefunx {long long int} llroundf (float @var{x}) +@comment math.h +@comment ISO @deftypefunx {long long int} llroundl (long double @var{x}) These functions are just like @code{round}, but they return a @code{long long int} instead of a floating-point number. @@ -1086,7 +1182,11 @@ These functions are just like @code{round}, but they return a @comment math.h @comment ISO @deftypefun double modf (double @var{value}, double *@var{integer-part}) +@comment math.h +@comment ISO @deftypefunx float modff (float @var{value}, float *@var{integer-part}) +@comment math.h +@comment ISO @deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part}) These functions break the argument @var{value} into an integer part and a fractional part (between @code{-1} and @code{1}, exclusive). Their sum @@ -1108,7 +1208,11 @@ suits your problem. @comment math.h @comment ISO @deftypefun double fmod (double @var{numerator}, double @var{denominator}) +@comment math.h +@comment ISO @deftypefunx float fmodf (float @var{numerator}, float @var{denominator}) +@comment math.h +@comment ISO @deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator}) These functions compute the remainder from the division of @var{numerator} by @var{denominator}. Specifically, the return value is @@ -1126,7 +1230,11 @@ If @var{denominator} is zero, @code{fmod} signals a domain error. @comment math.h @comment BSD @deftypefun double drem (double @var{numerator}, double @var{denominator}) +@comment math.h +@comment BSD @deftypefunx float dremf (float @var{numerator}, float @var{denominator}) +@comment math.h +@comment BSD @deftypefunx {long double} dreml (long double @var{numerator}, long double @var{denominator}) These functions are like @code{fmod} except that they rounds the internal quotient @var{n} to the nearest integer instead of towards zero @@ -1145,7 +1253,11 @@ If @var{denominator} is zero, @code{drem} signals a domain error. @comment math.h @comment BSD @deftypefun double remainder (double @var{numerator}, double @var{denominator}) +@comment math.h +@comment BSD @deftypefunx float remainderf (float @var{numerator}, float @var{denominator}) +@comment math.h +@comment BSD @deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator}) This function is another name for @code{drem}. @end deftypefun @@ -1162,7 +1274,11 @@ bits. @comment math.h @comment ISO @deftypefun double copysign (double @var{x}, double @var{y}) +@comment math.h +@comment ISO @deftypefunx float copysignf (float @var{x}, float @var{y}) +@comment math.h +@comment ISO @deftypefunx {long double} copysignl (long double @var{x}, long double @var{y}) These functions return @var{x} but with the sign of @var{y}. They work even if @var{x} or @var{y} are NaN or zero. Both of these can carry a @@ -1191,7 +1307,11 @@ false, but @code{signbit (-0.0)} will return a nonzero value. @comment math.h @comment ISO @deftypefun double nextafter (double @var{x}, double @var{y}) +@comment math.h +@comment ISO @deftypefunx float nextafterf (float @var{x}, float @var{y}) +@comment math.h +@comment ISO @deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y}) The @code{nextafter} function returns the next representable neighbor of @var{x} in the direction towards @var{y}. The size of the step between @@ -1210,7 +1330,11 @@ recommended functions in @w{IEEE 754}/@w{IEEE 854}). @comment math.h @comment ISO @deftypefun {long long int} nextafterx (double @var{x}, long double @var{y}) +@comment math.h +@comment ISO @deftypefunx {long long int} nextafterxf (float @var{x}, long double @var{y}) +@comment math.h +@comment ISO @deftypefunx {long long int} nextafterxl (long double @var{x}, long double @var{y}) These functions are identical to the corresponding versions of @code{nextafter} except that their second argument is a @code{long @@ -1221,7 +1345,11 @@ double}. @comment math.h @comment ISO @deftypefun double nan (const char *@var{tagp}) +@comment math.h +@comment ISO @deftypefunx float nanf (const char *@var{tagp}) +@comment math.h +@comment ISO @deftypefunx {long double} nanl (const char *@var{tagp}) The @code{nan} function returns a representation of NaN, provided that NaN is supported by the target platform. @@ -1328,7 +1456,11 @@ perform these operations faster than the equivalent C code. @comment math.h @comment ISO @deftypefun double fmin (double @var{x}, double @var{y}) +@comment math.h +@comment ISO @deftypefunx float fminf (float @var{x}, float @var{y}) +@comment math.h +@comment ISO @deftypefunx {long double} fminl (long double @var{x}, long double @var{y}) The @code{fmin} function returns the lesser of the two values @var{x} and @var{y}. It is similar to the expression @@ -1344,7 +1476,11 @@ are NaN, NaN is returned. @comment math.h @comment ISO @deftypefun double fmax (double @var{x}, double @var{y}) +@comment math.h +@comment ISO @deftypefunx float fmaxf (float @var{x}, float @var{y}) +@comment math.h +@comment ISO @deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y}) The @code{fmax} function returns the greater of the two values @var{x} and @var{y}. @@ -1356,7 +1492,11 @@ are NaN, NaN is returned. @comment math.h @comment ISO @deftypefun double fdim (double @var{x}, double @var{y}) +@comment math.h +@comment ISO @deftypefunx float fdimf (float @var{x}, float @var{y}) +@comment math.h +@comment ISO @deftypefunx {long double} fdiml (long double @var{x}, long double @var{y}) The @code{fdim} function returns the positive difference between @var{x} and @var{y}. The positive difference is @math{@var{x} - @@ -1368,7 +1508,11 @@ If @var{x}, @var{y}, or both are NaN, NaN is returned. @comment math.h @comment ISO @deftypefun double fma (double @var{x}, double @var{y}, double @var{z}) +@comment math.h +@comment ISO @deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z}) +@comment math.h +@comment ISO @deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z}) @cindex butterfly The @code{fma} function performs floating-point multiply-add. This is @@ -1494,7 +1638,11 @@ available in three variants, one for each of the three complex types. @comment complex.h @comment ISO @deftypefun double creal (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx float crealf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {long double} creall (complex long double @var{z}) These functions return the real part of the complex number @var{z}. @end deftypefun @@ -1502,7 +1650,11 @@ These functions return the real part of the complex number @var{z}. @comment complex.h @comment ISO @deftypefun double cimag (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx float cimagf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {long double} cimagl (complex long double @var{z}) These functions return the imaginary part of the complex number @var{z}. @end deftypefun @@ -1510,7 +1662,11 @@ These functions return the imaginary part of the complex number @var{z}. @comment complex.h @comment ISO @deftypefun {complex double} conj (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx {complex float} conjf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {complex long double} conjl (complex long double @var{z}) These functions return the conjugate value of the complex number @var{z}. The conjugate of a complex number has the same real part and a @@ -1520,7 +1676,11 @@ negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}. @comment complex.h @comment ISO @deftypefun double carg (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx float cargf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {long double} cargl (complex long double @var{z}) These functions return the argument of the complex number @var{z}. The argument of a complex number is the angle in the complex plane @@ -1534,7 +1694,11 @@ to @math{2@pi{}}. @comment complex.h @comment ISO @deftypefun {complex double} cproj (complex double @var{z}) +@comment complex.h +@comment ISO @deftypefunx {complex float} cprojf (complex float @var{z}) +@comment complex.h +@comment ISO @deftypefunx {complex long double} cprojl (complex long double @var{z}) These functions return the projection of the complex value @var{z} onto the Riemann sphere. Values with a infinite imaginary part are projected @@ -1952,6 +2116,8 @@ examining @var{errno} and @var{tailptr}. @comment stdlib.h @comment GNU @deftypefun float strtof (const char *@var{string}, char **@var{tailptr}) +@comment stdlib.h +@comment GNU @deftypefunx {long double} strtold (const char *@var{string}, char **@var{tailptr}) These functions are analogous to @code{strtod}, but return @code{float} and @code{long double} values respectively. They report errors in the |