aboutsummaryrefslogtreecommitdiff
path: root/manual/arith.texi
diff options
context:
space:
mode:
authorGabriel F. T. Gomes <gftg@linux.vnet.ibm.com>2017-06-12 09:30:38 -0300
committerGabriel F. T. Gomes <gftg@linux.vnet.ibm.com>2017-06-23 16:24:40 -0300
commit52a8e5cb43a937d5224d271537093a1f92d78e94 (patch)
treef71458c78a5e599ec5cdf948564090f0ff4d5cab /manual/arith.texi
parentbc0382ae9041a71f098ec03f0e78ea9dd78e31ac (diff)
downloadglibc-52a8e5cb43a937d5224d271537093a1f92d78e94.zip
glibc-52a8e5cb43a937d5224d271537093a1f92d78e94.tar.gz
glibc-52a8e5cb43a937d5224d271537093a1f92d78e94.tar.bz2
Document _FloatN and _FloatNx versions of math functions
The functions defined in ISO/IEC TS 18661-3 take floating-point arguments and return floating-point numbers of _FloatN and _FloatNx types. Apart from the type, these functions behave the same as their float, double, and long double counterparts. This patch adds the newer functions to the manual. * manual/arith.texi (Infinity and NaN): Document SNANFN and SNANFNx. (Error Reporting by Mathematical Functions): Document HUGE_VAL_FN and HUGE_VAL_FNx. (Absolute Value): Document fabsfN, fabsfNx, cabsfN, cabsfNx. Rephrase the paragraph that mentions that fabs, fabsf, and fabsl are in math.h, to avoid having to list the _FloatN and _FloatNx variants as well. Likewise for the cabs functions. (Normalization Functions): Document frexpfN, frexpfNx, ldexpfN, ldexpfNx, scalbnfN, scalbnfNx, scalblnfN, scalblnfNx. Mention that _FloatN and _FloatNx variants of scalbn and scalbln come from TS 18661-3, since this section explicitly states that these functions come from BSD. (Rounding Functions): Document ceilfN, ceilfNx, floorfN, floorfNx, truncfN, truncfNx, rintfN, rintfNx, nearbyintfN, nearbyintfNx, roundfN, roundfNx, roundevenfN, roundevenfNx, lrintfN, lrintfNx, llrintfN, llrintfNx, lroundfN, lroundfNx, llroundfN, llroundfNx, fromfpfN, fromfpfNx, ufromfpfN, ufromfpfNx, fromfpxfN, fromfpxfNx, ufromfpxfN, ufromfpxfNx, modffN, modffNx. (Remainder Functions): Document fmodfN, fmodfNx, remainderfN, remainderfNx. (Setting and modifying single bits of FP values): Document copysignfN, copysignfNx, nextafterfN, nextafterfNx, nextupfN, nextupfNx, nextdownfN, nextdownfNx, nanfN, nanfNx, canonicalizefN, canonicalizefNx, getpayloadfN, getpayloadfNx, setpayloadfN, setpayloadfNx, setpayloadsigfN, setpayloadsigfNx. (Floating-Point Comparison Functions): Document totalorderfN, totalorderfNx, totalordermagfN, totalordermagfNx. (Miscellaneous FP arithmetic functions): Document fminfN, fminfNx, fmaxfN, fmaxfNx, fminmagfN, fminmagfNx, fmaxmagfN, fmaxmagfNx, fdimfN, fdimfNx, fmafN, fmafNx. (Complex Numbers): Document the complex types: _FloatN complex and _FloatNx complex. (rojections, Conjugates, and Decomposing of Complex Numbers): Document crealfN, crealfNx, cimagfN, cimagfNx, conjfN, conjfNx, cargfN, cargfNx, cprojfN, cprojfNx. * manual/math.texi (Mathematics): Mention that the _FloatN and _FloatNx variants of the math functions come from TS 18661-3, unless otherwise stated. (Predefined Mathematical Constants): Document the _FloatN and _FloatNx variants of the macros prefixed with M_. (Trigonometric Functions): Document sinfN, sinfNx, cosfN, cosfNx, tanfN, tanfNx, sincosfN, sincosfNx, csinfN, csinfNx, ccosfN, ccosfNx, ctanfN, ctanfNx. (Inverse Trigonometric Functions): Document asinfN, asinfNx, acosfN, acosfNx, atanfN, atanfNx, atan2fN, atan2fNx. (Exponentiation and Logarithms): Document expfN, expfNx, exp2fN, exp2fNx, exp10fN, exp10fNx, logfN, logfNx, log10fN, log10fNx, log2fN, log2fNx, logbfN, logbfNx, ilogbfN, ilogbfNx, llogbfN, llogbfNx, powfN, powfNx, sqrtfN, sqrtfNx, cbrtfN, cbrtfNx, hypotfN, hypotfNx, expm1fN, expm1fNx, log1pfN, log1pfNx, cexpfN, cexpfNx, clogfN, clogfNx, clog10fN, clog10fNx, csqrtfN, csqrtfNx, cpowfN, cpowfNx. (Hyperbolic Functions): sinhfN, sinhfNx, coshfN, coshfNx, tanhfN, tanhfNx, csinhfN, csinhfNx, ccoshfN, ccoshfNx, ctanhfN, ctanhfNx, asinhfN, asinhfNx, acoshfN, acoshfNx, atanhfN, atanhfNx, casinhfN, casinhfNx, cacoshfN, cacoshfNx, catanhfN, catanhfNx. (Special Functions): Document erffN, erffNx, erfcfN, erfcfNx, lgammafN, lgammafNx, lgammarfN_r, lgammafNx_r, tgammafN, tgammafNx, j0fN, j0fNx, j1fN, j1fNx, jnfN, jnfNx, y0fN, y0fNx, y1fN, y1fNx, ynfN, ynfNx.
Diffstat (limited to 'manual/arith.texi')
-rw-r--r--manual/arith.texi286
1 files changed, 244 insertions, 42 deletions
diff --git a/manual/arith.texi b/manual/arith.texi
index e403cb5..28a0e13 100644
--- a/manual/arith.texi
+++ b/manual/arith.texi
@@ -686,9 +686,13 @@ such as by defining @code{_GNU_SOURCE}, and then you must include
@deftypevr Macro float SNANF
@deftypevrx Macro double SNAN
@deftypevrx Macro {long double} SNANL
+@deftypevrx Macro _FloatN SNANFN
+@deftypevrx Macro _FloatNx SNANFNx
@standards{TS 18661-1:2014, math.h}
-These macros, defined by TS 18661-1:2014, are constant expressions for
-signaling NaNs.
+@standardsx{SNANFN, TS 18661-3:2015, math.h}
+@standardsx{SNANFNx, TS 18661-3:2015, math.h}
+These macros, defined by TS 18661-1:2014 and TS 18661-3:2015, are
+constant expressions for signaling NaNs.
@end deftypevr
@deftypevr Macro int FE_SNANS_ALWAYS_SIGNAL
@@ -917,7 +921,11 @@ to test for overflow on both old and new hardware.
@deftypevr Macro double HUGE_VAL
@deftypevrx Macro float HUGE_VALF
@deftypevrx Macro {long double} HUGE_VALL
+@deftypevrx Macro _FloatN HUGE_VAL_FN
+@deftypevrx Macro _FloatNx HUGE_VAL_FNx
@standards{ISO, math.h}
+@standardsx{HUGE_VAL_FN, TS 18661-3:2015, math.h}
+@standardsx{HUGE_VAL_FNx, TS 18661-3:2015, math.h}
An expression representing a particular very large number. On machines
that use @w{IEEE 754} floating point format, @code{HUGE_VAL} is infinity.
On other machines, it's typically the largest positive number that can
@@ -1229,8 +1237,8 @@ whose imaginary part is @var{y}, the absolute value is @w{@code{sqrt
@pindex stdlib.h
Prototypes for @code{abs}, @code{labs} and @code{llabs} are in @file{stdlib.h};
@code{imaxabs} is declared in @file{inttypes.h};
-@code{fabs}, @code{fabsf} and @code{fabsl} are declared in @file{math.h}.
-@code{cabs}, @code{cabsf} and @code{cabsl} are declared in @file{complex.h}.
+the @code{fabs} functions are declared in @file{math.h};
+the @code{cabs} functions are declared in @file{complex.h}.
@deftypefun int abs (int @var{number})
@deftypefunx {long int} labs (long int @var{number})
@@ -1254,7 +1262,11 @@ See @ref{Integers} for a description of the @code{intmax_t} type.
@deftypefun double fabs (double @var{number})
@deftypefunx float fabsf (float @var{number})
@deftypefunx {long double} fabsl (long double @var{number})
+@deftypefunx _FloatN fabsfN (_Float@var{N} @var{number})
+@deftypefunx _FloatNx fabsfNx (_Float@var{N}x @var{number})
@standards{ISO, math.h}
+@standardsx{fabsfN, TS 18661-3:2015, math.h}
+@standardsx{fabsfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
This function returns the absolute value of the floating-point number
@var{number}.
@@ -1263,7 +1275,11 @@ This function returns the absolute value of the floating-point number
@deftypefun double cabs (complex double @var{z})
@deftypefunx float cabsf (complex float @var{z})
@deftypefunx {long double} cabsl (complex long double @var{z})
+@deftypefunx _FloatN cabsfN (complex _Float@var{N} @var{z})
+@deftypefunx _FloatNx cabsfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{cabsfN, TS 18661-3:2015, complex.h}
+@standardsx{cabsfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the absolute value of the complex number @var{z}
(@pxref{Complex Numbers}). The absolute value of a complex number is:
@@ -1296,7 +1312,11 @@ All these functions are declared in @file{math.h}.
@deftypefun double frexp (double @var{value}, int *@var{exponent})
@deftypefunx float frexpf (float @var{value}, int *@var{exponent})
@deftypefunx {long double} frexpl (long double @var{value}, int *@var{exponent})
+@deftypefunx _FloatN frexpfN (_Float@var{N} @var{value}, int *@var{exponent})
+@deftypefunx _FloatNx frexpfNx (_Float@var{N}x @var{value}, int *@var{exponent})
@standards{ISO, math.h}
+@standardsx{frexpfN, TS 18661-3:2015, math.h}
+@standardsx{frexpfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are used to split the number @var{value}
into a normalized fraction and an exponent.
@@ -1317,7 +1337,11 @@ zero is stored in @code{*@var{exponent}}.
@deftypefun double ldexp (double @var{value}, int @var{exponent})
@deftypefunx float ldexpf (float @var{value}, int @var{exponent})
@deftypefunx {long double} ldexpl (long double @var{value}, int @var{exponent})
+@deftypefunx _FloatN ldexpfN (_Float@var{N} @var{value}, int @var{exponent})
+@deftypefunx _FloatNx ldexpfNx (_Float@var{N}x @var{value}, int @var{exponent})
@standards{ISO, math.h}
+@standardsx{ldexpfN, TS 18661-3:2015, math.h}
+@standardsx{ldexpfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the result of multiplying the floating-point
number @var{value} by 2 raised to the power @var{exponent}. (It can
@@ -1330,6 +1354,8 @@ For example, @code{ldexp (0.8, 4)} returns @code{12.8}.
The following functions, which come from BSD, provide facilities
equivalent to those of @code{ldexp} and @code{frexp}. See also the
@w{ISO C} function @code{logb} which originally also appeared in BSD.
+The @code{_Float@var{N}} and @code{_Float@var{N}} variants of the
+following functions come from TS 18661-3:2015.
@deftypefun double scalb (double @var{value}, double @var{exponent})
@deftypefunx float scalbf (float @var{value}, float @var{exponent})
@@ -1342,7 +1368,11 @@ The @code{scalb} function is the BSD name for @code{ldexp}.
@deftypefun double scalbn (double @var{x}, int @var{n})
@deftypefunx float scalbnf (float @var{x}, int @var{n})
@deftypefunx {long double} scalbnl (long double @var{x}, int @var{n})
+@deftypefunx _FloatN scalbnfN (_Float@var{N} @var{x}, int @var{n})
+@deftypefunx _FloatNx scalbnfNx (_Float@var{N}x @var{x}, int @var{n})
@standards{BSD, math.h}
+@standardsx{scalbnfN, TS 18661-3:2015, math.h}
+@standardsx{scalbnfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{scalbn} is identical to @code{scalb}, except that the exponent
@var{n} is an @code{int} instead of a floating-point number.
@@ -1351,7 +1381,11 @@ The @code{scalb} function is the BSD name for @code{ldexp}.
@deftypefun double scalbln (double @var{x}, long int @var{n})
@deftypefunx float scalblnf (float @var{x}, long int @var{n})
@deftypefunx {long double} scalblnl (long double @var{x}, long int @var{n})
+@deftypefunx _FloatN scalblnfN (_Float@var{N} @var{x}, long int @var{n})
+@deftypefunx _FloatNx scalblnfNx (_Float@var{N}x @var{x}, long int @var{n})
@standards{BSD, math.h}
+@standardsx{scalblnfN, TS 18661-3:2015, math.h}
+@standardsx{scalblnfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
@code{scalbln} is identical to @code{scalb}, except that the exponent
@var{n} is a @code{long int} instead of a floating-point number.
@@ -1416,7 +1450,11 @@ Round to nearest, ties round to even.
@deftypefun double ceil (double @var{x})
@deftypefunx float ceilf (float @var{x})
@deftypefunx {long double} ceill (long double @var{x})
+@deftypefunx _FloatN ceilfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx ceilfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{ceilfN, TS 18661-3:2015, math.h}
+@standardsx{ceilfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions round @var{x} upwards to the nearest integer,
returning that value as a @code{double}. Thus, @code{ceil (1.5)}
@@ -1426,7 +1464,11 @@ is @code{2.0}.
@deftypefun double floor (double @var{x})
@deftypefunx float floorf (float @var{x})
@deftypefunx {long double} floorl (long double @var{x})
+@deftypefunx _FloatN floorfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx floorfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{floorfN, TS 18661-3:2015, math.h}
+@standardsx{floorfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions round @var{x} downwards to the nearest
integer, returning that value as a @code{double}. Thus, @code{floor
@@ -1436,7 +1478,11 @@ integer, returning that value as a @code{double}. Thus, @code{floor
@deftypefun double trunc (double @var{x})
@deftypefunx float truncf (float @var{x})
@deftypefunx {long double} truncl (long double @var{x})
+@deftypefunx _FloatN truncfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx truncfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{truncfN, TS 18661-3:2015, math.h}
+@standardsx{truncfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{trunc} functions round @var{x} towards zero to the nearest
integer (returned in floating-point format). Thus, @code{trunc (1.5)}
@@ -1446,7 +1492,11 @@ is @code{1.0} and @code{trunc (-1.5)} is @code{-1.0}.
@deftypefun double rint (double @var{x})
@deftypefunx float rintf (float @var{x})
@deftypefunx {long double} rintl (long double @var{x})
+@deftypefunx _FloatN rintfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx rintfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{rintfN, TS 18661-3:2015, math.h}
+@standardsx{rintfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions round @var{x} to an integer value according to the
current rounding mode. @xref{Floating Point Parameters}, for
@@ -1462,7 +1512,11 @@ inexact exception.
@deftypefun double nearbyint (double @var{x})
@deftypefunx float nearbyintf (float @var{x})
@deftypefunx {long double} nearbyintl (long double @var{x})
+@deftypefunx _FloatN nearbyintfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx nearbyintfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{nearbyintfN, TS 18661-3:2015, math.h}
+@standardsx{nearbyintfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the same value as the @code{rint} functions, but
do not raise the inexact exception if @var{x} is not an integer.
@@ -1471,7 +1525,11 @@ do not raise the inexact exception if @var{x} is not an integer.
@deftypefun double round (double @var{x})
@deftypefunx float roundf (float @var{x})
@deftypefunx {long double} roundl (long double @var{x})
+@deftypefunx _FloatN roundfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx roundfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{roundfN, TS 18661-3:2015, math.h}
+@standardsx{roundfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are similar to @code{rint}, but they round halfway
cases away from zero instead of to the nearest integer (or other
@@ -1481,16 +1539,25 @@ current rounding mode).
@deftypefun double roundeven (double @var{x})
@deftypefunx float roundevenf (float @var{x})
@deftypefunx {long double} roundevenl (long double @var{x})
+@deftypefunx _FloatN roundevenfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx roundevenfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{roundevenfN, TS 18661-3:2015, math.h}
+@standardsx{roundevenfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
-These functions, from TS 18661-1:2014, are similar to @code{round},
-but they round halfway cases to even instead of away from zero.
+These functions, from TS 18661-1:2014 and TS 18661-3:2015, are similar
+to @code{round}, but they round halfway cases to even instead of away
+from zero.
@end deftypefun
@deftypefun {long int} lrint (double @var{x})
@deftypefunx {long int} lrintf (float @var{x})
@deftypefunx {long int} lrintl (long double @var{x})
+@deftypefunx {long int} lrintfN (_Float@var{N} @var{x})
+@deftypefunx {long int} lrintfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{lrintfN, TS 18661-3:2015, math.h}
+@standardsx{lrintfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are just like @code{rint}, but they return a
@code{long int} instead of a floating-point number.
@@ -1499,7 +1566,11 @@ These functions are just like @code{rint}, but they return a
@deftypefun {long long int} llrint (double @var{x})
@deftypefunx {long long int} llrintf (float @var{x})
@deftypefunx {long long int} llrintl (long double @var{x})
+@deftypefunx {long long int} llrintfN (_Float@var{N} @var{x})
+@deftypefunx {long long int} llrintfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{llrintfN, TS 18661-3:2015, math.h}
+@standardsx{llrintfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are just like @code{rint}, but they return a
@code{long long int} instead of a floating-point number.
@@ -1508,7 +1579,11 @@ These functions are just like @code{rint}, but they return a
@deftypefun {long int} lround (double @var{x})
@deftypefunx {long int} lroundf (float @var{x})
@deftypefunx {long int} lroundl (long double @var{x})
+@deftypefunx {long int} lroundfN (_Float@var{N} @var{x})
+@deftypefunx {long int} lroundfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{lroundfN, TS 18661-3:2015, math.h}
+@standardsx{lroundfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are just like @code{round}, but they return a
@code{long int} instead of a floating-point number.
@@ -1517,7 +1592,11 @@ These functions are just like @code{round}, but they return a
@deftypefun {long long int} llround (double @var{x})
@deftypefunx {long long int} llroundf (float @var{x})
@deftypefunx {long long int} llroundl (long double @var{x})
+@deftypefunx {long long int} llroundfN (_Float@var{N} @var{x})
+@deftypefunx {long long int} llroundfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{llroundfN, TS 18661-3:2015, math.h}
+@standardsx{llroundfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are just like @code{round}, but they return a
@code{long long int} instead of a floating-point number.
@@ -1526,27 +1605,43 @@ These functions are just like @code{round}, but they return a
@deftypefun intmax_t fromfp (double @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx intmax_t fromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx intmax_t fromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx intmax_t fromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx intmax_t fromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfp (double @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfpf (float @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfpl (long double @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx uintmax_t ufromfpfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx uintmax_t ufromfpfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx intmax_t fromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx intmax_t fromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx intmax_t fromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx intmax_t fromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx intmax_t fromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfpx (double @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfpxf (float @var{x}, int @var{round}, unsigned int @var{width})
@deftypefunx uintmax_t ufromfpxl (long double @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx uintmax_t ufromfpxfN (_Float@var{N} @var{x}, int @var{round}, unsigned int @var{width})
+@deftypefunx uintmax_t ufromfpxfNx (_Float@var{N}x @var{x}, int @var{round}, unsigned int @var{width})
@standards{ISO, math.h}
-@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
-These functions, from TS 18661-1:2014, convert a floating-point number
-to an integer according to the rounding direction @var{round} (one of
-the @code{FP_INT_*} macros). If the integer is outside the range of a
-signed or unsigned (depending on the return type of the function) type
-of width @var{width} bits (or outside the range of the return type, if
-@var{width} is larger), or if @var{x} is infinite or NaN, or if
-@var{width} is zero, a domain error occurs and an unspecified value is
-returned. The functions with an @samp{x} in their names raise the
-inexact exception when a domain error does not occur and the argument
-is not an integer; the other functions do not raise the inexact
+@standardsx{fromfpfN, TS 18661-3:2015, math.h}
+@standardsx{fromfpfNx, TS 18661-3:2015, math.h}
+@standardsx{ufromfpfN, TS 18661-3:2015, math.h}
+@standardsx{ufromfpfNx, TS 18661-3:2015, math.h}
+@standardsx{fromfpxfN, TS 18661-3:2015, math.h}
+@standardsx{fromfpxfNx, TS 18661-3:2015, math.h}
+@standardsx{ufromfpxfN, TS 18661-3:2015, math.h}
+@standardsx{ufromfpxfNx, TS 18661-3:2015, math.h}
+@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
+These functions, from TS 18661-1:2014 and TS 18661-3:2015, convert a
+floating-point number to an integer according to the rounding direction
+@var{round} (one of the @code{FP_INT_*} macros). If the integer is
+outside the range of a signed or unsigned (depending on the return type
+of the function) type of width @var{width} bits (or outside the range of
+the return type, if @var{width} is larger), or if @var{x} is infinite or
+NaN, or if @var{width} is zero, a domain error occurs and an unspecified
+value is returned. The functions with an @samp{x} in their names raise
+the inexact exception when a domain error does not occur and the
+argument is not an integer; the other functions do not raise the inexact
exception.
@end deftypefun
@@ -1554,7 +1649,11 @@ exception.
@deftypefun double modf (double @var{value}, double *@var{integer-part})
@deftypefunx float modff (float @var{value}, float *@var{integer-part})
@deftypefunx {long double} modfl (long double @var{value}, long double *@var{integer-part})
+@deftypefunx _FloatN modffN (_Float@var{N} @var{value}, _Float@var{N} *@var{integer-part})
+@deftypefunx _FloatNx modffNx (_Float@var{N}x @var{value}, _Float@var{N}x *@var{integer-part})
@standards{ISO, math.h}
+@standardsx{modffN, TS 18661-3:2015, math.h}
+@standardsx{modffNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions break the argument @var{value} into an integer part and a
fractional part (between @code{-1} and @code{1}, exclusive). Their sum
@@ -1576,7 +1675,11 @@ suits your problem.
@deftypefun double fmod (double @var{numerator}, double @var{denominator})
@deftypefunx float fmodf (float @var{numerator}, float @var{denominator})
@deftypefunx {long double} fmodl (long double @var{numerator}, long double @var{denominator})
+@deftypefunx _FloatN fmodfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
+@deftypefunx _FloatNx fmodfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
@standards{ISO, math.h}
+@standardsx{fmodfN, TS 18661-3:2015, math.h}
+@standardsx{fmodfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions compute the remainder from the division of
@var{numerator} by @var{denominator}. Specifically, the return value is
@@ -1594,7 +1697,11 @@ If @var{denominator} is zero, @code{fmod} signals a domain error.
@deftypefun double remainder (double @var{numerator}, double @var{denominator})
@deftypefunx float remainderf (float @var{numerator}, float @var{denominator})
@deftypefunx {long double} remainderl (long double @var{numerator}, long double @var{denominator})
+@deftypefunx _FloatN remainderfN (_Float@var{N} @var{numerator}, _Float@var{N} @var{denominator})
+@deftypefunx _FloatNx remainderfNx (_Float@var{N}x @var{numerator}, _Float@var{N}x @var{denominator})
@standards{ISO, math.h}
+@standardsx{remainderfN, TS 18661-3:2015, math.h}
+@standardsx{remainderfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions are like @code{fmod} except that they round the
internal quotient @var{n} to the nearest integer instead of towards zero
@@ -1630,7 +1737,11 @@ bits.
@deftypefun double copysign (double @var{x}, double @var{y})
@deftypefunx float copysignf (float @var{x}, float @var{y})
@deftypefunx {long double} copysignl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN copysignfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx copysignfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{copysignfN, TS 18661-3:2015, math.h}
+@standardsx{copysignfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return @var{x} but with the sign of @var{y}. They work
even if @var{x} or @var{y} are NaN or zero. Both of these can carry a
@@ -1659,7 +1770,11 @@ false, but @code{signbit (-0.0)} will return a nonzero value.
@deftypefun double nextafter (double @var{x}, double @var{y})
@deftypefunx float nextafterf (float @var{x}, float @var{y})
@deftypefunx {long double} nextafterl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN nextafterfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx nextafterfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{nextafterfN, TS 18661-3:2015, math.h}
+@standardsx{nextafterfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{nextafter} function returns the next representable neighbor of
@var{x} in the direction towards @var{y}. The size of the step between
@@ -1688,7 +1803,11 @@ double}.
@deftypefun double nextup (double @var{x})
@deftypefunx float nextupf (float @var{x})
@deftypefunx {long double} nextupl (long double @var{x})
+@deftypefunx _FloatN nextupfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx nextupfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{nextupfN, TS 18661-3:2015, math.h}
+@standardsx{nextupfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{nextup} function returns the next representable neighbor of @var{x}
in the direction of positive infinity. If @var{x} is the smallest negative
@@ -1696,14 +1815,18 @@ subnormal number in the type of @var{x} the function returns @code{-0}. If
@math{@var{x} = @code{0}} the function returns the smallest positive subnormal
number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
If @var{x} is @math{+@infinity{}}, @math{+@infinity{}} is returned.
-@code{nextup} is from TS 18661-1:2014.
+@code{nextup} is from TS 18661-1:2014 and TS 18661-3:2015.
@code{nextup} never raises an exception except for signaling NaNs.
@end deftypefun
@deftypefun double nextdown (double @var{x})
@deftypefunx float nextdownf (float @var{x})
@deftypefunx {long double} nextdownl (long double @var{x})
+@deftypefunx _FloatN nextdownfN (_Float@var{N} @var{x})
+@deftypefunx _FloatNx nextdownfNx (_Float@var{N}x @var{x})
@standards{ISO, math.h}
+@standardsx{nextdownfN, TS 18661-3:2015, math.h}
+@standardsx{nextdownfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{nextdown} function returns the next representable neighbor of @var{x}
in the direction of negative infinity. If @var{x} is the smallest positive
@@ -1711,7 +1834,7 @@ subnormal number in the type of @var{x} the function returns @code{+0}. If
@math{@var{x} = @code{0}} the function returns the smallest negative subnormal
number in the type of @var{x}. If @var{x} is NaN, NaN is returned.
If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
-@code{nextdown} is from TS 18661-1:2014.
+@code{nextdown} is from TS 18661-1:2014 and TS 18661-3:2015.
@code{nextdown} never raises an exception except for signaling NaNs.
@end deftypefun
@@ -1719,7 +1842,11 @@ If @var{x} is @math{-@infinity{}}, @math{-@infinity{}} is returned.
@deftypefun double nan (const char *@var{tagp})
@deftypefunx float nanf (const char *@var{tagp})
@deftypefunx {long double} nanl (const char *@var{tagp})
+@deftypefunx _FloatN nanfN (const char *@var{tagp})
+@deftypefunx _FloatNx nanfNx (const char *@var{tagp})
@standards{ISO, math.h}
+@standardsx{nanfN, TS 18661-3:2015, math.h}
+@standardsx{nanfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{@mtslocale{}}@assafe{}@acsafe{}}
@c The unsafe-but-ruled-safe locale use comes from strtod.
The @code{nan} function returns a representation of NaN, provided that
@@ -1735,13 +1862,17 @@ selects one. On other systems it may do nothing.
@deftypefun int canonicalize (double *@var{cx}, const double *@var{x})
@deftypefunx int canonicalizef (float *@var{cx}, const float *@var{x})
@deftypefunx int canonicalizel (long double *@var{cx}, const long double *@var{x})
+@deftypefunx int canonicalizefN (_Float@var{N} *@var{cx}, const _Float@var{N} *@var{x})
+@deftypefunx int canonicalizefNx (_Float@var{N}x *@var{cx}, const _Float@var{N}x *@var{x})
@standards{ISO, math.h}
+@standardsx{canonicalizefN, TS 18661-3:2015, math.h}
+@standardsx{canonicalizefNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
In some floating-point formats, some values have canonical (preferred)
and noncanonical encodings (for IEEE interchange binary formats, all
encodings are canonical). These functions, defined by TS
-18661-1:2014, attempt to produce a canonical version of the
-floating-point value pointed to by @var{x}; if that value is a
+18661-1:2014 and TS 18661-3:2015, attempt to produce a canonical version
+of the floating-point value pointed to by @var{x}; if that value is a
signaling NaN, they raise the invalid exception and produce a quiet
NaN. If a canonical value is produced, it is stored in the object
pointed to by @var{cx}, and these functions return zero. Otherwise
@@ -1760,42 +1891,56 @@ produced as output.
@deftypefun double getpayload (const double *@var{x})
@deftypefunx float getpayloadf (const float *@var{x})
@deftypefunx {long double} getpayloadl (const long double *@var{x})
+@deftypefunx _FloatN getpayloadfN (const _Float@var{N} *@var{x})
+@deftypefunx _FloatNx getpayloadfNx (const _Float@var{N}x *@var{x})
@standards{ISO, math.h}
+@standardsx{getpayloadfN, TS 18661-3:2015, math.h}
+@standardsx{getpayloadfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
IEEE 754 defines the @dfn{payload} of a NaN to be an integer value
encoded in the representation of the NaN. Payloads are typically
propagated from NaN inputs to the result of a floating-point
-operation. These functions, defined by TS 18661-1:2014, return the
-payload of the NaN pointed to by @var{x} (returned as a positive
-integer, or positive zero, represented as a floating-point number); if
-@var{x} is not a NaN, they return an unspecified value. They raise no
-floating-point exceptions even for signaling NaNs.
+operation. These functions, defined by TS 18661-1:2014 and TS
+18661-3:2015, return the payload of the NaN pointed to by @var{x}
+(returned as a positive integer, or positive zero, represented as a
+floating-point number); if @var{x} is not a NaN, they return an
+unspecified value. They raise no floating-point exceptions even for
+signaling NaNs.
@end deftypefun
@deftypefun int setpayload (double *@var{x}, double @var{payload})
@deftypefunx int setpayloadf (float *@var{x}, float @var{payload})
@deftypefunx int setpayloadl (long double *@var{x}, long double @var{payload})
+@deftypefunx int setpayloadfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
+@deftypefunx int setpayloadfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
@standards{ISO, math.h}
+@standardsx{setpayloadfN, TS 18661-3:2015, math.h}
+@standardsx{setpayloadfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
-These functions, defined by TS 18661-1:2014, set the object pointed to
-by @var{x} to a quiet NaN with payload @var{payload} and a zero sign
-bit and return zero. If @var{payload} is not a positive-signed
-integer that is a valid payload for a quiet NaN of the given type, the
-object pointed to by @var{x} is set to positive zero and a nonzero
-value is returned. They raise no floating-point exceptions.
+These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
+object pointed to by @var{x} to a quiet NaN with payload @var{payload}
+and a zero sign bit and return zero. If @var{payload} is not a
+positive-signed integer that is a valid payload for a quiet NaN of the
+given type, the object pointed to by @var{x} is set to positive zero and
+a nonzero value is returned. They raise no floating-point exceptions.
@end deftypefun
@deftypefun int setpayloadsig (double *@var{x}, double @var{payload})
@deftypefunx int setpayloadsigf (float *@var{x}, float @var{payload})
@deftypefunx int setpayloadsigl (long double *@var{x}, long double @var{payload})
+@deftypefunx int setpayloadsigfN (_Float@var{N} *@var{x}, _Float@var{N} @var{payload})
+@deftypefunx int setpayloadsigfNx (_Float@var{N}x *@var{x}, _Float@var{N}x @var{payload})
@standards{ISO, math.h}
+@standardsx{setpayloadsigfN, TS 18661-3:2015, math.h}
+@standardsx{setpayloadsigfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
-These functions, defined by TS 18661-1:2014, set the object pointed to
-by @var{x} to a signaling NaN with payload @var{payload} and a zero
-sign bit and return zero. If @var{payload} is not a positive-signed
-integer that is a valid payload for a signaling NaN of the given type,
-the object pointed to by @var{x} is set to positive zero and a nonzero
-value is returned. They raise no floating-point exceptions.
+These functions, defined by TS 18661-1:2014 and TS 18661-3:2015, set the
+object pointed to by @var{x} to a signaling NaN with payload
+@var{payload} and a zero sign bit and return zero. If @var{payload} is
+not a positive-signed integer that is a valid payload for a signaling
+NaN of the given type, the object pointed to by @var{x} is set to
+positive zero and a nonzero value is returned. They raise no
+floating-point exceptions.
@end deftypefun
@node FP Comparison Functions
@@ -1886,7 +2031,11 @@ NaN.
@deftypefun int totalorder (double @var{x}, double @var{y})
@deftypefunx int totalorderf (float @var{x}, float @var{y})
@deftypefunx int totalorderl (long double @var{x}, long double @var{y})
+@deftypefunx int totalorderfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx int totalorderfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{TS 18661-1:2014, math.h}
+@standardsx{totalorderfN, TS 18661-3:2015, math.h}
+@standardsx{totalorderfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for @var{x} and @var{y}, returning
@@ -1905,7 +2054,11 @@ payload.
@deftypefun int totalordermag (double @var{x}, double @var{y})
@deftypefunx int totalordermagf (float @var{x}, float @var{y})
@deftypefunx int totalordermagl (long double @var{x}, long double @var{y})
+@deftypefunx int totalordermagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx int totalordermagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{TS 18661-1:2014, math.h}
+@standardsx{totalordermagfN, TS 18661-3:2015, math.h}
+@standardsx{totalordermagfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions determine whether the total order relationship,
defined in IEEE 754-2008, is true for the absolute values of @var{x}
@@ -1936,7 +2089,11 @@ perform these operations faster than the equivalent C code.
@deftypefun double fmin (double @var{x}, double @var{y})
@deftypefunx float fminf (float @var{x}, float @var{y})
@deftypefunx {long double} fminl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN fminfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx fminfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{fminfN, TS 18661-3:2015, math.h}
+@standardsx{fminfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{fmin} function returns the lesser of the two values @var{x}
and @var{y}. It is similar to the expression
@@ -1952,7 +2109,11 @@ are NaN, NaN is returned.
@deftypefun double fmax (double @var{x}, double @var{y})
@deftypefunx float fmaxf (float @var{x}, float @var{y})
@deftypefunx {long double} fmaxl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN fmaxfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx fmaxfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{fmaxfN, TS 18661-3:2015, math.h}
+@standardsx{fmaxfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{fmax} function returns the greater of the two values @var{x}
and @var{y}.
@@ -1964,18 +2125,26 @@ are NaN, NaN is returned.
@deftypefun double fminmag (double @var{x}, double @var{y})
@deftypefunx float fminmagf (float @var{x}, float @var{y})
@deftypefunx {long double} fminmagl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN fminmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx fminmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{fminmagfN, TS 18661-3:2015, math.h}
+@standardsx{fminmagfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
-These functions, from TS 18661-1:2014, return whichever of the two
-values @var{x} and @var{y} has the smaller absolute value. If both
-have the same absolute value, or either is NaN, they behave the same
-as the @code{fmin} functions.
+These functions, from TS 18661-1:2014 and TS 18661-3:2015, return
+whichever of the two values @var{x} and @var{y} has the smaller absolute
+value. If both have the same absolute value, or either is NaN, they
+behave the same as the @code{fmin} functions.
@end deftypefun
@deftypefun double fmaxmag (double @var{x}, double @var{y})
@deftypefunx float fmaxmagf (float @var{x}, float @var{y})
@deftypefunx {long double} fmaxmagl (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN fmaxmagfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx fmaxmagfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{fmaxmagfN, TS 18661-3:2015, math.h}
+@standardsx{fmaxmagfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions, from TS 18661-1:2014, return whichever of the two
values @var{x} and @var{y} has the greater absolute value. If both
@@ -1986,7 +2155,11 @@ as the @code{fmax} functions.
@deftypefun double fdim (double @var{x}, double @var{y})
@deftypefunx float fdimf (float @var{x}, float @var{y})
@deftypefunx {long double} fdiml (long double @var{x}, long double @var{y})
+@deftypefunx _FloatN fdimfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
+@deftypefunx _FloatNx fdimfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
@standards{ISO, math.h}
+@standardsx{fdimfN, TS 18661-3:2015, math.h}
+@standardsx{fdimfNx, TS 18661-3:2015, math.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{fdim} function returns the positive difference between
@var{x} and @var{y}. The positive difference is @math{@var{x} -
@@ -1998,7 +2171,11 @@ If @var{x}, @var{y}, or both are NaN, NaN is returned.
@deftypefun double fma (double @var{x}, double @var{y}, double @var{z})
@deftypefunx float fmaf (float @var{x}, float @var{y}, float @var{z})
@deftypefunx {long double} fmal (long double @var{x}, long double @var{y}, long double @var{z})
+@deftypefunx _FloatN fmafN (_Float@var{N} @var{x}, _Float@var{N} @var{y}, _Float@var{N} @var{z})
+@deftypefunx _FloatNx fmafNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y}, _Float@var{N}x @var{z})
@standards{ISO, math.h}
+@standardsx{fmafN, TS 18661-3:2015, math.h}
+@standardsx{fmafNx, TS 18661-3:2015, math.h}
@cindex butterfly
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
The @code{fma} function performs floating-point multiply-add. This is
@@ -2033,6 +2210,11 @@ if @file{complex.h} has been included. There are three complex types,
corresponding to the three real types: @code{float complex},
@code{double complex}, and @code{long double complex}.
+Likewise, on machines that have support for @code{_Float@var{N}} or
+@code{_Float@var{N}x} enabled, the complex types @code{_Float@var{N}
+complex} and @code{_Float@var{N}x complex} are also available if
+@file{complex.h} has been included; @pxref{Mathematics}.
+
To construct complex numbers you need a way to indicate the imaginary
part of a number. There is no standard notation for an imaginary
floating point constant. Instead, @file{complex.h} defines two macros
@@ -2126,7 +2308,11 @@ available in three variants, one for each of the three complex types.
@deftypefun double creal (complex double @var{z})
@deftypefunx float crealf (complex float @var{z})
@deftypefunx {long double} creall (complex long double @var{z})
+@deftypefunx _FloatN crealfN (complex _Float@var{N} @var{z})
+@deftypefunx _FloatNx crealfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{crealfN, TS 18661-3:2015, complex.h}
+@standardsx{crealfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the real part of the complex number @var{z}.
@end deftypefun
@@ -2134,7 +2320,11 @@ These functions return the real part of the complex number @var{z}.
@deftypefun double cimag (complex double @var{z})
@deftypefunx float cimagf (complex float @var{z})
@deftypefunx {long double} cimagl (complex long double @var{z})
+@deftypefunx _FloatN cimagfN (complex _Float@var{N} @var{z})
+@deftypefunx _FloatNx cimagfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{cimagfN, TS 18661-3:2015, complex.h}
+@standardsx{cimagfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the imaginary part of the complex number @var{z}.
@end deftypefun
@@ -2142,7 +2332,11 @@ These functions return the imaginary part of the complex number @var{z}.
@deftypefun {complex double} conj (complex double @var{z})
@deftypefunx {complex float} conjf (complex float @var{z})
@deftypefunx {complex long double} conjl (complex long double @var{z})
+@deftypefunx {complex _FloatN} conjfN (complex _Float@var{N} @var{z})
+@deftypefunx {complex _FloatNx} conjfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{conjfN, TS 18661-3:2015, complex.h}
+@standardsx{conjfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the conjugate value of the complex number
@var{z}. The conjugate of a complex number has the same real part and a
@@ -2152,7 +2346,11 @@ negated imaginary part. In other words, @samp{conj(a + bi) = a + -bi}.
@deftypefun double carg (complex double @var{z})
@deftypefunx float cargf (complex float @var{z})
@deftypefunx {long double} cargl (complex long double @var{z})
+@deftypefunx _FloatN cargfN (complex _Float@var{N} @var{z})
+@deftypefunx _FloatNx cargfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{cargfN, TS 18661-3:2015, complex.h}
+@standardsx{cargfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the argument of the complex number @var{z}.
The argument of a complex number is the angle in the complex plane
@@ -2166,7 +2364,11 @@ number. This angle is measured in the usual fashion and ranges from
@deftypefun {complex double} cproj (complex double @var{z})
@deftypefunx {complex float} cprojf (complex float @var{z})
@deftypefunx {complex long double} cprojl (complex long double @var{z})
+@deftypefunx {complex _FloatN} cprojfN (complex _Float@var{N} @var{z})
+@deftypefunx {complex _FloatNx} cprojfNx (complex _Float@var{N}x @var{z})
@standards{ISO, complex.h}
+@standardsx{cprojfN, TS 18661-3:2015, complex.h}
+@standardsx{cprojfNx, TS 18661-3:2015, complex.h}
@safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
These functions return the projection of the complex value @var{z} onto
the Riemann sphere. Values with an infinite imaginary part are projected