/* Symbol table lookup for the GNU debugger, GDB. Copyright (C) 1986-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "symtab.h" #include "gdbtypes.h" #include "gdbcore.h" #include "frame.h" #include "target.h" #include "value.h" #include "symfile.h" #include "objfiles.h" #include "gdbcmd.h" #include "gdb_regex.h" #include "expression.h" #include "language.h" #include "demangle.h" #include "inferior.h" #include "source.h" #include "filenames.h" /* for FILENAME_CMP */ #include "objc-lang.h" #include "d-lang.h" #include "ada-lang.h" #include "go-lang.h" #include "p-lang.h" #include "addrmap.h" #include "cli/cli-utils.h" #include "cli/cli-style.h" #include "fnmatch.h" #include "hashtab.h" #include "typeprint.h" #include "gdb_obstack.h" #include "block.h" #include "dictionary.h" #include #include #include #include #include "cp-abi.h" #include "cp-support.h" #include "observable.h" #include "solist.h" #include "macrotab.h" #include "macroscope.h" #include "parser-defs.h" #include "completer.h" #include "progspace-and-thread.h" #include "gdbsupport/gdb_optional.h" #include "filename-seen-cache.h" #include "arch-utils.h" #include #include "gdbsupport/gdb_string_view.h" #include "gdbsupport/pathstuff.h" #include "gdbsupport/common-utils.h" /* Forward declarations for local functions. */ static void rbreak_command (const char *, int); static int find_line_common (struct linetable *, int, int *, int); static struct block_symbol lookup_symbol_aux (const char *name, symbol_name_match_type match_type, const struct block *block, const domain_enum domain, enum language language, struct field_of_this_result *); static struct block_symbol lookup_local_symbol (const char *name, symbol_name_match_type match_type, const struct block *block, const domain_enum domain, enum language language); static struct block_symbol lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index, const char *name, const domain_enum domain); /* Type of the data stored on the program space. */ struct main_info { main_info () = default; ~main_info () { xfree (name_of_main); } /* Name of "main". */ char *name_of_main = nullptr; /* Language of "main". */ enum language language_of_main = language_unknown; }; /* Program space key for finding name and language of "main". */ static const program_space_key main_progspace_key; /* The default symbol cache size. There is no extra cpu cost for large N (except when flushing the cache, which is rare). The value here is just a first attempt. A better default value may be higher or lower. A prime number can make up for a bad hash computation, so that's why the number is what it is. */ #define DEFAULT_SYMBOL_CACHE_SIZE 1021 /* The maximum symbol cache size. There's no method to the decision of what value to use here, other than there's no point in allowing a user typo to make gdb consume all memory. */ #define MAX_SYMBOL_CACHE_SIZE (1024*1024) /* symbol_cache_lookup returns this if a previous lookup failed to find the symbol in any objfile. */ #define SYMBOL_LOOKUP_FAILED \ ((struct block_symbol) {(struct symbol *) 1, NULL}) #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1) /* Recording lookups that don't find the symbol is just as important, if not more so, than recording found symbols. */ enum symbol_cache_slot_state { SYMBOL_SLOT_UNUSED, SYMBOL_SLOT_NOT_FOUND, SYMBOL_SLOT_FOUND }; struct symbol_cache_slot { enum symbol_cache_slot_state state; /* The objfile that was current when the symbol was looked up. This is only needed for global blocks, but for simplicity's sake we allocate the space for both. If data shows the extra space used for static blocks is a problem, we can split things up then. Global blocks need cache lookup to include the objfile context because we need to account for gdbarch_iterate_over_objfiles_in_search_order which can traverse objfiles in, effectively, any order, depending on the current objfile, thus affecting which symbol is found. Normally, only the current objfile is searched first, and then the rest are searched in recorded order; but putting cache lookup inside gdbarch_iterate_over_objfiles_in_search_order would be awkward. Instead we just make the current objfile part of the context of cache lookup. This means we can record the same symbol multiple times, each with a different "current objfile" that was in effect when the lookup was saved in the cache, but cache space is pretty cheap. */ const struct objfile *objfile_context; union { struct block_symbol found; struct { char *name; domain_enum domain; } not_found; } value; }; /* Clear out SLOT. */ static void symbol_cache_clear_slot (struct symbol_cache_slot *slot) { if (slot->state == SYMBOL_SLOT_NOT_FOUND) xfree (slot->value.not_found.name); slot->state = SYMBOL_SLOT_UNUSED; } /* Symbols don't specify global vs static block. So keep them in separate caches. */ struct block_symbol_cache { unsigned int hits; unsigned int misses; unsigned int collisions; /* SYMBOLS is a variable length array of this size. One can imagine that in general one cache (global/static) should be a fraction of the size of the other, but there's no data at the moment on which to decide. */ unsigned int size; struct symbol_cache_slot symbols[1]; }; /* Clear all slots of BSC and free BSC. */ static void destroy_block_symbol_cache (struct block_symbol_cache *bsc) { if (bsc != nullptr) { for (unsigned int i = 0; i < bsc->size; i++) symbol_cache_clear_slot (&bsc->symbols[i]); xfree (bsc); } } /* The symbol cache. Searching for symbols in the static and global blocks over multiple objfiles again and again can be slow, as can searching very big objfiles. This is a simple cache to improve symbol lookup performance, which is critical to overall gdb performance. Symbols are hashed on the name, its domain, and block. They are also hashed on their objfile for objfile-specific lookups. */ struct symbol_cache { symbol_cache () = default; ~symbol_cache () { destroy_block_symbol_cache (global_symbols); destroy_block_symbol_cache (static_symbols); } struct block_symbol_cache *global_symbols = nullptr; struct block_symbol_cache *static_symbols = nullptr; }; /* Program space key for finding its symbol cache. */ static const program_space_key symbol_cache_key; /* When non-zero, print debugging messages related to symtab creation. */ unsigned int symtab_create_debug = 0; /* When non-zero, print debugging messages related to symbol lookup. */ unsigned int symbol_lookup_debug = 0; /* The size of the cache is staged here. */ static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; /* The current value of the symbol cache size. This is saved so that if the user enters a value too big we can restore the original value from here. */ static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; /* True if a file may be known by two different basenames. This is the uncommon case, and significantly slows down gdb. Default set to "off" to not slow down the common case. */ bool basenames_may_differ = false; /* Allow the user to configure the debugger behavior with respect to multiple-choice menus when more than one symbol matches during a symbol lookup. */ const char multiple_symbols_ask[] = "ask"; const char multiple_symbols_all[] = "all"; const char multiple_symbols_cancel[] = "cancel"; static const char *const multiple_symbols_modes[] = { multiple_symbols_ask, multiple_symbols_all, multiple_symbols_cancel, NULL }; static const char *multiple_symbols_mode = multiple_symbols_all; /* Read-only accessor to AUTO_SELECT_MODE. */ const char * multiple_symbols_select_mode (void) { return multiple_symbols_mode; } /* Return the name of a domain_enum. */ const char * domain_name (domain_enum e) { switch (e) { case UNDEF_DOMAIN: return "UNDEF_DOMAIN"; case VAR_DOMAIN: return "VAR_DOMAIN"; case STRUCT_DOMAIN: return "STRUCT_DOMAIN"; case MODULE_DOMAIN: return "MODULE_DOMAIN"; case LABEL_DOMAIN: return "LABEL_DOMAIN"; case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN"; default: gdb_assert_not_reached ("bad domain_enum"); } } /* Return the name of a search_domain . */ const char * search_domain_name (enum search_domain e) { switch (e) { case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN"; case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN"; case TYPES_DOMAIN: return "TYPES_DOMAIN"; case MODULES_DOMAIN: return "MODULES_DOMAIN"; case ALL_DOMAIN: return "ALL_DOMAIN"; default: gdb_assert_not_reached ("bad search_domain"); } } /* See symtab.h. */ struct symtab * compunit_primary_filetab (const struct compunit_symtab *cust) { gdb_assert (COMPUNIT_FILETABS (cust) != NULL); /* The primary file symtab is the first one in the list. */ return COMPUNIT_FILETABS (cust); } /* See symtab.h. */ enum language compunit_language (const struct compunit_symtab *cust) { struct symtab *symtab = compunit_primary_filetab (cust); /* The language of the compunit symtab is the language of its primary source file. */ return SYMTAB_LANGUAGE (symtab); } /* See symtab.h. */ bool minimal_symbol::data_p () const { return type == mst_data || type == mst_bss || type == mst_abs || type == mst_file_data || type == mst_file_bss; } /* See symtab.h. */ bool minimal_symbol::text_p () const { return type == mst_text || type == mst_text_gnu_ifunc || type == mst_data_gnu_ifunc || type == mst_slot_got_plt || type == mst_solib_trampoline || type == mst_file_text; } /* See whether FILENAME matches SEARCH_NAME using the rule that we advertise to the user. (The manual's description of linespecs describes what we advertise). Returns true if they match, false otherwise. */ bool compare_filenames_for_search (const char *filename, const char *search_name) { int len = strlen (filename); size_t search_len = strlen (search_name); if (len < search_len) return false; /* The tail of FILENAME must match. */ if (FILENAME_CMP (filename + len - search_len, search_name) != 0) return false; /* Either the names must completely match, or the character preceding the trailing SEARCH_NAME segment of FILENAME must be a directory separator. The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" cannot match FILENAME "/path//dir/file.c" - as user has requested absolute path. The sama applies for "c:\file.c" possibly incorrectly hypothetically matching "d:\dir\c:\file.c". The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" compatible with SEARCH_NAME "file.c". In such case a compiler had to put the "c:file.c" name into debug info. Such compatibility works only on GDB built for DOS host. */ return (len == search_len || (!IS_ABSOLUTE_PATH (search_name) && IS_DIR_SEPARATOR (filename[len - search_len - 1])) || (HAS_DRIVE_SPEC (filename) && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); } /* Same as compare_filenames_for_search, but for glob-style patterns. Heads up on the order of the arguments. They match the order of compare_filenames_for_search, but it's the opposite of the order of arguments to gdb_filename_fnmatch. */ bool compare_glob_filenames_for_search (const char *filename, const char *search_name) { /* We rely on the property of glob-style patterns with FNM_FILE_NAME that all /s have to be explicitly specified. */ int file_path_elements = count_path_elements (filename); int search_path_elements = count_path_elements (search_name); if (search_path_elements > file_path_elements) return false; if (IS_ABSOLUTE_PATH (search_name)) { return (search_path_elements == file_path_elements && gdb_filename_fnmatch (search_name, filename, FNM_FILE_NAME | FNM_NOESCAPE) == 0); } { const char *file_to_compare = strip_leading_path_elements (filename, file_path_elements - search_path_elements); return gdb_filename_fnmatch (search_name, file_to_compare, FNM_FILE_NAME | FNM_NOESCAPE) == 0; } } /* Check for a symtab of a specific name by searching some symtabs. This is a helper function for callbacks of iterate_over_symtabs. If NAME is not absolute, then REAL_PATH is NULL If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. The return value, NAME, REAL_PATH and CALLBACK are identical to the `map_symtabs_matching_filename' method of quick_symbol_functions. FIRST and AFTER_LAST indicate the range of compunit symtabs to search. Each symtab within the specified compunit symtab is also searched. AFTER_LAST is one past the last compunit symtab to search; NULL means to search until the end of the list. */ bool iterate_over_some_symtabs (const char *name, const char *real_path, struct compunit_symtab *first, struct compunit_symtab *after_last, gdb::function_view callback) { struct compunit_symtab *cust; const char* base_name = lbasename (name); for (cust = first; cust != NULL && cust != after_last; cust = cust->next) { for (symtab *s : compunit_filetabs (cust)) { if (compare_filenames_for_search (s->filename, name)) { if (callback (s)) return true; continue; } /* Before we invoke realpath, which can get expensive when many files are involved, do a quick comparison of the basenames. */ if (! basenames_may_differ && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) continue; if (compare_filenames_for_search (symtab_to_fullname (s), name)) { if (callback (s)) return true; continue; } /* If the user gave us an absolute path, try to find the file in this symtab and use its absolute path. */ if (real_path != NULL) { const char *fullname = symtab_to_fullname (s); gdb_assert (IS_ABSOLUTE_PATH (real_path)); gdb_assert (IS_ABSOLUTE_PATH (name)); gdb::unique_xmalloc_ptr fullname_real_path = gdb_realpath (fullname); fullname = fullname_real_path.get (); if (FILENAME_CMP (real_path, fullname) == 0) { if (callback (s)) return true; continue; } } } } return false; } /* Check for a symtab of a specific name; first in symtabs, then in psymtabs. *If* there is no '/' in the name, a match after a '/' in the symtab filename will also work. Calls CALLBACK with each symtab that is found. If CALLBACK returns true, the search stops. */ void iterate_over_symtabs (const char *name, gdb::function_view callback) { gdb::unique_xmalloc_ptr real_path; /* Here we are interested in canonicalizing an absolute path, not absolutizing a relative path. */ if (IS_ABSOLUTE_PATH (name)) { real_path = gdb_realpath (name); gdb_assert (IS_ABSOLUTE_PATH (real_path.get ())); } for (objfile *objfile : current_program_space->objfiles ()) { if (iterate_over_some_symtabs (name, real_path.get (), objfile->compunit_symtabs, NULL, callback)) return; } /* Same search rules as above apply here, but now we look thru the psymtabs. */ for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->sf && objfile->sf->qf->map_symtabs_matching_filename (objfile, name, real_path.get (), callback)) return; } } /* A wrapper for iterate_over_symtabs that returns the first matching symtab, or NULL. */ struct symtab * lookup_symtab (const char *name) { struct symtab *result = NULL; iterate_over_symtabs (name, [&] (symtab *symtab) { result = symtab; return true; }); return result; } /* Mangle a GDB method stub type. This actually reassembles the pieces of the full method name, which consist of the class name (from T), the unadorned method name from METHOD_ID, and the signature for the specific overload, specified by SIGNATURE_ID. Note that this function is g++ specific. */ char * gdb_mangle_name (struct type *type, int method_id, int signature_id) { int mangled_name_len; char *mangled_name; struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); struct fn_field *method = &f[signature_id]; const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); const char *newname = type->name (); /* Does the form of physname indicate that it is the full mangled name of a constructor (not just the args)? */ int is_full_physname_constructor; int is_constructor; int is_destructor = is_destructor_name (physname); /* Need a new type prefix. */ const char *const_prefix = method->is_const ? "C" : ""; const char *volatile_prefix = method->is_volatile ? "V" : ""; char buf[20]; int len = (newname == NULL ? 0 : strlen (newname)); /* Nothing to do if physname already contains a fully mangled v3 abi name or an operator name. */ if ((physname[0] == '_' && physname[1] == 'Z') || is_operator_name (field_name)) return xstrdup (physname); is_full_physname_constructor = is_constructor_name (physname); is_constructor = is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); if (!is_destructor) is_destructor = (startswith (physname, "__dt")); if (is_destructor || is_full_physname_constructor) { mangled_name = (char *) xmalloc (strlen (physname) + 1); strcpy (mangled_name, physname); return mangled_name; } if (len == 0) { xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); } else if (physname[0] == 't' || physname[0] == 'Q') { /* The physname for template and qualified methods already includes the class name. */ xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); newname = NULL; len = 0; } else { xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, volatile_prefix, len); } mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) + strlen (buf) + len + strlen (physname) + 1); mangled_name = (char *) xmalloc (mangled_name_len); if (is_constructor) mangled_name[0] = '\0'; else strcpy (mangled_name, field_name); strcat (mangled_name, buf); /* If the class doesn't have a name, i.e. newname NULL, then we just mangle it using 0 for the length of the class. Thus it gets mangled as something starting with `::' rather than `classname::'. */ if (newname != NULL) strcat (mangled_name, newname); strcat (mangled_name, physname); return (mangled_name); } /* See symtab.h. */ void general_symbol_info::set_demangled_name (const char *name, struct obstack *obstack) { if (language () == language_ada) { if (name == NULL) { ada_mangled = 0; language_specific.obstack = obstack; } else { ada_mangled = 1; language_specific.demangled_name = name; } } else language_specific.demangled_name = name; } /* Initialize the language dependent portion of a symbol depending upon the language for the symbol. */ void general_symbol_info::set_language (enum language language, struct obstack *obstack) { m_language = language; if (language == language_cplus || language == language_d || language == language_go || language == language_objc || language == language_fortran) { set_demangled_name (NULL, obstack); } else if (language == language_ada) { gdb_assert (ada_mangled == 0); language_specific.obstack = obstack; } else { memset (&language_specific, 0, sizeof (language_specific)); } } /* Functions to initialize a symbol's mangled name. */ /* Objects of this type are stored in the demangled name hash table. */ struct demangled_name_entry { demangled_name_entry (gdb::string_view mangled_name) : mangled (mangled_name) {} gdb::string_view mangled; enum language language; gdb::unique_xmalloc_ptr demangled; }; /* Hash function for the demangled name hash. */ static hashval_t hash_demangled_name_entry (const void *data) { const struct demangled_name_entry *e = (const struct demangled_name_entry *) data; return fast_hash (e->mangled.data (), e->mangled.length ()); } /* Equality function for the demangled name hash. */ static int eq_demangled_name_entry (const void *a, const void *b) { const struct demangled_name_entry *da = (const struct demangled_name_entry *) a; const struct demangled_name_entry *db = (const struct demangled_name_entry *) b; return da->mangled == db->mangled; } static void free_demangled_name_entry (void *data) { struct demangled_name_entry *e = (struct demangled_name_entry *) data; e->~demangled_name_entry(); } /* Create the hash table used for demangled names. Each hash entry is a pair of strings; one for the mangled name and one for the demangled name. The entry is hashed via just the mangled name. */ static void create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd) { /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. The hash table code will round this up to the next prime number. Choosing a much larger table size wastes memory, and saves only about 1% in symbol reading. However, if the minsym count is already initialized (e.g. because symbol name setting was deferred to a background thread) we can initialize the hashtable with a count based on that, because we will almost certainly have at least that many entries. If we have a nonzero number but less than 256, we still stay with 256 to have some space for psymbols, etc. */ /* htab will expand the table when it is 3/4th full, so we account for that here. +2 to round up. */ int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4; int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count); per_bfd->demangled_names_hash.reset (htab_create_alloc (count, hash_demangled_name_entry, eq_demangled_name_entry, free_demangled_name_entry, xcalloc, xfree)); } /* See symtab.h */ char * symbol_find_demangled_name (struct general_symbol_info *gsymbol, const char *mangled) { char *demangled = NULL; int i; if (gsymbol->language () == language_unknown) gsymbol->m_language = language_auto; if (gsymbol->language () != language_auto) { const struct language_defn *lang = language_def (gsymbol->language ()); lang->sniff_from_mangled_name (mangled, &demangled); return demangled; } for (i = language_unknown; i < nr_languages; ++i) { enum language l = (enum language) i; const struct language_defn *lang = language_def (l); if (lang->sniff_from_mangled_name (mangled, &demangled)) { gsymbol->m_language = l; return demangled; } } return NULL; } /* Set both the mangled and demangled (if any) names for GSYMBOL based on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the objfile's obstack; but if COPY_NAME is 0 and if NAME is NUL-terminated, then this function assumes that NAME is already correctly saved (either permanently or with a lifetime tied to the objfile), and it will not be copied. The hash table corresponding to OBJFILE is used, and the memory comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, so the pointer can be discarded after calling this function. */ void general_symbol_info::compute_and_set_names (gdb::string_view linkage_name, bool copy_name, objfile_per_bfd_storage *per_bfd, gdb::optional hash) { struct demangled_name_entry **slot; if (language () == language_ada) { /* In Ada, we do the symbol lookups using the mangled name, so we can save some space by not storing the demangled name. */ if (!copy_name) m_name = linkage_name.data (); else m_name = obstack_strndup (&per_bfd->storage_obstack, linkage_name.data (), linkage_name.length ()); set_demangled_name (NULL, &per_bfd->storage_obstack); return; } if (per_bfd->demangled_names_hash == NULL) create_demangled_names_hash (per_bfd); struct demangled_name_entry entry (linkage_name); if (!hash.has_value ()) hash = hash_demangled_name_entry (&entry); slot = ((struct demangled_name_entry **) htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (), &entry, *hash, INSERT)); /* The const_cast is safe because the only reason it is already initialized is if we purposefully set it from a background thread to avoid doing the work here. However, it is still allocated from the heap and needs to be freed by us, just like if we called symbol_find_demangled_name here. If this is nullptr, we call symbol_find_demangled_name below, but we put this smart pointer here to be sure that we don't leak this name. */ gdb::unique_xmalloc_ptr demangled_name (const_cast (language_specific.demangled_name)); /* If this name is not in the hash table, add it. */ if (*slot == NULL /* A C version of the symbol may have already snuck into the table. This happens to, e.g., main.init (__go_init_main). Cope. */ || (language () == language_go && (*slot)->demangled == nullptr)) { /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME to true if the string might not be nullterminated. We have to make this copy because demangling needs a nullterminated string. */ gdb::string_view linkage_name_copy; if (copy_name) { char *alloc_name = (char *) alloca (linkage_name.length () + 1); memcpy (alloc_name, linkage_name.data (), linkage_name.length ()); alloc_name[linkage_name.length ()] = '\0'; linkage_name_copy = gdb::string_view (alloc_name, linkage_name.length ()); } else linkage_name_copy = linkage_name; if (demangled_name.get () == nullptr) demangled_name.reset (symbol_find_demangled_name (this, linkage_name_copy.data ())); /* Suppose we have demangled_name==NULL, copy_name==0, and linkage_name_copy==linkage_name. In this case, we already have the mangled name saved, and we don't have a demangled name. So, you might think we could save a little space by not recording this in the hash table at all. It turns out that it is actually important to still save such an entry in the hash table, because storing this name gives us better bcache hit rates for partial symbols. */ if (!copy_name) { *slot = ((struct demangled_name_entry *) obstack_alloc (&per_bfd->storage_obstack, sizeof (demangled_name_entry))); new (*slot) demangled_name_entry (linkage_name); } else { /* If we must copy the mangled name, put it directly after the struct so we can have a single allocation. */ *slot = ((struct demangled_name_entry *) obstack_alloc (&per_bfd->storage_obstack, sizeof (demangled_name_entry) + linkage_name.length () + 1)); char *mangled_ptr = reinterpret_cast (*slot + 1); memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ()); mangled_ptr [linkage_name.length ()] = '\0'; new (*slot) demangled_name_entry (gdb::string_view (mangled_ptr, linkage_name.length ())); } (*slot)->demangled = std::move (demangled_name); (*slot)->language = language (); } else if (language () == language_unknown || language () == language_auto) m_language = (*slot)->language; m_name = (*slot)->mangled.data (); set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack); } /* See symtab.h. */ const char * general_symbol_info::natural_name () const { switch (language ()) { case language_cplus: case language_d: case language_go: case language_objc: case language_fortran: case language_rust: if (language_specific.demangled_name != nullptr) return language_specific.demangled_name; break; case language_ada: return ada_decode_symbol (this); default: break; } return linkage_name (); } /* See symtab.h. */ const char * general_symbol_info::demangled_name () const { const char *dem_name = NULL; switch (language ()) { case language_cplus: case language_d: case language_go: case language_objc: case language_fortran: case language_rust: dem_name = language_specific.demangled_name; break; case language_ada: dem_name = ada_decode_symbol (this); break; default: break; } return dem_name; } /* See symtab.h. */ const char * general_symbol_info::search_name () const { if (language () == language_ada) return linkage_name (); else return natural_name (); } /* See symtab.h. */ bool symbol_matches_search_name (const struct general_symbol_info *gsymbol, const lookup_name_info &name) { symbol_name_matcher_ftype *name_match = get_symbol_name_matcher (language_def (gsymbol->language ()), name); return name_match (gsymbol->search_name (), name, NULL); } /* Return true if the two sections are the same, or if they could plausibly be copies of each other, one in an original object file and another in a separated debug file. */ bool matching_obj_sections (struct obj_section *obj_first, struct obj_section *obj_second) { asection *first = obj_first? obj_first->the_bfd_section : NULL; asection *second = obj_second? obj_second->the_bfd_section : NULL; /* If they're the same section, then they match. */ if (first == second) return true; /* If either is NULL, give up. */ if (first == NULL || second == NULL) return false; /* This doesn't apply to absolute symbols. */ if (first->owner == NULL || second->owner == NULL) return false; /* If they're in the same object file, they must be different sections. */ if (first->owner == second->owner) return false; /* Check whether the two sections are potentially corresponding. They must have the same size, address, and name. We can't compare section indexes, which would be more reliable, because some sections may have been stripped. */ if (bfd_section_size (first) != bfd_section_size (second)) return false; /* In-memory addresses may start at a different offset, relativize them. */ if (bfd_section_vma (first) - bfd_get_start_address (first->owner) != bfd_section_vma (second) - bfd_get_start_address (second->owner)) return false; if (bfd_section_name (first) == NULL || bfd_section_name (second) == NULL || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0) return false; /* Otherwise check that they are in corresponding objfiles. */ struct objfile *obj = NULL; for (objfile *objfile : current_program_space->objfiles ()) if (objfile->obfd == first->owner) { obj = objfile; break; } gdb_assert (obj != NULL); if (obj->separate_debug_objfile != NULL && obj->separate_debug_objfile->obfd == second->owner) return true; if (obj->separate_debug_objfile_backlink != NULL && obj->separate_debug_objfile_backlink->obfd == second->owner) return true; return false; } /* See symtab.h. */ void expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section) { struct bound_minimal_symbol msymbol; /* If we know that this is not a text address, return failure. This is necessary because we loop based on texthigh and textlow, which do not include the data ranges. */ msymbol = lookup_minimal_symbol_by_pc_section (pc, section); if (msymbol.minsym && msymbol.minsym->data_p ()) return; for (objfile *objfile : current_program_space->objfiles ()) { struct compunit_symtab *cust = NULL; if (objfile->sf) cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, pc, section, 0); if (cust) return; } } /* Hash function for the symbol cache. */ static unsigned int hash_symbol_entry (const struct objfile *objfile_context, const char *name, domain_enum domain) { unsigned int hash = (uintptr_t) objfile_context; if (name != NULL) hash += htab_hash_string (name); /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN to map to the same slot. */ if (domain == STRUCT_DOMAIN) hash += VAR_DOMAIN * 7; else hash += domain * 7; return hash; } /* Equality function for the symbol cache. */ static int eq_symbol_entry (const struct symbol_cache_slot *slot, const struct objfile *objfile_context, const char *name, domain_enum domain) { const char *slot_name; domain_enum slot_domain; if (slot->state == SYMBOL_SLOT_UNUSED) return 0; if (slot->objfile_context != objfile_context) return 0; if (slot->state == SYMBOL_SLOT_NOT_FOUND) { slot_name = slot->value.not_found.name; slot_domain = slot->value.not_found.domain; } else { slot_name = slot->value.found.symbol->search_name (); slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol); } /* NULL names match. */ if (slot_name == NULL && name == NULL) { /* But there's no point in calling symbol_matches_domain in the SYMBOL_SLOT_FOUND case. */ if (slot_domain != domain) return 0; } else if (slot_name != NULL && name != NULL) { /* It's important that we use the same comparison that was done the first time through. If the slot records a found symbol, then this means using the symbol name comparison function of the symbol's language with symbol->search_name (). See dictionary.c. It also means using symbol_matches_domain for found symbols. See block.c. If the slot records a not-found symbol, then require a precise match. We could still be lax with whitespace like strcmp_iw though. */ if (slot->state == SYMBOL_SLOT_NOT_FOUND) { if (strcmp (slot_name, name) != 0) return 0; if (slot_domain != domain) return 0; } else { struct symbol *sym = slot->value.found.symbol; lookup_name_info lookup_name (name, symbol_name_match_type::FULL); if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name)) return 0; if (!symbol_matches_domain (sym->language (), slot_domain, domain)) return 0; } } else { /* Only one name is NULL. */ return 0; } return 1; } /* Given a cache of size SIZE, return the size of the struct (with variable length array) in bytes. */ static size_t symbol_cache_byte_size (unsigned int size) { return (sizeof (struct block_symbol_cache) + ((size - 1) * sizeof (struct symbol_cache_slot))); } /* Resize CACHE. */ static void resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) { /* If there's no change in size, don't do anything. All caches have the same size, so we can just compare with the size of the global symbols cache. */ if ((cache->global_symbols != NULL && cache->global_symbols->size == new_size) || (cache->global_symbols == NULL && new_size == 0)) return; destroy_block_symbol_cache (cache->global_symbols); destroy_block_symbol_cache (cache->static_symbols); if (new_size == 0) { cache->global_symbols = NULL; cache->static_symbols = NULL; } else { size_t total_size = symbol_cache_byte_size (new_size); cache->global_symbols = (struct block_symbol_cache *) xcalloc (1, total_size); cache->static_symbols = (struct block_symbol_cache *) xcalloc (1, total_size); cache->global_symbols->size = new_size; cache->static_symbols->size = new_size; } } /* Return the symbol cache of PSPACE. Create one if it doesn't exist yet. */ static struct symbol_cache * get_symbol_cache (struct program_space *pspace) { struct symbol_cache *cache = symbol_cache_key.get (pspace); if (cache == NULL) { cache = symbol_cache_key.emplace (pspace); resize_symbol_cache (cache, symbol_cache_size); } return cache; } /* Set the size of the symbol cache in all program spaces. */ static void set_symbol_cache_size (unsigned int new_size) { for (struct program_space *pspace : program_spaces) { struct symbol_cache *cache = symbol_cache_key.get (pspace); /* The pspace could have been created but not have a cache yet. */ if (cache != NULL) resize_symbol_cache (cache, new_size); } } /* Called when symbol-cache-size is set. */ static void set_symbol_cache_size_handler (const char *args, int from_tty, struct cmd_list_element *c) { if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) { /* Restore the previous value. This is the value the "show" command prints. */ new_symbol_cache_size = symbol_cache_size; error (_("Symbol cache size is too large, max is %u."), MAX_SYMBOL_CACHE_SIZE); } symbol_cache_size = new_symbol_cache_size; set_symbol_cache_size (symbol_cache_size); } /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. OBJFILE_CONTEXT is the current objfile, which may be NULL. The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup failed (and thus this one will too), or NULL if the symbol is not present in the cache. *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which can be used to save the result of a full lookup attempt. */ static struct block_symbol symbol_cache_lookup (struct symbol_cache *cache, struct objfile *objfile_context, enum block_enum block, const char *name, domain_enum domain, struct block_symbol_cache **bsc_ptr, struct symbol_cache_slot **slot_ptr) { struct block_symbol_cache *bsc; unsigned int hash; struct symbol_cache_slot *slot; if (block == GLOBAL_BLOCK) bsc = cache->global_symbols; else bsc = cache->static_symbols; if (bsc == NULL) { *bsc_ptr = NULL; *slot_ptr = NULL; return {}; } hash = hash_symbol_entry (objfile_context, name, domain); slot = bsc->symbols + hash % bsc->size; *bsc_ptr = bsc; *slot_ptr = slot; if (eq_symbol_entry (slot, objfile_context, name, domain)) { if (symbol_lookup_debug) fprintf_unfiltered (gdb_stdlog, "%s block symbol cache hit%s for %s, %s\n", block == GLOBAL_BLOCK ? "Global" : "Static", slot->state == SYMBOL_SLOT_NOT_FOUND ? " (not found)" : "", name, domain_name (domain)); ++bsc->hits; if (slot->state == SYMBOL_SLOT_NOT_FOUND) return SYMBOL_LOOKUP_FAILED; return slot->value.found; } /* Symbol is not present in the cache. */ if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "%s block symbol cache miss for %s, %s\n", block == GLOBAL_BLOCK ? "Global" : "Static", name, domain_name (domain)); } ++bsc->misses; return {}; } /* Mark SYMBOL as found in SLOT. OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* necessarily the objfile the symbol was found in. */ static void symbol_cache_mark_found (struct block_symbol_cache *bsc, struct symbol_cache_slot *slot, struct objfile *objfile_context, struct symbol *symbol, const struct block *block) { if (bsc == NULL) return; if (slot->state != SYMBOL_SLOT_UNUSED) { ++bsc->collisions; symbol_cache_clear_slot (slot); } slot->state = SYMBOL_SLOT_FOUND; slot->objfile_context = objfile_context; slot->value.found.symbol = symbol; slot->value.found.block = block; } /* Mark symbol NAME, DOMAIN as not found in SLOT. OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL if it's not needed to distinguish lookups (STATIC_BLOCK). */ static void symbol_cache_mark_not_found (struct block_symbol_cache *bsc, struct symbol_cache_slot *slot, struct objfile *objfile_context, const char *name, domain_enum domain) { if (bsc == NULL) return; if (slot->state != SYMBOL_SLOT_UNUSED) { ++bsc->collisions; symbol_cache_clear_slot (slot); } slot->state = SYMBOL_SLOT_NOT_FOUND; slot->objfile_context = objfile_context; slot->value.not_found.name = xstrdup (name); slot->value.not_found.domain = domain; } /* Flush the symbol cache of PSPACE. */ static void symbol_cache_flush (struct program_space *pspace) { struct symbol_cache *cache = symbol_cache_key.get (pspace); int pass; if (cache == NULL) return; if (cache->global_symbols == NULL) { gdb_assert (symbol_cache_size == 0); gdb_assert (cache->static_symbols == NULL); return; } /* If the cache is untouched since the last flush, early exit. This is important for performance during the startup of a program linked with 100s (or 1000s) of shared libraries. */ if (cache->global_symbols->misses == 0 && cache->static_symbols->misses == 0) return; gdb_assert (cache->global_symbols->size == symbol_cache_size); gdb_assert (cache->static_symbols->size == symbol_cache_size); for (pass = 0; pass < 2; ++pass) { struct block_symbol_cache *bsc = pass == 0 ? cache->global_symbols : cache->static_symbols; unsigned int i; for (i = 0; i < bsc->size; ++i) symbol_cache_clear_slot (&bsc->symbols[i]); } cache->global_symbols->hits = 0; cache->global_symbols->misses = 0; cache->global_symbols->collisions = 0; cache->static_symbols->hits = 0; cache->static_symbols->misses = 0; cache->static_symbols->collisions = 0; } /* Dump CACHE. */ static void symbol_cache_dump (const struct symbol_cache *cache) { int pass; if (cache->global_symbols == NULL) { printf_filtered (" \n"); return; } for (pass = 0; pass < 2; ++pass) { const struct block_symbol_cache *bsc = pass == 0 ? cache->global_symbols : cache->static_symbols; unsigned int i; if (pass == 0) printf_filtered ("Global symbols:\n"); else printf_filtered ("Static symbols:\n"); for (i = 0; i < bsc->size; ++i) { const struct symbol_cache_slot *slot = &bsc->symbols[i]; QUIT; switch (slot->state) { case SYMBOL_SLOT_UNUSED: break; case SYMBOL_SLOT_NOT_FOUND: printf_filtered (" [%4u] = %s, %s %s (not found)\n", i, host_address_to_string (slot->objfile_context), slot->value.not_found.name, domain_name (slot->value.not_found.domain)); break; case SYMBOL_SLOT_FOUND: { struct symbol *found = slot->value.found.symbol; const struct objfile *context = slot->objfile_context; printf_filtered (" [%4u] = %s, %s %s\n", i, host_address_to_string (context), found->print_name (), domain_name (SYMBOL_DOMAIN (found))); break; } } } } } /* The "mt print symbol-cache" command. */ static void maintenance_print_symbol_cache (const char *args, int from_tty) { for (struct program_space *pspace : program_spaces) { struct symbol_cache *cache; printf_filtered (_("Symbol cache for pspace %d\n%s:\n"), pspace->num, pspace->symfile_object_file != NULL ? objfile_name (pspace->symfile_object_file) : "(no object file)"); /* If the cache hasn't been created yet, avoid creating one. */ cache = symbol_cache_key.get (pspace); if (cache == NULL) printf_filtered (" \n"); else symbol_cache_dump (cache); } } /* The "mt flush-symbol-cache" command. */ static void maintenance_flush_symbol_cache (const char *args, int from_tty) { for (struct program_space *pspace : program_spaces) { symbol_cache_flush (pspace); } } /* Print usage statistics of CACHE. */ static void symbol_cache_stats (struct symbol_cache *cache) { int pass; if (cache->global_symbols == NULL) { printf_filtered (" \n"); return; } for (pass = 0; pass < 2; ++pass) { const struct block_symbol_cache *bsc = pass == 0 ? cache->global_symbols : cache->static_symbols; QUIT; if (pass == 0) printf_filtered ("Global block cache stats:\n"); else printf_filtered ("Static block cache stats:\n"); printf_filtered (" size: %u\n", bsc->size); printf_filtered (" hits: %u\n", bsc->hits); printf_filtered (" misses: %u\n", bsc->misses); printf_filtered (" collisions: %u\n", bsc->collisions); } } /* The "mt print symbol-cache-statistics" command. */ static void maintenance_print_symbol_cache_statistics (const char *args, int from_tty) { for (struct program_space *pspace : program_spaces) { struct symbol_cache *cache; printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"), pspace->num, pspace->symfile_object_file != NULL ? objfile_name (pspace->symfile_object_file) : "(no object file)"); /* If the cache hasn't been created yet, avoid creating one. */ cache = symbol_cache_key.get (pspace); if (cache == NULL) printf_filtered (" empty, no stats available\n"); else symbol_cache_stats (cache); } } /* This module's 'new_objfile' observer. */ static void symtab_new_objfile_observer (struct objfile *objfile) { /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */ symbol_cache_flush (current_program_space); } /* This module's 'free_objfile' observer. */ static void symtab_free_objfile_observer (struct objfile *objfile) { symbol_cache_flush (objfile->pspace); } /* Debug symbols usually don't have section information. We need to dig that out of the minimal symbols and stash that in the debug symbol. */ void fixup_section (struct general_symbol_info *ginfo, CORE_ADDR addr, struct objfile *objfile) { struct minimal_symbol *msym; /* First, check whether a minimal symbol with the same name exists and points to the same address. The address check is required e.g. on PowerPC64, where the minimal symbol for a function will point to the function descriptor, while the debug symbol will point to the actual function code. */ msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (), objfile); if (msym) ginfo->section = MSYMBOL_SECTION (msym); else { /* Static, function-local variables do appear in the linker (minimal) symbols, but are frequently given names that won't be found via lookup_minimal_symbol(). E.g., it has been observed in frv-uclinux (ELF) executables that a static, function-local variable named "foo" might appear in the linker symbols as "foo.6" or "foo.3". Thus, there is no point in attempting to extend the lookup-by-name mechanism to handle this case due to the fact that there can be multiple names. So, instead, search the section table when lookup by name has failed. The ``addr'' and ``endaddr'' fields may have already been relocated. If so, the relocation offset needs to be subtracted from these values when performing the comparison. We unconditionally subtract it, because, when no relocation has been performed, the value will simply be zero. The address of the symbol whose section we're fixing up HAS NOT BEEN adjusted (relocated) yet. It can't have been since the section isn't yet known and knowing the section is necessary in order to add the correct relocation value. In other words, we wouldn't even be in this function (attempting to compute the section) if it were already known. Note that it is possible to search the minimal symbols (subtracting the relocation value if necessary) to find the matching minimal symbol, but this is overkill and much less efficient. It is not necessary to find the matching minimal symbol, only its section. Note that this technique (of doing a section table search) can fail when unrelocated section addresses overlap. For this reason, we still attempt a lookup by name prior to doing a search of the section table. */ struct obj_section *s; int fallback = -1; ALL_OBJFILE_OSECTIONS (objfile, s) { int idx = s - objfile->sections; CORE_ADDR offset = objfile->section_offsets[idx]; if (fallback == -1) fallback = idx; if (obj_section_addr (s) - offset <= addr && addr < obj_section_endaddr (s) - offset) { ginfo->section = idx; return; } } /* If we didn't find the section, assume it is in the first section. If there is no allocated section, then it hardly matters what we pick, so just pick zero. */ if (fallback == -1) ginfo->section = 0; else ginfo->section = fallback; } } struct symbol * fixup_symbol_section (struct symbol *sym, struct objfile *objfile) { CORE_ADDR addr; if (!sym) return NULL; if (!SYMBOL_OBJFILE_OWNED (sym)) return sym; /* We either have an OBJFILE, or we can get at it from the sym's symtab. Anything else is a bug. */ gdb_assert (objfile || symbol_symtab (sym)); if (objfile == NULL) objfile = symbol_objfile (sym); if (SYMBOL_OBJ_SECTION (objfile, sym)) return sym; /* We should have an objfile by now. */ gdb_assert (objfile); switch (SYMBOL_CLASS (sym)) { case LOC_STATIC: case LOC_LABEL: addr = SYMBOL_VALUE_ADDRESS (sym); break; case LOC_BLOCK: addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); break; default: /* Nothing else will be listed in the minsyms -- no use looking it up. */ return sym; } fixup_section (sym, addr, objfile); return sym; } /* See symtab.h. */ demangle_for_lookup_info::demangle_for_lookup_info (const lookup_name_info &lookup_name, language lang) { demangle_result_storage storage; if (lookup_name.ignore_parameters () && lang == language_cplus) { gdb::unique_xmalloc_ptr without_params = cp_remove_params_if_any (lookup_name.c_str (), lookup_name.completion_mode ()); if (without_params != NULL) { if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME) m_demangled_name = demangle_for_lookup (without_params.get (), lang, storage); return; } } if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) m_demangled_name = lookup_name.c_str (); else m_demangled_name = demangle_for_lookup (lookup_name.c_str (), lang, storage); } /* See symtab.h. */ const lookup_name_info & lookup_name_info::match_any () { /* Lookup any symbol that "" would complete. I.e., this matches all symbol names. */ static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL, true); return lookup_name; } /* Compute the demangled form of NAME as used by the various symbol lookup functions. The result can either be the input NAME directly, or a pointer to a buffer owned by the STORAGE object. For Ada, this function just returns NAME, unmodified. Normally, Ada symbol lookups are performed using the encoded name rather than the demangled name, and so it might seem to make sense for this function to return an encoded version of NAME. Unfortunately, we cannot do this, because this function is used in circumstances where it is not appropriate to try to encode NAME. For instance, when displaying the frame info, we demangle the name of each parameter, and then perform a symbol lookup inside our function using that demangled name. In Ada, certain functions have internally-generated parameters whose name contain uppercase characters. Encoding those name would result in those uppercase characters to become lowercase, and thus cause the symbol lookup to fail. */ const char * demangle_for_lookup (const char *name, enum language lang, demangle_result_storage &storage) { /* If we are using C++, D, or Go, demangle the name before doing a lookup, so we can always binary search. */ if (lang == language_cplus) { char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); if (demangled_name != NULL) return storage.set_malloc_ptr (demangled_name); /* If we were given a non-mangled name, canonicalize it according to the language (so far only for C++). */ gdb::unique_xmalloc_ptr canon = cp_canonicalize_string (name); if (canon != nullptr) return storage.set_malloc_ptr (std::move (canon)); } else if (lang == language_d) { char *demangled_name = d_demangle (name, 0); if (demangled_name != NULL) return storage.set_malloc_ptr (demangled_name); } else if (lang == language_go) { char *demangled_name = go_demangle (name, 0); if (demangled_name != NULL) return storage.set_malloc_ptr (demangled_name); } return name; } /* See symtab.h. */ unsigned int search_name_hash (enum language language, const char *search_name) { return language_def (language)->search_name_hash (search_name); } /* See symtab.h. This function (or rather its subordinates) have a bunch of loops and it would seem to be attractive to put in some QUIT's (though I'm not really sure whether it can run long enough to be really important). But there are a few calls for which it would appear to be bad news to quit out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note that there is C++ code below which can error(), but that probably doesn't affect these calls since they are looking for a known variable and thus can probably assume it will never hit the C++ code). */ struct block_symbol lookup_symbol_in_language (const char *name, const struct block *block, const domain_enum domain, enum language lang, struct field_of_this_result *is_a_field_of_this) { demangle_result_storage storage; const char *modified_name = demangle_for_lookup (name, lang, storage); return lookup_symbol_aux (modified_name, symbol_name_match_type::FULL, block, domain, lang, is_a_field_of_this); } /* See symtab.h. */ struct block_symbol lookup_symbol (const char *name, const struct block *block, domain_enum domain, struct field_of_this_result *is_a_field_of_this) { return lookup_symbol_in_language (name, block, domain, current_language->la_language, is_a_field_of_this); } /* See symtab.h. */ struct block_symbol lookup_symbol_search_name (const char *search_name, const struct block *block, domain_enum domain) { return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME, block, domain, language_asm, NULL); } /* See symtab.h. */ struct block_symbol lookup_language_this (const struct language_defn *lang, const struct block *block) { if (lang->la_name_of_this == NULL || block == NULL) return {}; if (symbol_lookup_debug > 1) { struct objfile *objfile = block_objfile (block); fprintf_unfiltered (gdb_stdlog, "lookup_language_this (%s, %s (objfile %s))", lang->la_name, host_address_to_string (block), objfile_debug_name (objfile)); } while (block) { struct symbol *sym; sym = block_lookup_symbol (block, lang->la_name_of_this, symbol_name_match_type::SEARCH_NAME, VAR_DOMAIN); if (sym != NULL) { if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n", sym->print_name (), host_address_to_string (sym), host_address_to_string (block)); } return (struct block_symbol) {sym, block}; } if (BLOCK_FUNCTION (block)) break; block = BLOCK_SUPERBLOCK (block); } if (symbol_lookup_debug > 1) fprintf_unfiltered (gdb_stdlog, " = NULL\n"); return {}; } /* Given TYPE, a structure/union, return 1 if the component named NAME from the ultimate target structure/union is defined, otherwise, return 0. */ static int check_field (struct type *type, const char *name, struct field_of_this_result *is_a_field_of_this) { int i; /* The type may be a stub. */ type = check_typedef (type); for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) { const char *t_field_name = TYPE_FIELD_NAME (type, i); if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) { is_a_field_of_this->type = type; is_a_field_of_this->field = &type->field (i); return 1; } } /* C++: If it was not found as a data field, then try to return it as a pointer to a method. */ for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) { if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) { is_a_field_of_this->type = type; is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); return 1; } } for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) return 1; return 0; } /* Behave like lookup_symbol except that NAME is the natural name (e.g., demangled name) of the symbol that we're looking for. */ static struct block_symbol lookup_symbol_aux (const char *name, symbol_name_match_type match_type, const struct block *block, const domain_enum domain, enum language language, struct field_of_this_result *is_a_field_of_this) { struct block_symbol result; const struct language_defn *langdef; if (symbol_lookup_debug) { struct objfile *objfile = (block == nullptr ? nullptr : block_objfile (block)); fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n", name, host_address_to_string (block), objfile != NULL ? objfile_debug_name (objfile) : "NULL", domain_name (domain), language_str (language)); } /* Make sure we do something sensible with is_a_field_of_this, since the callers that set this parameter to some non-null value will certainly use it later. If we don't set it, the contents of is_a_field_of_this are undefined. */ if (is_a_field_of_this != NULL) memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this)); /* Search specified block and its superiors. Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ result = lookup_local_symbol (name, match_type, block, domain, language); if (result.symbol != NULL) { if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", host_address_to_string (result.symbol)); } return result; } /* If requested to do so by the caller and if appropriate for LANGUAGE, check to see if NAME is a field of `this'. */ langdef = language_def (language); /* Don't do this check if we are searching for a struct. It will not be found by check_field, but will be found by other means. */ if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN) { result = lookup_language_this (langdef, block); if (result.symbol) { struct type *t = result.symbol->type; /* I'm not really sure that type of this can ever be typedefed; just be safe. */ t = check_typedef (t); if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t)) t = TYPE_TARGET_TYPE (t); if (t->code () != TYPE_CODE_STRUCT && t->code () != TYPE_CODE_UNION) error (_("Internal error: `%s' is not an aggregate"), langdef->la_name_of_this); if (check_field (t, name, is_a_field_of_this)) { if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = NULL\n"); } return {}; } } } /* Now do whatever is appropriate for LANGUAGE to look up static and global variables. */ result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain); if (result.symbol != NULL) { if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", host_address_to_string (result.symbol)); } return result; } /* Now search all static file-level symbols. Not strictly correct, but more useful than an error. */ result = lookup_static_symbol (name, domain); if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n", result.symbol != NULL ? host_address_to_string (result.symbol) : "NULL"); } return result; } /* Check to see if the symbol is defined in BLOCK or its superiors. Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ static struct block_symbol lookup_local_symbol (const char *name, symbol_name_match_type match_type, const struct block *block, const domain_enum domain, enum language language) { struct symbol *sym; const struct block *static_block = block_static_block (block); const char *scope = block_scope (block); /* Check if either no block is specified or it's a global block. */ if (static_block == NULL) return {}; while (block != static_block) { sym = lookup_symbol_in_block (name, match_type, block, domain); if (sym != NULL) return (struct block_symbol) {sym, block}; if (language == language_cplus || language == language_fortran) { struct block_symbol blocksym = cp_lookup_symbol_imports_or_template (scope, name, block, domain); if (blocksym.symbol != NULL) return blocksym; } if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block)) break; block = BLOCK_SUPERBLOCK (block); } /* We've reached the end of the function without finding a result. */ return {}; } /* See symtab.h. */ struct symbol * lookup_symbol_in_block (const char *name, symbol_name_match_type match_type, const struct block *block, const domain_enum domain) { struct symbol *sym; if (symbol_lookup_debug > 1) { struct objfile *objfile = (block == nullptr ? nullptr : block_objfile (block)); fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_block (%s, %s (objfile %s), %s)", name, host_address_to_string (block), objfile_debug_name (objfile), domain_name (domain)); } sym = block_lookup_symbol (block, name, match_type, domain); if (sym) { if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, " = %s\n", host_address_to_string (sym)); } return fixup_symbol_section (sym, NULL); } if (symbol_lookup_debug > 1) fprintf_unfiltered (gdb_stdlog, " = NULL\n"); return NULL; } /* See symtab.h. */ struct block_symbol lookup_global_symbol_from_objfile (struct objfile *main_objfile, enum block_enum block_index, const char *name, const domain_enum domain) { gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); for (objfile *objfile : main_objfile->separate_debug_objfiles ()) { struct block_symbol result = lookup_symbol_in_objfile (objfile, block_index, name, domain); if (result.symbol != nullptr) return result; } return {}; } /* Check to see if the symbol is defined in one of the OBJFILE's symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, depending on whether or not we want to search global symbols or static symbols. */ static struct block_symbol lookup_symbol_in_objfile_symtabs (struct objfile *objfile, enum block_enum block_index, const char *name, const domain_enum domain) { gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", objfile_debug_name (objfile), block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", name, domain_name (domain)); } struct block_symbol other; other.symbol = NULL; for (compunit_symtab *cust : objfile->compunits ()) { const struct blockvector *bv; const struct block *block; struct block_symbol result; bv = COMPUNIT_BLOCKVECTOR (cust); block = BLOCKVECTOR_BLOCK (bv, block_index); result.symbol = block_lookup_symbol_primary (block, name, domain); result.block = block; if (result.symbol == NULL) continue; if (best_symbol (result.symbol, domain)) { other = result; break; } if (symbol_matches_domain (result.symbol->language (), SYMBOL_DOMAIN (result.symbol), domain)) { struct symbol *better = better_symbol (other.symbol, result.symbol, domain); if (better != other.symbol) { other.symbol = better; other.block = block; } } } if (other.symbol != NULL) { if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n", host_address_to_string (other.symbol), host_address_to_string (other.block)); } other.symbol = fixup_symbol_section (other.symbol, objfile); return other; } if (symbol_lookup_debug > 1) fprintf_unfiltered (gdb_stdlog, " = NULL\n"); return {}; } /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE and all associated separate debug objfiles. Normally we only look in OBJFILE, and not any separate debug objfiles because the outer loop will cause them to be searched too. This case is different. Here we're called from search_symbols where it will only call us for the objfile that contains a matching minsym. */ static struct block_symbol lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, const char *linkage_name, domain_enum domain) { enum language lang = current_language->la_language; struct objfile *main_objfile; demangle_result_storage storage; const char *modified_name = demangle_for_lookup (linkage_name, lang, storage); if (objfile->separate_debug_objfile_backlink) main_objfile = objfile->separate_debug_objfile_backlink; else main_objfile = objfile; for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ()) { struct block_symbol result; result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, modified_name, domain); if (result.symbol == NULL) result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, modified_name, domain); if (result.symbol != NULL) return result; } return {}; } /* A helper function that throws an exception when a symbol was found in a psymtab but not in a symtab. */ static void ATTRIBUTE_NORETURN error_in_psymtab_expansion (enum block_enum block_index, const char *name, struct compunit_symtab *cust) { error (_("\ Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ %s may be an inlined function, or may be a template function\n \ (if a template, try specifying an instantiation: %s)."), block_index == GLOBAL_BLOCK ? "global" : "static", name, symtab_to_filename_for_display (compunit_primary_filetab (cust)), name, name); } /* A helper function for various lookup routines that interfaces with the "quick" symbol table functions. */ static struct block_symbol lookup_symbol_via_quick_fns (struct objfile *objfile, enum block_enum block_index, const char *name, const domain_enum domain) { struct compunit_symtab *cust; const struct blockvector *bv; const struct block *block; struct block_symbol result; if (!objfile->sf) return {}; if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n", objfile_debug_name (objfile), block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", name, domain_name (domain)); } cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain); if (cust == NULL) { if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_via_quick_fns (...) = NULL\n"); } return {}; } bv = COMPUNIT_BLOCKVECTOR (cust); block = BLOCKVECTOR_BLOCK (bv, block_index); result.symbol = block_lookup_symbol (block, name, symbol_name_match_type::FULL, domain); if (result.symbol == NULL) error_in_psymtab_expansion (block_index, name, cust); if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_via_quick_fns (...) = %s (block %s)\n", host_address_to_string (result.symbol), host_address_to_string (block)); } result.symbol = fixup_symbol_section (result.symbol, objfile); result.block = block; return result; } /* See symtab.h. */ struct block_symbol basic_lookup_symbol_nonlocal (const struct language_defn *langdef, const char *name, const struct block *block, const domain_enum domain) { struct block_symbol result; /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip the current objfile. Searching the current objfile first is useful for both matching user expectations as well as performance. */ result = lookup_symbol_in_static_block (name, block, domain); if (result.symbol != NULL) return result; /* If we didn't find a definition for a builtin type in the static block, search for it now. This is actually the right thing to do and can be a massive performance win. E.g., when debugging a program with lots of shared libraries we could search all of them only to find out the builtin type isn't defined in any of them. This is common for types like "void". */ if (domain == VAR_DOMAIN) { struct gdbarch *gdbarch; if (block == NULL) gdbarch = target_gdbarch (); else gdbarch = block_gdbarch (block); result.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); result.block = NULL; if (result.symbol != NULL) return result; } return lookup_global_symbol (name, block, domain); } /* See symtab.h. */ struct block_symbol lookup_symbol_in_static_block (const char *name, const struct block *block, const domain_enum domain) { const struct block *static_block = block_static_block (block); struct symbol *sym; if (static_block == NULL) return {}; if (symbol_lookup_debug) { struct objfile *objfile = (block == nullptr ? nullptr : block_objfile (block)); fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_static_block (%s, %s (objfile %s)," " %s)\n", name, host_address_to_string (block), objfile_debug_name (objfile), domain_name (domain)); } sym = lookup_symbol_in_block (name, symbol_name_match_type::FULL, static_block, domain); if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_static_block (...) = %s\n", sym != NULL ? host_address_to_string (sym) : "NULL"); } return (struct block_symbol) {sym, static_block}; } /* Perform the standard symbol lookup of NAME in OBJFILE: 1) First search expanded symtabs, and if not found 2) Search the "quick" symtabs (partial or .gdb_index). BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ static struct block_symbol lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index, const char *name, const domain_enum domain) { struct block_symbol result; gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_objfile (%s, %s, %s, %s)\n", objfile_debug_name (objfile), block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", name, domain_name (domain)); } result = lookup_symbol_in_objfile_symtabs (objfile, block_index, name, domain); if (result.symbol != NULL) { if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_objfile (...) = %s" " (in symtabs)\n", host_address_to_string (result.symbol)); } return result; } result = lookup_symbol_via_quick_fns (objfile, block_index, name, domain); if (symbol_lookup_debug) { fprintf_unfiltered (gdb_stdlog, "lookup_symbol_in_objfile (...) = %s%s\n", result.symbol != NULL ? host_address_to_string (result.symbol) : "NULL", result.symbol != NULL ? " (via quick fns)" : ""); } return result; } /* Find the language for partial symbol with NAME. */ static enum language find_quick_global_symbol_language (const char *name, const domain_enum domain) { for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->sf && objfile->sf->qf && objfile->sf->qf->lookup_global_symbol_language) continue; return language_unknown; } for (objfile *objfile : current_program_space->objfiles ()) { bool symbol_found_p; enum language lang = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain, &symbol_found_p); if (!symbol_found_p) continue; return lang; } return language_unknown; } /* Private data to be used with lookup_symbol_global_iterator_cb. */ struct global_or_static_sym_lookup_data { /* The name of the symbol we are searching for. */ const char *name; /* The domain to use for our search. */ domain_enum domain; /* The block index in which to search. */ enum block_enum block_index; /* The field where the callback should store the symbol if found. It should be initialized to {NULL, NULL} before the search is started. */ struct block_symbol result; }; /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. It searches by name for a symbol in the block given by BLOCK_INDEX of the given OBJFILE. The arguments for the search are passed via CB_DATA, which in reality is a pointer to struct global_or_static_sym_lookup_data. */ static int lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile, void *cb_data) { struct global_or_static_sym_lookup_data *data = (struct global_or_static_sym_lookup_data *) cb_data; gdb_assert (data->result.symbol == NULL && data->result.block == NULL); data->result = lookup_symbol_in_objfile (objfile, data->block_index, data->name, data->domain); /* If we found a match, tell the iterator to stop. Otherwise, keep going. */ return (data->result.symbol != NULL); } /* This function contains the common code of lookup_{global,static}_symbol. OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is the objfile to start the lookup in. */ static struct block_symbol lookup_global_or_static_symbol (const char *name, enum block_enum block_index, struct objfile *objfile, const domain_enum domain) { struct symbol_cache *cache = get_symbol_cache (current_program_space); struct block_symbol result; struct global_or_static_sym_lookup_data lookup_data; struct block_symbol_cache *bsc; struct symbol_cache_slot *slot; gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK); /* First see if we can find the symbol in the cache. This works because we use the current objfile to qualify the lookup. */ result = symbol_cache_lookup (cache, objfile, block_index, name, domain, &bsc, &slot); if (result.symbol != NULL) { if (SYMBOL_LOOKUP_FAILED_P (result)) return {}; return result; } /* Do a global search (of global blocks, heh). */ if (result.symbol == NULL) { memset (&lookup_data, 0, sizeof (lookup_data)); lookup_data.name = name; lookup_data.block_index = block_index; lookup_data.domain = domain; gdbarch_iterate_over_objfiles_in_search_order (objfile != NULL ? objfile->arch () : target_gdbarch (), lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile); result = lookup_data.result; } if (result.symbol != NULL) symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block); else symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); return result; } /* See symtab.h. */ struct block_symbol lookup_static_symbol (const char *name, const domain_enum domain) { return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain); } /* See symtab.h. */ struct block_symbol lookup_global_symbol (const char *name, const struct block *block, const domain_enum domain) { /* If a block was passed in, we want to search the corresponding global block first. This yields "more expected" behavior, and is needed to support 'FILENAME'::VARIABLE lookups. */ const struct block *global_block = block_global_block (block); symbol *sym = NULL; if (global_block != nullptr) { sym = lookup_symbol_in_block (name, symbol_name_match_type::FULL, global_block, domain); if (sym != NULL && best_symbol (sym, domain)) return { sym, global_block }; } struct objfile *objfile = nullptr; if (block != nullptr) { objfile = block_objfile (block); if (objfile->separate_debug_objfile_backlink != nullptr) objfile = objfile->separate_debug_objfile_backlink; } block_symbol bs = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain); if (better_symbol (sym, bs.symbol, domain) == sym) return { sym, global_block }; else return bs; } bool symbol_matches_domain (enum language symbol_language, domain_enum symbol_domain, domain_enum domain) { /* For C++ "struct foo { ... }" also defines a typedef for "foo". Similarly, any Ada type declaration implicitly defines a typedef. */ if (symbol_language == language_cplus || symbol_language == language_d || symbol_language == language_ada || symbol_language == language_rust) { if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) && symbol_domain == STRUCT_DOMAIN) return true; } /* For all other languages, strict match is required. */ return (symbol_domain == domain); } /* See symtab.h. */ struct type * lookup_transparent_type (const char *name) { return current_language->lookup_transparent_type (name); } /* A helper for basic_lookup_transparent_type that interfaces with the "quick" symbol table functions. */ static struct type * basic_lookup_transparent_type_quick (struct objfile *objfile, enum block_enum block_index, const char *name) { struct compunit_symtab *cust; const struct blockvector *bv; const struct block *block; struct symbol *sym; if (!objfile->sf) return NULL; cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, STRUCT_DOMAIN); if (cust == NULL) return NULL; bv = COMPUNIT_BLOCKVECTOR (cust); block = BLOCKVECTOR_BLOCK (bv, block_index); sym = block_find_symbol (block, name, STRUCT_DOMAIN, block_find_non_opaque_type, NULL); if (sym == NULL) error_in_psymtab_expansion (block_index, name, cust); gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); return SYMBOL_TYPE (sym); } /* Subroutine of basic_lookup_transparent_type to simplify it. Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ static struct type * basic_lookup_transparent_type_1 (struct objfile *objfile, enum block_enum block_index, const char *name) { const struct blockvector *bv; const struct block *block; const struct symbol *sym; for (compunit_symtab *cust : objfile->compunits ()) { bv = COMPUNIT_BLOCKVECTOR (cust); block = BLOCKVECTOR_BLOCK (bv, block_index); sym = block_find_symbol (block, name, STRUCT_DOMAIN, block_find_non_opaque_type, NULL); if (sym != NULL) { gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))); return SYMBOL_TYPE (sym); } } return NULL; } /* The standard implementation of lookup_transparent_type. This code was modeled on lookup_symbol -- the parts not relevant to looking up types were just left out. In particular it's assumed here that types are available in STRUCT_DOMAIN and only in file-static or global blocks. */ struct type * basic_lookup_transparent_type (const char *name) { struct type *t; /* Now search all the global symbols. Do the symtab's first, then check the psymtab's. If a psymtab indicates the existence of the desired name as a global, then do psymtab-to-symtab conversion on the fly and return the found symbol. */ for (objfile *objfile : current_program_space->objfiles ()) { t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name); if (t) return t; } for (objfile *objfile : current_program_space->objfiles ()) { t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name); if (t) return t; } /* Now search the static file-level symbols. Not strictly correct, but more useful than an error. Do the symtab's first, then check the psymtab's. If a psymtab indicates the existence of the desired name as a file-level static, then do psymtab-to-symtab conversion on the fly and return the found symbol. */ for (objfile *objfile : current_program_space->objfiles ()) { t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name); if (t) return t; } for (objfile *objfile : current_program_space->objfiles ()) { t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name); if (t) return t; } return (struct type *) 0; } /* See symtab.h. */ bool iterate_over_symbols (const struct block *block, const lookup_name_info &name, const domain_enum domain, gdb::function_view callback) { struct block_iterator iter; struct symbol *sym; ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym) { if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)) { struct block_symbol block_sym = {sym, block}; if (!callback (&block_sym)) return false; } } return true; } /* See symtab.h. */ bool iterate_over_symbols_terminated (const struct block *block, const lookup_name_info &name, const domain_enum domain, gdb::function_view callback) { if (!iterate_over_symbols (block, name, domain, callback)) return false; struct block_symbol block_sym = {nullptr, block}; return callback (&block_sym); } /* Find the compunit symtab associated with PC and SECTION. This will read in debug info as necessary. */ struct compunit_symtab * find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) { struct compunit_symtab *best_cust = NULL; CORE_ADDR distance = 0; struct bound_minimal_symbol msymbol; /* If we know that this is not a text address, return failure. This is necessary because we loop based on the block's high and low code addresses, which do not include the data ranges, and because we call find_pc_sect_psymtab which has a similar restriction based on the partial_symtab's texthigh and textlow. */ msymbol = lookup_minimal_symbol_by_pc_section (pc, section); if (msymbol.minsym && msymbol.minsym->data_p ()) return NULL; /* Search all symtabs for the one whose file contains our address, and which is the smallest of all the ones containing the address. This is designed to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from 0x1000-0x4000, but for address 0x2345 we want to return symtab b. This happens for native ecoff format, where code from included files gets its own symtab. The symtab for the included file should have been read in already via the dependency mechanism. It might be swifter to create several symtabs with the same name like xcoff does (I'm not sure). It also happens for objfiles that have their functions reordered. For these, the symtab we are looking for is not necessarily read in. */ for (objfile *obj_file : current_program_space->objfiles ()) { for (compunit_symtab *cust : obj_file->compunits ()) { const struct block *b; const struct blockvector *bv; bv = COMPUNIT_BLOCKVECTOR (cust); b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); if (BLOCK_START (b) <= pc && BLOCK_END (b) > pc && (distance == 0 || BLOCK_END (b) - BLOCK_START (b) < distance)) { /* For an objfile that has its functions reordered, find_pc_psymtab will find the proper partial symbol table and we simply return its corresponding symtab. */ /* In order to better support objfiles that contain both stabs and coff debugging info, we continue on if a psymtab can't be found. */ if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf) { struct compunit_symtab *result; result = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file, msymbol, pc, section, 0); if (result != NULL) return result; } if (section != 0) { struct block_iterator iter; struct symbol *sym = NULL; ALL_BLOCK_SYMBOLS (b, iter, sym) { fixup_symbol_section (sym, obj_file); if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file, sym), section)) break; } if (sym == NULL) continue; /* No symbol in this symtab matches section. */ } distance = BLOCK_END (b) - BLOCK_START (b); best_cust = cust; } } } if (best_cust != NULL) return best_cust; /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ for (objfile *objf : current_program_space->objfiles ()) { struct compunit_symtab *result; if (!objf->sf) continue; result = objf->sf->qf->find_pc_sect_compunit_symtab (objf, msymbol, pc, section, 1); if (result != NULL) return result; } return NULL; } /* Find the compunit symtab associated with PC. This will read in debug info as necessary. Backward compatibility, no section. */ struct compunit_symtab * find_pc_compunit_symtab (CORE_ADDR pc) { return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); } /* See symtab.h. */ struct symbol * find_symbol_at_address (CORE_ADDR address) { for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->sf == NULL || objfile->sf->qf->find_compunit_symtab_by_address == NULL) continue; struct compunit_symtab *symtab = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address); if (symtab != NULL) { const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab); for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i) { const struct block *b = BLOCKVECTOR_BLOCK (bv, i); struct block_iterator iter; struct symbol *sym; ALL_BLOCK_SYMBOLS (b, iter, sym) { if (SYMBOL_CLASS (sym) == LOC_STATIC && SYMBOL_VALUE_ADDRESS (sym) == address) return sym; } } } } return NULL; } /* Find the source file and line number for a given PC value and SECTION. Return a structure containing a symtab pointer, a line number, and a pc range for the entire source line. The value's .pc field is NOT the specified pc. NOTCURRENT nonzero means, if specified pc is on a line boundary, use the line that ends there. Otherwise, in that case, the line that begins there is used. */ /* The big complication here is that a line may start in one file, and end just before the start of another file. This usually occurs when you #include code in the middle of a subroutine. To properly find the end of a line's PC range, we must search all symtabs associated with this compilation unit, and find the one whose first PC is closer than that of the next line in this symtab. */ struct symtab_and_line find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) { struct compunit_symtab *cust; struct linetable *l; int len; struct linetable_entry *item; const struct blockvector *bv; struct bound_minimal_symbol msymbol; /* Info on best line seen so far, and where it starts, and its file. */ struct linetable_entry *best = NULL; CORE_ADDR best_end = 0; struct symtab *best_symtab = 0; /* Store here the first line number of a file which contains the line at the smallest pc after PC. If we don't find a line whose range contains PC, we will use a line one less than this, with a range from the start of that file to the first line's pc. */ struct linetable_entry *alt = NULL; /* Info on best line seen in this file. */ struct linetable_entry *prev; /* If this pc is not from the current frame, it is the address of the end of a call instruction. Quite likely that is the start of the following statement. But what we want is the statement containing the instruction. Fudge the pc to make sure we get that. */ /* It's tempting to assume that, if we can't find debugging info for any function enclosing PC, that we shouldn't search for line number info, either. However, GAS can emit line number info for assembly files --- very helpful when debugging hand-written assembly code. In such a case, we'd have no debug info for the function, but we would have line info. */ if (notcurrent) pc -= 1; /* elz: added this because this function returned the wrong information if the pc belongs to a stub (import/export) to call a shlib function. This stub would be anywhere between two functions in the target, and the line info was erroneously taken to be the one of the line before the pc. */ /* RT: Further explanation: * We have stubs (trampolines) inserted between procedures. * * Example: "shr1" exists in a shared library, and a "shr1" stub also * exists in the main image. * * In the minimal symbol table, we have a bunch of symbols * sorted by start address. The stubs are marked as "trampoline", * the others appear as text. E.g.: * * Minimal symbol table for main image * main: code for main (text symbol) * shr1: stub (trampoline symbol) * foo: code for foo (text symbol) * ... * Minimal symbol table for "shr1" image: * ... * shr1: code for shr1 (text symbol) * ... * * So the code below is trying to detect if we are in the stub * ("shr1" stub), and if so, find the real code ("shr1" trampoline), * and if found, do the symbolization from the real-code address * rather than the stub address. * * Assumptions being made about the minimal symbol table: * 1. lookup_minimal_symbol_by_pc() will return a trampoline only * if we're really in the trampoline.s If we're beyond it (say * we're in "foo" in the above example), it'll have a closer * symbol (the "foo" text symbol for example) and will not * return the trampoline. * 2. lookup_minimal_symbol_text() will find a real text symbol * corresponding to the trampoline, and whose address will * be different than the trampoline address. I put in a sanity * check for the address being the same, to avoid an * infinite recursion. */ msymbol = lookup_minimal_symbol_by_pc (pc); if (msymbol.minsym != NULL) if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) { struct bound_minimal_symbol mfunsym = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (), NULL); if (mfunsym.minsym == NULL) /* I eliminated this warning since it is coming out * in the following situation: * gdb shmain // test program with shared libraries * (gdb) break shr1 // function in shared lib * Warning: In stub for ... * In the above situation, the shared lib is not loaded yet, * so of course we can't find the real func/line info, * but the "break" still works, and the warning is annoying. * So I commented out the warning. RT */ /* warning ("In stub for %s; unable to find real function/line info", msymbol->linkage_name ()); */ ; /* fall through */ else if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == BMSYMBOL_VALUE_ADDRESS (msymbol)) /* Avoid infinite recursion */ /* See above comment about why warning is commented out. */ /* warning ("In stub for %s; unable to find real function/line info", msymbol->linkage_name ()); */ ; /* fall through */ else { /* Detect an obvious case of infinite recursion. If this should occur, we'd like to know about it, so error out, fatally. */ if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc) internal_error (__FILE__, __LINE__, _("Infinite recursion detected in find_pc_sect_line;" "please file a bug report")); return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0); } } symtab_and_line val; val.pspace = current_program_space; cust = find_pc_sect_compunit_symtab (pc, section); if (cust == NULL) { /* If no symbol information, return previous pc. */ if (notcurrent) pc++; val.pc = pc; return val; } bv = COMPUNIT_BLOCKVECTOR (cust); /* Look at all the symtabs that share this blockvector. They all have the same apriori range, that we found was right; but they have different line tables. */ for (symtab *iter_s : compunit_filetabs (cust)) { /* Find the best line in this symtab. */ l = SYMTAB_LINETABLE (iter_s); if (!l) continue; len = l->nitems; if (len <= 0) { /* I think len can be zero if the symtab lacks line numbers (e.g. gcc -g1). (Either that or the LINETABLE is NULL; I'm not sure which, and maybe it depends on the symbol reader). */ continue; } prev = NULL; item = l->item; /* Get first line info. */ /* Is this file's first line closer than the first lines of other files? If so, record this file, and its first line, as best alternate. */ if (item->pc > pc && (!alt || item->pc < alt->pc)) alt = item; auto pc_compare = [](const CORE_ADDR & comp_pc, const struct linetable_entry & lhs)->bool { return comp_pc < lhs.pc; }; struct linetable_entry *first = item; struct linetable_entry *last = item + len; item = std::upper_bound (first, last, pc, pc_compare); if (item != first) { /* Found a matching item. Skip backwards over any end of sequence markers. */ for (prev = item - 1; prev->line == 0 && prev != first; prev--) /* Nothing. */; } /* At this point, prev points at the line whose start addr is <= pc, and item points at the next line. If we ran off the end of the linetable (pc >= start of the last line), then prev == item. If pc < start of the first line, prev will not be set. */ /* Is this file's best line closer than the best in the other files? If so, record this file, and its best line, as best so far. Don't save prev if it represents the end of a function (i.e. line number 0) instead of a real line. */ if (prev && prev->line && (!best || prev->pc > best->pc)) { best = prev; best_symtab = iter_s; /* If during the binary search we land on a non-statement entry, scan backward through entries at the same address to see if there is an entry marked as is-statement. In theory this duplication should have been removed from the line table during construction, this is just a double check. If the line table has had the duplication removed then this should be pretty cheap. */ if (!best->is_stmt) { struct linetable_entry *tmp = best; while (tmp > first && (tmp - 1)->pc == tmp->pc && (tmp - 1)->line != 0 && !tmp->is_stmt) --tmp; if (tmp->is_stmt) best = tmp; } /* Discard BEST_END if it's before the PC of the current BEST. */ if (best_end <= best->pc) best_end = 0; } /* If another line (denoted by ITEM) is in the linetable and its PC is after BEST's PC, but before the current BEST_END, then use ITEM's PC as the new best_end. */ if (best && item < last && item->pc > best->pc && (best_end == 0 || best_end > item->pc)) best_end = item->pc; } if (!best_symtab) { /* If we didn't find any line number info, just return zeros. We used to return alt->line - 1 here, but that could be anywhere; if we don't have line number info for this PC, don't make some up. */ val.pc = pc; } else if (best->line == 0) { /* If our best fit is in a range of PC's for which no line number info is available (line number is zero) then we didn't find any valid line information. */ val.pc = pc; } else { val.is_stmt = best->is_stmt; val.symtab = best_symtab; val.line = best->line; val.pc = best->pc; if (best_end && (!alt || best_end < alt->pc)) val.end = best_end; else if (alt) val.end = alt->pc; else val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); } val.section = section; return val; } /* Backward compatibility (no section). */ struct symtab_and_line find_pc_line (CORE_ADDR pc, int notcurrent) { struct obj_section *section; section = find_pc_overlay (pc); if (pc_in_unmapped_range (pc, section)) pc = overlay_mapped_address (pc, section); return find_pc_sect_line (pc, section, notcurrent); } /* See symtab.h. */ struct symtab * find_pc_line_symtab (CORE_ADDR pc) { struct symtab_and_line sal; /* This always passes zero for NOTCURRENT to find_pc_line. There are currently no callers that ever pass non-zero. */ sal = find_pc_line (pc, 0); return sal.symtab; } /* Find line number LINE in any symtab whose name is the same as SYMTAB. If found, return the symtab that contains the linetable in which it was found, set *INDEX to the index in the linetable of the best entry found, and set *EXACT_MATCH to true if the value returned is an exact match. If not found, return NULL. */ struct symtab * find_line_symtab (struct symtab *sym_tab, int line, int *index, bool *exact_match) { int exact = 0; /* Initialized here to avoid a compiler warning. */ /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE so far seen. */ int best_index; struct linetable *best_linetable; struct symtab *best_symtab; /* First try looking it up in the given symtab. */ best_linetable = SYMTAB_LINETABLE (sym_tab); best_symtab = sym_tab; best_index = find_line_common (best_linetable, line, &exact, 0); if (best_index < 0 || !exact) { /* Didn't find an exact match. So we better keep looking for another symtab with the same name. In the case of xcoff, multiple csects for one source file (produced by IBM's FORTRAN compiler) produce multiple symtabs (this is unavoidable assuming csects can be at arbitrary places in memory and that the GLOBAL_BLOCK of a symtab has a begin and end address). */ /* BEST is the smallest linenumber > LINE so far seen, or 0 if none has been seen so far. BEST_INDEX and BEST_LINETABLE identify the item for it. */ int best; if (best_index >= 0) best = best_linetable->item[best_index].line; else best = 0; for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->sf) objfile->sf->qf->expand_symtabs_with_fullname (objfile, symtab_to_fullname (sym_tab)); } for (objfile *objfile : current_program_space->objfiles ()) { for (compunit_symtab *cu : objfile->compunits ()) { for (symtab *s : compunit_filetabs (cu)) { struct linetable *l; int ind; if (FILENAME_CMP (sym_tab->filename, s->filename) != 0) continue; if (FILENAME_CMP (symtab_to_fullname (sym_tab), symtab_to_fullname (s)) != 0) continue; l = SYMTAB_LINETABLE (s); ind = find_line_common (l, line, &exact, 0); if (ind >= 0) { if (exact) { best_index = ind; best_linetable = l; best_symtab = s; goto done; } if (best == 0 || l->item[ind].line < best) { best = l->item[ind].line; best_index = ind; best_linetable = l; best_symtab = s; } } } } } } done: if (best_index < 0) return NULL; if (index) *index = best_index; if (exact_match) *exact_match = (exact != 0); return best_symtab; } /* Given SYMTAB, returns all the PCs function in the symtab that exactly match LINE. Returns an empty vector if there are no exact matches, but updates BEST_ITEM in this case. */ std::vector find_pcs_for_symtab_line (struct symtab *symtab, int line, struct linetable_entry **best_item) { int start = 0; std::vector result; /* First, collect all the PCs that are at this line. */ while (1) { int was_exact; int idx; idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact, start); if (idx < 0) break; if (!was_exact) { struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx]; if (*best_item == NULL || (item->line < (*best_item)->line && item->is_stmt)) *best_item = item; break; } result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc); start = idx + 1; } return result; } /* Set the PC value for a given source file and line number and return true. Returns false for invalid line number (and sets the PC to 0). The source file is specified with a struct symtab. */ bool find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) { struct linetable *l; int ind; *pc = 0; if (symtab == 0) return false; symtab = find_line_symtab (symtab, line, &ind, NULL); if (symtab != NULL) { l = SYMTAB_LINETABLE (symtab); *pc = l->item[ind].pc; return true; } else return false; } /* Find the range of pc values in a line. Store the starting pc of the line into *STARTPTR and the ending pc (start of next line) into *ENDPTR. Returns true to indicate success. Returns false if could not find the specified line. */ bool find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, CORE_ADDR *endptr) { CORE_ADDR startaddr; struct symtab_and_line found_sal; startaddr = sal.pc; if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) return false; /* This whole function is based on address. For example, if line 10 has two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then "info line *0x123" should say the line goes from 0x100 to 0x200 and "info line *0x355" should say the line goes from 0x300 to 0x400. This also insures that we never give a range like "starts at 0x134 and ends at 0x12c". */ found_sal = find_pc_sect_line (startaddr, sal.section, 0); if (found_sal.line != sal.line) { /* The specified line (sal) has zero bytes. */ *startptr = found_sal.pc; *endptr = found_sal.pc; } else { *startptr = found_sal.pc; *endptr = found_sal.end; } return true; } /* Given a line table and a line number, return the index into the line table for the pc of the nearest line whose number is >= the specified one. Return -1 if none is found. The value is >= 0 if it is an index. START is the index at which to start searching the line table. Set *EXACT_MATCH nonzero if the value returned is an exact match. */ static int find_line_common (struct linetable *l, int lineno, int *exact_match, int start) { int i; int len; /* BEST is the smallest linenumber > LINENO so far seen, or 0 if none has been seen so far. BEST_INDEX identifies the item for it. */ int best_index = -1; int best = 0; *exact_match = 0; if (lineno <= 0) return -1; if (l == 0) return -1; len = l->nitems; for (i = start; i < len; i++) { struct linetable_entry *item = &(l->item[i]); /* Ignore non-statements. */ if (!item->is_stmt) continue; if (item->line == lineno) { /* Return the first (lowest address) entry which matches. */ *exact_match = 1; return i; } if (item->line > lineno && (best == 0 || item->line < best)) { best = item->line; best_index = i; } } /* If we got here, we didn't get an exact match. */ return best_index; } bool find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) { struct symtab_and_line sal; sal = find_pc_line (pc, 0); *startptr = sal.pc; *endptr = sal.end; return sal.symtab != 0; } /* Helper for find_function_start_sal. Does most of the work, except setting the sal's symbol. */ static symtab_and_line find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section, bool funfirstline) { symtab_and_line sal = find_pc_sect_line (func_addr, section, 0); if (funfirstline && sal.symtab != NULL && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab)) || SYMTAB_LANGUAGE (sal.symtab) == language_asm)) { struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch (); sal.pc = func_addr; if (gdbarch_skip_entrypoint_p (gdbarch)) sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc); return sal; } /* We always should have a line for the function start address. If we don't, something is odd. Create a plain SAL referring just the PC and hope that skip_prologue_sal (if requested) can find a line number for after the prologue. */ if (sal.pc < func_addr) { sal = {}; sal.pspace = current_program_space; sal.pc = func_addr; sal.section = section; } if (funfirstline) skip_prologue_sal (&sal); return sal; } /* See symtab.h. */ symtab_and_line find_function_start_sal (CORE_ADDR func_addr, obj_section *section, bool funfirstline) { symtab_and_line sal = find_function_start_sal_1 (func_addr, section, funfirstline); /* find_function_start_sal_1 does a linetable search, so it finds the symtab and linenumber, but not a symbol. Fill in the function symbol too. */ sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section); return sal; } /* See symtab.h. */ symtab_and_line find_function_start_sal (symbol *sym, bool funfirstline) { fixup_symbol_section (sym, NULL); symtab_and_line sal = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)), SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym), funfirstline); sal.symbol = sym; return sal; } /* Given a function start address FUNC_ADDR and SYMTAB, find the first address for that function that has an entry in SYMTAB's line info table. If such an entry cannot be found, return FUNC_ADDR unaltered. */ static CORE_ADDR skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) { CORE_ADDR func_start, func_end; struct linetable *l; int i; /* Give up if this symbol has no lineinfo table. */ l = SYMTAB_LINETABLE (symtab); if (l == NULL) return func_addr; /* Get the range for the function's PC values, or give up if we cannot, for some reason. */ if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) return func_addr; /* Linetable entries are ordered by PC values, see the commentary in symtab.h where `struct linetable' is defined. Thus, the first entry whose PC is in the range [FUNC_START..FUNC_END[ is the address we are looking for. */ for (i = 0; i < l->nitems; i++) { struct linetable_entry *item = &(l->item[i]); /* Don't use line numbers of zero, they mark special entries in the table. See the commentary on symtab.h before the definition of struct linetable. */ if (item->line > 0 && func_start <= item->pc && item->pc < func_end) return item->pc; } return func_addr; } /* Adjust SAL to the first instruction past the function prologue. If the PC was explicitly specified, the SAL is not changed. If the line number was explicitly specified then the SAL can still be updated, unless the language for SAL is assembler, in which case the SAL will be left unchanged. If SAL is already past the prologue, then do nothing. */ void skip_prologue_sal (struct symtab_and_line *sal) { struct symbol *sym; struct symtab_and_line start_sal; CORE_ADDR pc, saved_pc; struct obj_section *section; const char *name; struct objfile *objfile; struct gdbarch *gdbarch; const struct block *b, *function_block; int force_skip, skip; /* Do not change the SAL if PC was specified explicitly. */ if (sal->explicit_pc) return; /* In assembly code, if the user asks for a specific line then we should not adjust the SAL. The user already has instruction level visibility in this case, so selecting a line other than one requested is likely to be the wrong choice. */ if (sal->symtab != nullptr && sal->explicit_line && SYMTAB_LANGUAGE (sal->symtab) == language_asm) return; scoped_restore_current_pspace_and_thread restore_pspace_thread; switch_to_program_space_and_thread (sal->pspace); sym = find_pc_sect_function (sal->pc, sal->section); if (sym != NULL) { fixup_symbol_section (sym, NULL); objfile = symbol_objfile (sym); pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); section = SYMBOL_OBJ_SECTION (objfile, sym); name = sym->linkage_name (); } else { struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); if (msymbol.minsym == NULL) return; objfile = msymbol.objfile; pc = BMSYMBOL_VALUE_ADDRESS (msymbol); section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym); name = msymbol.minsym->linkage_name (); } gdbarch = objfile->arch (); /* Process the prologue in two passes. In the first pass try to skip the prologue (SKIP is true) and verify there is a real need for it (indicated by FORCE_SKIP). If no such reason was found run a second pass where the prologue is not skipped (SKIP is false). */ skip = 1; force_skip = 1; /* Be conservative - allow direct PC (without skipping prologue) only if we have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not have to be set by the caller so we use SYM instead. */ if (sym != NULL && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym)))) force_skip = 0; saved_pc = pc; do { pc = saved_pc; /* If the function is in an unmapped overlay, use its unmapped LMA address, so that gdbarch_skip_prologue has something unique to work on. */ if (section_is_overlay (section) && !section_is_mapped (section)) pc = overlay_unmapped_address (pc, section); /* Skip "first line" of function (which is actually its prologue). */ pc += gdbarch_deprecated_function_start_offset (gdbarch); if (gdbarch_skip_entrypoint_p (gdbarch)) pc = gdbarch_skip_entrypoint (gdbarch, pc); if (skip) pc = gdbarch_skip_prologue_noexcept (gdbarch, pc); /* For overlays, map pc back into its mapped VMA range. */ pc = overlay_mapped_address (pc, section); /* Calculate line number. */ start_sal = find_pc_sect_line (pc, section, 0); /* Check if gdbarch_skip_prologue left us in mid-line, and the next line is still part of the same function. */ if (skip && start_sal.pc != pc && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) { /* First pc of next line */ pc = start_sal.end; /* Recalculate the line number (might not be N+1). */ start_sal = find_pc_sect_line (pc, section, 0); } /* On targets with executable formats that don't have a concept of constructors (ELF with .init has, PE doesn't), gcc emits a call to `__main' in `main' between the prologue and before user code. */ if (gdbarch_skip_main_prologue_p (gdbarch) && name && strcmp_iw (name, "main") == 0) { pc = gdbarch_skip_main_prologue (gdbarch, pc); /* Recalculate the line number (might not be N+1). */ start_sal = find_pc_sect_line (pc, section, 0); force_skip = 1; } } while (!force_skip && skip--); /* If we still don't have a valid source line, try to find the first PC in the lineinfo table that belongs to the same function. This happens with COFF debug info, which does not seem to have an entry in lineinfo table for the code after the prologue which has no direct relation to source. For example, this was found to be the case with the DJGPP target using "gcc -gcoff" when the compiler inserted code after the prologue to make sure the stack is aligned. */ if (!force_skip && sym && start_sal.symtab == NULL) { pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym)); /* Recalculate the line number. */ start_sal = find_pc_sect_line (pc, section, 0); } /* If we're already past the prologue, leave SAL unchanged. Otherwise forward SAL to the end of the prologue. */ if (sal->pc >= pc) return; sal->pc = pc; sal->section = section; sal->symtab = start_sal.symtab; sal->line = start_sal.line; sal->end = start_sal.end; /* Check if we are now inside an inlined function. If we can, use the call site of the function instead. */ b = block_for_pc_sect (sal->pc, sal->section); function_block = NULL; while (b != NULL) { if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) function_block = b; else if (BLOCK_FUNCTION (b) != NULL) break; b = BLOCK_SUPERBLOCK (b); } if (function_block != NULL && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0) { sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block)); sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block)); } } /* Given PC at the function's start address, attempt to find the prologue end using SAL information. Return zero if the skip fails. A non-optimized prologue traditionally has one SAL for the function and a second for the function body. A single line function has them both pointing at the same line. An optimized prologue is similar but the prologue may contain instructions (SALs) from the instruction body. Need to skip those while not getting into the function body. The functions end point and an increasing SAL line are used as indicators of the prologue's endpoint. This code is based on the function refine_prologue_limit (found in ia64). */ CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) { struct symtab_and_line prologue_sal; CORE_ADDR start_pc; CORE_ADDR end_pc; const struct block *bl; /* Get an initial range for the function. */ find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); start_pc += gdbarch_deprecated_function_start_offset (gdbarch); prologue_sal = find_pc_line (start_pc, 0); if (prologue_sal.line != 0) { /* For languages other than assembly, treat two consecutive line entries at the same address as a zero-instruction prologue. The GNU assembler emits separate line notes for each instruction in a multi-instruction macro, but compilers generally will not do this. */ if (prologue_sal.symtab->language != language_asm) { struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab); int idx = 0; /* Skip any earlier lines, and any end-of-sequence marker from a previous function. */ while (linetable->item[idx].pc != prologue_sal.pc || linetable->item[idx].line == 0) idx++; if (idx+1 < linetable->nitems && linetable->item[idx+1].line != 0 && linetable->item[idx+1].pc == start_pc) return start_pc; } /* If there is only one sal that covers the entire function, then it is probably a single line function, like "foo(){}". */ if (prologue_sal.end >= end_pc) return 0; while (prologue_sal.end < end_pc) { struct symtab_and_line sal; sal = find_pc_line (prologue_sal.end, 0); if (sal.line == 0) break; /* Assume that a consecutive SAL for the same (or larger) line mark the prologue -> body transition. */ if (sal.line >= prologue_sal.line) break; /* Likewise if we are in a different symtab altogether (e.g. within a file included via #include).  */ if (sal.symtab != prologue_sal.symtab) break; /* The line number is smaller. Check that it's from the same function, not something inlined. If it's inlined, then there is no point comparing the line numbers. */ bl = block_for_pc (prologue_sal.end); while (bl) { if (block_inlined_p (bl)) break; if (BLOCK_FUNCTION (bl)) { bl = NULL; break; } bl = BLOCK_SUPERBLOCK (bl); } if (bl != NULL) break; /* The case in which compiler's optimizer/scheduler has moved instructions into the prologue. We look ahead in the function looking for address ranges whose corresponding line number is less the first one that we found for the function. This is more conservative then refine_prologue_limit which scans a large number of SALs looking for any in the prologue. */ prologue_sal = sal; } } if (prologue_sal.end < end_pc) /* Return the end of this line, or zero if we could not find a line. */ return prologue_sal.end; else /* Don't return END_PC, which is past the end of the function. */ return prologue_sal.pc; } /* See symtab.h. */ symbol * find_function_alias_target (bound_minimal_symbol msymbol) { CORE_ADDR func_addr; if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr)) return NULL; symbol *sym = find_pc_function (func_addr); if (sym != NULL && SYMBOL_CLASS (sym) == LOC_BLOCK && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr) return sym; return NULL; } /* If P is of the form "operator[ \t]+..." where `...' is some legitimate operator text, return a pointer to the beginning of the substring of the operator text. Otherwise, return "". */ static const char * operator_chars (const char *p, const char **end) { *end = ""; if (!startswith (p, CP_OPERATOR_STR)) return *end; p += CP_OPERATOR_LEN; /* Don't get faked out by `operator' being part of a longer identifier. */ if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') return *end; /* Allow some whitespace between `operator' and the operator symbol. */ while (*p == ' ' || *p == '\t') p++; /* Recognize 'operator TYPENAME'. */ if (isalpha (*p) || *p == '_' || *p == '$') { const char *q = p + 1; while (isalnum (*q) || *q == '_' || *q == '$') q++; *end = q; return p; } while (*p) switch (*p) { case '\\': /* regexp quoting */ if (p[1] == '*') { if (p[2] == '=') /* 'operator\*=' */ *end = p + 3; else /* 'operator\*' */ *end = p + 2; return p; } else if (p[1] == '[') { if (p[2] == ']') error (_("mismatched quoting on brackets, " "try 'operator\\[\\]'")); else if (p[2] == '\\' && p[3] == ']') { *end = p + 4; /* 'operator\[\]' */ return p; } else error (_("nothing is allowed between '[' and ']'")); } else { /* Gratuitous quote: skip it and move on. */ p++; continue; } break; case '!': case '=': case '*': case '/': case '%': case '^': if (p[1] == '=') *end = p + 2; else *end = p + 1; return p; case '<': case '>': case '+': case '-': case '&': case '|': if (p[0] == '-' && p[1] == '>') { /* Struct pointer member operator 'operator->'. */ if (p[2] == '*') { *end = p + 3; /* 'operator->*' */ return p; } else if (p[2] == '\\') { *end = p + 4; /* Hopefully 'operator->\*' */ return p; } else { *end = p + 2; /* 'operator->' */ return p; } } if (p[1] == '=' || p[1] == p[0]) *end = p + 2; else *end = p + 1; return p; case '~': case ',': *end = p + 1; return p; case '(': if (p[1] != ')') error (_("`operator ()' must be specified " "without whitespace in `()'")); *end = p + 2; return p; case '?': if (p[1] != ':') error (_("`operator ?:' must be specified " "without whitespace in `?:'")); *end = p + 2; return p; case '[': if (p[1] != ']') error (_("`operator []' must be specified " "without whitespace in `[]'")); *end = p + 2; return p; default: error (_("`operator %s' not supported"), p); break; } *end = ""; return *end; } /* What part to match in a file name. */ struct filename_partial_match_opts { /* Only match the directory name part. */ bool dirname = false; /* Only match the basename part. */ bool basename = false; }; /* Data structure to maintain printing state for output_source_filename. */ struct output_source_filename_data { /* Output only filenames matching REGEXP. */ std::string regexp; gdb::optional c_regexp; /* Possibly only match a part of the filename. */ filename_partial_match_opts partial_match; /* Cache of what we've seen so far. */ struct filename_seen_cache *filename_seen_cache; /* Flag of whether we're printing the first one. */ int first; }; /* Slave routine for sources_info. Force line breaks at ,'s. NAME is the name to print. DATA contains the state for printing and watching for duplicates. */ static void output_source_filename (const char *name, struct output_source_filename_data *data) { /* Since a single source file can result in several partial symbol tables, we need to avoid printing it more than once. Note: if some of the psymtabs are read in and some are not, it gets printed both under "Source files for which symbols have been read" and "Source files for which symbols will be read in on demand". I consider this a reasonable way to deal with the situation. I'm not sure whether this can also happen for symtabs; it doesn't hurt to check. */ /* Was NAME already seen? */ if (data->filename_seen_cache->seen (name)) { /* Yes; don't print it again. */ return; } /* Does it match data->regexp? */ if (data->c_regexp.has_value ()) { const char *to_match; std::string dirname; if (data->partial_match.dirname) { dirname = ldirname (name); to_match = dirname.c_str (); } else if (data->partial_match.basename) to_match = lbasename (name); else to_match = name; if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0) return; } /* Print it and reset *FIRST. */ if (! data->first) printf_filtered (", "); data->first = 0; wrap_here (""); fputs_styled (name, file_name_style.style (), gdb_stdout); } /* A callback for map_partial_symbol_filenames. */ static void output_partial_symbol_filename (const char *filename, const char *fullname, void *data) { output_source_filename (fullname ? fullname : filename, (struct output_source_filename_data *) data); } using isrc_flag_option_def = gdb::option::flag_option_def; static const gdb::option::option_def info_sources_option_defs[] = { isrc_flag_option_def { "dirname", [] (filename_partial_match_opts *opts) { return &opts->dirname; }, N_("Show only the files having a dirname matching REGEXP."), }, isrc_flag_option_def { "basename", [] (filename_partial_match_opts *opts) { return &opts->basename; }, N_("Show only the files having a basename matching REGEXP."), }, }; /* Create an option_def_group for the "info sources" options, with ISRC_OPTS as context. */ static inline gdb::option::option_def_group make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts) { return {{info_sources_option_defs}, isrc_opts}; } /* Prints the header message for the source files that will be printed with the matching info present in DATA. SYMBOL_MSG is a message that tells what will or has been done with the symbols of the matching source files. */ static void print_info_sources_header (const char *symbol_msg, const struct output_source_filename_data *data) { puts_filtered (symbol_msg); if (!data->regexp.empty ()) { if (data->partial_match.dirname) printf_filtered (_("(dirname matching regular expression \"%s\")"), data->regexp.c_str ()); else if (data->partial_match.basename) printf_filtered (_("(basename matching regular expression \"%s\")"), data->regexp.c_str ()); else printf_filtered (_("(filename matching regular expression \"%s\")"), data->regexp.c_str ()); } puts_filtered ("\n"); } /* Completer for "info sources". */ static void info_sources_command_completer (cmd_list_element *ignore, completion_tracker &tracker, const char *text, const char *word) { const auto group = make_info_sources_options_def_group (nullptr); if (gdb::option::complete_options (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) return; } static void info_sources_command (const char *args, int from_tty) { struct output_source_filename_data data; if (!have_full_symbols () && !have_partial_symbols ()) { error (_("No symbol table is loaded. Use the \"file\" command.")); } filename_seen_cache filenames_seen; auto group = make_info_sources_options_def_group (&data.partial_match); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group); if (args != NULL && *args != '\000') data.regexp = args; data.filename_seen_cache = &filenames_seen; data.first = 1; if (data.partial_match.dirname && data.partial_match.basename) error (_("You cannot give both -basename and -dirname to 'info sources'.")); if ((data.partial_match.dirname || data.partial_match.basename) && data.regexp.empty ()) error (_("Missing REGEXP for 'info sources'.")); if (data.regexp.empty ()) data.c_regexp.reset (); else { int cflags = REG_NOSUB; #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM cflags |= REG_ICASE; #endif data.c_regexp.emplace (data.regexp.c_str (), cflags, _("Invalid regexp")); } print_info_sources_header (_("Source files for which symbols have been read in:\n"), &data); for (objfile *objfile : current_program_space->objfiles ()) { for (compunit_symtab *cu : objfile->compunits ()) { for (symtab *s : compunit_filetabs (cu)) { const char *fullname = symtab_to_fullname (s); output_source_filename (fullname, &data); } } } printf_filtered ("\n\n"); print_info_sources_header (_("Source files for which symbols will be read in on demand:\n"), &data); filenames_seen.clear (); data.first = 1; map_symbol_filenames (output_partial_symbol_filename, &data, 1 /*need_fullname*/); printf_filtered ("\n"); } /* Compare FILE against all the entries of FILENAMES. If BASENAMES is true compare only lbasename of FILENAMES. */ static bool file_matches (const char *file, const std::vector &filenames, bool basenames) { if (filenames.empty ()) return true; for (const char *name : filenames) { name = (basenames ? lbasename (name) : name); if (compare_filenames_for_search (file, name)) return true; } return false; } /* Helper function for std::sort on symbol_search objects. Can only sort symbols, not minimal symbols. */ int symbol_search::compare_search_syms (const symbol_search &sym_a, const symbol_search &sym_b) { int c; c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename, symbol_symtab (sym_b.symbol)->filename); if (c != 0) return c; if (sym_a.block != sym_b.block) return sym_a.block - sym_b.block; return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ()); } /* Returns true if the type_name of symbol_type of SYM matches TREG. If SYM has no symbol_type or symbol_name, returns false. */ bool treg_matches_sym_type_name (const compiled_regex &treg, const struct symbol *sym) { struct type *sym_type; std::string printed_sym_type_name; if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, "treg_matches_sym_type_name\n sym %s\n", sym->natural_name ()); } sym_type = SYMBOL_TYPE (sym); if (sym_type == NULL) return false; { scoped_switch_to_sym_language_if_auto l (sym); printed_sym_type_name = type_to_string (sym_type); } if (symbol_lookup_debug > 1) { fprintf_unfiltered (gdb_stdlog, " sym_type_name %s\n", printed_sym_type_name.c_str ()); } if (printed_sym_type_name.empty ()) return false; return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0; } /* See symtab.h. */ bool global_symbol_searcher::is_suitable_msymbol (const enum search_domain kind, const minimal_symbol *msymbol) { switch (MSYMBOL_TYPE (msymbol)) { case mst_data: case mst_bss: case mst_file_data: case mst_file_bss: return kind == VARIABLES_DOMAIN; case mst_text: case mst_file_text: case mst_solib_trampoline: case mst_text_gnu_ifunc: return kind == FUNCTIONS_DOMAIN; default: return false; } } /* See symtab.h. */ bool global_symbol_searcher::expand_symtabs (objfile *objfile, const gdb::optional &preg) const { enum search_domain kind = m_kind; bool found_msymbol = false; if (objfile->sf) objfile->sf->qf->expand_symtabs_matching (objfile, [&] (const char *filename, bool basenames) { return file_matches (filename, filenames, basenames); }, &lookup_name_info::match_any (), [&] (const char *symname) { return (!preg.has_value () || preg->exec (symname, 0, NULL, 0) == 0); }, NULL, kind); /* Here, we search through the minimal symbol tables for functions and variables that match, and force their symbols to be read. This is in particular necessary for demangled variable names, which are no longer put into the partial symbol tables. The symbol will then be found during the scan of symtabs later. For functions, find_pc_symtab should succeed if we have debug info for the function, for variables we have to call lookup_symbol_in_objfile_from_linkage_name to determine if the variable has debug info. If the lookup fails, set found_msymbol so that we will rescan to print any matching symbols without debug info. We only search the objfile the msymbol came from, we no longer search all objfiles. In large programs (1000s of shared libs) searching all objfiles is not worth the pain. */ if (filenames.empty () && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) { for (minimal_symbol *msymbol : objfile->msymbols ()) { QUIT; if (msymbol->created_by_gdb) continue; if (is_suitable_msymbol (kind, msymbol)) { if (!preg.has_value () || preg->exec (msymbol->natural_name (), 0, NULL, 0) == 0) { /* An important side-effect of these lookup functions is to expand the symbol table if msymbol is found, later in the process we will add matching symbols or msymbols to the results list, and that requires that the symbols tables are expanded. */ if (kind == FUNCTIONS_DOMAIN ? (find_pc_compunit_symtab (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL) : (lookup_symbol_in_objfile_from_linkage_name (objfile, msymbol->linkage_name (), VAR_DOMAIN) .symbol == NULL)) found_msymbol = true; } } } } return found_msymbol; } /* See symtab.h. */ bool global_symbol_searcher::add_matching_symbols (objfile *objfile, const gdb::optional &preg, const gdb::optional &treg, std::set *result_set) const { enum search_domain kind = m_kind; /* Add matching symbols (if not already present). */ for (compunit_symtab *cust : objfile->compunits ()) { const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust); for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK }) { struct block_iterator iter; struct symbol *sym; const struct block *b = BLOCKVECTOR_BLOCK (bv, block); ALL_BLOCK_SYMBOLS (b, iter, sym) { struct symtab *real_symtab = symbol_symtab (sym); QUIT; /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be a substring of symtab_to_fullname as it may contain "./" etc. */ if ((file_matches (real_symtab->filename, filenames, false) || ((basenames_may_differ || file_matches (lbasename (real_symtab->filename), filenames, true)) && file_matches (symtab_to_fullname (real_symtab), filenames, false))) && ((!preg.has_value () || preg->exec (sym->natural_name (), 0, NULL, 0) == 0) && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF && SYMBOL_CLASS (sym) != LOC_UNRESOLVED && SYMBOL_CLASS (sym) != LOC_BLOCK /* LOC_CONST can be used for more than just enums, e.g., c++ static const members. We only want to skip enums here. */ && !(SYMBOL_CLASS (sym) == LOC_CONST && (SYMBOL_TYPE (sym)->code () == TYPE_CODE_ENUM)) && (!treg.has_value () || treg_matches_sym_type_name (*treg, sym))) || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK && (!treg.has_value () || treg_matches_sym_type_name (*treg, sym))) || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN) || (kind == MODULES_DOMAIN && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN && SYMBOL_LINE (sym) != 0)))) { if (result_set->size () < m_max_search_results) { /* Match, insert if not already in the results. */ symbol_search ss (block, sym); if (result_set->find (ss) == result_set->end ()) result_set->insert (ss); } else return false; } } } } return true; } /* See symtab.h. */ bool global_symbol_searcher::add_matching_msymbols (objfile *objfile, const gdb::optional &preg, std::vector *results) const { enum search_domain kind = m_kind; for (minimal_symbol *msymbol : objfile->msymbols ()) { QUIT; if (msymbol->created_by_gdb) continue; if (is_suitable_msymbol (kind, msymbol)) { if (!preg.has_value () || preg->exec (msymbol->natural_name (), 0, NULL, 0) == 0) { /* For functions we can do a quick check of whether the symbol might be found via find_pc_symtab. */ if (kind != FUNCTIONS_DOMAIN || (find_pc_compunit_symtab (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)) { if (lookup_symbol_in_objfile_from_linkage_name (objfile, msymbol->linkage_name (), VAR_DOMAIN).symbol == NULL) { /* Matching msymbol, add it to the results list. */ if (results->size () < m_max_search_results) results->emplace_back (GLOBAL_BLOCK, msymbol, objfile); else return false; } } } } } return true; } /* See symtab.h. */ std::vector global_symbol_searcher::search () const { gdb::optional preg; gdb::optional treg; gdb_assert (m_kind != ALL_DOMAIN); if (m_symbol_name_regexp != NULL) { const char *symbol_name_regexp = m_symbol_name_regexp; /* Make sure spacing is right for C++ operators. This is just a courtesy to make the matching less sensitive to how many spaces the user leaves between 'operator' and or . */ const char *opend; const char *opname = operator_chars (symbol_name_regexp, &opend); if (*opname) { int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ if (isalpha (*opname) || *opname == '_' || *opname == '$') { /* There should 1 space between 'operator' and 'TYPENAME'. */ if (opname[-1] != ' ' || opname[-2] == ' ') fix = 1; } else { /* There should 0 spaces between 'operator' and 'OPERATOR'. */ if (opname[-1] == ' ') fix = 0; } /* If wrong number of spaces, fix it. */ if (fix >= 0) { char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); sprintf (tmp, "operator%.*s%s", fix, " ", opname); symbol_name_regexp = tmp; } } int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off ? REG_ICASE : 0); preg.emplace (symbol_name_regexp, cflags, _("Invalid regexp")); } if (m_symbol_type_regexp != NULL) { int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off ? REG_ICASE : 0); treg.emplace (m_symbol_type_regexp, cflags, _("Invalid regexp")); } bool found_msymbol = false; std::set result_set; for (objfile *objfile : current_program_space->objfiles ()) { /* Expand symtabs within objfile that possibly contain matching symbols. */ found_msymbol |= expand_symtabs (objfile, preg); /* Find matching symbols within OBJFILE and add them in to the RESULT_SET set. Use a set here so that we can easily detect duplicates as we go, and can therefore track how many unique matches we have found so far. */ if (!add_matching_symbols (objfile, preg, treg, &result_set)) break; } /* Convert the result set into a sorted result list, as std::set is defined to be sorted then no explicit call to std::sort is needed. */ std::vector result (result_set.begin (), result_set.end ()); /* If there are no debug symbols, then add matching minsyms. But if the user wants to see symbols matching a type regexp, then never give a minimal symbol, as we assume that a minimal symbol does not have a type. */ if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN)) && !m_exclude_minsyms && !treg.has_value ()) { gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN); for (objfile *objfile : current_program_space->objfiles ()) if (!add_matching_msymbols (objfile, preg, &result)) break; } return result; } /* See symtab.h. */ std::string symbol_to_info_string (struct symbol *sym, int block, enum search_domain kind) { std::string str; gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK); if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) str += "static "; /* Typedef that is not a C++ class. */ if (kind == TYPES_DOMAIN && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) { string_file tmp_stream; /* FIXME: For C (and C++) we end up with a difference in output here between how a typedef is printed, and non-typedefs are printed. The TYPEDEF_PRINT code places a ";" at the end in an attempt to appear C-like, while TYPE_PRINT doesn't. For the struct printing case below, things are worse, we force printing of the ";" in this function, which is going to be wrong for languages that don't require a ";" between statements. */ if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF) typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream); else type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1); str += tmp_stream.string (); } /* variable, func, or typedef-that-is-c++-class. */ else if (kind < TYPES_DOMAIN || (kind == TYPES_DOMAIN && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) { string_file tmp_stream; type_print (SYMBOL_TYPE (sym), (SYMBOL_CLASS (sym) == LOC_TYPEDEF ? "" : sym->print_name ()), &tmp_stream, 0); str += tmp_stream.string (); str += ";"; } /* Printing of modules is currently done here, maybe at some future point we might want a language specific method to print the module symbol so that we can customise the output more. */ else if (kind == MODULES_DOMAIN) str += sym->print_name (); return str; } /* Helper function for symbol info commands, for example 'info functions', 'info variables', etc. KIND is the kind of symbol we searched for, and BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL, print file and line number information for the symbol as well. Skip printing the filename if it matches LAST. */ static void print_symbol_info (enum search_domain kind, struct symbol *sym, int block, const char *last) { scoped_switch_to_sym_language_if_auto l (sym); struct symtab *s = symbol_symtab (sym); if (last != NULL) { const char *s_filename = symtab_to_filename_for_display (s); if (filename_cmp (last, s_filename) != 0) { printf_filtered (_("\nFile %ps:\n"), styled_string (file_name_style.style (), s_filename)); } if (SYMBOL_LINE (sym) != 0) printf_filtered ("%d:\t", SYMBOL_LINE (sym)); else puts_filtered ("\t"); } std::string str = symbol_to_info_string (sym, block, kind); printf_filtered ("%s\n", str.c_str ()); } /* This help function for symtab_symbol_info() prints information for non-debugging symbols to gdb_stdout. */ static void print_msymbol_info (struct bound_minimal_symbol msymbol) { struct gdbarch *gdbarch = msymbol.objfile->arch (); char *tmp; if (gdbarch_addr_bit (gdbarch) <= 32) tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol) & (CORE_ADDR) 0xffffffff, 8); else tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol), 16); ui_file_style sym_style = (msymbol.minsym->text_p () ? function_name_style.style () : ui_file_style ()); printf_filtered (_("%ps %ps\n"), styled_string (address_style.style (), tmp), styled_string (sym_style, msymbol.minsym->print_name ())); } /* This is the guts of the commands "info functions", "info types", and "info variables". It calls search_symbols to find all matches and then print_[m]symbol_info to print out some useful information about the matches. */ static void symtab_symbol_info (bool quiet, bool exclude_minsyms, const char *regexp, enum search_domain kind, const char *t_regexp, int from_tty) { static const char * const classnames[] = {"variable", "function", "type", "module"}; const char *last_filename = ""; int first = 1; gdb_assert (kind != ALL_DOMAIN); if (regexp != nullptr && *regexp == '\0') regexp = nullptr; global_symbol_searcher spec (kind, regexp); spec.set_symbol_type_regexp (t_regexp); spec.set_exclude_minsyms (exclude_minsyms); std::vector symbols = spec.search (); if (!quiet) { if (regexp != NULL) { if (t_regexp != NULL) printf_filtered (_("All %ss matching regular expression \"%s\"" " with type matching regular expression \"%s\":\n"), classnames[kind], regexp, t_regexp); else printf_filtered (_("All %ss matching regular expression \"%s\":\n"), classnames[kind], regexp); } else { if (t_regexp != NULL) printf_filtered (_("All defined %ss" " with type matching regular expression \"%s\" :\n"), classnames[kind], t_regexp); else printf_filtered (_("All defined %ss:\n"), classnames[kind]); } } for (const symbol_search &p : symbols) { QUIT; if (p.msymbol.minsym != NULL) { if (first) { if (!quiet) printf_filtered (_("\nNon-debugging symbols:\n")); first = 0; } print_msymbol_info (p.msymbol); } else { print_symbol_info (kind, p.symbol, p.block, last_filename); last_filename = symtab_to_filename_for_display (symbol_symtab (p.symbol)); } } } /* Structure to hold the values of the options used by the 'info variables' and 'info functions' commands. These correspond to the -q, -t, and -n options. */ struct info_vars_funcs_options { bool quiet = false; bool exclude_minsyms = false; char *type_regexp = nullptr; ~info_vars_funcs_options () { xfree (type_regexp); } }; /* The options used by the 'info variables' and 'info functions' commands. */ static const gdb::option::option_def info_vars_funcs_options_defs[] = { gdb::option::boolean_option_def { "q", [] (info_vars_funcs_options *opt) { return &opt->quiet; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ }, gdb::option::boolean_option_def { "n", [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ }, gdb::option::string_option_def { "t", [] (info_vars_funcs_options *opt) { return &opt->type_regexp; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ } }; /* Returns the option group used by 'info variables' and 'info functions'. */ static gdb::option::option_def_group make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts) { return {{info_vars_funcs_options_defs}, opts}; } /* Command completer for 'info variables' and 'info functions'. */ static void info_vars_funcs_command_completer (struct cmd_list_element *ignore, completion_tracker &tracker, const char *text, const char * /* word */) { const auto group = make_info_vars_funcs_options_def_group (nullptr); if (gdb::option::complete_options (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) return; const char *word = advance_to_expression_complete_word_point (tracker, text); symbol_completer (ignore, tracker, text, word); } /* Implement the 'info variables' command. */ static void info_variables_command (const char *args, int from_tty) { info_vars_funcs_options opts; auto grp = make_info_vars_funcs_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN, opts.type_regexp, from_tty); } /* Implement the 'info functions' command. */ static void info_functions_command (const char *args, int from_tty) { info_vars_funcs_options opts; auto grp = make_info_vars_funcs_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN, opts.type_regexp, from_tty); } /* Holds the -q option for the 'info types' command. */ struct info_types_options { bool quiet = false; }; /* The options used by the 'info types' command. */ static const gdb::option::option_def info_types_options_defs[] = { gdb::option::boolean_option_def { "q", [] (info_types_options *opt) { return &opt->quiet; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ } }; /* Returns the option group used by 'info types'. */ static gdb::option::option_def_group make_info_types_options_def_group (info_types_options *opts) { return {{info_types_options_defs}, opts}; } /* Implement the 'info types' command. */ static void info_types_command (const char *args, int from_tty) { info_types_options opts; auto grp = make_info_types_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty); } /* Command completer for 'info types' command. */ static void info_types_command_completer (struct cmd_list_element *ignore, completion_tracker &tracker, const char *text, const char * /* word */) { const auto group = make_info_types_options_def_group (nullptr); if (gdb::option::complete_options (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) return; const char *word = advance_to_expression_complete_word_point (tracker, text); symbol_completer (ignore, tracker, text, word); } /* Implement the 'info modules' command. */ static void info_modules_command (const char *args, int from_tty) { info_types_options opts; auto grp = make_info_types_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL, from_tty); } static void rbreak_command (const char *regexp, int from_tty) { std::string string; const char *file_name = nullptr; if (regexp != nullptr) { const char *colon = strchr (regexp, ':'); if (colon && *(colon + 1) != ':') { int colon_index; char *local_name; colon_index = colon - regexp; local_name = (char *) alloca (colon_index + 1); memcpy (local_name, regexp, colon_index); local_name[colon_index--] = 0; while (isspace (local_name[colon_index])) local_name[colon_index--] = 0; file_name = local_name; regexp = skip_spaces (colon + 1); } } global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp); if (file_name != nullptr) spec.filenames.push_back (file_name); std::vector symbols = spec.search (); scoped_rbreak_breakpoints finalize; for (const symbol_search &p : symbols) { if (p.msymbol.minsym == NULL) { struct symtab *symtab = symbol_symtab (p.symbol); const char *fullname = symtab_to_fullname (symtab); string = string_printf ("%s:'%s'", fullname, p.symbol->linkage_name ()); break_command (&string[0], from_tty); print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL); } else { string = string_printf ("'%s'", p.msymbol.minsym->linkage_name ()); break_command (&string[0], from_tty); printf_filtered (" %s;\n", p.msymbol.minsym->print_name ()); } } } /* Evaluate if SYMNAME matches LOOKUP_NAME. */ static int compare_symbol_name (const char *symbol_name, language symbol_language, const lookup_name_info &lookup_name, completion_match_result &match_res) { const language_defn *lang = language_def (symbol_language); symbol_name_matcher_ftype *name_match = get_symbol_name_matcher (lang, lookup_name); return name_match (symbol_name, lookup_name, &match_res); } /* See symtab.h. */ bool completion_list_add_name (completion_tracker &tracker, language symbol_language, const char *symname, const lookup_name_info &lookup_name, const char *text, const char *word) { completion_match_result &match_res = tracker.reset_completion_match_result (); /* Clip symbols that cannot match. */ if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res)) return false; /* Refresh SYMNAME from the match string. It's potentially different depending on language. (E.g., on Ada, the match may be the encoded symbol name wrapped in "<>"). */ symname = match_res.match.match (); gdb_assert (symname != NULL); /* We have a match for a completion, so add SYMNAME to the current list of matches. Note that the name is moved to freshly malloc'd space. */ { gdb::unique_xmalloc_ptr completion = make_completion_match_str (symname, text, word); /* Here we pass the match-for-lcd object to add_completion. Some languages match the user text against substrings of symbol names in some cases. E.g., in C++, "b push_ba" completes to "std::vector::push_back", "std::string::push_back", etc., and in this case we want the completion lowest common denominator to be "push_back" instead of "std::". */ tracker.add_completion (std::move (completion), &match_res.match_for_lcd, text, word); } return true; } /* completion_list_add_name wrapper for struct symbol. */ static void completion_list_add_symbol (completion_tracker &tracker, symbol *sym, const lookup_name_info &lookup_name, const char *text, const char *word) { if (!completion_list_add_name (tracker, sym->language (), sym->natural_name (), lookup_name, text, word)) return; /* C++ function symbols include the parameters within both the msymbol name and the symbol name. The problem is that the msymbol name will describe the parameters in the most basic way, with typedefs stripped out, while the symbol name will represent the types as they appear in the program. This means we will see duplicate entries in the completion tracker. The following converts the symbol name back to the msymbol name and removes the msymbol name from the completion tracker. */ if (sym->language () == language_cplus && SYMBOL_DOMAIN (sym) == VAR_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) { /* The call to canonicalize returns the empty string if the input string is already in canonical form, thanks to this we don't remove the symbol we just added above. */ gdb::unique_xmalloc_ptr str = cp_canonicalize_string_no_typedefs (sym->natural_name ()); if (str != nullptr) tracker.remove_completion (str.get ()); } } /* completion_list_add_name wrapper for struct minimal_symbol. */ static void completion_list_add_msymbol (completion_tracker &tracker, minimal_symbol *sym, const lookup_name_info &lookup_name, const char *text, const char *word) { completion_list_add_name (tracker, sym->language (), sym->natural_name (), lookup_name, text, word); } /* ObjC: In case we are completing on a selector, look as the msymbol again and feed all the selectors into the mill. */ static void completion_list_objc_symbol (completion_tracker &tracker, struct minimal_symbol *msymbol, const lookup_name_info &lookup_name, const char *text, const char *word) { static char *tmp = NULL; static unsigned int tmplen = 0; const char *method, *category, *selector; char *tmp2 = NULL; method = msymbol->natural_name (); /* Is it a method? */ if ((method[0] != '-') && (method[0] != '+')) return; if (text[0] == '[') /* Complete on shortened method method. */ completion_list_add_name (tracker, language_objc, method + 1, lookup_name, text, word); while ((strlen (method) + 1) >= tmplen) { if (tmplen == 0) tmplen = 1024; else tmplen *= 2; tmp = (char *) xrealloc (tmp, tmplen); } selector = strchr (method, ' '); if (selector != NULL) selector++; category = strchr (method, '('); if ((category != NULL) && (selector != NULL)) { memcpy (tmp, method, (category - method)); tmp[category - method] = ' '; memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); completion_list_add_name (tracker, language_objc, tmp, lookup_name, text, word); if (text[0] == '[') completion_list_add_name (tracker, language_objc, tmp + 1, lookup_name, text, word); } if (selector != NULL) { /* Complete on selector only. */ strcpy (tmp, selector); tmp2 = strchr (tmp, ']'); if (tmp2 != NULL) *tmp2 = '\0'; completion_list_add_name (tracker, language_objc, tmp, lookup_name, text, word); } } /* Break the non-quoted text based on the characters which are in symbols. FIXME: This should probably be language-specific. */ static const char * language_search_unquoted_string (const char *text, const char *p) { for (; p > text; --p) { if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') continue; else { if ((current_language->la_language == language_objc)) { if (p[-1] == ':') /* Might be part of a method name. */ continue; else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) p -= 2; /* Beginning of a method name. */ else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') { /* Might be part of a method name. */ const char *t = p; /* Seeing a ' ' or a '(' is not conclusive evidence that we are in the middle of a method name. However, finding "-[" or "+[" should be pretty un-ambiguous. Unfortunately we have to find it now to decide. */ while (t > text) if (isalnum (t[-1]) || t[-1] == '_' || t[-1] == ' ' || t[-1] == ':' || t[-1] == '(' || t[-1] == ')') --t; else break; if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) p = t - 2; /* Method name detected. */ /* Else we leave with p unchanged. */ } } break; } } return p; } static void completion_list_add_fields (completion_tracker &tracker, struct symbol *sym, const lookup_name_info &lookup_name, const char *text, const char *word) { if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) { struct type *t = SYMBOL_TYPE (sym); enum type_code c = t->code (); int j; if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++) if (TYPE_FIELD_NAME (t, j)) completion_list_add_name (tracker, sym->language (), TYPE_FIELD_NAME (t, j), lookup_name, text, word); } } /* See symtab.h. */ bool symbol_is_function_or_method (symbol *sym) { switch (SYMBOL_TYPE (sym)->code ()) { case TYPE_CODE_FUNC: case TYPE_CODE_METHOD: return true; default: return false; } } /* See symtab.h. */ bool symbol_is_function_or_method (minimal_symbol *msymbol) { switch (MSYMBOL_TYPE (msymbol)) { case mst_text: case mst_text_gnu_ifunc: case mst_solib_trampoline: case mst_file_text: return true; default: return false; } } /* See symtab.h. */ bound_minimal_symbol find_gnu_ifunc (const symbol *sym) { if (SYMBOL_CLASS (sym) != LOC_BLOCK) return {}; lookup_name_info lookup_name (sym->search_name (), symbol_name_match_type::SEARCH_NAME); struct objfile *objfile = symbol_objfile (sym); CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)); minimal_symbol *ifunc = NULL; iterate_over_minimal_symbols (objfile, lookup_name, [&] (minimal_symbol *minsym) { if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) { CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym); if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc) { struct gdbarch *gdbarch = objfile->arch (); msym_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr, current_top_target ()); } if (msym_addr == address) { ifunc = minsym; return true; } } return false; }); if (ifunc != NULL) return {ifunc, objfile}; return {}; } /* Add matching symbols from SYMTAB to the current completion list. */ static void add_symtab_completions (struct compunit_symtab *cust, completion_tracker &tracker, complete_symbol_mode mode, const lookup_name_info &lookup_name, const char *text, const char *word, enum type_code code) { struct symbol *sym; const struct block *b; struct block_iterator iter; int i; if (cust == NULL) return; for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) { QUIT; b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i); ALL_BLOCK_SYMBOLS (b, iter, sym) { if (completion_skip_symbol (mode, sym)) continue; if (code == TYPE_CODE_UNDEF || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN && SYMBOL_TYPE (sym)->code () == code)) completion_list_add_symbol (tracker, sym, lookup_name, text, word); } } } void default_collect_symbol_completion_matches_break_on (completion_tracker &tracker, complete_symbol_mode mode, symbol_name_match_type name_match_type, const char *text, const char *word, const char *break_on, enum type_code code) { /* Problem: All of the symbols have to be copied because readline frees them. I'm not going to worry about this; hopefully there won't be that many. */ struct symbol *sym; const struct block *b; const struct block *surrounding_static_block, *surrounding_global_block; struct block_iterator iter; /* The symbol we are completing on. Points in same buffer as text. */ const char *sym_text; /* Now look for the symbol we are supposed to complete on. */ if (mode == complete_symbol_mode::LINESPEC) sym_text = text; else { const char *p; char quote_found; const char *quote_pos = NULL; /* First see if this is a quoted string. */ quote_found = '\0'; for (p = text; *p != '\0'; ++p) { if (quote_found != '\0') { if (*p == quote_found) /* Found close quote. */ quote_found = '\0'; else if (*p == '\\' && p[1] == quote_found) /* A backslash followed by the quote character doesn't end the string. */ ++p; } else if (*p == '\'' || *p == '"') { quote_found = *p; quote_pos = p; } } if (quote_found == '\'') /* A string within single quotes can be a symbol, so complete on it. */ sym_text = quote_pos + 1; else if (quote_found == '"') /* A double-quoted string is never a symbol, nor does it make sense to complete it any other way. */ { return; } else { /* It is not a quoted string. Break it based on the characters which are in symbols. */ while (p > text) { if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) --p; else break; } sym_text = p; } } lookup_name_info lookup_name (sym_text, name_match_type, true); /* At this point scan through the misc symbol vectors and add each symbol you find to the list. Eventually we want to ignore anything that isn't a text symbol (everything else will be handled by the psymtab code below). */ if (code == TYPE_CODE_UNDEF) { for (objfile *objfile : current_program_space->objfiles ()) { for (minimal_symbol *msymbol : objfile->msymbols ()) { QUIT; if (completion_skip_symbol (mode, msymbol)) continue; completion_list_add_msymbol (tracker, msymbol, lookup_name, sym_text, word); completion_list_objc_symbol (tracker, msymbol, lookup_name, sym_text, word); } } } /* Add completions for all currently loaded symbol tables. */ for (objfile *objfile : current_program_space->objfiles ()) { for (compunit_symtab *cust : objfile->compunits ()) add_symtab_completions (cust, tracker, mode, lookup_name, sym_text, word, code); } /* Look through the partial symtabs for all symbols which begin by matching SYM_TEXT. Expand all CUs that you find to the list. */ expand_symtabs_matching (NULL, lookup_name, NULL, [&] (compunit_symtab *symtab) /* expansion notify */ { add_symtab_completions (symtab, tracker, mode, lookup_name, sym_text, word, code); }, ALL_DOMAIN); /* Search upwards from currently selected frame (so that we can complete on local vars). Also catch fields of types defined in this places which match our text string. Only complete on types visible from current context. */ b = get_selected_block (0); surrounding_static_block = block_static_block (b); surrounding_global_block = block_global_block (b); if (surrounding_static_block != NULL) while (b != surrounding_static_block) { QUIT; ALL_BLOCK_SYMBOLS (b, iter, sym) { if (code == TYPE_CODE_UNDEF) { completion_list_add_symbol (tracker, sym, lookup_name, sym_text, word); completion_list_add_fields (tracker, sym, lookup_name, sym_text, word); } else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN && SYMBOL_TYPE (sym)->code () == code) completion_list_add_symbol (tracker, sym, lookup_name, sym_text, word); } /* Stop when we encounter an enclosing function. Do not stop for non-inlined functions - the locals of the enclosing function are in scope for a nested function. */ if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b)) break; b = BLOCK_SUPERBLOCK (b); } /* Add fields from the file's types; symbols will be added below. */ if (code == TYPE_CODE_UNDEF) { if (surrounding_static_block != NULL) ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym) completion_list_add_fields (tracker, sym, lookup_name, sym_text, word); if (surrounding_global_block != NULL) ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym) completion_list_add_fields (tracker, sym, lookup_name, sym_text, word); } /* Skip macros if we are completing a struct tag -- arguable but usually what is expected. */ if (current_language->la_macro_expansion == macro_expansion_c && code == TYPE_CODE_UNDEF) { gdb::unique_xmalloc_ptr scope; /* This adds a macro's name to the current completion list. */ auto add_macro_name = [&] (const char *macro_name, const macro_definition *, macro_source_file *, int) { completion_list_add_name (tracker, language_c, macro_name, lookup_name, sym_text, word); }; /* Add any macros visible in the default scope. Note that this may yield the occasional wrong result, because an expression might be evaluated in a scope other than the default. For example, if the user types "break file:line if ", the resulting expression will be evaluated at "file:line" -- but at there does not seem to be a way to detect this at completion time. */ scope = default_macro_scope (); if (scope) macro_for_each_in_scope (scope->file, scope->line, add_macro_name); /* User-defined macros are always visible. */ macro_for_each (macro_user_macros, add_macro_name); } } void default_collect_symbol_completion_matches (completion_tracker &tracker, complete_symbol_mode mode, symbol_name_match_type name_match_type, const char *text, const char *word, enum type_code code) { return default_collect_symbol_completion_matches_break_on (tracker, mode, name_match_type, text, word, "", code); } /* Collect all symbols (regardless of class) which begin by matching TEXT. */ void collect_symbol_completion_matches (completion_tracker &tracker, complete_symbol_mode mode, symbol_name_match_type name_match_type, const char *text, const char *word) { current_language->la_collect_symbol_completion_matches (tracker, mode, name_match_type, text, word, TYPE_CODE_UNDEF); } /* Like collect_symbol_completion_matches, but only collect STRUCT_DOMAIN symbols whose type code is CODE. */ void collect_symbol_completion_matches_type (completion_tracker &tracker, const char *text, const char *word, enum type_code code) { complete_symbol_mode mode = complete_symbol_mode::EXPRESSION; symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION; gdb_assert (code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT || code == TYPE_CODE_ENUM); current_language->la_collect_symbol_completion_matches (tracker, mode, name_match_type, text, word, code); } /* Like collect_symbol_completion_matches, but collects a list of symbols defined in all source files named SRCFILE. */ void collect_file_symbol_completion_matches (completion_tracker &tracker, complete_symbol_mode mode, symbol_name_match_type name_match_type, const char *text, const char *word, const char *srcfile) { /* The symbol we are completing on. Points in same buffer as text. */ const char *sym_text; /* Now look for the symbol we are supposed to complete on. FIXME: This should be language-specific. */ if (mode == complete_symbol_mode::LINESPEC) sym_text = text; else { const char *p; char quote_found; const char *quote_pos = NULL; /* First see if this is a quoted string. */ quote_found = '\0'; for (p = text; *p != '\0'; ++p) { if (quote_found != '\0') { if (*p == quote_found) /* Found close quote. */ quote_found = '\0'; else if (*p == '\\' && p[1] == quote_found) /* A backslash followed by the quote character doesn't end the string. */ ++p; } else if (*p == '\'' || *p == '"') { quote_found = *p; quote_pos = p; } } if (quote_found == '\'') /* A string within single quotes can be a symbol, so complete on it. */ sym_text = quote_pos + 1; else if (quote_found == '"') /* A double-quoted string is never a symbol, nor does it make sense to complete it any other way. */ { return; } else { /* Not a quoted string. */ sym_text = language_search_unquoted_string (text, p); } } lookup_name_info lookup_name (sym_text, name_match_type, true); /* Go through symtabs for SRCFILE and check the externs and statics for symbols which match. */ iterate_over_symtabs (srcfile, [&] (symtab *s) { add_symtab_completions (SYMTAB_COMPUNIT (s), tracker, mode, lookup_name, sym_text, word, TYPE_CODE_UNDEF); return false; }); } /* A helper function for make_source_files_completion_list. It adds another file name to a list of possible completions, growing the list as necessary. */ static void add_filename_to_list (const char *fname, const char *text, const char *word, completion_list *list) { list->emplace_back (make_completion_match_str (fname, text, word)); } static int not_interesting_fname (const char *fname) { static const char *illegal_aliens[] = { "_globals_", /* inserted by coff_symtab_read */ NULL }; int i; for (i = 0; illegal_aliens[i]; i++) { if (filename_cmp (fname, illegal_aliens[i]) == 0) return 1; } return 0; } /* An object of this type is passed as the user_data argument to map_partial_symbol_filenames. */ struct add_partial_filename_data { struct filename_seen_cache *filename_seen_cache; const char *text; const char *word; int text_len; completion_list *list; }; /* A callback for map_partial_symbol_filenames. */ static void maybe_add_partial_symtab_filename (const char *filename, const char *fullname, void *user_data) { struct add_partial_filename_data *data = (struct add_partial_filename_data *) user_data; if (not_interesting_fname (filename)) return; if (!data->filename_seen_cache->seen (filename) && filename_ncmp (filename, data->text, data->text_len) == 0) { /* This file matches for a completion; add it to the current list of matches. */ add_filename_to_list (filename, data->text, data->word, data->list); } else { const char *base_name = lbasename (filename); if (base_name != filename && !data->filename_seen_cache->seen (base_name) && filename_ncmp (base_name, data->text, data->text_len) == 0) add_filename_to_list (base_name, data->text, data->word, data->list); } } /* Return a list of all source files whose names begin with matching TEXT. The file names are looked up in the symbol tables of this program. */ completion_list make_source_files_completion_list (const char *text, const char *word) { size_t text_len = strlen (text); completion_list list; const char *base_name; struct add_partial_filename_data datum; if (!have_full_symbols () && !have_partial_symbols ()) return list; filename_seen_cache filenames_seen; for (objfile *objfile : current_program_space->objfiles ()) { for (compunit_symtab *cu : objfile->compunits ()) { for (symtab *s : compunit_filetabs (cu)) { if (not_interesting_fname (s->filename)) continue; if (!filenames_seen.seen (s->filename) && filename_ncmp (s->filename, text, text_len) == 0) { /* This file matches for a completion; add it to the current list of matches. */ add_filename_to_list (s->filename, text, word, &list); } else { /* NOTE: We allow the user to type a base name when the debug info records leading directories, but not the other way around. This is what subroutines of breakpoint command do when they parse file names. */ base_name = lbasename (s->filename); if (base_name != s->filename && !filenames_seen.seen (base_name) && filename_ncmp (base_name, text, text_len) == 0) add_filename_to_list (base_name, text, word, &list); } } } } datum.filename_seen_cache = &filenames_seen; datum.text = text; datum.word = word; datum.text_len = text_len; datum.list = &list; map_symbol_filenames (maybe_add_partial_symtab_filename, &datum, 0 /*need_fullname*/); return list; } /* Track MAIN */ /* Return the "main_info" object for the current program space. If the object has not yet been created, create it and fill in some default values. */ static struct main_info * get_main_info (void) { struct main_info *info = main_progspace_key.get (current_program_space); if (info == NULL) { /* It may seem strange to store the main name in the progspace and also in whatever objfile happens to see a main name in its debug info. The reason for this is mainly historical: gdb returned "main" as the name even if no function named "main" was defined the program; and this approach lets us keep compatibility. */ info = main_progspace_key.emplace (current_program_space); } return info; } static void set_main_name (const char *name, enum language lang) { struct main_info *info = get_main_info (); if (info->name_of_main != NULL) { xfree (info->name_of_main); info->name_of_main = NULL; info->language_of_main = language_unknown; } if (name != NULL) { info->name_of_main = xstrdup (name); info->language_of_main = lang; } } /* Deduce the name of the main procedure, and set NAME_OF_MAIN accordingly. */ static void find_main_name (void) { const char *new_main_name; /* First check the objfiles to see whether a debuginfo reader has picked up the appropriate main name. Historically the main name was found in a more or less random way; this approach instead relies on the order of objfile creation -- which still isn't guaranteed to get the correct answer, but is just probably more accurate. */ for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->per_bfd->name_of_main != NULL) { set_main_name (objfile->per_bfd->name_of_main, objfile->per_bfd->language_of_main); return; } } /* Try to see if the main procedure is in Ada. */ /* FIXME: brobecker/2005-03-07: Another way of doing this would be to add a new method in the language vector, and call this method for each language until one of them returns a non-empty name. This would allow us to remove this hard-coded call to an Ada function. It is not clear that this is a better approach at this point, because all methods need to be written in a way such that false positives never be returned. For instance, it is important that a method does not return a wrong name for the main procedure if the main procedure is actually written in a different language. It is easy to guaranty this with Ada, since we use a special symbol generated only when the main in Ada to find the name of the main procedure. It is difficult however to see how this can be guarantied for languages such as C, for instance. This suggests that order of call for these methods becomes important, which means a more complicated approach. */ new_main_name = ada_main_name (); if (new_main_name != NULL) { set_main_name (new_main_name, language_ada); return; } new_main_name = d_main_name (); if (new_main_name != NULL) { set_main_name (new_main_name, language_d); return; } new_main_name = go_main_name (); if (new_main_name != NULL) { set_main_name (new_main_name, language_go); return; } new_main_name = pascal_main_name (); if (new_main_name != NULL) { set_main_name (new_main_name, language_pascal); return; } /* The languages above didn't identify the name of the main procedure. Fallback to "main". */ /* Try to find language for main in psymtabs. */ enum language lang = find_quick_global_symbol_language ("main", VAR_DOMAIN); if (lang != language_unknown) { set_main_name ("main", lang); return; } set_main_name ("main", language_unknown); } /* See symtab.h. */ const char * main_name () { struct main_info *info = get_main_info (); if (info->name_of_main == NULL) find_main_name (); return info->name_of_main; } /* Return the language of the main function. If it is not known, return language_unknown. */ enum language main_language (void) { struct main_info *info = get_main_info (); if (info->name_of_main == NULL) find_main_name (); return info->language_of_main; } /* Handle ``executable_changed'' events for the symtab module. */ static void symtab_observer_executable_changed (void) { /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ set_main_name (NULL, language_unknown); } /* Return 1 if the supplied producer string matches the ARM RealView compiler (armcc). */ bool producer_is_realview (const char *producer) { static const char *const arm_idents[] = { "ARM C Compiler, ADS", "Thumb C Compiler, ADS", "ARM C++ Compiler, ADS", "Thumb C++ Compiler, ADS", "ARM/Thumb C/C++ Compiler, RVCT", "ARM C/C++ Compiler, RVCT" }; int i; if (producer == NULL) return false; for (i = 0; i < ARRAY_SIZE (arm_idents); i++) if (startswith (producer, arm_idents[i])) return true; return false; } /* The next index to hand out in response to a registration request. */ static int next_aclass_value = LOC_FINAL_VALUE; /* The maximum number of "aclass" registrations we support. This is constant for convenience. */ #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10) /* The objects representing the various "aclass" values. The elements from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent elements are those registered at gdb initialization time. */ static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; /* The globally visible pointer. This is separate from 'symbol_impl' so that it can be const. */ const struct symbol_impl *symbol_impls = &symbol_impl[0]; /* Make sure we saved enough room in struct symbol. */ gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS is the ops vector associated with this index. This returns the new index, which should be used as the aclass_index field for symbols of this type. */ int register_symbol_computed_impl (enum address_class aclass, const struct symbol_computed_ops *ops) { int result = next_aclass_value++; gdb_assert (aclass == LOC_COMPUTED); gdb_assert (result < MAX_SYMBOL_IMPLS); symbol_impl[result].aclass = aclass; symbol_impl[result].ops_computed = ops; /* Sanity check OPS. */ gdb_assert (ops != NULL); gdb_assert (ops->tracepoint_var_ref != NULL); gdb_assert (ops->describe_location != NULL); gdb_assert (ops->get_symbol_read_needs != NULL); gdb_assert (ops->read_variable != NULL); return result; } /* Register a function with frame base type. ACLASS must be LOC_BLOCK. OPS is the ops vector associated with this index. This returns the new index, which should be used as the aclass_index field for symbols of this type. */ int register_symbol_block_impl (enum address_class aclass, const struct symbol_block_ops *ops) { int result = next_aclass_value++; gdb_assert (aclass == LOC_BLOCK); gdb_assert (result < MAX_SYMBOL_IMPLS); symbol_impl[result].aclass = aclass; symbol_impl[result].ops_block = ops; /* Sanity check OPS. */ gdb_assert (ops != NULL); gdb_assert (ops->find_frame_base_location != NULL); return result; } /* Register a register symbol type. ACLASS must be LOC_REGISTER or LOC_REGPARM_ADDR. OPS is the register ops vector associated with this index. This returns the new index, which should be used as the aclass_index field for symbols of this type. */ int register_symbol_register_impl (enum address_class aclass, const struct symbol_register_ops *ops) { int result = next_aclass_value++; gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); gdb_assert (result < MAX_SYMBOL_IMPLS); symbol_impl[result].aclass = aclass; symbol_impl[result].ops_register = ops; return result; } /* Initialize elements of 'symbol_impl' for the constants in enum address_class. */ static void initialize_ordinary_address_classes (void) { int i; for (i = 0; i < LOC_FINAL_VALUE; ++i) symbol_impl[i].aclass = (enum address_class) i; } /* See symtab.h. */ struct objfile * symbol_objfile (const struct symbol *symbol) { gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); return SYMTAB_OBJFILE (symbol->owner.symtab); } /* See symtab.h. */ struct gdbarch * symbol_arch (const struct symbol *symbol) { if (!SYMBOL_OBJFILE_OWNED (symbol)) return symbol->owner.arch; return SYMTAB_OBJFILE (symbol->owner.symtab)->arch (); } /* See symtab.h. */ struct symtab * symbol_symtab (const struct symbol *symbol) { gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); return symbol->owner.symtab; } /* See symtab.h. */ void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab) { gdb_assert (SYMBOL_OBJFILE_OWNED (symbol)); symbol->owner.symtab = symtab; } /* See symtab.h. */ CORE_ADDR get_symbol_address (const struct symbol *sym) { gdb_assert (sym->maybe_copied); gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC); const char *linkage_name = sym->linkage_name (); for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->separate_debug_objfile_backlink != nullptr) continue; bound_minimal_symbol minsym = lookup_minimal_symbol_linkage (linkage_name, objfile); if (minsym.minsym != nullptr) return BMSYMBOL_VALUE_ADDRESS (minsym); } return sym->value.address; } /* See symtab.h. */ CORE_ADDR get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym) { gdb_assert (minsym->maybe_copied); gdb_assert ((objf->flags & OBJF_MAINLINE) == 0); const char *linkage_name = minsym->linkage_name (); for (objfile *objfile : current_program_space->objfiles ()) { if (objfile->separate_debug_objfile_backlink == nullptr && (objfile->flags & OBJF_MAINLINE) != 0) { bound_minimal_symbol found = lookup_minimal_symbol_linkage (linkage_name, objfile); if (found.minsym != nullptr) return BMSYMBOL_VALUE_ADDRESS (found); } } return minsym->value.address + objf->section_offsets[minsym->section]; } /* Hold the sub-commands of 'info module'. */ static struct cmd_list_element *info_module_cmdlist = NULL; /* See symtab.h. */ std::vector search_module_symbols (const char *module_regexp, const char *regexp, const char *type_regexp, search_domain kind) { std::vector results; /* Search for all modules matching MODULE_REGEXP. */ global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp); spec1.set_exclude_minsyms (true); std::vector modules = spec1.search (); /* Now search for all symbols of the required KIND matching the required regular expressions. We figure out which ones are in which modules below. */ global_symbol_searcher spec2 (kind, regexp); spec2.set_symbol_type_regexp (type_regexp); spec2.set_exclude_minsyms (true); std::vector symbols = spec2.search (); /* Now iterate over all MODULES, checking to see which items from SYMBOLS are in each module. */ for (const symbol_search &p : modules) { QUIT; /* This is a module. */ gdb_assert (p.symbol != nullptr); std::string prefix = p.symbol->print_name (); prefix += "::"; for (const symbol_search &q : symbols) { if (q.symbol == nullptr) continue; if (strncmp (q.symbol->print_name (), prefix.c_str (), prefix.size ()) != 0) continue; results.push_back ({p, q}); } } return results; } /* Implement the core of both 'info module functions' and 'info module variables'. */ static void info_module_subcommand (bool quiet, const char *module_regexp, const char *regexp, const char *type_regexp, search_domain kind) { /* Print a header line. Don't build the header line bit by bit as this prevents internationalisation. */ if (!quiet) { if (module_regexp == nullptr) { if (type_regexp == nullptr) { if (regexp == nullptr) printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables in all modules:") : _("All functions in all modules:"))); else printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables matching regular expression" " \"%s\" in all modules:") : _("All functions matching regular expression" " \"%s\" in all modules:")), regexp); } else { if (regexp == nullptr) printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables with type matching regular " "expression \"%s\" in all modules:") : _("All functions with type matching regular " "expression \"%s\" in all modules:")), type_regexp); else printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables matching regular expression " "\"%s\",\n\twith type matching regular " "expression \"%s\" in all modules:") : _("All functions matching regular expression " "\"%s\",\n\twith type matching regular " "expression \"%s\" in all modules:")), regexp, type_regexp); } } else { if (type_regexp == nullptr) { if (regexp == nullptr) printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables in all modules matching regular " "expression \"%s\":") : _("All functions in all modules matching regular " "expression \"%s\":")), module_regexp); else printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables matching regular expression " "\"%s\",\n\tin all modules matching regular " "expression \"%s\":") : _("All functions matching regular expression " "\"%s\",\n\tin all modules matching regular " "expression \"%s\":")), regexp, module_regexp); } else { if (regexp == nullptr) printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables with type matching regular " "expression \"%s\"\n\tin all modules matching " "regular expression \"%s\":") : _("All functions with type matching regular " "expression \"%s\"\n\tin all modules matching " "regular expression \"%s\":")), type_regexp, module_regexp); else printf_filtered ((kind == VARIABLES_DOMAIN ? _("All variables matching regular expression " "\"%s\",\n\twith type matching regular expression " "\"%s\",\n\tin all modules matching regular " "expression \"%s\":") : _("All functions matching regular expression " "\"%s\",\n\twith type matching regular expression " "\"%s\",\n\tin all modules matching regular " "expression \"%s\":")), regexp, type_regexp, module_regexp); } } printf_filtered ("\n"); } /* Find all symbols of type KIND matching the given regular expressions along with the symbols for the modules in which those symbols reside. */ std::vector module_symbols = search_module_symbols (module_regexp, regexp, type_regexp, kind); std::sort (module_symbols.begin (), module_symbols.end (), [] (const module_symbol_search &a, const module_symbol_search &b) { if (a.first < b.first) return true; else if (a.first == b.first) return a.second < b.second; else return false; }); const char *last_filename = ""; const symbol *last_module_symbol = nullptr; for (const module_symbol_search &ms : module_symbols) { const symbol_search &p = ms.first; const symbol_search &q = ms.second; gdb_assert (q.symbol != nullptr); if (last_module_symbol != p.symbol) { printf_filtered ("\n"); printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ()); last_module_symbol = p.symbol; last_filename = ""; } print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block, last_filename); last_filename = symtab_to_filename_for_display (symbol_symtab (q.symbol)); } } /* Hold the option values for the 'info module .....' sub-commands. */ struct info_modules_var_func_options { bool quiet = false; char *type_regexp = nullptr; char *module_regexp = nullptr; ~info_modules_var_func_options () { xfree (type_regexp); xfree (module_regexp); } }; /* The options used by 'info module variables' and 'info module functions' commands. */ static const gdb::option::option_def info_modules_var_func_options_defs [] = { gdb::option::boolean_option_def { "q", [] (info_modules_var_func_options *opt) { return &opt->quiet; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ }, gdb::option::string_option_def { "t", [] (info_modules_var_func_options *opt) { return &opt->type_regexp; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ }, gdb::option::string_option_def { "m", [] (info_modules_var_func_options *opt) { return &opt->module_regexp; }, nullptr, /* show_cmd_cb */ nullptr /* set_doc */ } }; /* Return the option group used by the 'info module ...' sub-commands. */ static inline gdb::option::option_def_group make_info_modules_var_func_options_def_group (info_modules_var_func_options *opts) { return {{info_modules_var_func_options_defs}, opts}; } /* Implements the 'info module functions' command. */ static void info_module_functions_command (const char *args, int from_tty) { info_modules_var_func_options opts; auto grp = make_info_modules_var_func_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; info_module_subcommand (opts.quiet, opts.module_regexp, args, opts.type_regexp, FUNCTIONS_DOMAIN); } /* Implements the 'info module variables' command. */ static void info_module_variables_command (const char *args, int from_tty) { info_modules_var_func_options opts; auto grp = make_info_modules_var_func_options_def_group (&opts); gdb::option::process_options (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); if (args != nullptr && *args == '\0') args = nullptr; info_module_subcommand (opts.quiet, opts.module_regexp, args, opts.type_regexp, VARIABLES_DOMAIN); } /* Command completer for 'info module ...' sub-commands. */ static void info_module_var_func_command_completer (struct cmd_list_element *ignore, completion_tracker &tracker, const char *text, const char * /* word */) { const auto group = make_info_modules_var_func_options_def_group (nullptr); if (gdb::option::complete_options (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) return; const char *word = advance_to_expression_complete_word_point (tracker, text); symbol_completer (ignore, tracker, text, word); } void _initialize_symtab (); void _initialize_symtab () { cmd_list_element *c; initialize_ordinary_address_classes (); c = add_info ("variables", info_variables_command, info_print_args_help (_("\ All global and static variable names or those matching REGEXPs.\n\ Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ Prints the global and static variables.\n"), _("global and static variables"), true)); set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); if (dbx_commands) { c = add_com ("whereis", class_info, info_variables_command, info_print_args_help (_("\ All global and static variable names, or those matching REGEXPs.\n\ Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ Prints the global and static variables.\n"), _("global and static variables"), true)); set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); } c = add_info ("functions", info_functions_command, info_print_args_help (_("\ All function names or those matching REGEXPs.\n\ Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ Prints the functions.\n"), _("functions"), true)); set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); c = add_info ("types", info_types_command, _("\ All type names, or those matching REGEXP.\n\ Usage: info types [-q] [REGEXP]\n\ Print information about all types matching REGEXP, or all types if no\n\ REGEXP is given. The optional flag -q disables printing of headers.")); set_cmd_completer_handle_brkchars (c, info_types_command_completer); const auto info_sources_opts = make_info_sources_options_def_group (nullptr); static std::string info_sources_help = gdb::option::build_help (_("\ All source files in the program or those matching REGEXP.\n\ Usage: info sources [OPTION]... [REGEXP]\n\ By default, REGEXP is used to match anywhere in the filename.\n\ \n\ Options:\n\ %OPTIONS%"), info_sources_opts); c = add_info ("sources", info_sources_command, info_sources_help.c_str ()); set_cmd_completer_handle_brkchars (c, info_sources_command_completer); c = add_info ("modules", info_modules_command, _("All module names, or those matching REGEXP.")); set_cmd_completer_handle_brkchars (c, info_types_command_completer); add_basic_prefix_cmd ("module", class_info, _("\ Print information about modules."), &info_module_cmdlist, "info module ", 0, &infolist); c = add_cmd ("functions", class_info, info_module_functions_command, _("\ Display functions arranged by modules.\n\ Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ Print a summary of all functions within each Fortran module, grouped by\n\ module and file. For each function the line on which the function is\n\ defined is given along with the type signature and name of the function.\n\ \n\ If REGEXP is provided then only functions whose name matches REGEXP are\n\ listed. If MODREGEXP is provided then only functions in modules matching\n\ MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\ type signature matches TYPEREGEXP are listed.\n\ \n\ The -q flag suppresses printing some header information."), &info_module_cmdlist); set_cmd_completer_handle_brkchars (c, info_module_var_func_command_completer); c = add_cmd ("variables", class_info, info_module_variables_command, _("\ Display variables arranged by modules.\n\ Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ Print a summary of all variables within each Fortran module, grouped by\n\ module and file. For each variable the line on which the variable is\n\ defined is given along with the type and name of the variable.\n\ \n\ If REGEXP is provided then only variables whose name matches REGEXP are\n\ listed. If MODREGEXP is provided then only variables in modules matching\n\ MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\ type matches TYPEREGEXP are listed.\n\ \n\ The -q flag suppresses printing some header information."), &info_module_cmdlist); set_cmd_completer_handle_brkchars (c, info_module_var_func_command_completer); add_com ("rbreak", class_breakpoint, rbreak_command, _("Set a breakpoint for all functions matching REGEXP.")); add_setshow_enum_cmd ("multiple-symbols", no_class, multiple_symbols_modes, &multiple_symbols_mode, _("\ Set how the debugger handles ambiguities in expressions."), _("\ Show how the debugger handles ambiguities in expressions."), _("\ Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), NULL, NULL, &setlist, &showlist); add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, &basenames_may_differ, _("\ Set whether a source file may have multiple base names."), _("\ Show whether a source file may have multiple base names."), _("\ (A \"base name\" is the name of a file with the directory part removed.\n\ Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ before comparing them. Canonicalization is an expensive operation,\n\ but it allows the same file be known by more than one base name.\n\ If not set (the default), all source files are assumed to have just\n\ one base name, and gdb will do file name comparisons more efficiently."), NULL, NULL, &setlist, &showlist); add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, _("Set debugging of symbol table creation."), _("Show debugging of symbol table creation."), _("\ When enabled (non-zero), debugging messages are printed when building\n\ symbol tables. A value of 1 (one) normally provides enough information.\n\ A value greater than 1 provides more verbose information."), NULL, NULL, &setdebuglist, &showdebuglist); add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, _("\ Set debugging of symbol lookup."), _("\ Show debugging of symbol lookup."), _("\ When enabled (non-zero), symbol lookups are logged."), NULL, NULL, &setdebuglist, &showdebuglist); add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, &new_symbol_cache_size, _("Set the size of the symbol cache."), _("Show the size of the symbol cache."), _("\ The size of the symbol cache.\n\ If zero then the symbol cache is disabled."), set_symbol_cache_size_handler, NULL, &maintenance_set_cmdlist, &maintenance_show_cmdlist); add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, _("Dump the symbol cache for each program space."), &maintenanceprintlist); add_cmd ("symbol-cache-statistics", class_maintenance, maintenance_print_symbol_cache_statistics, _("Print symbol cache statistics for each program space."), &maintenanceprintlist); add_cmd ("flush-symbol-cache", class_maintenance, maintenance_flush_symbol_cache, _("Flush the symbol cache for each program space."), &maintenancelist); gdb::observers::executable_changed.attach (symtab_observer_executable_changed); gdb::observers::new_objfile.attach (symtab_new_objfile_observer); gdb::observers::free_objfile.attach (symtab_free_objfile_observer); }