/* Target-vector operations for controlling windows child processes, for GDB. Copyright (C) 1995-2024 Free Software Foundation, Inc. Contributed by Cygnus Solutions, A Red Hat Company. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Originally by Steve Chamberlain, sac@cygnus.com */ #include "frame.h" #include "inferior.h" #include "infrun.h" #include "target.h" #include "gdbcore.h" #include "command.h" #include "completer.h" #include "regcache.h" #include "top.h" #include #include #include #include #include #ifdef __CYGWIN__ #include #include #include #endif #include #include #include #include "filenames.h" #include "symfile.h" #include "objfiles.h" #include "gdb_bfd.h" #include "gdbsupport/gdb_obstack.h" #include "gdbthread.h" #include "cli/cli-cmds.h" #include #include "exec.h" #include "solist.h" #include "solib.h" #include "xml-support.h" #include "inttypes.h" #include "i386-tdep.h" #include "i387-tdep.h" #include "windows-tdep.h" #include "windows-nat.h" #include "x86-nat.h" #include "complaints.h" #include "inf-child.h" #include "gdbsupport/gdb_tilde_expand.h" #include "gdbsupport/pathstuff.h" #include "gdbsupport/gdb_wait.h" #include "nat/windows-nat.h" #include "gdbsupport/symbol.h" #include "ser-event.h" #include "inf-loop.h" /* This comment documents high-level logic of this file. all-stop ======== In all-stop mode, there is only ever one Windows debug event in flight. When we receive an event from WaitForDebugEvent, the kernel has already implicitly suspended all the threads of the process. We report the breaking event to the core. When the core decides to resume the inferior, it calls windows_nat_target:resume, which triggers a ContinueDebugEvent call. This call makes all unsuspended threads schedulable again, and we go back to waiting for the next event in WaitForDebugEvent. non-stop ======== For non-stop mode, we utilize the DBG_REPLY_LATER flag in the ContinueDebugEvent function. According to Microsoft: "This flag causes dwThreadId to replay the existing breaking event after the target continues. By calling the SuspendThread API against dwThreadId, a debugger can resume other threads in the process and later return to the breaking." To enable non-stop mode, windows_nat_target::wait suspends the thread, calls 'ContinueForDebugEvent(..., DBG_REPLY_LATER)', and sets the process_thread thread to wait for the next event using WaitForDebugEvent, all before returning the original breaking event to the core. When the user/core finally decides to resume the inferior thread that reported the event, we unsuspend it using ResumeThread. Unlike in all-stop mode, we don't call ContinueDebugEvent then, as it has already been called when the event was first encountered. By making the inferior thread schedulable again, WaitForDebugEvent re-reports the same event (due to the earlier DBG_REPLY_LATER). In windows_nat_target::wait, we detect this delayed re-report and call ContinueDebugEvent on the thread, instructing the process_thread thread to continue waiting for the next event. During the initial thread resumption in windows_nat_target::resume, we recorded the dwContinueStatus argument to be passed to the last ContinueDebugEvent. See windows_thread_info::reply_later for details. Note that with this setup, in non-stop mode, every stopped thread has its own independent last-reported Windows debug event. Therefore, we can decide on a per-thread basis whether to pass the thread's exception (DBG_EXCEPTION_NOT_HANDLED / DBG_CONTINUE) to the inferior. This per-thread decision is not possible in all-stop mode, where we only call ContinueDebugEvent for the thread that last reported a stop, at windows_nat_target::resume time. Cygwin signals ============== The Cygwin runtime always spawns a "sig" thread, which is responsible for receiving signal delivery requests, and hijacking the signaled thread's execution to make it run the signal handler. This is all explained here: https://sourceware.org/cgit/newlib-cygwin/tree/winsup/cygwin/DevDocs/how-signals-work.txt There's a custom debug api protocol between GDB and Cygwin to be able to intercept Cygwin signals before they're seen by the signaled thread, just like the debugger intercepts signals with ptrace on Linux. This Cygwin debugger protocol isn't well documented, though. Here's what happens: when the special "sig" thread in the Cygwin runtime is about to deliver a signal to the target thread, it calls OutputDebugString with a special message: https://sourceware.org/cgit/newlib-cygwin/tree/winsup/cygwin/exceptions.cc?id=4becae7bd833e183c789821a477f25898ed0db1f#n1866 OutputDebugString is a function that is part of the Windows debug API. It generates an OUTPUT_DEBUG_STRING_EVENT event out of WaitForDebugEvent in the debugger, which freezes the inferior, like any other event. GDB recognizes the special Cygwin signal marker string, and is able to report the intercepted Cygwin signal to the user. With the windows-nat backend in all-stop mode, if the user decides to single-step the signaled thread, GDB will set the trace flag in the signaled thread to force it to single-step, and then re-resume the program with ContinueDebugEvent. This resumes both the signaled thread, and the special "sig" thread. The special "sig" thread decides to make the signaled thread run the signal handler, so it suspends it with SuspendThread, does a read-modify-write operation with GetThreadContext/SetThreadContext, and then re-resumes it with ResumeThread. This is all done here: https://sourceware.org/cgit/newlib-cygwin/tree/winsup/cygwin/exceptions.cc?id=4becae7bd833e183c789821a477f25898ed0db1f#n1011 That resulting register context will still have its trace flag set, so the signaled thread ends up single-stepping the signal handler and reporting the trace stop to GDB, which reports the stop where the thread is now stopped, inside the signal handler. That is the intended behavior; stepping into a signal handler is a feature that works on other ports as well, including x86 GNU/Linux, for example. This is exercised by the gdb.base/sigstep.exp testcase. Now, making that work with the backend in non-stop mode (the default on Windows 10 and above) is tricker. In that case, when GDB sees the magic OUTPUT_DEBUG_STRING_EVENT event mentioned above, reported for the "sig" thread, GDB reports the signal stop for the target signaled thread to the user (leaving that thread stopped), but, unlike with an all-stop backend, in non-stop, only the evented/signaled thread should be stopped, so the backend would normally want to re-resume the Cygwin runtime's "sig" thread after handling the OUTPUT_DEBUG_STRING_EVENT event, like it does with any other event out of WaitForDebugEvent that is not reported to the core. If it did that (resume the "sig" thread) however, at that point, the signaled thread would be stopped, suspended with SuspendThread by GDB (while the user is inspecting it), but, unlike in all-stop, the "sig" thread would be set running free. The "sig" thread would reach the code that wants to redirect the signaled thread's execution to the signal handler (by hacking the registers context, as described above), but unlike in the all-stop case, the "sig" thread would notice that the signaled thread is suspended, and so would decide to defer the signal handler until a later time. It's the same code as described above for the all-stop case, except it would take the "then" branch: https://sourceware.org/cgit/newlib-cygwin/tree/winsup/cygwin/exceptions.cc?id=4becae7bd833e183c789821a477f25898ed0db1f#n1019 // Just set pending if thread is already suspended if (res) { tls->unlock (); ResumeThread (hth); goto out; } The result would be that when the GDB user later finally decides to step the signaled thread, the signaled thread would just single step the mainline code, instead of stepping into the signal handler. To avoid this difference of behavior in non-stop mode compared to all-stop mode, we use a trick -- whenever we see that magic OUTPUT_DEBUG_STRING_EVENT event reported for the "sig" thread, we report a stop for the target signaled thread, _and_ leave the "sig" thread suspended as well, for as long as the target signaled thread is suspended. I.e., we don't let the "sig" thread run before the user decides what to do with the signaled thread's signal. Only when the user re-resumes the signaled thread, will we resume the "sig" thread as well. The trick is that all this is done here in the Windows backend, while providing the illusion to the core of GDB (and the user) that the "sig" thread is "running", for as long as the core wants the "sig" thread to be running. This isn't ideal, since this means that with user-visible non-stop, the inferior will only be able to process and report one signal at a time (as the "sig" thread is responsible for that), but that seems like an acceptible compromise, better than not being able to have the target work in non-stop by default on Cygwin. */ using namespace windows_nat; /* Maintain a linked list of "so" information. */ struct windows_solib { LPVOID load_addr = 0; CORE_ADDR text_offset = 0; /* Original name. */ std::string original_name; /* Expanded form of the name. */ std::string name; }; /* Flags that can be passed to windows_continue. */ enum windows_continue_flag { /* This means we have killed the inferior, so windows_continue should ignore weird errors due to threads shutting down. */ WCONT_KILLED = 1, /* This means we expect this windows_continue call to be the last call to continue the inferior -- we are either mourning it or detaching. */ WCONT_LAST_CALL = 2, /* By default, windows_continue only calls ContinueDebugEvent in all-stop mode. This flag indicates that windows_continue should call ContinueDebugEvent even in non-stop mode. */ WCONT_CONTINUE_DEBUG_EVENT = 4, /* Skip calling ContinueDebugEvent even in all-stop mode. This is the default in non-stop mode. */ WCONT_DONT_CONTINUE_DEBUG_EVENT = 8, }; DEF_ENUM_FLAGS_TYPE (windows_continue_flag, windows_continue_flags); struct windows_per_inferior : public windows_process_info { windows_thread_info *find_thread (ptid_t ptid) override; bool handle_output_debug_string (const DEBUG_EVENT ¤t_event, struct target_waitstatus *ourstatus) override; void handle_load_dll (const char *dll_name, LPVOID base) override; void handle_unload_dll (const DEBUG_EVENT ¤t_event) override; bool handle_access_violation (const EXCEPTION_RECORD *rec) override; void invalidate_context (windows_thread_info *th); void fill_thread_context (windows_thread_info *th) override; void continue_one_thread (windows_thread_info *th, windows_continue_flags cont_flags); int windows_initialization_done = 0; std::vector> thread_list; /* Counts of things. */ int saw_create = 0; int open_process_used = 0; #ifdef __x86_64__ void *wow64_dbgbreak = nullptr; #endif /* This vector maps GDB's idea of a register's number into an offset in the windows exception context vector. It also contains the bit mask needed to load the register in question. The contents of this table can only be computed by the units that provide CPU-specific support for Windows native debugging. One day we could read a reg, we could inspect the context we already have loaded, if it doesn't have the bit set that we need, we read that set of registers in using GetThreadContext. If the context already contains what we need, we just unpack it. Then to write a register, first we have to ensure that the context contains the other regs of the group, and then we copy the info in and set out bit. */ const int *mappings = nullptr; /* The function to use in order to determine whether a register is a segment register or not. */ segment_register_p_ftype *segment_register_p = nullptr; std::vector solibs; #ifdef __CYGWIN__ /* The starting and ending address of the cygwin1.dll text segment. */ CORE_ADDR cygwin_load_start = 0; CORE_ADDR cygwin_load_end = 0; #endif /* __CYGWIN__ */ }; /* The current process. */ static windows_per_inferior windows_process; #undef STARTUPINFO #ifndef __CYGWIN__ # define __PMAX (MAX_PATH + 1) # define STARTUPINFO STARTUPINFOA #else # define __PMAX PATH_MAX # define STARTUPINFO STARTUPINFOW #endif /* If we're not using the old Cygwin header file set, define the following which never should have been in the generic Win32 API headers in the first place since they were our own invention... */ #ifndef _GNU_H_WINDOWS_H enum { FLAG_TRACE_BIT = 0x100, }; #endif #ifndef CONTEXT_EXTENDED_REGISTERS /* This macro is only defined on ia32. It only makes sense on this target, so define it as zero if not already defined. */ #define CONTEXT_EXTENDED_REGISTERS 0 #endif #define CONTEXT_DEBUGGER_DR CONTEXT_FULL | CONTEXT_FLOATING_POINT \ | CONTEXT_SEGMENTS | CONTEXT_DEBUG_REGISTERS \ | CONTEXT_EXTENDED_REGISTERS #define DR6_CLEAR_VALUE 0xffff0ff0 /* The string sent by cygwin when it processes a signal. FIXME: This should be in a cygwin include file. */ #ifndef _CYGWIN_SIGNAL_STRING #define _CYGWIN_SIGNAL_STRING "cYgSiGw00f" #endif #define CHECK(x) check (x, __FILE__,__LINE__) #define DEBUG_EXEC(fmt, ...) \ debug_prefixed_printf_cond (debug_exec, "windows exec", fmt, ## __VA_ARGS__) #define DEBUG_EVENTS(fmt, ...) \ debug_prefixed_printf_cond (debug_events, "windows events", fmt, \ ## __VA_ARGS__) #define DEBUG_MEM(fmt, ...) \ debug_prefixed_printf_cond (debug_memory, "windows mem", fmt, \ ## __VA_ARGS__) #define DEBUG_EXCEPT(fmt, ...) \ debug_prefixed_printf_cond (debug_exceptions, "windows except", fmt, \ ## __VA_ARGS__) static void windows_set_dr (int i, CORE_ADDR addr); static void windows_set_dr7 (unsigned long val); static CORE_ADDR windows_get_dr (int i); static unsigned long windows_get_dr6 (void); static unsigned long windows_get_dr7 (void); /* User options. */ static bool new_console = false; #ifdef __CYGWIN__ static bool cygwin_exceptions = false; #endif static bool new_group = true; static bool debug_exec = false; /* show execution */ static bool debug_events = false; /* show events from kernel */ static bool debug_memory = false; /* show target memory accesses */ static bool debug_exceptions = false; /* show target exceptions */ static bool useshell = false; /* use shell for subprocesses */ /* See windows_nat_target::resume to understand why this is commented out. */ #if 0 /* This vector maps the target's idea of an exception (extracted from the DEBUG_EVENT structure) to GDB's idea. */ struct xlate_exception { DWORD them; enum gdb_signal us; }; static const struct xlate_exception xlate[] = { {EXCEPTION_ACCESS_VIOLATION, GDB_SIGNAL_SEGV}, {STATUS_STACK_OVERFLOW, GDB_SIGNAL_SEGV}, {EXCEPTION_BREAKPOINT, GDB_SIGNAL_TRAP}, {DBG_CONTROL_C, GDB_SIGNAL_INT}, {EXCEPTION_SINGLE_STEP, GDB_SIGNAL_TRAP}, {STATUS_FLOAT_DIVIDE_BY_ZERO, GDB_SIGNAL_FPE} }; #endif /* 0 */ struct windows_nat_target final : public x86_nat_target { windows_nat_target (); void close () override; thread_control_capabilities get_thread_control_capabilities () override { return tc_schedlock; } void attach (const char *, int) override; bool attach_no_wait () override { /* In non-stop, after attach, we leave all threads running, like other targets. */ return !target_is_non_stop_p (); } void detach (inferior *, int) override; void resume (ptid_t, int , enum gdb_signal) override; ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override; void fetch_registers (struct regcache *, int) override; void store_registers (struct regcache *, int) override; bool stopped_by_sw_breakpoint () override { windows_thread_info *th = windows_process.find_thread (inferior_ptid); return th->stopped_at_software_breakpoint; } bool supports_stopped_by_sw_breakpoint () override { return true; } enum target_xfer_status xfer_partial (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) override; void files_info () override; void kill () override; void create_inferior (const char *, const std::string &, char **, int) override; void mourn_inferior () override; bool thread_alive (ptid_t ptid) override; std::string pid_to_str (ptid_t) override; void interrupt () override; void stop (ptid_t) override; void pass_ctrlc () override; void thread_events (int enable) override; const char *pid_to_exec_file (int pid) override; ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override; bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override; const char *thread_name (struct thread_info *) override; ptid_t get_windows_debug_event (int pid, struct target_waitstatus *ourstatus, target_wait_flags options, DEBUG_EVENT *current_event); void do_initial_windows_stuff (DWORD pid, bool attaching); bool supports_disable_randomization () override { return disable_randomization_available (); } bool can_async_p () override { return true; } bool is_async_p () override { return m_is_async; } bool supports_non_stop () override; bool always_non_stop_p () override; void async (bool enable) override; int async_wait_fd () override { return serial_event_fd (m_wait_event); } void debug_registers_changed_all_threads (); private: windows_thread_info *add_thread (ptid_t ptid, HANDLE h, void *tlb, bool main_thread_p); void delete_thread (ptid_t ptid, DWORD exit_code, bool main_thread_p); DWORD fake_create_process (const DEBUG_EVENT ¤t_event); void stop_one_thread (windows_thread_info *th, enum stopping_kind stopping_kind); DWORD continue_status_for_event_detaching (const DEBUG_EVENT &event, size_t *reply_later_events_left = nullptr); DWORD prepare_resume (windows_thread_info *wth, thread_info *tp, int step, gdb_signal sig); BOOL windows_continue (DWORD continue_status, int id, windows_continue_flags cont_flags = 0); /* Helper function to start process_thread. */ static DWORD WINAPI process_thread_starter (LPVOID self); /* This function implements the background thread that starts inferiors and waits for events. */ void process_thread (); /* Push FUNC onto the queue of requests for process_thread, and wait until it has been called. On Windows, certain debugging functions can only be called by the thread that started (or attached to) the inferior. These are all done in the worker thread, via calls to this method. If FUNC returns true, process_thread will wait for debug events when FUNC returns. */ void do_synchronously (gdb::function_view func); /* This waits for a debug event, dispatching to the worker thread as needed. */ void wait_for_debug_event_main_thread (DEBUG_EVENT *event); /* This continues the last debug event, dispatching to the worker thread as needed. */ void continue_last_debug_event_main_thread (const char *context_str, DWORD continue_status, bool last_call = false); /* Force the process_thread thread to return from WaitForDebugEvent. PROCESS_ALIVE is set to false if the inferior process exits while we're trying to break out the process_thread thread. This can happen because this is called while all threads are running free, while we're trying to detach. */ void break_out_process_thread (bool &process_alive); /* Queue used to send requests to process_thread. This is implicitly locked. */ std::queue> m_queue; /* Event used to signal process_thread that an item has been pushed. */ HANDLE m_pushed_event; /* Event used by process_thread to indicate that it has processed a single function call. */ HANDLE m_response_event; /* Serial event used to communicate wait event availability to the main loop. */ serial_event *m_wait_event; /* The last debug event, when M_WAIT_EVENT has been set. */ DEBUG_EVENT m_last_debug_event {}; /* True if a debug event is pending. */ std::atomic m_debug_event_pending { false }; /* True if currently in async mode. */ bool m_is_async = false; /* True if we last called ContinueDebugEvent and the process_thread thread is now waiting for events. False if WaitForDebugEvent already returned an event, and we need to ContinueDebugEvent again to restart the inferior. */ bool m_continued = false; /* Whether target_thread_events is in effect. */ int m_report_thread_events = 0; }; static void check (BOOL ok, const char *file, int line) { if (!ok) { unsigned err = (unsigned) GetLastError (); gdb_printf ("error return %s:%d was %u: %s\n", file, line, err, strwinerror (err)); } } windows_nat_target::windows_nat_target () : m_pushed_event (CreateEvent (nullptr, false, false, nullptr)), m_response_event (CreateEvent (nullptr, false, false, nullptr)), m_wait_event (make_serial_event ()) { HANDLE bg_thread = CreateThread (nullptr, 64 * 1024, process_thread_starter, this, 0, nullptr); CloseHandle (bg_thread); } void windows_nat_target::async (bool enable) { if (enable == is_async_p ()) return; if (enable) add_file_handler (async_wait_fd (), [] (int, gdb_client_data) { inferior_event_handler (INF_REG_EVENT); }, nullptr, "windows_nat_target"); else delete_file_handler (async_wait_fd ()); m_is_async = enable; } /* A wrapper for WaitForSingleObject that issues a warning if something unusual happens. */ static void wait_for_single (HANDLE handle, DWORD howlong) { while (true) { DWORD r = WaitForSingleObject (handle, howlong); if (r == WAIT_OBJECT_0) return; if (r == WAIT_FAILED) { unsigned err = (unsigned) GetLastError (); warning ("WaitForSingleObject failed (code %u): %s", err, strwinerror (err)); } else warning ("unexpected result from WaitForSingleObject: %u", (unsigned) r); } } DWORD WINAPI windows_nat_target::process_thread_starter (LPVOID self) { ((windows_nat_target *) self)->process_thread (); return 0; } void windows_nat_target::process_thread () { while (true) { wait_for_single (m_pushed_event, INFINITE); gdb::function_view func = std::move (m_queue.front ()); m_queue.pop (); bool should_wait = func (); SetEvent (m_response_event); if (should_wait) { if (!m_debug_event_pending) { wait_for_debug_event (&m_last_debug_event, INFINITE); m_debug_event_pending = true; } serial_event_set (m_wait_event); } } } void windows_nat_target::do_synchronously (gdb::function_view func) { m_queue.emplace (std::move (func)); SetEvent (m_pushed_event); wait_for_single (m_response_event, INFINITE); } void windows_nat_target::wait_for_debug_event_main_thread (DEBUG_EVENT *event) { do_synchronously ([&] () { if (m_debug_event_pending) { *event = m_last_debug_event; m_debug_event_pending = false; } else wait_for_debug_event (event, INFINITE); return false; }); m_continued = false; } void windows_nat_target::continue_last_debug_event_main_thread (const char *context_str, DWORD continue_status, bool last_call) { std::optional err; do_synchronously ([&] () { if (!continue_last_debug_event (continue_status, debug_events)) err = (unsigned) GetLastError (); /* On the last call, do not block waiting for an event that will never come. */ return !last_call; }); if (err.has_value ()) throw_winerror_with_name (string_printf (_("ContinueDebugEvent failed: %s"), context_str).c_str (), *err); m_continued = !last_call; } /* See nat/windows-nat.h. */ windows_thread_info * windows_per_inferior::find_thread (ptid_t ptid) { for (auto &th : thread_list) if (th->tid == ptid.lwp ()) return th.get (); return nullptr; } void windows_per_inferior::invalidate_context (windows_thread_info *th) { #ifdef __x86_64__ if (windows_process.wow64_process) th->wow64_context.ContextFlags = 0; else #endif th->context.ContextFlags = 0; } /* Add a thread to the thread list. PTID is the ptid of the thread to be added. H is its Windows handle. TLB is its thread local base. MAIN_THREAD_P should be true if the thread to be added is the main thread, false otherwise. */ windows_thread_info * windows_nat_target::add_thread (ptid_t ptid, HANDLE h, void *tlb, bool main_thread_p) { windows_thread_info *th; gdb_assert (ptid.lwp () != 0); if ((th = windows_process.find_thread (ptid))) return th; CORE_ADDR base = (CORE_ADDR) (uintptr_t) tlb; #ifdef __x86_64__ /* For WOW64 processes, this is actually the pointer to the 64bit TIB, and the 32bit TIB is exactly 2 pages after it. */ if (windows_process.wow64_process) base += 0x2000; #endif th = new windows_thread_info (&windows_process, ptid.lwp (), h, base); windows_process.thread_list.emplace_back (th); /* Add this new thread to the list of threads. To be consistent with what's done on other platforms, we add the main thread silently (in reality, this thread is really more of a process to the user than a thread). */ if (main_thread_p) add_thread_silent (this, ptid); else ::add_thread (this, ptid); /* It's simplest to always set this and update the debug registers. */ th->debug_registers_changed = true; /* Even if we're stopping the thread for some reason internal to this module, from the perspective of infrun and the user/frontend, this new thread is running until it next reports a stop. */ set_running (this, ptid, true); set_executing (this, ptid, true); return th; } /* Clear out any old thread list and reinitialize it to a pristine state. */ static void windows_init_thread_list (void) { DEBUG_EVENTS ("called"); windows_process.thread_list.clear (); } /* Delete a thread from the list of threads. PTID is the ptid of the thread to be deleted. EXIT_CODE is the thread's exit code. MAIN_THREAD_P should be true if the thread to be deleted is the main thread, false otherwise. */ void windows_nat_target::delete_thread (ptid_t ptid, DWORD exit_code, bool main_thread_p) { DWORD id; gdb_assert (ptid.lwp () != 0); id = ptid.lwp (); /* Note that no notification was printed when the main thread was created, and thus, unless in verbose mode, we should be symmetrical, and avoid an exit notification for the main thread here as well. */ bool silent = (main_thread_p && !info_verbose); thread_info *to_del = this->find_thread (ptid); delete_thread_with_exit_code (to_del, exit_code, silent); auto iter = std::find_if (windows_process.thread_list.begin (), windows_process.thread_list.end (), [=] (std::unique_ptr &th) { return th->tid == id; }); if (iter != windows_process.thread_list.end ()) windows_process.thread_list.erase (iter); } /* Fetches register number R from the given windows_thread_info, and supplies its value to the given regcache. This function assumes that R is non-negative. A failed assertion is raised if that is not true. */ static void windows_fetch_one_register (struct regcache *regcache, windows_thread_info *th, int r) { gdb_assert (r >= 0); char *context_ptr = (char *) &th->context; #ifdef __x86_64__ if (windows_process.wow64_process) context_ptr = (char *) &th->wow64_context; #endif char *context_offset = context_ptr + windows_process.mappings[r]; struct gdbarch *gdbarch = regcache->arch (); i386_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); gdb_assert (!gdbarch_read_pc_p (gdbarch)); gdb_assert (gdbarch_pc_regnum (gdbarch) >= 0); gdb_assert (!gdbarch_write_pc_p (gdbarch)); /* GDB treats some registers as 32-bit, where they are in fact only 16 bits long. These cases must be handled specially to avoid reading extraneous bits from the context. */ if (r == I387_FISEG_REGNUM (tdep) || windows_process.segment_register_p (r)) { gdb_byte bytes[4] = {}; memcpy (bytes, context_offset, 2); regcache->raw_supply (r, bytes); } else if (r == I387_FOP_REGNUM (tdep)) { long l = (*((long *) context_offset) >> 16) & ((1 << 11) - 1); regcache->raw_supply (r, &l); } else { if (th->stopped_at_software_breakpoint && !th->pc_adjusted && r == gdbarch_pc_regnum (gdbarch)) { int size = register_size (gdbarch, r); if (size == 4) { uint32_t value; memcpy (&value, context_offset, size); value -= gdbarch_decr_pc_after_break (gdbarch); memcpy (context_offset, &value, size); } else { gdb_assert (size == 8); uint64_t value; memcpy (&value, context_offset, size); value -= gdbarch_decr_pc_after_break (gdbarch); memcpy (context_offset, &value, size); } /* Make sure we only rewrite the PC a single time. */ th->pc_adjusted = true; } regcache->raw_supply (r, context_offset); } } void windows_per_inferior::fill_thread_context (windows_thread_info *th) { #ifdef __x86_64__ if (wow64_process) { if (th->wow64_context.ContextFlags == 0) { th->wow64_context.ContextFlags = CONTEXT_DEBUGGER_DR; CHECK (Wow64GetThreadContext (th->h, &th->wow64_context)); } } else #endif { if (th->context.ContextFlags == 0) { th->context.ContextFlags = CONTEXT_DEBUGGER_DR; CHECK (GetThreadContext (th->h, &th->context)); } } } void windows_nat_target::fetch_registers (struct regcache *regcache, int r) { windows_thread_info *th = windows_process.find_thread (regcache->ptid ()); /* Check if TH exists. Windows sometimes uses a non-existent thread id in its events. */ if (th == nullptr) return; windows_process.fill_thread_context (th); if (r < 0) for (r = 0; r < gdbarch_num_regs (regcache->arch()); r++) windows_fetch_one_register (regcache, th, r); else windows_fetch_one_register (regcache, th, r); } /* Collect the register number R from the given regcache, and store its value into the corresponding area of the given thread's context. This function assumes that R is non-negative. A failed assertion assertion is raised if that is not true. */ static void windows_store_one_register (const struct regcache *regcache, windows_thread_info *th, int r) { gdb_assert (r >= 0); DWORD context_flags; char *context_ptr; #ifdef __x86_64__ if (windows_process.wow64_process) { context_flags = th->wow64_context.ContextFlags; context_ptr = (char *) &th->wow64_context; } else #endif { context_flags = th->context.ContextFlags; context_ptr = (char *) &th->context; } gdb_assert (context_flags != 0); struct gdbarch *gdbarch = regcache->arch (); i386_gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* GDB treats some registers as 32-bit, where they are in fact only 16 bits long. These cases must be handled specially to avoid overwriting other registers in the context. */ if (r == I387_FISEG_REGNUM (tdep) || windows_process.segment_register_p (r)) { gdb_byte bytes[4]; regcache->raw_collect (r, bytes); memcpy (context_ptr + windows_process.mappings[r], bytes, 2); } else if (r == I387_FOP_REGNUM (tdep)) { gdb_byte bytes[4]; regcache->raw_collect (r, bytes); /* The value of FOP occupies the top two bytes in the context, so write the two low-order bytes from the cache into the appropriate spot. */ memcpy (context_ptr + windows_process.mappings[r] + 2, bytes, 2); } else regcache->raw_collect (r, context_ptr + windows_process.mappings[r]); } /* Store a new register value into the context of the thread tied to REGCACHE. */ void windows_nat_target::store_registers (struct regcache *regcache, int r) { windows_thread_info *th = windows_process.find_thread (regcache->ptid ()); /* Check if TH exists. Windows sometimes uses a non-existent thread id in its events. */ if (th == NULL) return; if (r < 0) for (r = 0; r < gdbarch_num_regs (regcache->arch ()); r++) windows_store_one_register (regcache, th, r); else windows_store_one_register (regcache, th, r); } /* See nat/windows-nat.h. */ static windows_solib * windows_make_so (const char *name, LPVOID load_addr) { windows_solib *so = &windows_process.solibs.emplace_back (); so->load_addr = load_addr; so->original_name = name; #ifndef __CYGWIN__ char *p; char buf[__PMAX]; char cwd[__PMAX]; WIN32_FIND_DATA w32_fd; HANDLE h = FindFirstFile(name, &w32_fd); if (h == INVALID_HANDLE_VALUE) strcpy (buf, name); else { FindClose (h); strcpy (buf, name); if (GetCurrentDirectory (MAX_PATH + 1, cwd)) { p = strrchr (buf, '\\'); if (p) p[1] = '\0'; SetCurrentDirectory (buf); GetFullPathName (w32_fd.cFileName, MAX_PATH, buf, &p); SetCurrentDirectory (cwd); } } if (strcasecmp (buf, "ntdll.dll") == 0) { GetSystemDirectory (buf, sizeof (buf)); strcat (buf, "\\ntdll.dll"); } so->name = buf; #else wchar_t buf[__PMAX]; buf[0] = 0; if (access (name, F_OK) != 0) { if (strcasecmp (name, "ntdll.dll") == 0) { GetSystemDirectoryW (buf, sizeof (buf) / sizeof (wchar_t)); wcscat (buf, L"\\ntdll.dll"); } } if (buf[0]) { bool ok = false; /* Check how big the output buffer has to be. */ ssize_t size = cygwin_conv_path (CCP_WIN_W_TO_POSIX, buf, nullptr, 0); if (size > 0) { /* SIZE includes the null terminator. */ so->name.resize (size - 1); if (cygwin_conv_path (CCP_WIN_W_TO_POSIX, buf, so->name.data (), size) == 0) ok = true; } if (!ok) so->name = so->original_name; } else { gdb::unique_xmalloc_ptr rname = gdb_realpath (name); if (rname != nullptr) so->name = rname.get (); else { warning (_("dll path for \"%s\" inaccessible"), name); so->name = so->original_name; } } /* Record cygwin1.dll .text start/end. */ size_t len = sizeof ("/cygwin1.dll") - 1; if (so->name.size () >= len && strcasecmp (so->name.c_str () + so->name.size () - len, "/cygwin1.dll") == 0) { asection *text = NULL; gdb_bfd_ref_ptr abfd (gdb_bfd_open (so->name.c_str(), "pei-i386")); if (abfd == NULL) return so; if (bfd_check_format (abfd.get (), bfd_object)) text = bfd_get_section_by_name (abfd.get (), ".text"); if (!text) return so; /* The symbols in a dll are offset by 0x1000, which is the offset from 0 of the first byte in an image - because of the file header and the section alignment. */ windows_process.cygwin_load_start = (CORE_ADDR) (uintptr_t) ((char *) load_addr + 0x1000); windows_process.cygwin_load_end = windows_process.cygwin_load_start + bfd_section_size (text); } #endif return so; } /* See nat/windows-nat.h. */ void windows_per_inferior::handle_load_dll (const char *dll_name, LPVOID base) { windows_solib *solib = windows_make_so (dll_name, base); DEBUG_EVENTS ("Loading dll \"%s\" at %s.", solib->name.c_str (), host_address_to_string (solib->load_addr)); } /* See nat/windows-nat.h. */ void windows_per_inferior::handle_unload_dll (const DEBUG_EVENT ¤t_event) { LPVOID lpBaseOfDll = current_event.u.UnloadDll.lpBaseOfDll; auto iter = std::remove_if (windows_process.solibs.begin (), windows_process.solibs.end (), [&] (windows_solib &lib) { if (lib.load_addr == lpBaseOfDll) { DEBUG_EVENTS ("Unloading dll \"%s\".", lib.name.c_str ()); return true; } return false; }); if (iter != windows_process.solibs.end ()) { windows_process.solibs.erase (iter, windows_process.solibs.end ()); return; } /* We did not find any DLL that was previously loaded at this address, so register a complaint. We do not report an error, because we have observed that this may be happening under some circumstances. For instance, running 32bit applications on x64 Windows causes us to receive 4 mysterious UNLOAD_DLL_DEBUG_EVENTs during the startup phase (these events are apparently caused by the WOW layer, the interface between 32bit and 64bit worlds). */ complaint (_("dll starting at %s not found."), host_address_to_string (lpBaseOfDll)); } /* Clear list of loaded DLLs. */ static void windows_clear_solib (void) { windows_process.solibs.clear (); } static void signal_event_command (const char *args, int from_tty) { uintptr_t event_id = 0; char *endargs = NULL; if (args == NULL) error (_("signal-event requires an argument (integer event id)")); event_id = strtoumax (args, &endargs, 10); if ((errno == ERANGE) || (event_id == 0) || (event_id > UINTPTR_MAX) || ((HANDLE) event_id == INVALID_HANDLE_VALUE)) error (_("Failed to convert `%s' to event id"), args); SetEvent ((HANDLE) event_id); CloseHandle ((HANDLE) event_id); } /* See nat/windows-nat.h. */ bool windows_per_inferior::handle_output_debug_string (const DEBUG_EVENT ¤t_event, struct target_waitstatus *ourstatus) { windows_thread_info *event_thr = windows_process.find_thread (ptid_t (current_event.dwProcessId, current_event.dwThreadId)); if (event_thr->reply_later != 0) internal_error ("OutputDebugString thread 0x%x has reply-later set", event_thr->tid); gdb::unique_xmalloc_ptr s = (target_read_string ((CORE_ADDR) (uintptr_t) current_event.u.DebugString.lpDebugStringData, 1024)); if (s == nullptr || !*(s.get ())) /* nothing to do */; else if (!startswith (s.get (), _CYGWIN_SIGNAL_STRING)) { #ifdef __CYGWIN__ if (!startswith (s.get (), "cYg")) #endif { char *p = strchr (s.get (), '\0'); if (p > s.get () && *--p == '\n') *p = '\0'; warning (("%s"), s.get ()); } } #ifdef __CYGWIN__ else { /* Got a cygwin signal marker. A cygwin signal marker is followed by the signal number itself, and (since Cygwin 1.7) the thread id, and the address of a saved context in the inferior (That context has an IP which is the return address in "user" code of the cygwin internal signal handling code, but is not otherwise usable). Tell gdb to treat this like the given thread issued a real signal. */ char *p; int sig = strtol (s.get () + sizeof (_CYGWIN_SIGNAL_STRING) - 1, &p, 0); gdb_signal gotasig = gdb_signal_from_host (sig); LPCVOID x = 0; DWORD thread_id = 0; if (gotasig != GDB_SIGNAL_0) { thread_id = strtoul (p, &p, 0); if (thread_id != 0) { x = (LPCVOID) (uintptr_t) strtoull (p, NULL, 0); ptid_t ptid (current_event.dwProcessId, thread_id, 0); windows_thread_info *th = find_thread (ptid); /* Suspend the signaled thread, and leave the signal as a pending event. It will be picked up by windows_nat_target::wait. */ th->suspend (); th->stopping = SK_EXTERNAL; th->last_event = {}; th->pending_status.set_stopped (gotasig); /* Link the "sig" thread and the signaled threads, so we can keep the "sig" thread suspended until we resume the signaled thread. See "Cygwin signals" at the top. */ event_thr->signaled_thread = th; th->cygwin_sig_thread = event_thr; /* Leave the "sig" thread suspended. */ event_thr->suspend (); return true; } } DEBUG_EVENTS ("gdb: cygwin signal %d, thread 0x%x, CONTEXT @ %p", gotasig, thread_id, x); } #endif return false; } static int display_selector (HANDLE thread, DWORD sel) { LDT_ENTRY info; BOOL ret; #ifdef __x86_64__ if (windows_process.wow64_process) ret = Wow64GetThreadSelectorEntry (thread, sel, &info); else #endif ret = GetThreadSelectorEntry (thread, sel, &info); if (ret) { int base, limit; gdb_printf ("0x%03x: ", (unsigned) sel); if (!info.HighWord.Bits.Pres) { gdb_puts ("Segment not present\n"); return 0; } base = (info.HighWord.Bits.BaseHi << 24) + (info.HighWord.Bits.BaseMid << 16) + info.BaseLow; limit = (info.HighWord.Bits.LimitHi << 16) + info.LimitLow; if (info.HighWord.Bits.Granularity) limit = (limit << 12) | 0xfff; gdb_printf ("base=0x%08x limit=0x%08x", base, limit); if (info.HighWord.Bits.Default_Big) gdb_puts(" 32-bit "); else gdb_puts(" 16-bit "); switch ((info.HighWord.Bits.Type & 0xf) >> 1) { case 0: gdb_puts ("Data (Read-Only, Exp-up"); break; case 1: gdb_puts ("Data (Read/Write, Exp-up"); break; case 2: gdb_puts ("Unused segment ("); break; case 3: gdb_puts ("Data (Read/Write, Exp-down"); break; case 4: gdb_puts ("Code (Exec-Only, N.Conf"); break; case 5: gdb_puts ("Code (Exec/Read, N.Conf"); break; case 6: gdb_puts ("Code (Exec-Only, Conf"); break; case 7: gdb_puts ("Code (Exec/Read, Conf"); break; default: gdb_printf ("Unknown type 0x%lx", (unsigned long) info.HighWord.Bits.Type); } if ((info.HighWord.Bits.Type & 0x1) == 0) gdb_puts(", N.Acc"); gdb_puts (")\n"); if ((info.HighWord.Bits.Type & 0x10) == 0) gdb_puts("System selector "); gdb_printf ("Privilege level = %ld. ", (unsigned long) info.HighWord.Bits.Dpl); if (info.HighWord.Bits.Granularity) gdb_puts ("Page granular.\n"); else gdb_puts ("Byte granular.\n"); return 1; } else { DWORD err = GetLastError (); if (err == ERROR_NOT_SUPPORTED) gdb_printf ("Function not supported\n"); else gdb_printf ("Invalid selector 0x%x.\n", (unsigned) sel); return 0; } } static void display_selectors (const char * args, int from_tty) { if (inferior_ptid == null_ptid) { gdb_puts ("Impossible to display selectors now.\n"); return; } windows_thread_info *current_windows_thread = windows_process.find_thread (inferior_ptid); if (!args) { #ifdef __x86_64__ if (windows_process.wow64_process) { gdb_puts ("Selector $cs\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegCs); gdb_puts ("Selector $ds\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegDs); gdb_puts ("Selector $es\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegEs); gdb_puts ("Selector $ss\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegSs); gdb_puts ("Selector $fs\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegFs); gdb_puts ("Selector $gs\n"); display_selector (current_windows_thread->h, current_windows_thread->wow64_context.SegGs); } else #endif { gdb_puts ("Selector $cs\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegCs); gdb_puts ("Selector $ds\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegDs); gdb_puts ("Selector $es\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegEs); gdb_puts ("Selector $ss\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegSs); gdb_puts ("Selector $fs\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegFs); gdb_puts ("Selector $gs\n"); display_selector (current_windows_thread->h, current_windows_thread->context.SegGs); } } else { int sel; sel = parse_and_eval_long (args); gdb_printf ("Selector \"%s\"\n",args); display_selector (current_windows_thread->h, sel); } } /* See nat/windows-nat.h. */ bool windows_per_inferior::handle_access_violation (const EXCEPTION_RECORD *rec) { #ifdef __CYGWIN__ /* See if the access violation happened within the cygwin DLL itself. Cygwin uses a kind of exception handling to deal with passed-in invalid addresses. gdb should not treat these as real SEGVs since they will be silently handled by cygwin. A real SEGV will (theoretically) be caught by cygwin later in the process and will be sent as a cygwin-specific-signal. So, ignore SEGVs if they show up within the text segment of the DLL itself. */ const char *fn; CORE_ADDR addr = (CORE_ADDR) (uintptr_t) rec->ExceptionAddress; if ((!cygwin_exceptions && (addr >= cygwin_load_start && addr < cygwin_load_end)) || (find_pc_partial_function (addr, &fn, NULL, NULL) && startswith (fn, "KERNEL32!IsBad"))) return true; #endif return false; } void windows_per_inferior::continue_one_thread (windows_thread_info *th, windows_continue_flags cont_flags) { struct x86_debug_reg_state *state = x86_debug_reg_state (process_id); #ifdef __x86_64__ DWORD &context_flags_ref = (wow64_process ? th->wow64_context.ContextFlags : th->context.ContextFlags); const DWORD64 dr6 = (wow64_process ? th->wow64_context.Dr6 : th->context.Dr6); #else DWORD &context_flags_ref = th->context.ContextFlags; const DWORD dr6 = th->context.Dr6; #endif if (th->debug_registers_changed) { windows_process.fill_thread_context (th); gdb_assert ((context_flags_ref & CONTEXT_DEBUG_REGISTERS) != 0); /* Check whether the thread has Dr6 set indicating a watchpoint hit, and we haven't seen the watchpoint event yet (reported as EXCEPTION_SINGLE_STEP/STATUS_WX86_SINGLE_STEP). In that case, don't change the debug registers. Changing debug registers, even if to the same values, makes the kernel clear Dr6. The result would be we would lose the unreported watchpoint hit. */ if ((dr6 & ~DR6_CLEAR_VALUE) != 0) { if (th->last_event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT && (th->last_event.u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_SINGLE_STEP || (th->last_event.u.Exception.ExceptionRecord.ExceptionCode == STATUS_WX86_SINGLE_STEP))) { DEBUG_EVENTS ("0x%x already reported watchpoint", th->tid); } else { DEBUG_EVENTS ("0x%x last reported something else (0x%x)", th->tid, th->last_event.dwDebugEventCode); /* Don't touch debug registers. Let the pending watchpoint event be reported instead. We will update the debug registers later when the thread is re-resumed by the core after the watchpoint event. */ context_flags_ref &= ~CONTEXT_DEBUG_REGISTERS; } } else DEBUG_EVENTS ("0x%x has no dr6 set", th->tid); if ((context_flags_ref & CONTEXT_DEBUG_REGISTERS) != 0) { DEBUG_EVENTS ("0x%x changing dregs", th->tid); #ifdef __x86_64__ if (wow64_process) { th->wow64_context.Dr0 = state->dr_mirror[0]; th->wow64_context.Dr1 = state->dr_mirror[1]; th->wow64_context.Dr2 = state->dr_mirror[2]; th->wow64_context.Dr3 = state->dr_mirror[3]; th->wow64_context.Dr6 = DR6_CLEAR_VALUE; th->wow64_context.Dr7 = state->dr_control_mirror; } else #endif { th->context.Dr0 = state->dr_mirror[0]; th->context.Dr1 = state->dr_mirror[1]; th->context.Dr2 = state->dr_mirror[2]; th->context.Dr3 = state->dr_mirror[3]; th->context.Dr6 = DR6_CLEAR_VALUE; th->context.Dr7 = state->dr_control_mirror; } th->debug_registers_changed = false; } } if (context_flags_ref != 0) { DWORD ec = 0; if (GetExitCodeThread (th->h, &ec) && ec == STILL_ACTIVE) { BOOL status; #ifdef __x86_64__ if (wow64_process) status = Wow64SetThreadContext (th->h, &th->wow64_context); else #endif status = SetThreadContext (th->h, &th->context); if ((cont_flags & WCONT_KILLED) == 0) CHECK (status); } context_flags_ref = 0; } th->resume (); th->stopping = SK_NOT_STOPPING; th->last_sig = GDB_SIGNAL_0; } /* Resume thread specified by ID, or all artificially suspended threads, if we are continuing execution. See windows_continue_flags' description for CONT_FLAGS. */ BOOL windows_nat_target::windows_continue (DWORD continue_status, int id, windows_continue_flags cont_flags) { if ((cont_flags & (WCONT_LAST_CALL | WCONT_KILLED)) == 0) for (auto &th : windows_process.thread_list) { if ((id == -1 || id == (int) th->tid) && th->pending_status.kind () != TARGET_WAITKIND_IGNORE) { DEBUG_EVENTS ("got matching pending stop event " "for 0x%x, not resuming", th->tid); /* There's no need to really continue, because there's already another event pending. However, we do need to inform the event loop of this. */ serial_event_set (m_wait_event); return TRUE; } } /* Resume any suspended thread whose ID matches "ID". Skip the Cygwin "sig" thread in the main iteration, though. That one is only resumed when the target signaled thread is resumed. See "Cygwin signals" in the intro section. */ for (auto &th : windows_process.thread_list) if (th->suspended #ifdef __CYGWIN__ && th->signaled_thread == nullptr #endif && (id == -1 || id == (int) th->tid)) { windows_process.continue_one_thread (th.get (), cont_flags); #ifdef __CYGWIN__ /* See if we're resuming a thread that caught a Cygwin signal. If so, also resume the Cygwin runtime's "sig" thread. */ if (th->cygwin_sig_thread != nullptr) { DEBUG_EVENTS ("\"sig\" thread %d (0x%x) blocked by " "just-resumed thread %d (0x%x)", th->cygwin_sig_thread->tid, th->cygwin_sig_thread->tid, th->tid, th->tid); inferior *inf = find_inferior_pid (this, windows_process.process_id); thread_info *sig_thr = inf->find_thread (ptid_t (windows_process.process_id, th->cygwin_sig_thread->tid)); if (sig_thr->executing ()) { DEBUG_EVENTS ("\"sig\" thread %d (0x%x) meant to be executing, " "continuing it now", th->cygwin_sig_thread->tid, th->cygwin_sig_thread->tid); windows_process.continue_one_thread (th->cygwin_sig_thread, cont_flags); } /* Break the chain. */ th->cygwin_sig_thread->signaled_thread = nullptr; th->cygwin_sig_thread = nullptr; } #endif } /* WCONT_DONT_CONTINUE_DEBUG_EVENT and WCONT_CONTINUE_DEBUG_EVENT can't both be enabled at the same time. */ gdb_assert ((cont_flags & WCONT_DONT_CONTINUE_DEBUG_EVENT) == 0 || (cont_flags & WCONT_CONTINUE_DEBUG_EVENT) == 0); bool continue_debug_event; if ((cont_flags & WCONT_CONTINUE_DEBUG_EVENT) != 0) continue_debug_event = true; else if ((cont_flags & WCONT_DONT_CONTINUE_DEBUG_EVENT) != 0) continue_debug_event = false; else continue_debug_event = !target_is_non_stop_p (); if (continue_debug_event) { DEBUG_EVENTS ("windows_continue -> continue_last_debug_event"); continue_last_debug_event_main_thread (_("Failed to resume program execution"), continue_status, cont_flags & WCONT_LAST_CALL); } return TRUE; } /* Called in pathological case where Windows fails to send a CREATE_PROCESS_DEBUG_EVENT after an attach. */ DWORD windows_nat_target::fake_create_process (const DEBUG_EVENT ¤t_event) { windows_process.handle = OpenProcess (PROCESS_ALL_ACCESS, FALSE, current_event.dwProcessId); if (windows_process.handle != NULL) windows_process.open_process_used = 1; else { unsigned err = (unsigned) GetLastError (); throw_winerror_with_name (_("OpenProcess call failed"), err); /* We can not debug anything in that case. */ } add_thread (ptid_t (current_event.dwProcessId, current_event.dwThreadId, 0), current_event.u.CreateThread.hThread, current_event.u.CreateThread.lpThreadLocalBase, true /* main_thread_p */); return current_event.dwThreadId; } /* Prepare TH to be resumed. TH and TP must point at the same thread. Records the right dwContinueStatus for SIG in th->reply_later if we used DBG_REPLY_LATER before on this thread, and sets of clears the trace flag according to STEP. Also returns the dwContinueStatus argument to pass to ContinueDebugEvent. The thread is still left suspended -- a subsequent windows_continue/continue_one_thread call is needed to flush the thread's register context and unsuspend. */ DWORD windows_nat_target::prepare_resume (windows_thread_info *th, thread_info *tp, int step, gdb_signal sig) { gdb_assert (th->tid == tp->ptid.lwp ()); DWORD continue_status = DBG_CONTINUE; if (sig != GDB_SIGNAL_0) { /* Allow continuing with the same signal that interrupted us. Otherwise complain. */ /* Note it is OK to call get_last_debug_event_ptid() from the main thread here in all-stop, because we know the process_thread thread is not waiting for an event at this point, so there is no data race. We cannot call it in non-stop mode, as the process_thread thread _is_ waiting for events right now in that case. However, the restriction does not exist in non-stop mode, so we don't even call it in that mode. */ if (!target_is_non_stop_p () && tp->ptid != get_last_debug_event_ptid ()) { /* In all-stop, ContinueDebugEvent will be for a different thread. For non-stop, we've called ContinueDebugEvent with DBG_REPLY_LATER for this thread, so we just set the intended continue status in 'reply_later', which is later passed to ContinueDebugEvent in windows_nat_target::wait after we resume the thread and we get the replied-later (repeated) event out of WaitForDebugEvent. */ DEBUG_EXCEPT ("Cannot continue with signal %d here. " "Not last-event thread", sig); } else if (th->last_event.dwDebugEventCode != EXCEPTION_DEBUG_EVENT) { DEBUG_EXCEPT ("Cannot continue with signal %d here. " "Not stopped for EXCEPTION_DEBUG_EVENT", sig); } else if (sig == th->last_sig) continue_status = DBG_EXCEPTION_NOT_HANDLED; else #if 0 /* This code does not seem to work, because the kernel does probably not consider changes in the ExceptionRecord structure when passing the exception to the inferior. Note that this seems possible in the exception handler itself. */ { for (const xlate_exception &x : xlate) if (x.us == sig) { th->last_event.u.Exception.ExceptionRecord.ExceptionCode = x.them; continue_status = DBG_EXCEPTION_NOT_HANDLED; break; } if (continue_status == DBG_CONTINUE) { DEBUG_EXCEPT ("Cannot continue with signal %d.", sig); } } #endif DEBUG_EXCEPT ("Can only continue with received signal %d.", th->last_sig); } /* If DBG_REPLY_LATER was used on the thread, we override the continue status that will be passed to ContinueDebugEvent later with the continue status we've just determined fulfils the caller's resumption request. Note that DBG_REPLY_LATER is only used in non-stop mode, and in that mode, windows_continue (called below) does not call ContinueDebugEvent. */ if (th->reply_later != 0) th->reply_later = continue_status; /* Single step by setting t bit (trap flag). The trap flag is automatically reset as soon as the single-step exception arrives, however, it's possible to suspend/stop a thread before it executes any instruction, leaving the trace flag set. If we subsequently decide to continue such a thread instead of stepping it, and we didn't clear the trap flag, the thread would step, and we'd end up reporting a SIGTRAP to the core which the core couldn't explain (because the thread wasn't supposed to be stepping), and end up reporting a spurious SIGTRAP to the user. */ regcache *regcache = get_thread_regcache (tp); fetch_registers (regcache, gdbarch_ps_regnum (regcache->arch ())); DWORD *eflags; #ifdef __x86_64__ if (windows_process.wow64_process) eflags = &th->wow64_context.EFlags; else #endif eflags = &th->context.EFlags; if (step) *eflags |= FLAG_TRACE_BIT; else *eflags &= ~FLAG_TRACE_BIT; return continue_status; } void windows_nat_target::resume (ptid_t ptid, int step, enum gdb_signal sig) { windows_thread_info *th; /* A specific PTID means `step only this thread id'. */ int resume_all = ptid == minus_one_ptid; /* If we're continuing all threads, it's the current inferior that should be handled specially. */ if (resume_all) ptid = inferior_ptid; DEBUG_EXEC ("pid=%d, tid=0x%x, step=%d, sig=%d", ptid.pid (), (unsigned) ptid.lwp (), step, sig); /* Get currently selected thread. */ th = windows_process.find_thread (inferior_ptid); gdb_assert (th != nullptr); DWORD continue_status = prepare_resume (th, inferior_thread (), step, sig); if (resume_all) windows_continue (continue_status, -1); else windows_continue (continue_status, ptid.lwp ()); } /* Interrupt the inferior. */ void windows_nat_target::interrupt () { DEBUG_EVENTS ("interrupt"); #ifdef __x86_64__ if (windows_process.wow64_process) { /* Call DbgUiRemoteBreakin of the 32bit ntdll.dll in the target process. DebugBreakProcess would call the one of the 64bit ntdll.dll, which can't be correctly handled by gdb. */ if (windows_process.wow64_dbgbreak == nullptr) { CORE_ADDR addr; if (!find_minimal_symbol_address ("ntdll!DbgUiRemoteBreakin", &addr, 0)) windows_process.wow64_dbgbreak = (void *) addr; } if (windows_process.wow64_dbgbreak != nullptr) { HANDLE thread = CreateRemoteThread (windows_process.handle, NULL, 0, (LPTHREAD_START_ROUTINE) windows_process.wow64_dbgbreak, NULL, 0, NULL); if (thread) { CloseHandle (thread); return; } } } else #endif if (DebugBreakProcess (windows_process.handle)) return; warning (_("Could not interrupt program. " "Press Ctrl-c in the program console.")); } /* Stop thread TH, for STOPPING_KIND reason. This leaves a GDB_SIGNAL_0 pending in the thread, which is later consumed by windows_nat_target::wait. */ void windows_nat_target::stop_one_thread (windows_thread_info *th, enum stopping_kind stopping_kind) { ptid_t thr_ptid (windows_process.process_id, th->tid); if (th->suspended == -1) { /* Already known to be stopped; and suspension failed, most probably because the thread is exiting. Do nothing, and let the thread exit event be reported. */ DEBUG_EVENTS ("already suspended %s: suspended=%d, stopping=%d", thr_ptid.to_string ().c_str (), th->suspended, th->stopping); } #ifdef __CYGWIN__ else if (th->suspended && th->signaled_thread != nullptr && th->pending_status.kind () == TARGET_WAITKIND_IGNORE /* If doing an internal stop to update debug registers, then just leave the "sig" thread suspended. Otherwise windows_nat_target::wait would incorrectly break the signaled_thread lock when it later processes the pending stop and calls windows_continue on this thread. */ && stopping_kind == SK_EXTERNAL) { DEBUG_EVENTS ("explict stop for \"sig\" thread %s held for signal", thr_ptid.to_string ().c_str ()); th->stopping = stopping_kind; th->pending_status.set_stopped (GDB_SIGNAL_0); th->last_event = {}; serial_event_set (m_wait_event); } #endif else if (th->suspended) { /* Already known to be stopped; do nothing. */ DEBUG_EVENTS ("already suspended %s: suspended=%d, stopping=%d", thr_ptid.to_string ().c_str (), th->suspended, th->stopping); /* Upgrade stopping. */ if (stopping_kind > th->stopping) th->stopping = stopping_kind; } else { DEBUG_EVENTS ("stop request for %s", thr_ptid.to_string ().c_str ()); th->suspend (); gdb_assert (th->suspended); if (stopping_kind > th->stopping) { th->stopping = stopping_kind; th->pending_status.set_stopped (GDB_SIGNAL_0); th->last_event = {}; } serial_event_set (m_wait_event); } } /* Implementation of target_ops::stop. */ void windows_nat_target::stop (ptid_t ptid) { for (auto &th : windows_process.thread_list) { ptid_t thr_ptid (windows_process.process_id, th->tid); if (thr_ptid.matches (ptid)) stop_one_thread (th.get (), SK_EXTERNAL); } } void windows_nat_target::pass_ctrlc () { interrupt (); } /* Implementation of the target_ops::thread_events method. */ void windows_nat_target::thread_events (int enable) { m_report_thread_events = enable; } /* Get the next event from the child. Returns the thread ptid. */ ptid_t windows_nat_target::get_windows_debug_event (int pid, struct target_waitstatus *ourstatus, target_wait_flags options, DEBUG_EVENT *current_event) { DWORD continue_status, event_code; DWORD thread_id = 0; /* If there is a relevant pending stop, report it now. See the comment by the definition of "windows_thread_info::pending_status" for details on why this is needed. */ for (auto &th : windows_process.thread_list) { if ((!th->suspended || th->stopping) && th->pending_status.kind () != TARGET_WAITKIND_IGNORE) { DEBUG_EVENTS ("reporting pending event for 0x%x", th->tid); thread_id = th->tid; *ourstatus = th->pending_status; th->pending_status.set_ignore (); *current_event = th->last_event; ptid_t ptid (windows_process.process_id, thread_id); return ptid; } } if ((options & TARGET_WNOHANG) != 0 && !m_debug_event_pending) { ourstatus->set_ignore (); return minus_one_ptid; } wait_for_debug_event_main_thread (current_event); continue_status = DBG_CONTINUE; event_code = current_event->dwDebugEventCode; ourstatus->set_spurious (); ptid_t result_ptid (current_event->dwProcessId, current_event->dwThreadId, 0); windows_thread_info *result_th = windows_process.find_thread (result_ptid); /* If we previously used DBG_REPLY_LATER on this thread, and we're seeing an event for it, it means we've already processed the event, and then subsequently resumed the thread [1], intending to pass REPLY_LATER to ContinueDebugEvent. Do that now, before the switch table below, which may have side effects that don't make sense for a delayed event. [1] - with the caveat that sometimes Windows reports an event for a suspended thread. Also handled below. */ if (result_th != nullptr && result_th->reply_later != 0) { DEBUG_EVENTS ("reply-later thread 0x%x", result_th->tid); gdb_assert (dbg_reply_later_available ()); if (result_th->suspended) { /* Pending stop. See the comment by the definition of "pending_status" for details on why this is needed. */ DEBUG_EVENTS ("unexpected reply-later stop in suspended thread 0x%x", result_th->tid); /* Put the event back in the kernel queue. We haven't yet decided which reply to use. */ continue_status = DBG_REPLY_LATER; } else { continue_status = result_th->reply_later; result_th->reply_later = 0; } /* Go back to waiting for the next event. */ continue_last_debug_event_main_thread (_("Failed to continue reply-later event"), continue_status); ourstatus->set_ignore (); return null_ptid; } switch (event_code) { case CREATE_THREAD_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "CREATE_THREAD_DEBUG_EVENT"); if (windows_process.saw_create != 1) { inferior *inf = find_inferior_pid (this, current_event->dwProcessId); if (!windows_process.saw_create && inf->attach_flag) { /* Kludge around a Windows bug where first event is a create thread event. Caused when attached process does not have a main thread. */ thread_id = fake_create_process (*current_event); if (thread_id) windows_process.saw_create++; } break; } /* Record the existence of this thread. */ thread_id = current_event->dwThreadId; { windows_thread_info *th = (add_thread (ptid_t (current_event->dwProcessId, current_event->dwThreadId, 0), current_event->u.CreateThread.hThread, current_event->u.CreateThread.lpThreadLocalBase, false /* main_thread_p */)); /* Update the debug registers if we're not reporting the stop. If we are (reporting the stop), the debug registers will be updated when the thread is eventually re-resumed. */ if (m_report_thread_events) ourstatus->set_thread_created (); else windows_process.continue_one_thread (th, 0); } break; case EXIT_THREAD_DEBUG_EVENT: { DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "EXIT_THREAD_DEBUG_EVENT"); ptid_t thr_ptid (current_event->dwProcessId, current_event->dwThreadId, 0); if (m_report_thread_events) { ourstatus->set_thread_exited (current_event->u.ExitThread.dwExitCode); return thr_ptid; } delete_thread (thr_ptid, current_event->u.ExitThread.dwExitCode, false /* main_thread_p */); thread_id = 0; } break; case CREATE_PROCESS_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "CREATE_PROCESS_DEBUG_EVENT"); CloseHandle (current_event->u.CreateProcessInfo.hFile); if (++windows_process.saw_create != 1) break; windows_process.handle = current_event->u.CreateProcessInfo.hProcess; /* Add the main thread. */ add_thread (ptid_t (current_event->dwProcessId, current_event->dwThreadId, 0), current_event->u.CreateProcessInfo.hThread, current_event->u.CreateProcessInfo.lpThreadLocalBase, true /* main_thread_p */); thread_id = current_event->dwThreadId; break; case EXIT_PROCESS_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "EXIT_PROCESS_DEBUG_EVENT"); if (!windows_process.windows_initialization_done) { target_terminal::ours (); target_mourn_inferior (inferior_ptid); error (_("During startup program exited with code 0x%x."), (unsigned int) current_event->u.ExitProcess.dwExitCode); } else if (windows_process.saw_create == 1) { delete_thread (ptid_t (current_event->dwProcessId, current_event->dwThreadId, 0), 0, true /* main_thread_p */); DWORD exit_status = current_event->u.ExitProcess.dwExitCode; /* If the exit status looks like a fatal exception, but we don't recognize the exception's code, make the original exit status value available, to avoid losing information. */ int exit_signal = WIFSIGNALED (exit_status) ? WTERMSIG (exit_status) : -1; if (exit_signal == -1) ourstatus->set_exited (exit_status); else ourstatus->set_signalled (gdb_signal_from_host (exit_signal)); return ptid_t (current_event->dwProcessId); } break; case LOAD_DLL_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "LOAD_DLL_DEBUG_EVENT"); CloseHandle (current_event->u.LoadDll.hFile); if (windows_process.saw_create != 1 || ! windows_process.windows_initialization_done) break; try { windows_process.dll_loaded_event (*current_event); } catch (const gdb_exception &ex) { exception_print (gdb_stderr, ex); } ourstatus->set_loaded (); thread_id = current_event->dwThreadId; break; case UNLOAD_DLL_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "UNLOAD_DLL_DEBUG_EVENT"); if (windows_process.saw_create != 1 || ! windows_process.windows_initialization_done) break; try { windows_process.handle_unload_dll (*current_event); } catch (const gdb_exception &ex) { exception_print (gdb_stderr, ex); } ourstatus->set_loaded (); thread_id = current_event->dwThreadId; break; case EXCEPTION_DEBUG_EVENT: DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "EXCEPTION_DEBUG_EVENT"); if (windows_process.saw_create != 1) break; switch (windows_process.handle_exception (*current_event, ourstatus, debug_exceptions)) { case HANDLE_EXCEPTION_UNHANDLED: default: continue_status = DBG_EXCEPTION_NOT_HANDLED; break; case HANDLE_EXCEPTION_HANDLED: thread_id = current_event->dwThreadId; break; case HANDLE_EXCEPTION_IGNORED: continue_status = DBG_CONTINUE; break; } break; case OUTPUT_DEBUG_STRING_EVENT: /* Message from the kernel. */ DEBUG_EVENTS ("kernel event for pid=%u tid=0x%x code=%s", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId, "OUTPUT_DEBUG_STRING_EVENT"); if (windows_process.saw_create != 1) break; if (windows_process.handle_output_debug_string (*current_event, ourstatus)) { /* We caught a Cygwin signal for a thread. That thread now has a pending event, and the "sig" thread is suspended. */ serial_event_set (m_wait_event); /* In all-stop, return now to avoid reaching ContinueDebugEvent further below. In all-stop, it's always windows_nat_target::resume that does the ContinueDebugEvent call. */ if (!target_is_non_stop_p ()) { ourstatus->set_ignore (); return null_ptid; } } break; default: if (windows_process.saw_create != 1) break; gdb_printf ("gdb: kernel event for pid=%u tid=0x%x\n", (unsigned) current_event->dwProcessId, (unsigned) current_event->dwThreadId); gdb_printf (" unknown event code %u\n", (unsigned) current_event->dwDebugEventCode); break; } if (!thread_id || windows_process.saw_create != 1) { continue_last_debug_event_main_thread (_("Failed to resume program execution"), continue_status); ourstatus->set_ignore (); return null_ptid; } const ptid_t ptid = ptid_t (current_event->dwProcessId, thread_id, 0); windows_thread_info *th = windows_process.find_thread (ptid); th->last_event = *current_event; if (th->suspended) { /* Pending stop. See the comment by the definition of "pending_status" for details on why this is needed. */ DEBUG_EVENTS ("get_windows_debug_event - " "unexpected stop in suspended thread 0x%x", thread_id); if (dbg_reply_later_available ()) { /* Thankfully, the Windows kernel doesn't immediately re-report the unexpected event for a suspended thread when we defer it with DBG_REPLY_LATER, otherwise this would get us stuck in an infinite loop re-processing the same unexpected event over and over. */ continue_status = DBG_REPLY_LATER; } else { if (current_event->dwDebugEventCode == EXCEPTION_DEBUG_EVENT && ((current_event->u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_BREAKPOINT) || (current_event->u.Exception.ExceptionRecord.ExceptionCode == STATUS_WX86_BREAKPOINT)) && windows_process.windows_initialization_done) { th->stopped_at_software_breakpoint = true; th->pc_adjusted = false; } th->pending_status = *ourstatus; th->last_event = {}; } continue_last_debug_event_main_thread (_("Failed to resume program execution"), continue_status); ourstatus->set_ignore (); return null_ptid; } return ptid; } /* Wait for interesting events to occur in the target process. */ ptid_t windows_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, target_wait_flags options) { int pid = -1; /* serial_event is a manual-reset event. Clear it first. We'll set it again if we may need to wake up the event loop to get here again. */ serial_event_clear (m_wait_event); /* We loop when we get a non-standard exception rather than return with a SPURIOUS because resume can try and step or modify things, which needs a current_thread->h. But some of these exceptions mark the birth or death of threads, which mean that the current thread isn't necessarily what you think it is. */ while (1) { DEBUG_EVENT current_event; ptid_t result = get_windows_debug_event (pid, ourstatus, options, ¤t_event); /* True if this is a pending event that we injected ourselves, instead of a real event out of WaitForDebugEvent. */ bool fake = current_event.dwDebugEventCode == 0; DEBUG_EVENTS ("get_windows_debug_event returned [%s : %s, fake=%d]", result.to_string ().c_str (), ourstatus->to_string ().c_str(), fake); if ((options & TARGET_WNOHANG) != 0 && ourstatus->kind () == TARGET_WAITKIND_IGNORE) return result; if (ourstatus->kind () == TARGET_WAITKIND_SPURIOUS) { continue_last_debug_event_main_thread (_("Failed to resume program execution"), DBG_CONTINUE); } else if (ourstatus->kind () != TARGET_WAITKIND_IGNORE) { if (ourstatus->kind () != TARGET_WAITKIND_EXITED && ourstatus->kind () != TARGET_WAITKIND_SIGNALLED) { windows_thread_info *th = windows_process.find_thread (result); /* If this thread was temporarily stopped just so we could update its debug registers on the next resumption, do it now. */ if (th->stopping == SK_INTERNAL) { gdb_assert (fake); windows_continue (DBG_CONTINUE, th->tid, WCONT_DONT_CONTINUE_DEBUG_EVENT); continue; } th->stopped_at_software_breakpoint = false; if (current_event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT && ((current_event.u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_BREAKPOINT) || (current_event.u.Exception.ExceptionRecord.ExceptionCode == STATUS_WX86_BREAKPOINT)) && windows_process.windows_initialization_done) { th->stopped_at_software_breakpoint = true; th->pc_adjusted = false; } /* If non-stop, suspend the event thread, and continue it with DBG_REPLY_LATER, so the other threads go back to running as soon as possible. Don't do this if stopping the thread, as in that case the thread was already suspended, and also there's no real Windows debug event to continue in that case. */ if (windows_process.windows_initialization_done && target_is_non_stop_p () && !fake) { if (ourstatus->kind () == TARGET_WAITKIND_THREAD_EXITED) { /* If we failed to suspend the thread in windows_nat_target::stop, then 'suspended' will be -1 here. */ gdb_assert (th->suspended < 1); delete_thread (result, ourstatus->exit_status (), false /* main_thread_p */); continue_last_debug_event_main_thread (_("Init: Failed to DBG_CONTINUE after thread exit"), DBG_CONTINUE); } else { th->suspend (); th->reply_later = DBG_CONTINUE; continue_last_debug_event_main_thread (_("Init: Failed to defer event with DBG_REPLY_LATER"), DBG_REPLY_LATER); } } /* All-stop, suspend all threads until they are explicitly resumed. */ if (!target_is_non_stop_p ()) for (auto &thr : windows_process.thread_list) thr->suspend (); th->stopping = SK_NOT_STOPPING; } /* If something came out, assume there may be more. This is needed because there may be pending events ready to consume. */ serial_event_set (m_wait_event); return result; } else { int detach = 0; if (deprecated_ui_loop_hook != NULL) detach = deprecated_ui_loop_hook (0); if (detach) kill (); } } } void windows_nat_target::do_initial_windows_stuff (DWORD pid, bool attaching) { struct inferior *inf; windows_process.open_process_used = 0; #ifdef __CYGWIN__ windows_process.cygwin_load_start = 0; windows_process.cygwin_load_end = 0; #endif windows_process.process_id = pid; inf = current_inferior (); if (!inf->target_is_pushed (this)) inf->push_target (this); disable_breakpoints_in_shlibs (current_program_space); windows_clear_solib (); clear_proceed_status (0); init_wait_for_inferior (); #ifdef __x86_64__ windows_process.ignore_first_breakpoint = !attaching && windows_process.wow64_process; if (!windows_process.wow64_process) { windows_process.mappings = amd64_mappings; windows_process.segment_register_p = amd64_windows_segment_register_p; } else #endif { windows_process.mappings = i386_mappings; windows_process.segment_register_p = i386_windows_segment_register_p; } inferior_appeared (inf, pid); inf->attach_flag = attaching; target_terminal::init (); target_terminal::inferior (); windows_process.windows_initialization_done = 0; ptid_t last_ptid; while (1) { struct target_waitstatus status; last_ptid = this->wait (minus_one_ptid, &status, 0); /* Note windows_wait returns TARGET_WAITKIND_SPURIOUS for thread events. */ if (status.kind () != TARGET_WAITKIND_LOADED && status.kind () != TARGET_WAITKIND_SPURIOUS) break; /* Don't use windows_nat_target::resume here because that assumes that inferior_ptid points at a valid thread, and we haven't switched to any thread yet. */ windows_continue (DBG_CONTINUE, -1, WCONT_CONTINUE_DEBUG_EVENT); } switch_to_thread (this->find_thread (last_ptid)); /* Now that the inferior has been started and all DLLs have been mapped, we can iterate over all DLLs and load them in. We avoid doing it any earlier because, on certain versions of Windows, LOAD_DLL_DEBUG_EVENTs are sometimes not complete. In particular, we have seen on Windows 8.1 that the ntdll.dll load event does not include the DLL name, preventing us from creating an associated SO. A possible explanation is that ntdll.dll might be mapped before the SO info gets created by the Windows system -- ntdll.dll is the first DLL to be reported via LOAD_DLL_DEBUG_EVENT and other DLLs do not seem to suffer from that problem. Rather than try to work around this sort of issue, it is much simpler to just ignore DLL load/unload events during the startup phase, and then process them all in one batch now. */ windows_process.add_all_dlls (); windows_process.windows_initialization_done = 1; return; } /* Try to set or remove a user privilege to the current process. Return -1 if that fails, the previous setting of that privilege otherwise. This code is copied from the Cygwin source code and rearranged to allow dynamically loading of the needed symbols from advapi32 which is only available on NT/2K/XP. */ static int set_process_privilege (const char *privilege, BOOL enable) { HANDLE token_hdl = NULL; LUID restore_priv; TOKEN_PRIVILEGES new_priv, orig_priv; int ret = -1; DWORD size; if (!OpenProcessToken (GetCurrentProcess (), TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, &token_hdl)) goto out; if (!LookupPrivilegeValueA (NULL, privilege, &restore_priv)) goto out; new_priv.PrivilegeCount = 1; new_priv.Privileges[0].Luid = restore_priv; new_priv.Privileges[0].Attributes = enable ? SE_PRIVILEGE_ENABLED : 0; if (!AdjustTokenPrivileges (token_hdl, FALSE, &new_priv, sizeof orig_priv, &orig_priv, &size)) goto out; #if 0 /* Disabled, otherwise every `attach' in an unprivileged user session would raise the "Failed to get SE_DEBUG_NAME privilege" warning in windows_attach(). */ /* AdjustTokenPrivileges returns TRUE even if the privilege could not be enabled. GetLastError () returns an correct error code, though. */ if (enable && GetLastError () == ERROR_NOT_ALL_ASSIGNED) goto out; #endif ret = orig_priv.Privileges[0].Attributes == SE_PRIVILEGE_ENABLED ? 1 : 0; out: if (token_hdl) CloseHandle (token_hdl); return ret; } /* Attach to process PID, then initialize for debugging it. */ void windows_nat_target::attach (const char *args, int from_tty) { DWORD pid; pid = parse_pid_to_attach (args); if (set_process_privilege (SE_DEBUG_NAME, TRUE) < 0) warning ("Failed to get SE_DEBUG_NAME privilege\n" "This can cause attach to fail on Windows NT/2K/XP"); windows_init_thread_list (); windows_process.saw_create = 0; std::optional err; do_synchronously ([&] () { BOOL ok = DebugActiveProcess (pid); #ifdef __CYGWIN__ if (!ok) { /* Maybe PID was a Cygwin PID. Try the corresponding native Windows PID. */ DWORD winpid = cygwin_internal (CW_CYGWIN_PID_TO_WINPID, pid); if (winpid != 0) { /* It was indeed a Cygwin PID. Fully switch to the Windows PID from here on. We don't do this unconditionally to avoid ending up with PID=0 in the error message below. */ pid = winpid; ok = DebugActiveProcess (winpid); } } #endif if (!ok) err = (unsigned) GetLastError (); return ok; }); if (err.has_value ()) { std::string msg = string_printf (_("Can't attach to process %u"), (unsigned) pid); throw_winerror_with_name (msg.c_str (), *err); } DebugSetProcessKillOnExit (FALSE); target_announce_attach (from_tty, pid); #ifdef __x86_64__ HANDLE h = OpenProcess (PROCESS_QUERY_INFORMATION, FALSE, pid); if (h != NULL) { BOOL wow64; if (IsWow64Process (h, &wow64)) windows_process.wow64_process = wow64; CloseHandle (h); } #endif do_initial_windows_stuff (pid, 1); if (target_is_non_stop_p ()) { /* Leave all threads running. */ continue_last_debug_event_main_thread (_("Failed to DBG_CONTINUE after attach"), DBG_CONTINUE); /* The thread that reports the initial breakpoint, and thus ends up as selected thread here, was injected by Windows into the program for the attach, and it exits as soon as we resume it. Switch to the first thread in the inferior, otherwise the user will be left with an exited thread selected. */ switch_to_thread (first_thread_of_inferior (current_inferior ())); } else { set_running (this, minus_one_ptid, false); set_executing (this, minus_one_ptid, false); target_terminal::ours (); } } void windows_nat_target::break_out_process_thread (bool &process_alive) { /* This is called when the process_thread thread is blocked in WaitForDebugEvent (unless it already returned some event we haven't consumed yet), and we need to unblock it so that we can have it call DebugActiveProcessStop. To make WaitForDebugEvent return, we need to force some event in the inferior. Any method that lets us do that (without disturbing the other threads), injects a new thread in the inferior. We don't use DebugBreakProcess for this, because that injects a thread that ends up executing a breakpoint instruction. We can't let the injected thread hit that breakpoint _after_ we've detached. Consuming events until we see a breakpoint trap isn't 100% reliable, because we can't distinguish it from some other thread itself deciding to call int3 while we're detaching, unless we temporarily suspend all threads. It's just a lot of complication, and there's an easier way. Important observation: the thread creation event for the newly injected thread is sufficient to unblock WaitForDebugEvent. Instead of DebugBreakProcess, we can instead use CreateRemoteThread to control the code that the injected thread runs ourselves. We could consider pointing the injected thread at some side-effect-free Win32 function as entry point. However, finding the address of such a function requires having at least minimal symbols loaded for ntdll.dll. Having a way that avoids that is better, so that detach always works correctly even when we don't have any symbols loaded. So what we do is inject a thread that doesn't actually run ANY userspace code, because we force-terminate it as soon as we see its corresponding thread creation event. CreateRemoteThread gives us the new thread's ID, which we can match with the thread associated with the CREATE_THREAD_DEBUG_EVENT event. */ DWORD injected_thread_id = 0; HANDLE injected_thread_handle = CreateRemoteThread (windows_process.handle, NULL, 0, (LPTHREAD_START_ROUTINE) 0, NULL, 0, &injected_thread_id); if (injected_thread_handle == NULL) { DWORD err = GetLastError (); DEBUG_EVENTS ("CreateRemoteThread failed with %u", err); if (err == ERROR_ACCESS_DENIED) { /* Creating the remote thread fails with ERROR_ACCESS_DENIED if the process exited before we had a chance to inject the thread. Continue with the loop below and consume the process exit event anyhow, so that our caller can always call windows_continue. */ } else throw_winerror_with_name (_("Can't detach from running process. " "Interrupt it first."), err); } process_alive = true; /* At this point, the user has declared that they want to detach, so any event that happens from this point on should be forwarded to the inferior. */ for (;;) { DEBUG_EVENT current_event; wait_for_debug_event_main_thread (¤t_event); if (current_event.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) { DEBUG_EVENTS ("got EXIT_PROCESS_DEBUG_EVENT"); process_alive = false; break; } if (current_event.dwDebugEventCode == CREATE_THREAD_DEBUG_EVENT && current_event.dwThreadId == injected_thread_id) { DEBUG_EVENTS ("got CREATE_THREAD_DEBUG_EVENT for injected thread"); /* Terminate the injected thread, so it doesn't run any code at all. All we wanted was some event, and CREATE_THREAD_DEBUG_EVENT is sufficient. */ CHECK (TerminateThread (injected_thread_handle, 0)); break; } DEBUG_EVENTS ("got unrelated event, code %u", current_event.dwDebugEventCode); DWORD continue_status = continue_status_for_event_detaching (current_event); windows_continue (continue_status, -1, WCONT_CONTINUE_DEBUG_EVENT); } if (injected_thread_handle != NULL) CHECK (CloseHandle (injected_thread_handle)); } /* Used while detaching. Decide whether to pass the exception or not. Returns the dwContinueStatus argument to pass to ContinueDebugEvent. */ DWORD windows_nat_target::continue_status_for_event_detaching (const DEBUG_EVENT &event, size_t *reply_later_events_left) { ptid_t ptid (event.dwProcessId, event.dwThreadId, 0); windows_thread_info *th = windows_process.find_thread (ptid); /* This can be a thread that we don't know about, as we're not tracking thread creation events at this point. */ if (th != nullptr && th->reply_later != 0) { DWORD res = th->reply_later; th->reply_later = 0; if (reply_later_events_left != nullptr) (*reply_later_events_left)--; return res; } else if (event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT) { /* As the user asked to detach already, any new exception not seen by infrun before, is passed down to the inferior without considering "handle SIG pass/nopass". We can just pretend the exception was raised after the inferior was detached. */ return DBG_EXCEPTION_NOT_HANDLED; } else return DBG_CONTINUE; } void windows_nat_target::detach (inferior *inf, int from_tty) { DWORD continue_status = DBG_CONTINUE; /* For any thread the core hasn't resumed, call prepare_resume with the signal that the thread would be resumed with, so that we set the right reply_later value, and also, so that we clear the trace flag. */ for (thread_info *tp : inf->non_exited_threads ()) { if (!tp->executing ()) { windows_thread_info *wth = windows_process.find_thread (tp->ptid); gdb_signal signo = get_detach_signal (this, tp->ptid); if (signo != wth->last_sig || (signo != GDB_SIGNAL_0 && !signal_pass_state (signo))) signo = GDB_SIGNAL_0; DWORD cstatus = prepare_resume (wth, tp, 0, signo); if (!m_continued && tp->ptid == get_last_debug_event_ptid ()) continue_status = cstatus; } } /* If we see the process exit while unblocking the process_thread helper thread, then we should skip the actual DebugActiveProcessStop call. But don't report an error. Just pretend the process exited shortly after the detach. */ bool process_alive = true; /* The process_thread helper thread will be blocked in WaitForDebugEvent waiting for events if we're in non-stop mode, or if in all-stop and we've resumed the target before we get here, e.g., with "attach&" or "c&". We need to unblock it so that we can have it call DebugActiveProcessStop below, in the do_synchronously block. */ if (m_continued) { break_out_process_thread (process_alive); /* We're not either stopped at a thread exit event, or a process exit event. */ continue_status = DBG_CONTINUE; } windows_continue (continue_status, -1, WCONT_LAST_CALL | WCONT_CONTINUE_DEBUG_EVENT); std::optional err; if (process_alive) do_synchronously ([&] () { /* The kernel re-raises any exception previously intercepted and deferred with DBG_REPLY_LATER in the inferior after we detach. We need to flush those, and suppress those which aren't meant to be seen by the inferior (e.g., breakpoints, single-steps, any with matching "handle SIG nopass", etc.), otherwise the inferior dies immediately after the detach, due to an unhandled exception. */ DEBUG_EVENT event; /* Count how many threads have pending reply-later events. */ size_t reply_later_events_left = 0; for (auto &th : windows_process.thread_list) if (th->reply_later != 0) reply_later_events_left++; DEBUG_EVENTS ("flushing %zu reply-later events", reply_later_events_left); /* Note we have to use a blocking wait (hence the need for the counter). Just polling (timeout=0) until WaitForDebugEvent returns false would be racy -- the kernel may take a little bit to put the events in the pending queue. That has been observed on Windows 11, where detaching would still very occasionally result in the inferior dying after the detach due to a reply-later event. */ while (reply_later_events_left > 0 && wait_for_debug_event (&event, INFINITE)) { DEBUG_EVENTS ("flushed kernel event code %u", event.dwDebugEventCode); DWORD cstatus = (continue_status_for_event_detaching (event, &reply_later_events_left)); if (!continue_last_debug_event (cstatus, debug_events)) { err = (unsigned) GetLastError (); return false; } if (event.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) { DEBUG_EVENTS ("got EXIT_PROCESS_DEBUG_EVENT, skipping detach"); process_alive = false; break; } } if (process_alive && !DebugActiveProcessStop (windows_process.process_id)) err = (unsigned) GetLastError (); else DebugSetProcessKillOnExit (FALSE); return false; }); if (err.has_value ()) { std::string msg = string_printf (_("Can't detach process %u"), windows_process.process_id); throw_winerror_with_name (msg.c_str (), *err); } target_announce_detach (from_tty); x86_cleanup_dregs (); switch_to_no_thread (); detach_inferior (inf); maybe_unpush_target (); } /* The pid_to_exec_file target_ops method for this platform. */ const char * windows_nat_target::pid_to_exec_file (int pid) { return windows_process.pid_to_exec_file (pid); } /* Print status information about what we're accessing. */ void windows_nat_target::files_info () { struct inferior *inf = current_inferior (); gdb_printf ("\tUsing the running image of %s %s.\n", inf->attach_flag ? "attached" : "child", target_pid_to_str (ptid_t (inf->pid)).c_str ()); } /* Modify CreateProcess parameters for use of a new separate console. Parameters are: *FLAGS: DWORD parameter for general process creation flags. *SI: STARTUPINFO structure, for which the console window size and console buffer size is filled in if GDB is running in a console. to create the new console. The size of the used font is not available on all versions of Windows OS. Furthermore, the current font might not be the default font, but this is still better than before. If the windows and buffer sizes are computed, SI->DWFLAGS is changed so that this information is used by CreateProcess function. */ static void windows_set_console_info (STARTUPINFO *si, DWORD *flags) { HANDLE hconsole = CreateFile ("CONOUT$", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, 0); if (hconsole != INVALID_HANDLE_VALUE) { CONSOLE_SCREEN_BUFFER_INFO sbinfo; COORD font_size; CONSOLE_FONT_INFO cfi; GetCurrentConsoleFont (hconsole, FALSE, &cfi); font_size = GetConsoleFontSize (hconsole, cfi.nFont); GetConsoleScreenBufferInfo(hconsole, &sbinfo); si->dwXSize = sbinfo.srWindow.Right - sbinfo.srWindow.Left + 1; si->dwYSize = sbinfo.srWindow.Bottom - sbinfo.srWindow.Top + 1; if (font_size.X) si->dwXSize *= font_size.X; else si->dwXSize *= 8; if (font_size.Y) si->dwYSize *= font_size.Y; else si->dwYSize *= 12; si->dwXCountChars = sbinfo.dwSize.X; si->dwYCountChars = sbinfo.dwSize.Y; si->dwFlags |= STARTF_USESIZE | STARTF_USECOUNTCHARS; } *flags |= CREATE_NEW_CONSOLE; } #ifndef __CYGWIN__ /* Function called by qsort to sort environment strings. */ static int envvar_cmp (const void *a, const void *b) { const char **p = (const char **) a; const char **q = (const char **) b; return strcasecmp (*p, *q); } #endif #ifdef __CYGWIN__ static void clear_win32_environment (char **env) { int i; size_t len; wchar_t *copy = NULL, *equalpos; for (i = 0; env[i] && *env[i]; i++) { len = mbstowcs (NULL, env[i], 0) + 1; copy = (wchar_t *) xrealloc (copy, len * sizeof (wchar_t)); mbstowcs (copy, env[i], len); equalpos = wcschr (copy, L'='); if (equalpos) *equalpos = L'\0'; SetEnvironmentVariableW (copy, NULL); } xfree (copy); } #endif #ifndef __CYGWIN__ /* Redirection of inferior I/O streams for native MS-Windows programs. Unlike on Unix, where this is handled by invoking the inferior via the shell, on MS-Windows we need to emulate the cmd.exe shell. The official documentation of the cmd.exe redirection features is here: http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/redirection.mspx (That page talks about Windows XP, but there's no newer documentation, so we assume later versions of cmd.exe didn't change anything.) Caveat: the documentation on that page seems to include a few lies. For example, it describes strange constructs 1<&2 and 2<&1, which seem to work only when 1>&2 resp. 2>&1 would make sense, and so I think the cmd.exe parser of the redirection symbols simply doesn't care about the < vs > distinction in these cases. Therefore, the supported features are explicitly documented below. The emulation below aims at supporting all the valid use cases supported by cmd.exe, which include: < FILE redirect standard input from FILE 0< FILE redirect standard input from FILE <&N redirect standard input from file descriptor N 0<&N redirect standard input from file descriptor N > FILE redirect standard output to FILE >> FILE append standard output to FILE 1>> FILE append standard output to FILE >&N redirect standard output to file descriptor N 1>&N redirect standard output to file descriptor N >>&N append standard output to file descriptor N 1>>&N append standard output to file descriptor N 2> FILE redirect standard error to FILE 2>> FILE append standard error to FILE 2>&N redirect standard error to file descriptor N 2>>&N append standard error to file descriptor N Note that using N > 2 in the above construct is supported, but requires that the corresponding file descriptor be open by some means elsewhere or outside GDB. Also note that using ">&0" or "<&2" will generally fail, because the file descriptor redirected from is normally open in an incompatible mode (e.g., FD 0 is open for reading only). IOW, use of such tricks is not recommended; you are on your own. We do NOT support redirection of file descriptors above 2, as in "3>SOME-FILE", because MinGW compiled programs don't (supporting that needs special handling in the startup code that MinGW doesn't have). Pipes are also not supported. As for invalid use cases, where the redirection contains some error, the emulation below will detect that and produce some error and/or failure. But the behavior in those cases is not bug-for-bug compatible with what cmd.exe does in those cases. That's because what cmd.exe does then is not well defined, and seems to be a side effect of the cmd.exe parsing of the command line more than anything else. For example, try redirecting to an invalid file name, as in "> foo:bar". There are also minor syntactic deviations from what cmd.exe does in some corner cases. For example, it doesn't support the likes of "> &foo" to mean redirect to file named literally "&foo"; we do support that here, because that, too, sounds like some issue with the cmd.exe parser. Another nicety is that we support redirection targets that use file names with forward slashes, something cmd.exe doesn't -- this comes in handy since GDB file-name completion can be used when typing the command line for the inferior. */ /* Support routines for redirecting standard handles of the inferior. */ /* Parse a single redirection spec, open/duplicate the specified file/fd, and assign the appropriate value to one of the 3 standard file descriptors. */ static int redir_open (const char *redir_string, int *inp, int *out, int *err) { int *fd, ref_fd = -2; int mode; const char *fname = redir_string + 1; int rc = *redir_string; switch (rc) { case '0': fname++; [[fallthrough]]; case '<': fd = inp; mode = O_RDONLY; break; case '1': case '2': fname++; [[fallthrough]]; case '>': fd = (rc == '2') ? err : out; mode = O_WRONLY | O_CREAT; if (*fname == '>') { fname++; mode |= O_APPEND; } else mode |= O_TRUNC; break; default: return -1; } if (*fname == '&' && '0' <= fname[1] && fname[1] <= '9') { /* A reference to a file descriptor. */ char *fdtail; ref_fd = (int) strtol (fname + 1, &fdtail, 10); if (fdtail > fname + 1 && *fdtail == '\0') { /* Don't allow redirection when open modes are incompatible. */ if ((ref_fd == 0 && (fd == out || fd == err)) || ((ref_fd == 1 || ref_fd == 2) && fd == inp)) { errno = EPERM; return -1; } if (ref_fd == 0) ref_fd = *inp; else if (ref_fd == 1) ref_fd = *out; else if (ref_fd == 2) ref_fd = *err; } else { errno = EBADF; return -1; } } else fname++; /* skip the separator space */ /* If the descriptor is already open, close it. This allows multiple specs of redirections for the same stream, which is somewhat nonsensical, but still valid and supported by cmd.exe. (But cmd.exe only opens a single file in this case, the one specified by the last redirection spec on the command line.) */ if (*fd >= 0) _close (*fd); if (ref_fd == -2) { *fd = _open (fname, mode, _S_IREAD | _S_IWRITE); if (*fd < 0) return -1; } else if (ref_fd == -1) *fd = -1; /* reset to default destination */ else { *fd = _dup (ref_fd); if (*fd < 0) return -1; } /* _open just sets a flag for O_APPEND, which won't be passed to the inferior, so we need to actually move the file pointer. */ if ((mode & O_APPEND) != 0) _lseek (*fd, 0L, SEEK_END); return 0; } /* Canonicalize a single redirection spec and set up the corresponding file descriptor as specified. */ static int redir_set_redirection (const char *s, int *inp, int *out, int *err) { char buf[__PMAX + 2 + 5]; /* extra space for quotes & redirection string */ char *d = buf; const char *start = s; int quote = 0; *d++ = *s++; /* copy the 1st character, < or > or a digit */ if ((*start == '>' || *start == '1' || *start == '2') && *s == '>') { *d++ = *s++; if (*s == '>' && *start != '>') *d++ = *s++; } else if (*start == '0' && *s == '<') *d++ = *s++; /* cmd.exe recognizes "&N" only immediately after the redirection symbol. */ if (*s != '&') { while (isspace (*s)) /* skip whitespace before file name */ s++; *d++ = ' '; /* separate file name with a single space */ } /* Copy the file name. */ while (*s) { /* Remove quoting characters from the file name in buf[]. */ if (*s == '"') /* could support '..' quoting here */ { if (!quote) quote = *s++; else if (*s == quote) { quote = 0; s++; } else *d++ = *s++; } else if (*s == '\\') { if (s[1] == '"') /* could support '..' here */ s++; *d++ = *s++; } else if (isspace (*s) && !quote) break; else *d++ = *s++; if (d - buf >= sizeof (buf) - 1) { errno = ENAMETOOLONG; return 0; } } *d = '\0'; /* Windows doesn't allow redirection characters in file names, so we can bail out early if they use them, or if there's no target file name after the redirection symbol. */ if (d[-1] == '>' || d[-1] == '<') { errno = ENOENT; return 0; } if (redir_open (buf, inp, out, err) == 0) return s - start; return 0; } /* Parse the command line for redirection specs and prepare the file descriptors for the 3 standard streams accordingly. */ static bool redirect_inferior_handles (const char *cmd_orig, char *cmd, int *inp, int *out, int *err) { const char *s = cmd_orig; char *d = cmd; int quote = 0; bool retval = false; while (isspace (*s)) *d++ = *s++; while (*s) { if (*s == '"') /* could also support '..' quoting here */ { if (!quote) quote = *s; else if (*s == quote) quote = 0; } else if (*s == '\\') { if (s[1] == '"') /* escaped quote char */ s++; } else if (!quote) { /* Process a single redirection candidate. */ if (*s == '<' || *s == '>' || ((*s == '1' || *s == '2') && s[1] == '>') || (*s == '0' && s[1] == '<')) { int skip = redir_set_redirection (s, inp, out, err); if (skip <= 0) return false; retval = true; s += skip; } } if (*s) *d++ = *s++; } *d = '\0'; return retval; } #endif /* !__CYGWIN__ */ /* Start an inferior windows child process and sets inferior_ptid to its pid. EXEC_FILE is the file to run. ALLARGS is a string containing the arguments to the program. ENV is the environment vector to pass. Errors reported with error(). */ void windows_nat_target::create_inferior (const char *exec_file, const std::string &origallargs, char **in_env, int from_tty) { STARTUPINFO si; #ifdef __CYGWIN__ wchar_t real_path[__PMAX]; wchar_t shell[__PMAX]; /* Path to shell */ wchar_t infcwd[__PMAX]; const char *sh; wchar_t *toexec; wchar_t *cygallargs; wchar_t *args; char **old_env = NULL; PWCHAR w32_env; size_t len; int tty; int ostdin, ostdout, ostderr; #else /* !__CYGWIN__ */ char shell[__PMAX]; /* Path to shell */ const char *toexec; char *args, *allargs_copy; size_t args_len, allargs_len; int fd_inp = -1, fd_out = -1, fd_err = -1; HANDLE tty = INVALID_HANDLE_VALUE; bool redirected = false; char *w32env; char *temp; size_t envlen; int i; size_t envsize; char **env; #endif /* !__CYGWIN__ */ const char *allargs = origallargs.c_str (); PROCESS_INFORMATION pi; std::optional ret; DWORD flags = 0; const std::string &inferior_tty = current_inferior ()->tty (); if (!exec_file) error (_("No executable specified, use `target exec'.")); const char *inferior_cwd = current_inferior ()->cwd ().c_str (); std::string expanded_infcwd; if (*inferior_cwd == '\0') inferior_cwd = nullptr; else { expanded_infcwd = gdb_tilde_expand (inferior_cwd); /* Mirror slashes on inferior's cwd. */ std::replace (expanded_infcwd.begin (), expanded_infcwd.end (), '/', '\\'); inferior_cwd = expanded_infcwd.c_str (); } memset (&si, 0, sizeof (si)); si.cb = sizeof (si); if (new_group) flags |= CREATE_NEW_PROCESS_GROUP; if (new_console) windows_set_console_info (&si, &flags); #ifdef __CYGWIN__ if (!useshell) { flags |= DEBUG_ONLY_THIS_PROCESS; if (cygwin_conv_path (CCP_POSIX_TO_WIN_W, exec_file, real_path, __PMAX * sizeof (wchar_t)) < 0) error (_("Error starting executable: %d"), errno); toexec = real_path; len = mbstowcs (NULL, allargs, 0) + 1; if (len == (size_t) -1) error (_("Error starting executable: %d"), errno); cygallargs = (wchar_t *) alloca (len * sizeof (wchar_t)); mbstowcs (cygallargs, allargs, len); } else { sh = get_shell (); if (cygwin_conv_path (CCP_POSIX_TO_WIN_W, sh, shell, __PMAX) < 0) error (_("Error starting executable via shell: %d"), errno); len = sizeof (L" -c 'exec '") + mbstowcs (NULL, exec_file, 0) + mbstowcs (NULL, allargs, 0) + 2; cygallargs = (wchar_t *) alloca (len * sizeof (wchar_t)); swprintf (cygallargs, len, L" -c 'exec %s %s'", exec_file, allargs); toexec = shell; flags |= DEBUG_PROCESS; } if (inferior_cwd != NULL && cygwin_conv_path (CCP_POSIX_TO_WIN_W, inferior_cwd, infcwd, strlen (inferior_cwd)) < 0) error (_("Error converting inferior cwd: %d"), errno); args = (wchar_t *) alloca ((wcslen (toexec) + wcslen (cygallargs) + 2) * sizeof (wchar_t)); wcscpy (args, toexec); wcscat (args, L" "); wcscat (args, cygallargs); #ifdef CW_CVT_ENV_TO_WINENV /* First try to create a direct Win32 copy of the POSIX environment. */ w32_env = (PWCHAR) cygwin_internal (CW_CVT_ENV_TO_WINENV, in_env); if (w32_env != (PWCHAR) -1) flags |= CREATE_UNICODE_ENVIRONMENT; else /* If that fails, fall back to old method tweaking GDB's environment. */ #endif /* CW_CVT_ENV_TO_WINENV */ { /* Reset all Win32 environment variables to avoid leftover on next run. */ clear_win32_environment (environ); /* Prepare the environment vars for CreateProcess. */ old_env = environ; environ = in_env; cygwin_internal (CW_SYNC_WINENV); w32_env = NULL; } if (inferior_tty.empty ()) tty = ostdin = ostdout = ostderr = -1; else { tty = open (inferior_tty.c_str (), O_RDWR | O_NOCTTY); if (tty < 0) { warning_filename_and_errno (inferior_tty.c_str (), errno); ostdin = ostdout = ostderr = -1; } else { ostdin = dup (0); ostdout = dup (1); ostderr = dup (2); dup2 (tty, 0); dup2 (tty, 1); dup2 (tty, 2); } } windows_init_thread_list (); do_synchronously ([&] () { BOOL ok = create_process (nullptr, args, flags, w32_env, inferior_cwd != nullptr ? infcwd : nullptr, disable_randomization, &si, &pi); if (!ok) ret = (unsigned) GetLastError (); return ok; }); if (w32_env) /* Just free the Win32 environment, if it could be created. */ free (w32_env); else { /* Reset all environment variables to avoid leftover on next run. */ clear_win32_environment (in_env); /* Restore normal GDB environment variables. */ environ = old_env; cygwin_internal (CW_SYNC_WINENV); } if (tty >= 0) { ::close (tty); dup2 (ostdin, 0); dup2 (ostdout, 1); dup2 (ostderr, 2); ::close (ostdin); ::close (ostdout); ::close (ostderr); } #else /* !__CYGWIN__ */ allargs_len = strlen (allargs); allargs_copy = strcpy ((char *) alloca (allargs_len + 1), allargs); if (strpbrk (allargs_copy, "<>") != NULL) { int e = errno; errno = 0; redirected = redirect_inferior_handles (allargs, allargs_copy, &fd_inp, &fd_out, &fd_err); if (errno) warning (_("Error in redirection: %s."), safe_strerror (errno)); else errno = e; allargs_len = strlen (allargs_copy); } /* If not all the standard streams are redirected by the command line, use INFERIOR_TTY for those which aren't. */ if (!inferior_tty.empty () && !(fd_inp >= 0 && fd_out >= 0 && fd_err >= 0)) { SECURITY_ATTRIBUTES sa; sa.nLength = sizeof(sa); sa.lpSecurityDescriptor = 0; sa.bInheritHandle = TRUE; tty = CreateFileA (inferior_tty.c_str (), GENERIC_READ | GENERIC_WRITE, 0, &sa, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0); if (tty == INVALID_HANDLE_VALUE) { unsigned err = (unsigned) GetLastError (); warning (_("Warning: Failed to open TTY %s, error %#x: %s"), inferior_tty.c_str (), err, strwinerror (err)); } } if (redirected || tty != INVALID_HANDLE_VALUE) { if (fd_inp >= 0) si.hStdInput = (HANDLE) _get_osfhandle (fd_inp); else if (tty != INVALID_HANDLE_VALUE) si.hStdInput = tty; else si.hStdInput = GetStdHandle (STD_INPUT_HANDLE); if (fd_out >= 0) si.hStdOutput = (HANDLE) _get_osfhandle (fd_out); else if (tty != INVALID_HANDLE_VALUE) si.hStdOutput = tty; else si.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE); if (fd_err >= 0) si.hStdError = (HANDLE) _get_osfhandle (fd_err); else if (tty != INVALID_HANDLE_VALUE) si.hStdError = tty; else si.hStdError = GetStdHandle (STD_ERROR_HANDLE); si.dwFlags |= STARTF_USESTDHANDLES; } toexec = exec_file; /* Build the command line, a space-separated list of tokens where the first token is the name of the module to be executed. To avoid ambiguities introduced by spaces in the module name, we quote it. */ args_len = strlen (toexec) + 2 /* quotes */ + allargs_len + 2; args = (char *) alloca (args_len); xsnprintf (args, args_len, "\"%s\" %s", toexec, allargs_copy); flags |= DEBUG_ONLY_THIS_PROCESS; /* CreateProcess takes the environment list as a null terminated set of strings (i.e. two nulls terminate the list). */ /* Get total size for env strings. */ for (envlen = 0, i = 0; in_env[i] && *in_env[i]; i++) envlen += strlen (in_env[i]) + 1; envsize = sizeof (in_env[0]) * (i + 1); env = (char **) alloca (envsize); memcpy (env, in_env, envsize); /* Windows programs expect the environment block to be sorted. */ qsort (env, i, sizeof (char *), envvar_cmp); w32env = (char *) alloca (envlen + 1); /* Copy env strings into new buffer. */ for (temp = w32env, i = 0; env[i] && *env[i]; i++) { strcpy (temp, env[i]); temp += strlen (temp) + 1; } /* Final nil string to terminate new env. */ *temp = 0; windows_init_thread_list (); do_synchronously ([&] () { BOOL ok = create_process (nullptr, /* image */ args, /* command line */ flags, /* start flags */ w32env, /* environment */ inferior_cwd, /* current directory */ disable_randomization, &si, &pi); if (!ok) ret = (unsigned) GetLastError (); return ok; }); if (tty != INVALID_HANDLE_VALUE) CloseHandle (tty); if (fd_inp >= 0) _close (fd_inp); if (fd_out >= 0) _close (fd_out); if (fd_err >= 0) _close (fd_err); #endif /* !__CYGWIN__ */ if (ret.has_value ()) { std::string msg = _("Error creating process ") + std::string (exec_file); throw_winerror_with_name (msg.c_str (), *ret); } #ifdef __x86_64__ BOOL wow64; if (IsWow64Process (pi.hProcess, &wow64)) windows_process.wow64_process = wow64; #endif CloseHandle (pi.hThread); CloseHandle (pi.hProcess); if (useshell && shell[0] != '\0') windows_process.saw_create = -1; else windows_process.saw_create = 0; do_initial_windows_stuff (pi.dwProcessId, 0); /* There is one thread in the process now, and inferior_ptid points to it. Present it as stopped to the core. */ windows_thread_info *th = windows_process.find_thread (inferior_ptid); th->suspend (); set_running (this, inferior_ptid, false); set_executing (this, inferior_ptid, false); if (target_is_non_stop_p ()) { /* In non-stop mode, we always immediately use DBG_REPLY_LATER on threads as soon as they report an event. However, during the initial startup, windows_nat_target::wait does not do this, so we need to handle it here for the initial thread. */ th->reply_later = DBG_CONTINUE; continue_last_debug_event_main_thread (_("Failed to defer event with DBG_REPLY_LATER"), DBG_REPLY_LATER); } } void windows_nat_target::mourn_inferior () { windows_continue (DBG_CONTINUE, -1, WCONT_LAST_CALL | WCONT_CONTINUE_DEBUG_EVENT); x86_cleanup_dregs(); if (windows_process.open_process_used) { CHECK (CloseHandle (windows_process.handle)); windows_process.open_process_used = 0; } inf_child_target::mourn_inferior (); } /* Helper for windows_xfer_partial that handles memory transfers. Arguments are like target_xfer_partial. */ static enum target_xfer_status windows_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) { SIZE_T done = 0; BOOL success; DWORD lasterror = 0; if (writebuf != NULL) { DEBUG_MEM ("write target memory, %s bytes at %s", pulongest (len), core_addr_to_string (memaddr)); success = WriteProcessMemory (windows_process.handle, (LPVOID) (uintptr_t) memaddr, writebuf, len, &done); if (!success) lasterror = GetLastError (); FlushInstructionCache (windows_process.handle, (LPCVOID) (uintptr_t) memaddr, len); } else { DEBUG_MEM ("read target memory, %s bytes at %s", pulongest (len), core_addr_to_string (memaddr)); success = ReadProcessMemory (windows_process.handle, (LPCVOID) (uintptr_t) memaddr, readbuf, len, &done); if (!success) lasterror = GetLastError (); } *xfered_len = (ULONGEST) done; if (!success && lasterror == ERROR_PARTIAL_COPY && done > 0) return TARGET_XFER_OK; else return success ? TARGET_XFER_OK : TARGET_XFER_E_IO; } void windows_nat_target::kill () { CHECK (TerminateProcess (windows_process.handle, 0)); /* In non-stop mode, windows_continue does not call ContinueDebugEvent by default. This behavior is appropriate for the first call to windows_continue because any thread that is stopped has already been ContinueDebugEvent'ed with DBG_REPLY_LATER. However, after the first wait_for_debug_event_main_thread call in the loop, this will no longer be true. In all-stop mode, the WCONT_CONTINUE_DEBUG_EVENT flag has no effect, so writing the code in this way ensures that the code is the same for both modes. */ windows_continue_flags flags = WCONT_KILLED; for (;;) { if (!windows_continue (DBG_CONTINUE, -1, flags)) break; DEBUG_EVENT current_event; wait_for_debug_event_main_thread (¤t_event); if (current_event.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT) break; flags |= WCONT_CONTINUE_DEBUG_EVENT; } target_mourn_inferior (inferior_ptid); /* Or just windows_mourn_inferior? */ } void windows_nat_target::close () { DEBUG_EVENTS ("inferior_ptid=%d\n", inferior_ptid.pid ()); async (false); } /* Convert pid to printable format. */ std::string windows_nat_target::pid_to_str (ptid_t ptid) { if (ptid.lwp () != 0) return string_printf ("Thread %d.0x%lx", ptid.pid (), ptid.lwp ()); return normal_pid_to_str (ptid); } static enum target_xfer_status windows_xfer_shared_libraries (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { if (writebuf) return TARGET_XFER_E_IO; std::string xml = "\n"; for (windows_solib &so : windows_process.solibs) windows_xfer_shared_library (so.name.c_str (), (CORE_ADDR) (uintptr_t) so.load_addr, &so.text_offset, current_inferior ()->arch (), xml); xml += "\n"; ULONGEST len_avail = xml.size (); if (offset >= len_avail) len = 0; else { if (len > len_avail - offset) len = len_avail - offset; memcpy (readbuf, xml.data () + offset, len); } *xfered_len = (ULONGEST) len; return len != 0 ? TARGET_XFER_OK : TARGET_XFER_EOF; } /* Helper for windows_nat_target::xfer_partial that handles signal info. */ static enum target_xfer_status windows_xfer_siginfo (gdb_byte *readbuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { windows_thread_info *th = windows_process.find_thread (inferior_ptid); if (th->xfer_siginfo (readbuf, offset, len, xfered_len)) return TARGET_XFER_OK; else return TARGET_XFER_E_IO; } enum target_xfer_status windows_nat_target::xfer_partial (enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { switch (object) { case TARGET_OBJECT_MEMORY: return windows_xfer_memory (readbuf, writebuf, offset, len, xfered_len); case TARGET_OBJECT_LIBRARIES: return windows_xfer_shared_libraries (this, object, annex, readbuf, writebuf, offset, len, xfered_len); case TARGET_OBJECT_SIGNAL_INFO: return windows_xfer_siginfo (readbuf, offset, len, xfered_len); default: if (beneath () == NULL) { /* This can happen when requesting the transfer of unsupported objects before a program has been started (and therefore with the current_target having no target beneath). */ return TARGET_XFER_E_IO; } return beneath ()->xfer_partial (object, annex, readbuf, writebuf, offset, len, xfered_len); } } /* Provide thread local base, i.e. Thread Information Block address. Returns 1 if ptid is found and sets *ADDR to thread_local_base. */ bool windows_nat_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr) { windows_thread_info *th; th = windows_process.find_thread (ptid); if (th == NULL) return false; if (addr != NULL) *addr = th->thread_local_base; return true; } ptid_t windows_nat_target::get_ada_task_ptid (long lwp, ULONGEST thread) { return ptid_t (inferior_ptid.pid (), lwp, 0); } /* Implementation of the to_thread_name method. */ const char * windows_nat_target::thread_name (struct thread_info *thr) { windows_thread_info *th = windows_process.find_thread (thr->ptid); return th->thread_name (); } /* Implementation of the target_ops::supports_non_stop method. */ bool windows_nat_target::supports_non_stop () { /* Non-stop support requires DBG_REPLY_LATER, which only exists on Windows 10 and later. */ return dbg_reply_later_available (); } /* Implementation of the target_ops::always_non_stop_p method. */ bool windows_nat_target::always_non_stop_p () { /* If we can do non-stop, prefer it. */ return supports_non_stop (); } void _initialize_windows_nat (); void _initialize_windows_nat () { x86_dr_low.set_control = windows_set_dr7; x86_dr_low.set_addr = windows_set_dr; x86_dr_low.get_addr = windows_get_dr; x86_dr_low.get_status = windows_get_dr6; x86_dr_low.get_control = windows_get_dr7; /* x86_dr_low.debug_register_length field is set by calling x86_set_debug_register_length function in processor windows specific native file. */ /* The target is not a global specifically to avoid a C++ "static initializer fiasco" situation. */ add_inf_child_target (new windows_nat_target); #ifdef __CYGWIN__ cygwin_internal (CW_SET_DOS_FILE_WARNING, 0); #endif add_com ("signal-event", class_run, signal_event_command, _("\ Signal a crashed process with event ID, to allow its debugging.\n\ This command is needed in support of setting up GDB as JIT debugger on \ MS-Windows. The command should be invoked from the GDB command line using \ the '-ex' command-line option. The ID of the event that blocks the \ crashed process will be supplied by the Windows JIT debugging mechanism.")); #ifdef __CYGWIN__ add_setshow_boolean_cmd ("shell", class_support, &useshell, _("\ Set use of shell to start subprocess."), _("\ Show use of shell to start subprocess."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("cygwin-exceptions", class_support, &cygwin_exceptions, _("\ Break when an exception is detected in the Cygwin DLL itself."), _("\ Show whether gdb breaks on exceptions in the Cygwin DLL itself."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); #endif add_setshow_boolean_cmd ("new-console", class_support, &new_console, _("\ Set creation of new console when creating child process."), _("\ Show creation of new console when creating child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("new-group", class_support, &new_group, _("\ Set creation of new group when creating child process."), _("\ Show creation of new group when creating child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("debugexec", class_support, &debug_exec, _("\ Set whether to display execution in child process."), _("\ Show whether to display execution in child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("debugevents", class_support, &debug_events, _("\ Set whether to display kernel events in child process."), _("\ Show whether to display kernel events in child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("debugmemory", class_support, &debug_memory, _("\ Set whether to display memory accesses in child process."), _("\ Show whether to display memory accesses in child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); add_setshow_boolean_cmd ("debugexceptions", class_support, &debug_exceptions, _("\ Set whether to display kernel exceptions in child process."), _("\ Show whether to display kernel exceptions in child process."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); init_w32_command_list (); add_cmd ("selector", class_info, display_selectors, _("Display selectors infos."), &info_w32_cmdlist); if (!initialize_loadable ()) { /* This will probably fail on Windows 9x/Me. Let the user know that we're missing some functionality. */ warning(_("\ cannot automatically find executable file or library to read symbols.\n\ Use \"file\" or \"dll\" command to load executable/libraries directly.")); } } /* For each thread, set the debug_registers_changed flag, and temporarily stop it so we can update its debug registers. */ void windows_nat_target::debug_registers_changed_all_threads () { for (auto &th : windows_process.thread_list) { th->debug_registers_changed = true; /* Note we don't SuspendThread => update debug regs => ResumeThread, because SuspendThread is actually asynchronous (and GetThreadContext blocks until the thread really suspends), and doing that for all threads may take a bit. Also, the core does one call per DR register update, so that would result in a lot of suspend-resumes. So instead, we suspend the thread if it wasn't already suspended, and queue a pending stop to be handled by windows_nat_target::wait. This means we only stop each thread once, and, we don't block waiting for each individual thread stop. */ stop_one_thread (th.get (), SK_INTERNAL); } } /* Trampoline helper to get at the windows_nat_target::debug_registers_changed_all_threads method in the native target. */ static void debug_registers_changed_all_threads () { auto *win_tgt = static_cast (get_native_target ()); win_tgt->debug_registers_changed_all_threads (); } /* Hardware watchpoint support, adapted from go32-nat.c code. */ /* Pass the address ADDR to the inferior in the I'th debug register. Here we just store the address in dr array, the registers will be actually set up when windows_continue is called. */ static void windows_set_dr (int i, CORE_ADDR addr) { if (i < 0 || i > 3) internal_error (_("Invalid register %d in windows_set_dr.\n"), i); debug_registers_changed_all_threads (); } /* Pass the value VAL to the inferior in the DR7 debug control register. Here we just store the address in D_REGS, the watchpoint will be actually set up in windows_wait. */ static void windows_set_dr7 (unsigned long val) { debug_registers_changed_all_threads (); } /* Get the value of debug register I from the inferior. */ static CORE_ADDR windows_get_dr (int i) { windows_thread_info *th = windows_process.find_thread (inferior_ptid); #ifdef __x86_64__ if (windows_process.wow64_process) { gdb_assert (th->wow64_context.ContextFlags != 0); switch (i) { case 0: return th->wow64_context.Dr0; case 1: return th->wow64_context.Dr1; case 2: return th->wow64_context.Dr2; case 3: return th->wow64_context.Dr3; case 6: return th->wow64_context.Dr6; case 7: return th->wow64_context.Dr7; }; } else #endif { gdb_assert (th->context.ContextFlags != 0); switch (i) { case 0: return th->context.Dr0; case 1: return th->context.Dr1; case 2: return th->context.Dr2; case 3: return th->context.Dr3; case 6: return th->context.Dr6; case 7: return th->context.Dr7; }; } gdb_assert_not_reached ("invalid x86 dr register number: %d", i); } /* Get the value of the DR6 debug status register from the inferior. */ static unsigned long windows_get_dr6 (void) { return windows_get_dr (6); } /* Get the value of the DR7 debug status register from the inferior. */ static unsigned long windows_get_dr7 (void) { return windows_get_dr (7); } /* Determine if the thread referenced by "ptid" is alive by "polling" it. If WaitForSingleObject returns WAIT_OBJECT_0 it means that the thread has died. Otherwise it is assumed to be alive. */ bool windows_nat_target::thread_alive (ptid_t ptid) { gdb_assert (ptid.lwp () != 0); windows_thread_info *th = windows_process.find_thread (ptid); return WaitForSingleObject (th->h, 0) != WAIT_OBJECT_0; } void _initialize_check_for_gdb_ini (); void _initialize_check_for_gdb_ini () { char *homedir; if (inhibit_gdbinit) return; homedir = getenv ("HOME"); if (homedir) { char *p; char *oldini = (char *) alloca (strlen (homedir) + sizeof ("gdb.ini") + 1); strcpy (oldini, homedir); p = strchr (oldini, '\0'); if (p > oldini && !IS_DIR_SEPARATOR (p[-1])) *p++ = '/'; strcpy (p, "gdb.ini"); if (access (oldini, 0) == 0) { int len = strlen (oldini); char *newini = (char *) alloca (len + 2); xsnprintf (newini, len + 2, "%.*s.gdbinit", (int) (len - (sizeof ("gdb.ini") - 1)), oldini); warning (_("obsolete '%s' found. Rename to '%s'."), oldini, newini); } } }