1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
|
/* SPU target-dependent code for GDB, the GNU debugger.
Copyright (C) 2006-2018 Free Software Foundation, Inc.
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
Based on a port by Sid Manning <sid@us.ibm.com>.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "arch-utils.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "symtab.h"
#include "symfile.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "disasm.h"
#include "objfiles.h"
#include "language.h"
#include "regcache.h"
#include "reggroups.h"
#include "block.h"
#include "observable.h"
#include "infcall.h"
#include "dwarf2.h"
#include "dwarf2-frame.h"
#include "ax.h"
#include "spu-tdep.h"
#include "location.h"
/* The list of available "set spu " and "show spu " commands. */
static struct cmd_list_element *setspucmdlist = NULL;
static struct cmd_list_element *showspucmdlist = NULL;
/* Whether to stop for new SPE contexts. */
static int spu_stop_on_load_p = 0;
/* Whether to automatically flush the SW-managed cache. */
static int spu_auto_flush_cache_p = 1;
/* The tdep structure. */
struct gdbarch_tdep
{
/* The spufs ID identifying our address space. */
int id;
/* SPU-specific vector type. */
struct type *spu_builtin_type_vec128;
};
/* SPU-specific vector type. */
static struct type *
spu_builtin_type_vec128 (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->spu_builtin_type_vec128)
{
const struct builtin_type *bt = builtin_type (gdbarch);
struct type *t;
t = arch_composite_type (gdbarch,
"__spu_builtin_type_vec128", TYPE_CODE_UNION);
append_composite_type_field (t, "uint128", bt->builtin_int128);
append_composite_type_field (t, "v2_int64",
init_vector_type (bt->builtin_int64, 2));
append_composite_type_field (t, "v4_int32",
init_vector_type (bt->builtin_int32, 4));
append_composite_type_field (t, "v8_int16",
init_vector_type (bt->builtin_int16, 8));
append_composite_type_field (t, "v16_int8",
init_vector_type (bt->builtin_int8, 16));
append_composite_type_field (t, "v2_double",
init_vector_type (bt->builtin_double, 2));
append_composite_type_field (t, "v4_float",
init_vector_type (bt->builtin_float, 4));
TYPE_VECTOR (t) = 1;
TYPE_NAME (t) = "spu_builtin_type_vec128";
tdep->spu_builtin_type_vec128 = t;
}
return tdep->spu_builtin_type_vec128;
}
/* The list of available "info spu " commands. */
static struct cmd_list_element *infospucmdlist = NULL;
/* Registers. */
static const char *
spu_register_name (struct gdbarch *gdbarch, int reg_nr)
{
static const char *register_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
"id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
};
if (reg_nr < 0)
return NULL;
if (reg_nr >= sizeof register_names / sizeof *register_names)
return NULL;
return register_names[reg_nr];
}
static struct type *
spu_register_type (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr < SPU_NUM_GPRS)
return spu_builtin_type_vec128 (gdbarch);
switch (reg_nr)
{
case SPU_ID_REGNUM:
return builtin_type (gdbarch)->builtin_uint32;
case SPU_PC_REGNUM:
return builtin_type (gdbarch)->builtin_func_ptr;
case SPU_SP_REGNUM:
return builtin_type (gdbarch)->builtin_data_ptr;
case SPU_FPSCR_REGNUM:
return builtin_type (gdbarch)->builtin_uint128;
case SPU_SRR0_REGNUM:
return builtin_type (gdbarch)->builtin_uint32;
case SPU_LSLR_REGNUM:
return builtin_type (gdbarch)->builtin_uint32;
case SPU_DECR_REGNUM:
return builtin_type (gdbarch)->builtin_uint32;
case SPU_DECR_STATUS_REGNUM:
return builtin_type (gdbarch)->builtin_uint32;
default:
internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
/* Pseudo registers for preferred slots - stack pointer. */
static enum register_status
spu_pseudo_register_read_spu (readable_regcache *regcache, const char *regname,
gdb_byte *buf)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
enum register_status status;
gdb_byte reg[32];
char annex[32];
ULONGEST id;
ULONGEST ul;
status = regcache->raw_read (SPU_ID_REGNUM, &id);
if (status != REG_VALID)
return status;
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
memset (reg, 0, sizeof reg);
target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
reg, 0, sizeof reg);
ul = strtoulst ((char *) reg, NULL, 16);
store_unsigned_integer (buf, 4, byte_order, ul);
return REG_VALID;
}
static enum register_status
spu_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
int regnum, gdb_byte *buf)
{
gdb_byte reg[16];
char annex[32];
ULONGEST id;
enum register_status status;
switch (regnum)
{
case SPU_SP_REGNUM:
status = regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
if (status != REG_VALID)
return status;
memcpy (buf, reg, 4);
return status;
case SPU_FPSCR_REGNUM:
status = regcache->raw_read (SPU_ID_REGNUM, &id);
if (status != REG_VALID)
return status;
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
target_read (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
return status;
case SPU_SRR0_REGNUM:
return spu_pseudo_register_read_spu (regcache, "srr0", buf);
case SPU_LSLR_REGNUM:
return spu_pseudo_register_read_spu (regcache, "lslr", buf);
case SPU_DECR_REGNUM:
return spu_pseudo_register_read_spu (regcache, "decr", buf);
case SPU_DECR_STATUS_REGNUM:
return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
default:
internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
static void
spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
const gdb_byte *buf)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
char reg[32];
char annex[32];
ULONGEST id;
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
xsnprintf (reg, sizeof reg, "0x%s",
phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
target_write (current_top_target (), TARGET_OBJECT_SPU, annex,
(gdb_byte *) reg, 0, strlen (reg));
}
static void
spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
int regnum, const gdb_byte *buf)
{
gdb_byte reg[16];
char annex[32];
ULONGEST id;
switch (regnum)
{
case SPU_SP_REGNUM:
regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
memcpy (reg, buf, 4);
regcache->raw_write (SPU_RAW_SP_REGNUM, reg);
break;
case SPU_FPSCR_REGNUM:
regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
target_write (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
break;
case SPU_SRR0_REGNUM:
spu_pseudo_register_write_spu (regcache, "srr0", buf);
break;
case SPU_LSLR_REGNUM:
spu_pseudo_register_write_spu (regcache, "lslr", buf);
break;
case SPU_DECR_REGNUM:
spu_pseudo_register_write_spu (regcache, "decr", buf);
break;
case SPU_DECR_STATUS_REGNUM:
spu_pseudo_register_write_spu (regcache, "decr_status", buf);
break;
default:
internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
static int
spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
struct agent_expr *ax, int regnum)
{
switch (regnum)
{
case SPU_SP_REGNUM:
ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
return 0;
case SPU_FPSCR_REGNUM:
case SPU_SRR0_REGNUM:
case SPU_LSLR_REGNUM:
case SPU_DECR_REGNUM:
case SPU_DECR_STATUS_REGNUM:
return -1;
default:
internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
static int
spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
struct agent_expr *ax, int regnum)
{
switch (regnum)
{
case SPU_SP_REGNUM:
ax_reg (ax, SPU_RAW_SP_REGNUM);
return 0;
case SPU_FPSCR_REGNUM:
case SPU_SRR0_REGNUM:
case SPU_LSLR_REGNUM:
case SPU_DECR_REGNUM:
case SPU_DECR_STATUS_REGNUM:
return -1;
default:
internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
/* Value conversion -- access scalar values at the preferred slot. */
static struct value *
spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
int regnum, struct frame_id frame_id)
{
struct value *value = default_value_from_register (gdbarch, type,
regnum, frame_id);
LONGEST len = TYPE_LENGTH (type);
if (regnum < SPU_NUM_GPRS && len < 16)
{
int preferred_slot = len < 4 ? 4 - len : 0;
set_value_offset (value, preferred_slot);
}
return value;
}
/* Register groups. */
static int
spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
struct reggroup *group)
{
/* Registers displayed via 'info regs'. */
if (group == general_reggroup)
return 1;
/* Registers displayed via 'info float'. */
if (group == float_reggroup)
return 0;
/* Registers that need to be saved/restored in order to
push or pop frames. */
if (group == save_reggroup || group == restore_reggroup)
return 1;
return default_register_reggroup_p (gdbarch, regnum, group);
}
/* DWARF-2 register numbers. */
static int
spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
/* Use cooked instead of raw SP. */
return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
}
/* Address handling. */
static int
spu_gdbarch_id (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
int id = tdep->id;
/* The objfile architecture of a standalone SPU executable does not
provide an SPU ID. Retrieve it from the objfile's relocated
address range in this special case. */
if (id == -1
&& symfile_objfile && symfile_objfile->obfd
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
&& symfile_objfile->sections != symfile_objfile->sections_end)
id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
return id;
}
static int
spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
if (dwarf2_addr_class == 1)
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
else
return 0;
}
static const char *
spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
{
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
return "__ea";
else
return NULL;
}
static int
spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
const char *name, int *type_flags_ptr)
{
if (strcmp (name, "__ea") == 0)
{
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
return 1;
}
else
return 0;
}
static void
spu_address_to_pointer (struct gdbarch *gdbarch,
struct type *type, gdb_byte *buf, CORE_ADDR addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
SPUADDR_ADDR (addr));
}
static CORE_ADDR
spu_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
int id = spu_gdbarch_id (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST addr
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
/* Do not convert __ea pointers. */
if (TYPE_ADDRESS_CLASS_1 (type))
return addr;
return addr? SPUADDR (id, addr) : 0;
}
static CORE_ADDR
spu_integer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
int id = spu_gdbarch_id (gdbarch);
ULONGEST addr = unpack_long (type, buf);
return SPUADDR (id, addr);
}
/* Decoding SPU instructions. */
enum
{
op_lqd = 0x34,
op_lqx = 0x3c4,
op_lqa = 0x61,
op_lqr = 0x67,
op_stqd = 0x24,
op_stqx = 0x144,
op_stqa = 0x41,
op_stqr = 0x47,
op_il = 0x081,
op_ila = 0x21,
op_a = 0x0c0,
op_ai = 0x1c,
op_selb = 0x8,
op_br = 0x64,
op_bra = 0x60,
op_brsl = 0x66,
op_brasl = 0x62,
op_brnz = 0x42,
op_brz = 0x40,
op_brhnz = 0x46,
op_brhz = 0x44,
op_bi = 0x1a8,
op_bisl = 0x1a9,
op_biz = 0x128,
op_binz = 0x129,
op_bihz = 0x12a,
op_bihnz = 0x12b,
};
static int
is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
{
if ((insn >> 21) == op)
{
*rt = insn & 127;
*ra = (insn >> 7) & 127;
*rb = (insn >> 14) & 127;
return 1;
}
return 0;
}
static int
is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
{
if ((insn >> 28) == op)
{
*rt = (insn >> 21) & 127;
*ra = (insn >> 7) & 127;
*rb = (insn >> 14) & 127;
*rc = insn & 127;
return 1;
}
return 0;
}
static int
is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
{
if ((insn >> 21) == op)
{
*rt = insn & 127;
*ra = (insn >> 7) & 127;
*i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
return 1;
}
return 0;
}
static int
is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
{
if ((insn >> 24) == op)
{
*rt = insn & 127;
*ra = (insn >> 7) & 127;
*i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
return 1;
}
return 0;
}
static int
is_ri16 (unsigned int insn, int op, int *rt, int *i16)
{
if ((insn >> 23) == op)
{
*rt = insn & 127;
*i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
return 1;
}
return 0;
}
static int
is_ri18 (unsigned int insn, int op, int *rt, int *i18)
{
if ((insn >> 25) == op)
{
*rt = insn & 127;
*i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
return 1;
}
return 0;
}
static int
is_branch (unsigned int insn, int *offset, int *reg)
{
int rt, i7, i16;
if (is_ri16 (insn, op_br, &rt, &i16)
|| is_ri16 (insn, op_brsl, &rt, &i16)
|| is_ri16 (insn, op_brnz, &rt, &i16)
|| is_ri16 (insn, op_brz, &rt, &i16)
|| is_ri16 (insn, op_brhnz, &rt, &i16)
|| is_ri16 (insn, op_brhz, &rt, &i16))
{
*reg = SPU_PC_REGNUM;
*offset = i16 << 2;
return 1;
}
if (is_ri16 (insn, op_bra, &rt, &i16)
|| is_ri16 (insn, op_brasl, &rt, &i16))
{
*reg = -1;
*offset = i16 << 2;
return 1;
}
if (is_ri7 (insn, op_bi, &rt, reg, &i7)
|| is_ri7 (insn, op_bisl, &rt, reg, &i7)
|| is_ri7 (insn, op_biz, &rt, reg, &i7)
|| is_ri7 (insn, op_binz, &rt, reg, &i7)
|| is_ri7 (insn, op_bihz, &rt, reg, &i7)
|| is_ri7 (insn, op_bihnz, &rt, reg, &i7))
{
*offset = 0;
return 1;
}
return 0;
}
/* Prolog parsing. */
struct spu_prologue_data
{
/* Stack frame size. -1 if analysis was unsuccessful. */
int size;
/* How to find the CFA. The CFA is equal to SP at function entry. */
int cfa_reg;
int cfa_offset;
/* Offset relative to CFA where a register is saved. -1 if invalid. */
int reg_offset[SPU_NUM_GPRS];
};
static CORE_ADDR
spu_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR start_pc, CORE_ADDR end_pc,
struct spu_prologue_data *data)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int found_sp = 0;
int found_fp = 0;
int found_lr = 0;
int found_bc = 0;
int reg_immed[SPU_NUM_GPRS];
gdb_byte buf[16];
CORE_ADDR prolog_pc = start_pc;
CORE_ADDR pc;
int i;
/* Initialize DATA to default values. */
data->size = -1;
data->cfa_reg = SPU_RAW_SP_REGNUM;
data->cfa_offset = 0;
for (i = 0; i < SPU_NUM_GPRS; i++)
data->reg_offset[i] = -1;
/* Set up REG_IMMED array. This is non-zero for a register if we know its
preferred slot currently holds this immediate value. */
for (i = 0; i < SPU_NUM_GPRS; i++)
reg_immed[i] = 0;
/* Scan instructions until the first branch.
The following instructions are important prolog components:
- The first instruction to set up the stack pointer.
- The first instruction to set up the frame pointer.
- The first instruction to save the link register.
- The first instruction to save the backchain.
We return the instruction after the latest of these four,
or the incoming PC if none is found. The first instruction
to set up the stack pointer also defines the frame size.
Note that instructions saving incoming arguments to their stack
slots are not counted as important, because they are hard to
identify with certainty. This should not matter much, because
arguments are relevant only in code compiled with debug data,
and in such code the GDB core will advance until the first source
line anyway, using SAL data.
For purposes of stack unwinding, we analyze the following types
of instructions in addition:
- Any instruction adding to the current frame pointer.
- Any instruction loading an immediate constant into a register.
- Any instruction storing a register onto the stack.
These are used to compute the CFA and REG_OFFSET output. */
for (pc = start_pc; pc < end_pc; pc += 4)
{
unsigned int insn;
int rt, ra, rb, rc, immed;
if (target_read_memory (pc, buf, 4))
break;
insn = extract_unsigned_integer (buf, 4, byte_order);
/* AI is the typical instruction to set up a stack frame.
It is also used to initialize the frame pointer. */
if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
{
if (rt == data->cfa_reg && ra == data->cfa_reg)
data->cfa_offset -= immed;
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
&& !found_sp)
{
found_sp = 1;
prolog_pc = pc + 4;
data->size = -immed;
}
else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
&& !found_fp)
{
found_fp = 1;
prolog_pc = pc + 4;
data->cfa_reg = SPU_FP_REGNUM;
data->cfa_offset -= immed;
}
}
/* A is used to set up stack frames of size >= 512 bytes.
If we have tracked the contents of the addend register,
we can handle this as well. */
else if (is_rr (insn, op_a, &rt, &ra, &rb))
{
if (rt == data->cfa_reg && ra == data->cfa_reg)
{
if (reg_immed[rb] != 0)
data->cfa_offset -= reg_immed[rb];
else
data->cfa_reg = -1; /* We don't know the CFA any more. */
}
if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
&& !found_sp)
{
found_sp = 1;
prolog_pc = pc + 4;
if (reg_immed[rb] != 0)
data->size = -reg_immed[rb];
}
}
/* We need to track IL and ILA used to load immediate constants
in case they are later used as input to an A instruction. */
else if (is_ri16 (insn, op_il, &rt, &immed))
{
reg_immed[rt] = immed;
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
found_sp = 1;
}
else if (is_ri18 (insn, op_ila, &rt, &immed))
{
reg_immed[rt] = immed & 0x3ffff;
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
found_sp = 1;
}
/* STQD is used to save registers to the stack. */
else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
{
if (ra == data->cfa_reg)
data->reg_offset[rt] = data->cfa_offset - (immed << 4);
if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
&& !found_lr)
{
found_lr = 1;
prolog_pc = pc + 4;
}
if (ra == SPU_RAW_SP_REGNUM
&& (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
&& !found_bc)
{
found_bc = 1;
prolog_pc = pc + 4;
}
}
/* _start uses SELB to set up the stack pointer. */
else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
{
if (rt == SPU_RAW_SP_REGNUM && !found_sp)
found_sp = 1;
}
/* We terminate if we find a branch. */
else if (is_branch (insn, &immed, &ra))
break;
}
/* If we successfully parsed until here, and didn't find any instruction
modifying SP, we assume we have a frameless function. */
if (!found_sp)
data->size = 0;
/* Return cooked instead of raw SP. */
if (data->cfa_reg == SPU_RAW_SP_REGNUM)
data->cfa_reg = SPU_SP_REGNUM;
return prolog_pc;
}
/* Return the first instruction after the prologue starting at PC. */
static CORE_ADDR
spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct spu_prologue_data data;
return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
}
/* Return the frame pointer in use at address PC. */
static void
spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
int *reg, LONGEST *offset)
{
struct spu_prologue_data data;
spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
if (data.size != -1 && data.cfa_reg != -1)
{
/* The 'frame pointer' address is CFA minus frame size. */
*reg = data.cfa_reg;
*offset = data.cfa_offset - data.size;
}
else
{
/* ??? We don't really know ... */
*reg = SPU_SP_REGNUM;
*offset = 0;
}
}
/* Implement the stack_frame_destroyed_p gdbarch method.
1) scan forward from the point of execution:
a) If you find an instruction that modifies the stack pointer
or transfers control (except a return), execution is not in
an epilogue, return.
b) Stop scanning if you find a return instruction or reach the
end of the function or reach the hard limit for the size of
an epilogue.
2) scan backward from the point of execution:
a) If you find an instruction that modifies the stack pointer,
execution *is* in an epilogue, return.
b) Stop scanning if you reach an instruction that transfers
control or the beginning of the function or reach the hard
limit for the size of an epilogue. */
static int
spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
bfd_byte buf[4];
unsigned int insn;
int rt, ra, rb, immed;
/* Find the search limits based on function boundaries and hard limit.
We assume the epilogue can be up to 64 instructions long. */
const int spu_max_epilogue_size = 64 * 4;
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
return 0;
if (pc - func_start < spu_max_epilogue_size)
epilogue_start = func_start;
else
epilogue_start = pc - spu_max_epilogue_size;
if (func_end - pc < spu_max_epilogue_size)
epilogue_end = func_end;
else
epilogue_end = pc + spu_max_epilogue_size;
/* Scan forward until next 'bi $0'. */
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
{
if (target_read_memory (scan_pc, buf, 4))
return 0;
insn = extract_unsigned_integer (buf, 4, byte_order);
if (is_branch (insn, &immed, &ra))
{
if (immed == 0 && ra == SPU_LR_REGNUM)
break;
return 0;
}
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|| is_rr (insn, op_a, &rt, &ra, &rb)
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
{
if (rt == SPU_RAW_SP_REGNUM)
return 0;
}
}
if (scan_pc >= epilogue_end)
return 0;
/* Scan backward until adjustment to stack pointer (R1). */
for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
{
if (target_read_memory (scan_pc, buf, 4))
return 0;
insn = extract_unsigned_integer (buf, 4, byte_order);
if (is_branch (insn, &immed, &ra))
return 0;
if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
|| is_rr (insn, op_a, &rt, &ra, &rb)
|| is_ri10 (insn, op_lqd, &rt, &ra, &immed))
{
if (rt == SPU_RAW_SP_REGNUM)
return 1;
}
}
return 0;
}
/* Normal stack frames. */
struct spu_unwind_cache
{
CORE_ADDR func;
CORE_ADDR frame_base;
CORE_ADDR local_base;
struct trad_frame_saved_reg *saved_regs;
};
static struct spu_unwind_cache *
spu_frame_unwind_cache (struct frame_info *this_frame,
void **this_prologue_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct spu_unwind_cache *info;
struct spu_prologue_data data;
CORE_ADDR id = tdep->id;
gdb_byte buf[16];
if (*this_prologue_cache)
return (struct spu_unwind_cache *) *this_prologue_cache;
info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
*this_prologue_cache = info;
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
info->frame_base = 0;
info->local_base = 0;
/* Find the start of the current function, and analyze its prologue. */
info->func = get_frame_func (this_frame);
if (info->func == 0)
{
/* Fall back to using the current PC as frame ID. */
info->func = get_frame_pc (this_frame);
data.size = -1;
}
else
spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
&data);
/* If successful, use prologue analysis data. */
if (data.size != -1 && data.cfa_reg != -1)
{
CORE_ADDR cfa;
int i;
/* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
get_frame_register (this_frame, data.cfa_reg, buf);
cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
cfa = SPUADDR (id, cfa);
/* Call-saved register slots. */
for (i = 0; i < SPU_NUM_GPRS; i++)
if (i == SPU_LR_REGNUM
|| (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
if (data.reg_offset[i] != -1)
info->saved_regs[i].addr = cfa - data.reg_offset[i];
/* Frame bases. */
info->frame_base = cfa;
info->local_base = cfa - data.size;
}
/* Otherwise, fall back to reading the backchain link. */
else
{
CORE_ADDR reg;
LONGEST backchain;
ULONGEST lslr;
int status;
/* Get local store limit. */
lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
if (!lslr)
lslr = (ULONGEST) -1;
/* Get the backchain. */
reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
&backchain);
/* A zero backchain terminates the frame chain. Also, sanity
check against the local store size limit. */
if (status && backchain > 0 && backchain <= lslr)
{
/* Assume the link register is saved into its slot. */
if (backchain + 16 <= lslr)
info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
backchain + 16);
/* Frame bases. */
info->frame_base = SPUADDR (id, backchain);
info->local_base = SPUADDR (id, reg);
}
}
/* If we didn't find a frame, we cannot determine SP / return address. */
if (info->frame_base == 0)
return info;
/* The previous SP is equal to the CFA. */
trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
SPUADDR_ADDR (info->frame_base));
/* Read full contents of the unwound link register in order to
be able to determine the return address. */
if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
else
get_frame_register (this_frame, SPU_LR_REGNUM, buf);
/* Normally, the return address is contained in the slot 0 of the
link register, and slots 1-3 are zero. For an overlay return,
slot 0 contains the address of the overlay manager return stub,
slot 1 contains the partition number of the overlay section to
be returned to, and slot 2 contains the return address within
that section. Return the latter address in that case. */
if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
extract_unsigned_integer (buf + 8, 4, byte_order));
else
trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
extract_unsigned_integer (buf, 4, byte_order));
return info;
}
static void
spu_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache, struct frame_id *this_id)
{
struct spu_unwind_cache *info =
spu_frame_unwind_cache (this_frame, this_prologue_cache);
if (info->frame_base == 0)
return;
*this_id = frame_id_build (info->frame_base, info->func);
}
static struct value *
spu_frame_prev_register (struct frame_info *this_frame,
void **this_prologue_cache, int regnum)
{
struct spu_unwind_cache *info
= spu_frame_unwind_cache (this_frame, this_prologue_cache);
/* Special-case the stack pointer. */
if (regnum == SPU_RAW_SP_REGNUM)
regnum = SPU_SP_REGNUM;
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static const struct frame_unwind spu_frame_unwind = {
NORMAL_FRAME,
default_frame_unwind_stop_reason,
spu_frame_this_id,
spu_frame_prev_register,
NULL,
default_frame_sniffer
};
static CORE_ADDR
spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct spu_unwind_cache *info
= spu_frame_unwind_cache (this_frame, this_cache);
return info->local_base;
}
static const struct frame_base spu_frame_base = {
&spu_frame_unwind,
spu_frame_base_address,
spu_frame_base_address,
spu_frame_base_address
};
static CORE_ADDR
spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
/* Mask off interrupt enable bit. */
return SPUADDR (tdep->id, pc & -4);
}
static CORE_ADDR
spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
return SPUADDR (tdep->id, sp);
}
static CORE_ADDR
spu_read_pc (readable_regcache *regcache)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
ULONGEST pc;
regcache->cooked_read (SPU_PC_REGNUM, &pc);
/* Mask off interrupt enable bit. */
return SPUADDR (tdep->id, pc & -4);
}
static void
spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
/* Keep interrupt enabled state unchanged. */
ULONGEST old_pc;
regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
(SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
}
/* Cell/B.E. cross-architecture unwinder support. */
struct spu2ppu_cache
{
struct frame_id frame_id;
readonly_detached_regcache *regcache;
};
static struct gdbarch *
spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
{
struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
return cache->regcache->arch ();
}
static void
spu2ppu_this_id (struct frame_info *this_frame,
void **this_cache, struct frame_id *this_id)
{
struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
*this_id = cache->frame_id;
}
static struct value *
spu2ppu_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
struct gdbarch *gdbarch = cache->regcache->arch ();
gdb_byte *buf;
buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
cache->regcache->cooked_read (regnum, buf);
return frame_unwind_got_bytes (this_frame, regnum, buf);
}
static int
spu2ppu_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame, void **this_prologue_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR base, func, backchain;
gdb_byte buf[4];
if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
return 0;
base = get_frame_sp (this_frame);
func = get_frame_pc (this_frame);
if (target_read_memory (base, buf, 4))
return 0;
backchain = extract_unsigned_integer (buf, 4, byte_order);
if (!backchain)
{
struct frame_info *fi;
struct spu2ppu_cache *cache
= FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
cache->frame_id = frame_id_build (base + 16, func);
for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
break;
if (fi)
{
cache->regcache = frame_save_as_regcache (fi).release ();
*this_prologue_cache = cache;
return 1;
}
else
{
struct regcache *regcache;
regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cache->regcache = new readonly_detached_regcache (*regcache);
*this_prologue_cache = cache;
return 1;
}
}
return 0;
}
static void
spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
{
struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
delete cache->regcache;
}
static const struct frame_unwind spu2ppu_unwind = {
ARCH_FRAME,
default_frame_unwind_stop_reason,
spu2ppu_this_id,
spu2ppu_prev_register,
NULL,
spu2ppu_sniffer,
spu2ppu_dealloc_cache,
spu2ppu_prev_arch,
};
/* Function calling convention. */
static CORE_ADDR
spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
return sp & ~15;
}
static CORE_ADDR
spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
struct value **args, int nargs, struct type *value_type,
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
struct regcache *regcache)
{
/* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
sp = (sp - 4) & ~15;
/* Store the address of that breakpoint */
*bp_addr = sp;
/* The call starts at the callee's entry point. */
*real_pc = funaddr;
return sp;
}
static int
spu_scalar_value_p (struct type *type)
{
switch (TYPE_CODE (type))
{
case TYPE_CODE_INT:
case TYPE_CODE_ENUM:
case TYPE_CODE_RANGE:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
case TYPE_CODE_PTR:
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
return TYPE_LENGTH (type) <= 16;
default:
return 0;
}
}
static void
spu_value_to_regcache (struct regcache *regcache, int regnum,
struct type *type, const gdb_byte *in)
{
int len = TYPE_LENGTH (type);
if (spu_scalar_value_p (type))
{
int preferred_slot = len < 4 ? 4 - len : 0;
regcache->cooked_write_part (regnum, preferred_slot, len, in);
}
else
{
while (len >= 16)
{
regcache->cooked_write (regnum++, in);
in += 16;
len -= 16;
}
if (len > 0)
regcache->cooked_write_part (regnum, 0, len, in);
}
}
static void
spu_regcache_to_value (struct regcache *regcache, int regnum,
struct type *type, gdb_byte *out)
{
int len = TYPE_LENGTH (type);
if (spu_scalar_value_p (type))
{
int preferred_slot = len < 4 ? 4 - len : 0;
regcache->cooked_read_part (regnum, preferred_slot, len, out);
}
else
{
while (len >= 16)
{
regcache->cooked_read (regnum++, out);
out += 16;
len -= 16;
}
if (len > 0)
regcache->cooked_read_part (regnum, 0, len, out);
}
}
static CORE_ADDR
spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp_delta;
int i;
int regnum = SPU_ARG1_REGNUM;
int stack_arg = -1;
gdb_byte buf[16];
/* Set the return address. */
memset (buf, 0, sizeof buf);
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
regcache->cooked_write (SPU_LR_REGNUM, buf);
/* If STRUCT_RETURN is true, then the struct return address (in
STRUCT_ADDR) will consume the first argument-passing register.
Both adjust the register count and store that value. */
if (struct_return)
{
memset (buf, 0, sizeof buf);
store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
regcache->cooked_write (regnum++, buf);
}
/* Fill in argument registers. */
for (i = 0; i < nargs; i++)
{
struct value *arg = args[i];
struct type *type = check_typedef (value_type (arg));
const gdb_byte *contents = value_contents (arg);
int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
/* If the argument doesn't wholly fit into registers, it and
all subsequent arguments go to the stack. */
if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
{
stack_arg = i;
break;
}
spu_value_to_regcache (regcache, regnum, type, contents);
regnum += n_regs;
}
/* Overflow arguments go to the stack. */
if (stack_arg != -1)
{
CORE_ADDR ap;
/* Allocate all required stack size. */
for (i = stack_arg; i < nargs; i++)
{
struct type *type = check_typedef (value_type (args[i]));
sp -= align_up (TYPE_LENGTH (type), 16);
}
/* Fill in stack arguments. */
ap = sp;
for (i = stack_arg; i < nargs; i++)
{
struct value *arg = args[i];
struct type *type = check_typedef (value_type (arg));
int len = TYPE_LENGTH (type);
int preferred_slot;
if (spu_scalar_value_p (type))
preferred_slot = len < 4 ? 4 - len : 0;
else
preferred_slot = 0;
target_write_memory (ap + preferred_slot, value_contents (arg), len);
ap += align_up (TYPE_LENGTH (type), 16);
}
}
/* Allocate stack frame header. */
sp -= 32;
/* Store stack back chain. */
regcache->cooked_read (SPU_RAW_SP_REGNUM, buf);
target_write_memory (sp, buf, 16);
/* Finally, update all slots of the SP register. */
sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
for (i = 0; i < 4; i++)
{
CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
}
regcache->cooked_write (SPU_RAW_SP_REGNUM, buf);
return sp;
}
static struct frame_id
spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
}
/* Function return value access. */
static enum return_value_convention
spu_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *type, struct regcache *regcache,
gdb_byte *out, const gdb_byte *in)
{
struct type *func_type = function ? value_type (function) : NULL;
enum return_value_convention rvc;
int opencl_vector = 0;
if (func_type)
{
func_type = check_typedef (func_type);
if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
&& TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type))
opencl_vector = 1;
}
if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
rvc = RETURN_VALUE_REGISTER_CONVENTION;
else
rvc = RETURN_VALUE_STRUCT_CONVENTION;
if (in)
{
switch (rvc)
{
case RETURN_VALUE_REGISTER_CONVENTION:
if (opencl_vector && TYPE_LENGTH (type) == 2)
regcache->cooked_write_part (SPU_ARG1_REGNUM, 2, 2, in);
else
spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
break;
case RETURN_VALUE_STRUCT_CONVENTION:
error (_("Cannot set function return value."));
break;
}
}
else if (out)
{
switch (rvc)
{
case RETURN_VALUE_REGISTER_CONVENTION:
if (opencl_vector && TYPE_LENGTH (type) == 2)
regcache->cooked_read_part (SPU_ARG1_REGNUM, 2, 2, out);
else
spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
break;
case RETURN_VALUE_STRUCT_CONVENTION:
error (_("Function return value unknown."));
break;
}
}
return rvc;
}
/* Breakpoints. */
constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
static int
spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
/* We work around a problem in combined Cell/B.E. debugging here. Consider
that in a combined application, we have some breakpoints inserted in SPU
code, and now the application forks (on the PPU side). GDB common code
will assume that the fork system call copied all breakpoints into the new
process' address space, and that all those copies now need to be removed
(see breakpoint.c:detach_breakpoints).
While this is certainly true for PPU side breakpoints, it is not true
for SPU side breakpoints. fork will clone the SPU context file
descriptors, so that all the existing SPU contexts are in accessible
in the new process. However, the contents of the SPU contexts themselves
are *not* cloned. Therefore the effect of detach_breakpoints is to
remove SPU breakpoints from the *original* SPU context's local store
-- this is not the correct behaviour.
The workaround is to check whether the PID we are asked to remove this
breakpoint from (i.e. inferior_ptid.pid ()) is different from the
PID of the current inferior (i.e. current_inferior ()->pid). This is only
true in the context of detach_breakpoints. If so, we simply do nothing.
[ Note that for the fork child process, it does not matter if breakpoints
remain inserted, because those SPU contexts are not runnable anyway --
the Linux kernel allows only the original process to invoke spu_run. */
if (inferior_ptid.pid () != current_inferior ()->pid)
return 0;
return default_memory_remove_breakpoint (gdbarch, bp_tgt);
}
/* Software single-stepping support. */
static std::vector<CORE_ADDR>
spu_software_single_step (struct regcache *regcache)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR pc, next_pc;
unsigned int insn;
int offset, reg;
gdb_byte buf[4];
ULONGEST lslr;
std::vector<CORE_ADDR> next_pcs;
pc = regcache_read_pc (regcache);
if (target_read_memory (pc, buf, 4))
throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
paddress (gdbarch, pc));
insn = extract_unsigned_integer (buf, 4, byte_order);
/* Get local store limit. */
if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
!= REG_VALID) || !lslr)
lslr = (ULONGEST) -1;
/* Next sequential instruction is at PC + 4, except if the current
instruction is a PPE-assisted call, in which case it is at PC + 8.
Wrap around LS limit to be on the safe side. */
if ((insn & 0xffffff00) == 0x00002100)
next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
else
next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
if (is_branch (insn, &offset, ®))
{
CORE_ADDR target = offset;
if (reg == SPU_PC_REGNUM)
target += SPUADDR_ADDR (pc);
else if (reg != -1)
{
regcache->raw_read_part (reg, 0, 4, buf);
target += extract_unsigned_integer (buf, 4, byte_order) & -4;
}
target = target & lslr;
if (target != next_pc)
next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
}
return next_pcs;
}
/* Longjmp support. */
static int
spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[4];
CORE_ADDR jb_addr;
int optim, unavail;
/* Jump buffer is pointed to by the argument register $r3. */
if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
&optim, &unavail))
return 0;
jb_addr = extract_unsigned_integer (buf, 4, byte_order);
if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
return 0;
*pc = extract_unsigned_integer (buf, 4, byte_order);
*pc = SPUADDR (tdep->id, *pc);
return 1;
}
/* Disassembler. */
struct spu_dis_asm_info : disassemble_info
{
int id;
};
static void
spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
{
struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
gdb_disassembler *di
= static_cast<gdb_disassembler *>(info->application_data);
print_address (di->arch (), SPUADDR (data->id, addr),
(struct ui_file *) info->stream);
}
static int
gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
{
/* The opcodes disassembler does 18-bit address arithmetic. Make
sure the SPU ID encoded in the high bits is added back when we
call print_address. */
struct spu_dis_asm_info spu_info;
memcpy (&spu_info, info, sizeof (*info));
spu_info.id = SPUADDR_SPU (memaddr);
spu_info.print_address_func = spu_dis_asm_print_address;
return default_print_insn (memaddr, &spu_info);
}
/* Target overlays for the SPU overlay manager.
See the documentation of simple_overlay_update for how the
interface is supposed to work.
Data structures used by the overlay manager:
struct ovly_table
{
u32 vma;
u32 size;
u32 pos;
u32 buf;
} _ovly_table[]; -- one entry per overlay section
struct ovly_buf_table
{
u32 mapped;
} _ovly_buf_table[]; -- one entry per overlay buffer
_ovly_table should never change.
Both tables are aligned to a 16-byte boundary, the symbols
_ovly_table and _ovly_buf_table are of type STT_OBJECT and their
size set to the size of the respective array. buf in _ovly_table is
an index into _ovly_buf_table.
mapped is an index into _ovly_table. Both the mapped and buf indices start
from one to reference the first entry in their respective tables. */
/* Using the per-objfile private data mechanism, we store for each
objfile an array of "struct spu_overlay_table" structures, one
for each obj_section of the objfile. This structure holds two
fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
is *not* an overlay section. If it is non-zero, it represents
a target address. The overlay section is mapped iff the target
integer at this location equals MAPPED_VAL. */
static const struct objfile_data *spu_overlay_data;
struct spu_overlay_table
{
CORE_ADDR mapped_ptr;
CORE_ADDR mapped_val;
};
/* Retrieve the overlay table for OBJFILE. If not already cached, read
the _ovly_table data structure from the target and initialize the
spu_overlay_table data structure from it. */
static struct spu_overlay_table *
spu_get_overlay_table (struct objfile *objfile)
{
enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
CORE_ADDR ovly_table_base, ovly_buf_table_base;
unsigned ovly_table_size, ovly_buf_table_size;
struct spu_overlay_table *tbl;
struct obj_section *osect;
gdb_byte *ovly_table;
int i;
tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
if (tbl)
return tbl;
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
if (!ovly_table_msym.minsym)
return NULL;
ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
NULL, objfile);
if (!ovly_buf_table_msym.minsym)
return NULL;
ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
read_memory (ovly_table_base, ovly_table, ovly_table_size);
tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
objfile->sections_end - objfile->sections,
struct spu_overlay_table);
for (i = 0; i < ovly_table_size / 16; i++)
{
CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
4, byte_order);
/* Note that this skips the "size" entry, which is at offset
4. */
CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
4, byte_order);
CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
4, byte_order);
if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
continue;
ALL_OBJFILE_OSECTIONS (objfile, osect)
if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
&& pos == osect->the_bfd_section->filepos)
{
int ndx = osect - objfile->sections;
tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
tbl[ndx].mapped_val = i + 1;
break;
}
}
xfree (ovly_table);
set_objfile_data (objfile, spu_overlay_data, tbl);
return tbl;
}
/* Read _ovly_buf_table entry from the target to dermine whether
OSECT is currently mapped, and update the mapped state. */
static void
spu_overlay_update_osect (struct obj_section *osect)
{
enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
struct spu_overlay_table *ovly_table;
CORE_ADDR id, val;
ovly_table = spu_get_overlay_table (osect->objfile);
if (!ovly_table)
return;
ovly_table += osect - osect->objfile->sections;
if (ovly_table->mapped_ptr == 0)
return;
id = SPUADDR_SPU (obj_section_addr (osect));
val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
4, byte_order);
osect->ovly_mapped = (val == ovly_table->mapped_val);
}
/* If OSECT is NULL, then update all sections' mapped state.
If OSECT is non-NULL, then update only OSECT's mapped state. */
static void
spu_overlay_update (struct obj_section *osect)
{
/* Just one section. */
if (osect)
spu_overlay_update_osect (osect);
/* All sections. */
else
{
struct objfile *objfile;
ALL_OBJSECTIONS (objfile, osect)
if (section_is_overlay (osect))
spu_overlay_update_osect (osect);
}
}
/* Whenever a new objfile is loaded, read the target's _ovly_table.
If there is one, go through all sections and make sure for non-
overlay sections LMA equals VMA, while for overlay sections LMA
is larger than SPU_OVERLAY_LMA. */
static void
spu_overlay_new_objfile (struct objfile *objfile)
{
struct spu_overlay_table *ovly_table;
struct obj_section *osect;
/* If we've already touched this file, do nothing. */
if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
return;
/* Consider only SPU objfiles. */
if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
return;
/* Check if this objfile has overlays. */
ovly_table = spu_get_overlay_table (objfile);
if (!ovly_table)
return;
/* Now go and fiddle with all the LMAs. */
ALL_OBJFILE_OSECTIONS (objfile, osect)
{
asection *bsect = osect->the_bfd_section;
int ndx = osect - objfile->sections;
if (ovly_table[ndx].mapped_ptr == 0)
bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
else
bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
}
}
/* Insert temporary breakpoint on "main" function of newly loaded
SPE context OBJFILE. */
static void
spu_catch_start (struct objfile *objfile)
{
struct bound_minimal_symbol minsym;
struct compunit_symtab *cust;
CORE_ADDR pc;
/* Do this only if requested by "set spu stop-on-load on". */
if (!spu_stop_on_load_p)
return;
/* Consider only SPU objfiles. */
if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
return;
/* The main objfile is handled differently. */
if (objfile == symfile_objfile)
return;
/* There can be multiple symbols named "main". Search for the
"main" in *this* objfile. */
minsym = lookup_minimal_symbol ("main", NULL, objfile);
if (!minsym.minsym)
return;
/* If we have debugging information, try to use it -- this
will allow us to properly skip the prologue. */
pc = BMSYMBOL_VALUE_ADDRESS (minsym);
cust
= find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
minsym.minsym));
if (cust != NULL)
{
const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
struct symbol *sym;
struct symtab_and_line sal;
sym = block_lookup_symbol (block, "main",
symbol_name_match_type::SEARCH_NAME,
VAR_DOMAIN);
if (sym)
{
fixup_symbol_section (sym, objfile);
sal = find_function_start_sal (sym, 1);
pc = sal.pc;
}
}
/* Use a numerical address for the set_breakpoint command to avoid having
the breakpoint re-set incorrectly. */
event_location_up location = new_address_location (pc, NULL, 0);
create_breakpoint (get_objfile_arch (objfile), location.get (),
NULL /* cond_string */, -1 /* thread */,
NULL /* extra_string */,
0 /* parse_condition_and_thread */, 1 /* tempflag */,
bp_breakpoint /* type_wanted */,
0 /* ignore_count */,
AUTO_BOOLEAN_FALSE /* pending_break_support */,
&bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1 /* enabled */, 0 /* internal */, 0);
}
/* Look up OBJFILE loaded into FRAME's SPU context. */
static struct objfile *
spu_objfile_from_frame (struct frame_info *frame)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
struct objfile *obj;
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
return NULL;
ALL_OBJFILES (obj)
{
if (obj->sections != obj->sections_end
&& SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
return obj;
}
return NULL;
}
/* Flush cache for ea pointer access if available. */
static void
flush_ea_cache (void)
{
struct bound_minimal_symbol msymbol;
struct objfile *obj;
if (!has_stack_frames ())
return;
obj = spu_objfile_from_frame (get_current_frame ());
if (obj == NULL)
return;
/* Lookup inferior function __cache_flush. */
msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
if (msymbol.minsym != NULL)
{
struct type *type;
CORE_ADDR addr;
type = objfile_type (obj)->builtin_void;
type = lookup_function_type (type);
type = lookup_pointer_type (type);
addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
call_function_by_hand (value_from_pointer (type, addr), NULL, 0, NULL);
}
}
/* This handler is called when the inferior has stopped. If it is stopped in
SPU architecture then flush the ea cache if used. */
static void
spu_attach_normal_stop (struct bpstats *bs, int print_frame)
{
if (!spu_auto_flush_cache_p)
return;
/* Temporarily reset spu_auto_flush_cache_p to avoid recursively
re-entering this function when __cache_flush stops. */
spu_auto_flush_cache_p = 0;
flush_ea_cache ();
spu_auto_flush_cache_p = 1;
}
/* "info spu" commands. */
static void
info_spu_event_command (const char *args, int from_tty)
{
struct frame_info *frame = get_selected_frame (NULL);
ULONGEST event_status = 0;
ULONGEST event_mask = 0;
gdb_byte buf[100];
char annex[32];
LONGEST len;
int id;
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
error (_("\"info spu\" is only supported on the SPU architecture."));
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
xsnprintf (annex, sizeof annex, "%d/event_status", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, (sizeof (buf) - 1));
if (len <= 0)
error (_("Could not read event_status."));
buf[len] = '\0';
event_status = strtoulst ((char *) buf, NULL, 16);
xsnprintf (annex, sizeof annex, "%d/event_mask", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, (sizeof (buf) - 1));
if (len <= 0)
error (_("Could not read event_mask."));
buf[len] = '\0';
event_mask = strtoulst ((char *) buf, NULL, 16);
ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
current_uiout->text (_("Event Status "));
current_uiout->field_fmt ("event_status", "0x%s", phex (event_status, 4));
current_uiout->text ("\n");
current_uiout->text (_("Event Mask "));
current_uiout->field_fmt ("event_mask", "0x%s", phex (event_mask, 4));
current_uiout->text ("\n");
}
static void
info_spu_signal_command (const char *args, int from_tty)
{
struct frame_info *frame = get_selected_frame (NULL);
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST signal1 = 0;
ULONGEST signal1_type = 0;
int signal1_pending = 0;
ULONGEST signal2 = 0;
ULONGEST signal2_type = 0;
int signal2_pending = 0;
char annex[32];
gdb_byte buf[100];
LONGEST len;
int id;
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
error (_("\"info spu\" is only supported on the SPU architecture."));
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
xsnprintf (annex, sizeof annex, "%d/signal1", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU,
annex, buf, 0, 4);
if (len < 0)
error (_("Could not read signal1."));
else if (len == 4)
{
signal1 = extract_unsigned_integer (buf, 4, byte_order);
signal1_pending = 1;
}
xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, (sizeof (buf) - 1));
if (len <= 0)
error (_("Could not read signal1_type."));
buf[len] = '\0';
signal1_type = strtoulst ((char *) buf, NULL, 16);
xsnprintf (annex, sizeof annex, "%d/signal2", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU,
annex, buf, 0, 4);
if (len < 0)
error (_("Could not read signal2."));
else if (len == 4)
{
signal2 = extract_unsigned_integer (buf, 4, byte_order);
signal2_pending = 1;
}
xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, (sizeof (buf) - 1));
if (len <= 0)
error (_("Could not read signal2_type."));
buf[len] = '\0';
signal2_type = strtoulst ((char *) buf, NULL, 16);
ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
if (current_uiout->is_mi_like_p ())
{
current_uiout->field_int ("signal1_pending", signal1_pending);
current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
current_uiout->field_int ("signal1_type", signal1_type);
current_uiout->field_int ("signal2_pending", signal2_pending);
current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
current_uiout->field_int ("signal2_type", signal2_type);
}
else
{
if (signal1_pending)
printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
else
printf_filtered (_("Signal 1 not pending "));
if (signal1_type)
printf_filtered (_("(Type Or)\n"));
else
printf_filtered (_("(Type Overwrite)\n"));
if (signal2_pending)
printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
else
printf_filtered (_("Signal 2 not pending "));
if (signal2_type)
printf_filtered (_("(Type Or)\n"));
else
printf_filtered (_("(Type Overwrite)\n"));
}
}
static void
info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
const char *field, const char *msg)
{
int i;
if (nr <= 0)
return;
ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
current_uiout->table_header (32, ui_left, field, msg);
current_uiout->table_body ();
for (i = 0; i < nr; i++)
{
{
ULONGEST val;
ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
current_uiout->field_fmt (field, "0x%s", phex (val, 4));
}
current_uiout->text ("\n");
}
}
static void
info_spu_mailbox_command (const char *args, int from_tty)
{
struct frame_info *frame = get_selected_frame (NULL);
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
char annex[32];
gdb_byte buf[1024];
LONGEST len;
int id;
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
error (_("\"info spu\" is only supported on the SPU architecture."));
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, sizeof buf);
if (len < 0)
error (_("Could not read mbox_info."));
info_spu_mailbox_list (buf, len / 4, byte_order,
"mbox", "SPU Outbound Mailbox");
xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, sizeof buf);
if (len < 0)
error (_("Could not read ibox_info."));
info_spu_mailbox_list (buf, len / 4, byte_order,
"ibox", "SPU Outbound Interrupt Mailbox");
xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, sizeof buf);
if (len < 0)
error (_("Could not read wbox_info."));
info_spu_mailbox_list (buf, len / 4, byte_order,
"wbox", "SPU Inbound Mailbox");
}
static ULONGEST
spu_mfc_get_bitfield (ULONGEST word, int first, int last)
{
ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
return (word >> (63 - last)) & mask;
}
static void
info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
{
static const char *spu_mfc_opcode[256] =
{
/* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
"puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
/* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
"gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
/* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
/* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
"putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
"mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
/* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
int *seq = XALLOCAVEC (int, nr);
int done = 0;
int i, j;
/* Determine sequence in which to display (valid) entries. */
for (i = 0; i < nr; i++)
{
/* Search for the first valid entry all of whose
dependencies are met. */
for (j = 0; j < nr; j++)
{
ULONGEST mfc_cq_dw3;
ULONGEST dependencies;
if (done & (1 << (nr - 1 - j)))
continue;
mfc_cq_dw3
= extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
continue;
dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
if ((dependencies & done) != dependencies)
continue;
seq[i] = j;
done |= 1 << (nr - 1 - j);
break;
}
if (j == nr)
break;
}
nr = i;
ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
current_uiout->table_header (7, ui_left, "opcode", "Opcode");
current_uiout->table_header (3, ui_left, "tag", "Tag");
current_uiout->table_header (3, ui_left, "tid", "TId");
current_uiout->table_header (3, ui_left, "rid", "RId");
current_uiout->table_header (18, ui_left, "ea", "EA");
current_uiout->table_header (7, ui_left, "lsa", "LSA");
current_uiout->table_header (7, ui_left, "size", "Size");
current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
current_uiout->table_header (1, ui_left, "error_p", "E");
current_uiout->table_body ();
for (i = 0; i < nr; i++)
{
ULONGEST mfc_cq_dw0;
ULONGEST mfc_cq_dw1;
ULONGEST mfc_cq_dw2;
int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
int list_lsa, list_size, mfc_lsa, mfc_size;
ULONGEST mfc_ea;
int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
/* Decode contents of MFC Command Queue Context Save/Restore Registers.
See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
mfc_cq_dw0
= extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
mfc_cq_dw1
= extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
mfc_cq_dw2
= extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
| spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
{
ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
if (spu_mfc_opcode[mfc_cmd_opcode])
current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
else
current_uiout->field_int ("opcode", mfc_cmd_opcode);
current_uiout->field_int ("tag", mfc_cmd_tag);
current_uiout->field_int ("tid", tclass_id);
current_uiout->field_int ("rid", rclass_id);
if (ea_valid_p)
current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
else
current_uiout->field_skip ("ea");
current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
if (qw_valid_p)
current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
else
current_uiout->field_fmt ("size", "0x%05x", mfc_size);
if (list_valid_p)
{
current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
}
else
{
current_uiout->field_skip ("lstaddr");
current_uiout->field_skip ("lstsize");
}
if (cmd_error_p)
current_uiout->field_string ("error_p", "*");
else
current_uiout->field_skip ("error_p");
}
current_uiout->text ("\n");
}
}
static void
info_spu_dma_command (const char *args, int from_tty)
{
struct frame_info *frame = get_selected_frame (NULL);
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST dma_info_type;
ULONGEST dma_info_mask;
ULONGEST dma_info_status;
ULONGEST dma_info_stall_and_notify;
ULONGEST dma_info_atomic_command_status;
char annex[32];
gdb_byte buf[1024];
LONGEST len;
int id;
if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
error (_("\"info spu\" is only supported on the SPU architecture."));
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
xsnprintf (annex, sizeof annex, "%d/dma_info", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, 40 + 16 * 32);
if (len <= 0)
error (_("Could not read dma_info."));
dma_info_type
= extract_unsigned_integer (buf, 8, byte_order);
dma_info_mask
= extract_unsigned_integer (buf + 8, 8, byte_order);
dma_info_status
= extract_unsigned_integer (buf + 16, 8, byte_order);
dma_info_stall_and_notify
= extract_unsigned_integer (buf + 24, 8, byte_order);
dma_info_atomic_command_status
= extract_unsigned_integer (buf + 32, 8, byte_order);
ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
if (current_uiout->is_mi_like_p ())
{
current_uiout->field_fmt ("dma_info_type", "0x%s",
phex_nz (dma_info_type, 4));
current_uiout->field_fmt ("dma_info_mask", "0x%s",
phex_nz (dma_info_mask, 4));
current_uiout->field_fmt ("dma_info_status", "0x%s",
phex_nz (dma_info_status, 4));
current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
phex_nz (dma_info_stall_and_notify, 4));
current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
phex_nz (dma_info_atomic_command_status, 4));
}
else
{
const char *query_msg = _("no query pending");
if (dma_info_type & 4)
switch (dma_info_type & 3)
{
case 1: query_msg = _("'any' query pending"); break;
case 2: query_msg = _("'all' query pending"); break;
default: query_msg = _("undefined query type"); break;
}
printf_filtered (_("Tag-Group Status 0x%s\n"),
phex (dma_info_status, 4));
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
phex (dma_info_mask, 4), query_msg);
printf_filtered (_("Stall-and-Notify 0x%s\n"),
phex (dma_info_stall_and_notify, 4));
printf_filtered (_("Atomic Cmd Status 0x%s\n"),
phex (dma_info_atomic_command_status, 4));
printf_filtered ("\n");
}
info_spu_dma_cmdlist (buf + 40, 16, byte_order);
}
static void
info_spu_proxydma_command (const char *args, int from_tty)
{
struct frame_info *frame = get_selected_frame (NULL);
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST dma_info_type;
ULONGEST dma_info_mask;
ULONGEST dma_info_status;
char annex[32];
gdb_byte buf[1024];
LONGEST len;
int id;
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
error (_("\"info spu\" is only supported on the SPU architecture."));
id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
buf, 0, 24 + 8 * 32);
if (len <= 0)
error (_("Could not read proxydma_info."));
dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
if (current_uiout->is_mi_like_p ())
{
current_uiout->field_fmt ("proxydma_info_type", "0x%s",
phex_nz (dma_info_type, 4));
current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
phex_nz (dma_info_mask, 4));
current_uiout->field_fmt ("proxydma_info_status", "0x%s",
phex_nz (dma_info_status, 4));
}
else
{
const char *query_msg;
switch (dma_info_type & 3)
{
case 0: query_msg = _("no query pending"); break;
case 1: query_msg = _("'any' query pending"); break;
case 2: query_msg = _("'all' query pending"); break;
default: query_msg = _("undefined query type"); break;
}
printf_filtered (_("Tag-Group Status 0x%s\n"),
phex (dma_info_status, 4));
printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
phex (dma_info_mask, 4), query_msg);
printf_filtered ("\n");
}
info_spu_dma_cmdlist (buf + 24, 8, byte_order);
}
static void
info_spu_command (const char *args, int from_tty)
{
printf_unfiltered (_("\"info spu\" must be followed by "
"the name of an SPU facility.\n"));
help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
}
/* Root of all "set spu "/"show spu " commands. */
static void
show_spu_command (const char *args, int from_tty)
{
help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
}
static void
set_spu_command (const char *args, int from_tty)
{
help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
}
static void
show_spu_stop_on_load (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
value);
}
static void
show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
struct cmd_list_element *c, const char *value)
{
fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
value);
}
/* Set up gdbarch struct. */
static struct gdbarch *
spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
int id = -1;
/* Which spufs ID was requested as address space? */
if (info.target_info.id)
id = *info.target_info.id;
/* For objfile architectures of SPU solibs, decode the ID from the name.
This assumes the filename convention employed by solib-spu.c. */
else if (info.abfd)
{
const char *name = strrchr (info.abfd->filename, '@');
if (name)
sscanf (name, "@0x%*x <%d>", &id);
}
/* Find a candidate among extant architectures. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
tdep = gdbarch_tdep (arches->gdbarch);
if (tdep && tdep->id == id)
return arches->gdbarch;
}
/* None found, so create a new architecture. */
tdep = XCNEW (struct gdbarch_tdep);
tdep->id = id;
gdbarch = gdbarch_alloc (&info, tdep);
/* Disassembler. */
set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
/* Registers. */
set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
set_gdbarch_read_pc (gdbarch, spu_read_pc);
set_gdbarch_write_pc (gdbarch, spu_write_pc);
set_gdbarch_register_name (gdbarch, spu_register_name);
set_gdbarch_register_type (gdbarch, spu_register_type);
set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
set_gdbarch_ax_pseudo_register_collect
(gdbarch, spu_ax_pseudo_register_collect);
set_gdbarch_ax_pseudo_register_push_stack
(gdbarch, spu_ax_pseudo_register_push_stack);
/* Data types. */
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_addr_bit (gdbarch, 32);
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
/* Address handling. */
set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
set_gdbarch_address_class_type_flags_to_name
(gdbarch, spu_address_class_type_flags_to_name);
set_gdbarch_address_class_name_to_type_flags
(gdbarch, spu_address_class_name_to_type_flags);
/* We need to support more than "addr_bit" significant address bits
in order to support SPUADDR_ADDR encoded values. */
set_gdbarch_significant_addr_bit (gdbarch, 64);
/* Inferior function calls. */
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
set_gdbarch_frame_align (gdbarch, spu_frame_align);
set_gdbarch_frame_red_zone_size (gdbarch, 2000);
set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
set_gdbarch_return_value (gdbarch, spu_return_value);
/* Frame handling. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
dwarf2_append_unwinders (gdbarch);
frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
frame_base_set_default (gdbarch, &spu_frame_base);
set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
set_gdbarch_frame_args_skip (gdbarch, 0);
set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
/* Cell/B.E. cross-architecture unwinder support. */
frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
/* Breakpoints. */
set_gdbarch_decr_pc_after_break (gdbarch, 4);
set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
/* Overlays. */
set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
return gdbarch;
}
void
_initialize_spu_tdep (void)
{
register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
/* Add ourselves to objfile event chain. */
gdb::observers::new_objfile.attach (spu_overlay_new_objfile);
spu_overlay_data = register_objfile_data ();
/* Install spu stop-on-load handler. */
gdb::observers::new_objfile.attach (spu_catch_start);
/* Add ourselves to normal_stop event chain. */
gdb::observers::normal_stop.attach (spu_attach_normal_stop);
/* Add root prefix command for all "set spu"/"show spu" commands. */
add_prefix_cmd ("spu", no_class, set_spu_command,
_("Various SPU specific commands."),
&setspucmdlist, "set spu ", 0, &setlist);
add_prefix_cmd ("spu", no_class, show_spu_command,
_("Various SPU specific commands."),
&showspucmdlist, "show spu ", 0, &showlist);
/* Toggle whether or not to add a temporary breakpoint at the "main"
function of new SPE contexts. */
add_setshow_boolean_cmd ("stop-on-load", class_support,
&spu_stop_on_load_p, _("\
Set whether to stop for new SPE threads."),
_("\
Show whether to stop for new SPE threads."),
_("\
Use \"on\" to give control to the user when a new SPE thread\n\
enters its \"main\" function.\n\
Use \"off\" to disable stopping for new SPE threads."),
NULL,
show_spu_stop_on_load,
&setspucmdlist, &showspucmdlist);
/* Toggle whether or not to automatically flush the software-managed
cache whenever SPE execution stops. */
add_setshow_boolean_cmd ("auto-flush-cache", class_support,
&spu_auto_flush_cache_p, _("\
Set whether to automatically flush the software-managed cache."),
_("\
Show whether to automatically flush the software-managed cache."),
_("\
Use \"on\" to automatically flush the software-managed cache\n\
whenever SPE execution stops.\n\
Use \"off\" to never automatically flush the software-managed cache."),
NULL,
show_spu_auto_flush_cache,
&setspucmdlist, &showspucmdlist);
/* Add root prefix command for all "info spu" commands. */
add_prefix_cmd ("spu", class_info, info_spu_command,
_("Various SPU specific commands."),
&infospucmdlist, "info spu ", 0, &infolist);
/* Add various "info spu" commands. */
add_cmd ("event", class_info, info_spu_event_command,
_("Display SPU event facility status.\n"),
&infospucmdlist);
add_cmd ("signal", class_info, info_spu_signal_command,
_("Display SPU signal notification facility status.\n"),
&infospucmdlist);
add_cmd ("mailbox", class_info, info_spu_mailbox_command,
_("Display SPU mailbox facility status.\n"),
&infospucmdlist);
add_cmd ("dma", class_info, info_spu_dma_command,
_("Display MFC DMA status.\n"),
&infospucmdlist);
add_cmd ("proxydma", class_info, info_spu_proxydma_command,
_("Display MFC Proxy-DMA status.\n"),
&infospucmdlist);
}
|