// OBSOLETE /* Target-machine dependent code for the Intel 960 // OBSOLETE // OBSOLETE Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, // OBSOLETE 2001, 2002 Free Software Foundation, Inc. // OBSOLETE // OBSOLETE Contributed by Intel Corporation. // OBSOLETE examine_prologue and other parts contributed by Wind River Systems. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE #include "defs.h" // OBSOLETE #include "symtab.h" // OBSOLETE #include "value.h" // OBSOLETE #include "frame.h" // OBSOLETE #include "floatformat.h" // OBSOLETE #include "target.h" // OBSOLETE #include "gdbcore.h" // OBSOLETE #include "inferior.h" // OBSOLETE #include "regcache.h" // OBSOLETE #include "gdb_string.h" // OBSOLETE // OBSOLETE static CORE_ADDR next_insn (CORE_ADDR memaddr, // OBSOLETE unsigned int *pword1, unsigned int *pword2); // OBSOLETE // OBSOLETE struct type * // OBSOLETE i960_register_type (int regnum) // OBSOLETE { // OBSOLETE if (regnum < FP0_REGNUM) // OBSOLETE return builtin_type_int32; // OBSOLETE else // OBSOLETE return builtin_type_i960_ext; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* Does the specified function use the "struct returning" convention // OBSOLETE or the "value returning" convention? The "value returning" convention // OBSOLETE almost invariably returns the entire value in registers. The // OBSOLETE "struct returning" convention often returns the entire value in // OBSOLETE memory, and passes a pointer (out of or into the function) saying // OBSOLETE where the value (is or should go). // OBSOLETE // OBSOLETE Since this sometimes depends on whether it was compiled with GCC, // OBSOLETE this is also an argument. This is used in call_function to build a // OBSOLETE stack, and in value_being_returned to print return values. // OBSOLETE // OBSOLETE On i960, a structure is returned in registers g0-g3, if it will fit. // OBSOLETE If it's more than 16 bytes long, g13 pointed to it on entry. */ // OBSOLETE // OBSOLETE int // OBSOLETE i960_use_struct_convention (int gcc_p, struct type *type) // OBSOLETE { // OBSOLETE return (TYPE_LENGTH (type) > 16); // OBSOLETE } // OBSOLETE // OBSOLETE /* gdb960 is always running on a non-960 host. Check its characteristics. // OBSOLETE This routine must be called as part of gdb initialization. */ // OBSOLETE // OBSOLETE static void // OBSOLETE check_host (void) // OBSOLETE { // OBSOLETE int i; // OBSOLETE // OBSOLETE static struct typestruct // OBSOLETE { // OBSOLETE int hostsize; /* Size of type on host */ // OBSOLETE int i960size; /* Size of type on i960 */ // OBSOLETE char *typename; /* Name of type, for error msg */ // OBSOLETE } // OBSOLETE types[] = // OBSOLETE { // OBSOLETE { // OBSOLETE sizeof (short), 2, "short" // OBSOLETE } // OBSOLETE , // OBSOLETE { // OBSOLETE sizeof (int), 4, "int" // OBSOLETE } // OBSOLETE , // OBSOLETE { // OBSOLETE sizeof (long), 4, "long" // OBSOLETE } // OBSOLETE , // OBSOLETE { // OBSOLETE sizeof (float), 4, "float" // OBSOLETE } // OBSOLETE , // OBSOLETE { // OBSOLETE sizeof (double), 8, "double" // OBSOLETE } // OBSOLETE , // OBSOLETE { // OBSOLETE sizeof (char *), 4, "pointer" // OBSOLETE } // OBSOLETE , // OBSOLETE }; // OBSOLETE #define TYPELEN (sizeof(types) / sizeof(struct typestruct)) // OBSOLETE // OBSOLETE /* Make sure that host type sizes are same as i960 // OBSOLETE */ // OBSOLETE for (i = 0; i < TYPELEN; i++) // OBSOLETE { // OBSOLETE if (types[i].hostsize != types[i].i960size) // OBSOLETE { // OBSOLETE printf_unfiltered ("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n", // OBSOLETE types[i].typename, types[i].i960size); // OBSOLETE } // OBSOLETE // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* Is this register part of the register window system? A yes answer // OBSOLETE implies that 1) The name of this register will not be the same in // OBSOLETE other frames, and 2) This register is automatically "saved" upon // OBSOLETE subroutine calls and thus there is no need to search more than one // OBSOLETE stack frame for it. // OBSOLETE // OBSOLETE On the i960, in fact, the name of this register in another frame is // OBSOLETE "mud" -- there is no overlap between the windows. Each window is // OBSOLETE simply saved into the stack (true for our purposes, after having been // OBSOLETE flushed; normally they reside on-chip and are restored from on-chip // OBSOLETE without ever going to memory). */ // OBSOLETE // OBSOLETE static int // OBSOLETE register_in_window_p (int regnum) // OBSOLETE { // OBSOLETE return regnum <= R15_REGNUM; // OBSOLETE } // OBSOLETE // OBSOLETE /* i960_find_saved_register () // OBSOLETE // OBSOLETE Return the address in which frame FRAME's value of register REGNUM // OBSOLETE has been saved in memory. Or return zero if it has not been saved. // OBSOLETE If REGNUM specifies the SP, the value we return is actually the SP // OBSOLETE value, not an address where it was saved. */ // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE i960_find_saved_register (struct frame_info *frame, int regnum) // OBSOLETE { // OBSOLETE register struct frame_info *frame1 = NULL; // OBSOLETE register CORE_ADDR addr = 0; // OBSOLETE // OBSOLETE if (frame == NULL) /* No regs saved if want current frame */ // OBSOLETE return 0; // OBSOLETE // OBSOLETE /* We assume that a register in a register window will only be saved // OBSOLETE in one place (since the name changes and/or disappears as you go // OBSOLETE towards inner frames), so we only call get_frame_saved_regs on // OBSOLETE the current frame. This is directly in contradiction to the // OBSOLETE usage below, which assumes that registers used in a frame must be // OBSOLETE saved in a lower (more interior) frame. This change is a result // OBSOLETE of working on a register window machine; get_frame_saved_regs // OBSOLETE always returns the registers saved within a frame, within the // OBSOLETE context (register namespace) of that frame. */ // OBSOLETE // OBSOLETE /* However, note that we don't want this to return anything if // OBSOLETE nothing is saved (if there's a frame inside of this one). Also, // OBSOLETE callers to this routine asking for the stack pointer want the // OBSOLETE stack pointer saved for *this* frame; this is returned from the // OBSOLETE next frame. */ // OBSOLETE // OBSOLETE if (register_in_window_p (regnum)) // OBSOLETE { // OBSOLETE frame1 = get_next_frame (frame); // OBSOLETE if (!frame1) // OBSOLETE return 0; /* Registers of this frame are active. */ // OBSOLETE // OBSOLETE /* Get the SP from the next frame in; it will be this // OBSOLETE current frame. */ // OBSOLETE if (regnum != SP_REGNUM) // OBSOLETE frame1 = frame; // OBSOLETE // OBSOLETE FRAME_INIT_SAVED_REGS (frame1); // OBSOLETE return frame1->saved_regs[regnum]; /* ... which might be zero */ // OBSOLETE } // OBSOLETE // OBSOLETE /* Note that this next routine assumes that registers used in // OBSOLETE frame x will be saved only in the frame that x calls and // OBSOLETE frames interior to it. This is not true on the sparc, but the // OBSOLETE above macro takes care of it, so we should be all right. */ // OBSOLETE while (1) // OBSOLETE { // OBSOLETE QUIT; // OBSOLETE frame1 = get_next_frame (frame); // OBSOLETE if (frame1 == 0) // OBSOLETE break; // OBSOLETE frame = frame1; // OBSOLETE FRAME_INIT_SAVED_REGS (frame1); // OBSOLETE if (frame1->saved_regs[regnum]) // OBSOLETE addr = frame1->saved_regs[regnum]; // OBSOLETE } // OBSOLETE // OBSOLETE return addr; // OBSOLETE } // OBSOLETE // OBSOLETE /* i960_get_saved_register () // OBSOLETE // OBSOLETE Find register number REGNUM relative to FRAME and put its (raw, // OBSOLETE target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the // OBSOLETE variable was optimized out (and thus can't be fetched). Set *LVAL // OBSOLETE to lval_memory, lval_register, or not_lval, depending on whether // OBSOLETE the value was fetched from memory, from a register, or in a strange // OBSOLETE and non-modifiable way (e.g. a frame pointer which was calculated // OBSOLETE rather than fetched). Set *ADDRP to the address, either in memory // OBSOLETE on as a REGISTER_BYTE offset into the registers array. // OBSOLETE // OBSOLETE Note that this implementation never sets *LVAL to not_lval. But it // OBSOLETE can be replaced by defining GET_SAVED_REGISTER and supplying your // OBSOLETE own. // OBSOLETE // OBSOLETE The argument RAW_BUFFER must point to aligned memory. */ // OBSOLETE // OBSOLETE void // OBSOLETE i960_get_saved_register (char *raw_buffer, // OBSOLETE int *optimized, // OBSOLETE CORE_ADDR *addrp, // OBSOLETE struct frame_info *frame, // OBSOLETE int regnum, // OBSOLETE enum lval_type *lval) // OBSOLETE { // OBSOLETE CORE_ADDR addr; // OBSOLETE // OBSOLETE if (!target_has_registers) // OBSOLETE error ("No registers."); // OBSOLETE // OBSOLETE /* Normal systems don't optimize out things with register numbers. */ // OBSOLETE if (optimized != NULL) // OBSOLETE *optimized = 0; // OBSOLETE addr = i960_find_saved_register (frame, regnum); // OBSOLETE if (addr != 0) // OBSOLETE { // OBSOLETE if (lval != NULL) // OBSOLETE *lval = lval_memory; // OBSOLETE if (regnum == SP_REGNUM) // OBSOLETE { // OBSOLETE if (raw_buffer != NULL) // OBSOLETE { // OBSOLETE /* Put it back in target format. */ // OBSOLETE store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), // OBSOLETE (LONGEST) addr); // OBSOLETE } // OBSOLETE if (addrp != NULL) // OBSOLETE *addrp = 0; // OBSOLETE return; // OBSOLETE } // OBSOLETE if (raw_buffer != NULL) // OBSOLETE target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE if (lval != NULL) // OBSOLETE *lval = lval_register; // OBSOLETE addr = REGISTER_BYTE (regnum); // OBSOLETE if (raw_buffer != NULL) // OBSOLETE read_register_gen (regnum, raw_buffer); // OBSOLETE } // OBSOLETE if (addrp != NULL) // OBSOLETE *addrp = addr; // OBSOLETE } // OBSOLETE // OBSOLETE /* Examine an i960 function prologue, recording the addresses at which // OBSOLETE registers are saved explicitly by the prologue code, and returning // OBSOLETE the address of the first instruction after the prologue (but not // OBSOLETE after the instruction at address LIMIT, as explained below). // OBSOLETE // OBSOLETE LIMIT places an upper bound on addresses of the instructions to be // OBSOLETE examined. If the prologue code scan reaches LIMIT, the scan is // OBSOLETE aborted and LIMIT is returned. This is used, when examining the // OBSOLETE prologue for the current frame, to keep examine_prologue () from // OBSOLETE claiming that a given register has been saved when in fact the // OBSOLETE instruction that saves it has not yet been executed. LIMIT is used // OBSOLETE at other times to stop the scan when we hit code after the true // OBSOLETE function prologue (e.g. for the first source line) which might // OBSOLETE otherwise be mistaken for function prologue. // OBSOLETE // OBSOLETE The format of the function prologue matched by this routine is // OBSOLETE derived from examination of the source to gcc960 1.21, particularly // OBSOLETE the routine i960_function_prologue (). A "regular expression" for // OBSOLETE the function prologue is given below: // OBSOLETE // OBSOLETE (lda LRn, g14 // OBSOLETE mov g14, g[0-7] // OBSOLETE (mov 0, g14) | (lda 0, g14))? // OBSOLETE // OBSOLETE (mov[qtl]? g[0-15], r[4-15])* // OBSOLETE ((addo [1-31], sp, sp) | (lda n(sp), sp))? // OBSOLETE (st[qtl]? g[0-15], n(fp))* // OBSOLETE // OBSOLETE (cmpobne 0, g14, LFn // OBSOLETE mov sp, g14 // OBSOLETE lda 0x30(sp), sp // OBSOLETE LFn: stq g0, (g14) // OBSOLETE stq g4, 0x10(g14) // OBSOLETE stq g8, 0x20(g14))? // OBSOLETE // OBSOLETE (st g14, n(fp))? // OBSOLETE (mov g13,r[4-15])? // OBSOLETE */ // OBSOLETE // OBSOLETE /* Macros for extracting fields from i960 instructions. */ // OBSOLETE // OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos)) // OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width)) // OBSOLETE // OBSOLETE #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5) // OBSOLETE #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5) // OBSOLETE #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5) // OBSOLETE #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5) // OBSOLETE #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12) // OBSOLETE // OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or // OBSOLETE is not the address of a valid instruction, the address of the next // OBSOLETE instruction beyond ADDR otherwise. *PWORD1 receives the first word // OBSOLETE of the instruction, and (for two-word instructions), *PWORD2 receives // OBSOLETE the second. */ // OBSOLETE // OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \ // OBSOLETE (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0) // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit, // OBSOLETE CORE_ADDR frame_addr, struct frame_saved_regs *fsr) // OBSOLETE { // OBSOLETE register CORE_ADDR next_ip; // OBSOLETE register int src, dst; // OBSOLETE register unsigned int *pcode; // OBSOLETE unsigned int insn1, insn2; // OBSOLETE int size; // OBSOLETE int within_leaf_prologue; // OBSOLETE CORE_ADDR save_addr; // OBSOLETE static unsigned int varargs_prologue_code[] = // OBSOLETE { // OBSOLETE 0x3507a00c, /* cmpobne 0x0, g14, LFn */ // OBSOLETE 0x5cf01601, /* mov sp, g14 */ // OBSOLETE 0x8c086030, /* lda 0x30(sp), sp */ // OBSOLETE 0xb2879000, /* LFn: stq g0, (g14) */ // OBSOLETE 0xb2a7a010, /* stq g4, 0x10(g14) */ // OBSOLETE 0xb2c7a020 /* stq g8, 0x20(g14) */ // OBSOLETE }; // OBSOLETE // OBSOLETE /* Accept a leaf procedure prologue code fragment if present. // OBSOLETE Note that ip might point to either the leaf or non-leaf // OBSOLETE entry point; we look for the non-leaf entry point first: */ // OBSOLETE // OBSOLETE within_leaf_prologue = 0; // OBSOLETE if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2)) // OBSOLETE && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */ // OBSOLETE || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */ // OBSOLETE { // OBSOLETE within_leaf_prologue = 1; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Now look for the prologue code at a leaf entry point: */ // OBSOLETE // OBSOLETE if (next_ip // OBSOLETE && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */ // OBSOLETE && REG_SRCDST (insn1) <= G0_REGNUM + 7) // OBSOLETE { // OBSOLETE within_leaf_prologue = 1; // OBSOLETE if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2)) // OBSOLETE && (insn1 == 0x8cf00000 /* lda 0, g14 */ // OBSOLETE || insn1 == 0x5cf01e00)) /* mov 0, g14 */ // OBSOLETE { // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE within_leaf_prologue = 0; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* If something that looks like the beginning of a leaf prologue // OBSOLETE has been seen, but the remainder of the prologue is missing, bail. // OBSOLETE We don't know what we've got. */ // OBSOLETE // OBSOLETE if (within_leaf_prologue) // OBSOLETE return (ip); // OBSOLETE // OBSOLETE /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4. // OBSOLETE This may cause us to mistake the moving of a register // OBSOLETE parameter to a local register for the saving of a callee-saved // OBSOLETE register, but that can't be helped, since with the // OBSOLETE "-fcall-saved" flag, any register can be made callee-saved. */ // OBSOLETE // OBSOLETE while (next_ip // OBSOLETE && (insn1 & 0xfc802fb0) == 0x5c000610 // OBSOLETE && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4)) // OBSOLETE { // OBSOLETE src = REG_SRC1 (insn1); // OBSOLETE size = EXTRACT_FIELD (insn1, 24, 2) + 1; // OBSOLETE save_addr = frame_addr + ((dst - R0_REGNUM) * 4); // OBSOLETE while (size--) // OBSOLETE { // OBSOLETE fsr->regs[src++] = save_addr; // OBSOLETE save_addr += 4; // OBSOLETE } // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */ // OBSOLETE // OBSOLETE if (next_ip && // OBSOLETE ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */ // OBSOLETE || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */ // OBSOLETE || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */ // OBSOLETE { // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Accept zero or more instances of "st[qtl]? gx, n(fp)". // OBSOLETE This may cause us to mistake the copying of a register // OBSOLETE parameter to the frame for the saving of a callee-saved // OBSOLETE register, but that can't be helped, since with the // OBSOLETE "-fcall-saved" flag, any register can be made callee-saved. // OBSOLETE We can, however, refuse to accept a save of register g14, // OBSOLETE since that is matched explicitly below. */ // OBSOLETE // OBSOLETE while (next_ip && // OBSOLETE ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */ // OBSOLETE || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */ // OBSOLETE || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */ // OBSOLETE || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */ // OBSOLETE && ((src = MEM_SRCDST (insn1)) != G14_REGNUM)) // OBSOLETE { // OBSOLETE save_addr = frame_addr + ((insn1 & BITMASK (12, 1)) // OBSOLETE ? insn2 : MEMA_OFFSET (insn1)); // OBSOLETE size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3) // OBSOLETE : ((insn1 & BITMASK (27, 1)) ? 2 : 1); // OBSOLETE while (size--) // OBSOLETE { // OBSOLETE fsr->regs[src++] = save_addr; // OBSOLETE save_addr += 4; // OBSOLETE } // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Accept the varargs prologue code if present. */ // OBSOLETE // OBSOLETE size = sizeof (varargs_prologue_code) / sizeof (int); // OBSOLETE pcode = varargs_prologue_code; // OBSOLETE while (size-- && next_ip && *pcode++ == insn1) // OBSOLETE { // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Accept an optional "st g14, n(fp)". */ // OBSOLETE // OBSOLETE if (next_ip && // OBSOLETE ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */ // OBSOLETE || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */ // OBSOLETE { // OBSOLETE fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1)) // OBSOLETE ? insn2 : MEMA_OFFSET (insn1)); // OBSOLETE ip = next_ip; // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE } // OBSOLETE // OBSOLETE /* Accept zero or one instance of "mov g13, ry", where y >= 4. // OBSOLETE This is saving the address where a struct should be returned. */ // OBSOLETE // OBSOLETE if (next_ip // OBSOLETE && (insn1 & 0xff802fbf) == 0x5c00061d // OBSOLETE && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4)) // OBSOLETE { // OBSOLETE save_addr = frame_addr + ((dst - R0_REGNUM) * 4); // OBSOLETE fsr->regs[G0_REGNUM + 13] = save_addr; // OBSOLETE ip = next_ip; // OBSOLETE #if 0 /* We'll need this once there is a subsequent instruction examined. */ // OBSOLETE next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2); // OBSOLETE #endif // OBSOLETE } // OBSOLETE // OBSOLETE return (ip); // OBSOLETE } // OBSOLETE // OBSOLETE /* Given an ip value corresponding to the start of a function, // OBSOLETE return the ip of the first instruction after the function // OBSOLETE prologue. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE i960_skip_prologue (CORE_ADDR ip) // OBSOLETE { // OBSOLETE struct frame_saved_regs saved_regs_dummy; // OBSOLETE struct symtab_and_line sal; // OBSOLETE CORE_ADDR limit; // OBSOLETE // OBSOLETE sal = find_pc_line (ip, 0); // OBSOLETE limit = (sal.end) ? sal.end : 0xffffffff; // OBSOLETE // OBSOLETE return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy)); // OBSOLETE } // OBSOLETE // OBSOLETE /* Put here the code to store, into a struct frame_saved_regs, // OBSOLETE the addresses of the saved registers of frame described by FRAME_INFO. // OBSOLETE This includes special registers such as pc and fp saved in special // OBSOLETE ways in the stack frame. sp is even more special: // OBSOLETE the address we return for it IS the sp for the next frame. // OBSOLETE // OBSOLETE We cache the result of doing this in the frame_obstack, since it is // OBSOLETE fairly expensive. */ // OBSOLETE // OBSOLETE void // OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr) // OBSOLETE { // OBSOLETE register CORE_ADDR next_addr; // OBSOLETE register CORE_ADDR *saved_regs; // OBSOLETE register int regnum; // OBSOLETE register struct frame_saved_regs *cache_fsr; // OBSOLETE CORE_ADDR ip; // OBSOLETE struct symtab_and_line sal; // OBSOLETE CORE_ADDR limit; // OBSOLETE // OBSOLETE if (!fi->fsr) // OBSOLETE { // OBSOLETE cache_fsr = (struct frame_saved_regs *) // OBSOLETE frame_obstack_alloc (sizeof (struct frame_saved_regs)); // OBSOLETE memset (cache_fsr, '\0', sizeof (struct frame_saved_regs)); // OBSOLETE fi->fsr = cache_fsr; // OBSOLETE // OBSOLETE /* Find the start and end of the function prologue. If the PC // OBSOLETE is in the function prologue, we only consider the part that // OBSOLETE has executed already. */ // OBSOLETE // OBSOLETE ip = get_pc_function_start (fi->pc); // OBSOLETE sal = find_pc_line (ip, 0); // OBSOLETE limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc; // OBSOLETE // OBSOLETE examine_prologue (ip, limit, fi->frame, cache_fsr); // OBSOLETE // OBSOLETE /* Record the addresses at which the local registers are saved. // OBSOLETE Strictly speaking, we should only do this for non-leaf procedures, // OBSOLETE but no one will ever look at these values if it is a leaf procedure, // OBSOLETE since local registers are always caller-saved. */ // OBSOLETE // OBSOLETE next_addr = (CORE_ADDR) fi->frame; // OBSOLETE saved_regs = cache_fsr->regs; // OBSOLETE for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++) // OBSOLETE { // OBSOLETE *saved_regs++ = next_addr; // OBSOLETE next_addr += 4; // OBSOLETE } // OBSOLETE // OBSOLETE cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM]; // OBSOLETE } // OBSOLETE // OBSOLETE *fsr = *fi->fsr; // OBSOLETE // OBSOLETE /* Fetch the value of the sp from memory every time, since it // OBSOLETE is conceivable that it has changed since the cache was flushed. // OBSOLETE This unfortunately undoes much of the savings from caching the // OBSOLETE saved register values. I suggest adding an argument to // OBSOLETE get_frame_saved_regs () specifying the register number we're // OBSOLETE interested in (or -1 for all registers). This would be passed // OBSOLETE through to FRAME_FIND_SAVED_REGS (), permitting more efficient // OBSOLETE computation of saved register addresses (e.g., on the i960, // OBSOLETE we don't have to examine the prologue to find local registers). // OBSOLETE -- markf@wrs.com // OBSOLETE FIXME, we don't need to refetch this, since the cache is cleared // OBSOLETE every time the child process is restarted. If GDB itself // OBSOLETE modifies SP, it has to clear the cache by hand (does it?). -gnu */ // OBSOLETE // OBSOLETE fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4); // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the address of the argument block for the frame // OBSOLETE described by FI. Returns 0 if the address is unknown. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_args_address (struct frame_info *fi, int must_be_correct) // OBSOLETE { // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE CORE_ADDR ap; // OBSOLETE // OBSOLETE /* If g14 was saved in the frame by the function prologue code, return // OBSOLETE the saved value. If the frame is current and we are being sloppy, // OBSOLETE return the value of g14. Otherwise, return zero. */ // OBSOLETE // OBSOLETE get_frame_saved_regs (fi, &fsr); // OBSOLETE if (fsr.regs[G14_REGNUM]) // OBSOLETE ap = read_memory_integer (fsr.regs[G14_REGNUM], 4); // OBSOLETE else // OBSOLETE { // OBSOLETE if (must_be_correct) // OBSOLETE return 0; /* Don't cache this result */ // OBSOLETE if (get_next_frame (fi)) // OBSOLETE ap = 0; // OBSOLETE else // OBSOLETE ap = read_register (G14_REGNUM); // OBSOLETE if (ap == 0) // OBSOLETE ap = fi->frame; // OBSOLETE } // OBSOLETE fi->arg_pointer = ap; /* Cache it for next time */ // OBSOLETE return ap; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the address of the return struct for the frame // OBSOLETE described by FI. Returns 0 if the address is unknown. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE frame_struct_result_address (struct frame_info *fi) // OBSOLETE { // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE CORE_ADDR ap; // OBSOLETE // OBSOLETE /* If the frame is non-current, check to see if g14 was saved in the // OBSOLETE frame by the function prologue code; return the saved value if so, // OBSOLETE zero otherwise. If the frame is current, return the value of g14. // OBSOLETE // OBSOLETE FIXME, shouldn't this use the saved value as long as we are past // OBSOLETE the function prologue, and only use the current value if we have // OBSOLETE no saved value and are at TOS? -- gnu@cygnus.com */ // OBSOLETE // OBSOLETE if (get_next_frame (fi)) // OBSOLETE { // OBSOLETE get_frame_saved_regs (fi, &fsr); // OBSOLETE if (fsr.regs[G13_REGNUM]) // OBSOLETE ap = read_memory_integer (fsr.regs[G13_REGNUM], 4); // OBSOLETE else // OBSOLETE ap = 0; // OBSOLETE } // OBSOLETE else // OBSOLETE ap = read_register (G13_REGNUM); // OBSOLETE // OBSOLETE return ap; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return address to which the currently executing leafproc will return, // OBSOLETE or 0 if IP, the value of the instruction pointer from the currently // OBSOLETE executing function, is not in a leafproc (or if we can't tell if it // OBSOLETE is). // OBSOLETE // OBSOLETE Do this by finding the starting address of the routine in which IP lies. // OBSOLETE If the instruction there is "mov g14, gx" (where x is in [0,7]), this // OBSOLETE is a leafproc and the return address is in register gx. Well, this is // OBSOLETE true unless the return address points at a RET instruction in the current // OBSOLETE procedure, which indicates that we have a 'dual entry' routine that // OBSOLETE has been entered through the CALL entry point. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE leafproc_return (CORE_ADDR ip) // OBSOLETE { // OBSOLETE register struct minimal_symbol *msymbol; // OBSOLETE char *p; // OBSOLETE int dst; // OBSOLETE unsigned int insn1, insn2; // OBSOLETE CORE_ADDR return_addr; // OBSOLETE // OBSOLETE if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL) // OBSOLETE { // OBSOLETE if ((p = strchr (SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf")) // OBSOLETE { // OBSOLETE if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2) // OBSOLETE && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */ // OBSOLETE && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7) // OBSOLETE { // OBSOLETE /* Get the return address. If the "mov g14, gx" // OBSOLETE instruction hasn't been executed yet, read // OBSOLETE the return address from g14; otherwise, read it // OBSOLETE from the register into which g14 was moved. */ // OBSOLETE // OBSOLETE return_addr = // OBSOLETE read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol)) // OBSOLETE ? G14_REGNUM : dst); // OBSOLETE // OBSOLETE /* We know we are in a leaf procedure, but we don't know // OBSOLETE whether the caller actually did a "bal" to the ".lf" // OBSOLETE entry point, or a normal "call" to the non-leaf entry // OBSOLETE point one instruction before. In the latter case, the // OBSOLETE return address will be the address of a "ret" // OBSOLETE instruction within the procedure itself. We test for // OBSOLETE this below. */ // OBSOLETE // OBSOLETE if (!next_insn (return_addr, &insn1, &insn2) // OBSOLETE || (insn1 & 0xff000000) != 0xa000000 /* ret */ // OBSOLETE || lookup_minimal_symbol_by_pc (return_addr) != msymbol) // OBSOLETE return (return_addr); // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE return (0); // OBSOLETE } // OBSOLETE // OBSOLETE /* Immediately after a function call, return the saved pc. // OBSOLETE Can't go through the frames for this because on some machines // OBSOLETE the new frame is not set up until the new function executes // OBSOLETE some instructions. // OBSOLETE On the i960, the frame *is* set up immediately after the call, // OBSOLETE unless the function is a leaf procedure. */ // OBSOLETE // OBSOLETE CORE_ADDR // OBSOLETE saved_pc_after_call (struct frame_info *frame) // OBSOLETE { // OBSOLETE CORE_ADDR saved_pc; // OBSOLETE // OBSOLETE saved_pc = leafproc_return (get_frame_pc (frame)); // OBSOLETE if (!saved_pc) // OBSOLETE saved_pc = FRAME_SAVED_PC (frame); // OBSOLETE // OBSOLETE return saved_pc; // OBSOLETE } // OBSOLETE // OBSOLETE /* Discard from the stack the innermost frame, // OBSOLETE restoring all saved registers. */ // OBSOLETE // OBSOLETE void // OBSOLETE i960_pop_frame (void) // OBSOLETE { // OBSOLETE register struct frame_info *current_fi, *prev_fi; // OBSOLETE register int i; // OBSOLETE CORE_ADDR save_addr; // OBSOLETE CORE_ADDR leaf_return_addr; // OBSOLETE struct frame_saved_regs fsr; // OBSOLETE char local_regs_buf[16 * 4]; // OBSOLETE // OBSOLETE current_fi = get_current_frame (); // OBSOLETE // OBSOLETE /* First, undo what the hardware does when we return. // OBSOLETE If this is a non-leaf procedure, restore local registers from // OBSOLETE the save area in the calling frame. Otherwise, load the return // OBSOLETE address obtained from leafproc_return () into the rip. */ // OBSOLETE // OBSOLETE leaf_return_addr = leafproc_return (current_fi->pc); // OBSOLETE if (!leaf_return_addr) // OBSOLETE { // OBSOLETE /* Non-leaf procedure. Restore local registers, incl IP. */ // OBSOLETE prev_fi = get_prev_frame (current_fi); // OBSOLETE read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf)); // OBSOLETE write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf, // OBSOLETE sizeof (local_regs_buf)); // OBSOLETE // OBSOLETE /* Restore frame pointer. */ // OBSOLETE write_register (FP_REGNUM, prev_fi->frame); // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* Leaf procedure. Just restore the return address into the IP. */ // OBSOLETE write_register (RIP_REGNUM, leaf_return_addr); // OBSOLETE } // OBSOLETE // OBSOLETE /* Now restore any global regs that the current function had saved. */ // OBSOLETE get_frame_saved_regs (current_fi, &fsr); // OBSOLETE for (i = G0_REGNUM; i < G14_REGNUM; i++) // OBSOLETE { // OBSOLETE save_addr = fsr.regs[i]; // OBSOLETE if (save_addr != 0) // OBSOLETE write_register (i, read_memory_integer (save_addr, 4)); // OBSOLETE } // OBSOLETE // OBSOLETE /* Flush the frame cache, create a frame for the new innermost frame, // OBSOLETE and make it the current frame. */ // OBSOLETE // OBSOLETE flush_cached_frames (); // OBSOLETE } // OBSOLETE // OBSOLETE /* Given a 960 stop code (fault or trace), return the signal which // OBSOLETE corresponds. */ // OBSOLETE // OBSOLETE enum target_signal // OBSOLETE i960_fault_to_signal (int fault) // OBSOLETE { // OBSOLETE switch (fault) // OBSOLETE { // OBSOLETE case 0: // OBSOLETE return TARGET_SIGNAL_BUS; /* parallel fault */ // OBSOLETE case 1: // OBSOLETE return TARGET_SIGNAL_UNKNOWN; // OBSOLETE case 2: // OBSOLETE return TARGET_SIGNAL_ILL; /* operation fault */ // OBSOLETE case 3: // OBSOLETE return TARGET_SIGNAL_FPE; /* arithmetic fault */ // OBSOLETE case 4: // OBSOLETE return TARGET_SIGNAL_FPE; /* floating point fault */ // OBSOLETE // OBSOLETE /* constraint fault. This appears not to distinguish between // OBSOLETE a range constraint fault (which should be SIGFPE) and a privileged // OBSOLETE fault (which should be SIGILL). */ // OBSOLETE case 5: // OBSOLETE return TARGET_SIGNAL_ILL; // OBSOLETE // OBSOLETE case 6: // OBSOLETE return TARGET_SIGNAL_SEGV; /* virtual memory fault */ // OBSOLETE // OBSOLETE /* protection fault. This is for an out-of-range argument to // OBSOLETE "calls". I guess it also could be SIGILL. */ // OBSOLETE case 7: // OBSOLETE return TARGET_SIGNAL_SEGV; // OBSOLETE // OBSOLETE case 8: // OBSOLETE return TARGET_SIGNAL_BUS; /* machine fault */ // OBSOLETE case 9: // OBSOLETE return TARGET_SIGNAL_BUS; /* structural fault */ // OBSOLETE case 0xa: // OBSOLETE return TARGET_SIGNAL_ILL; /* type fault */ // OBSOLETE case 0xb: // OBSOLETE return TARGET_SIGNAL_UNKNOWN; /* reserved fault */ // OBSOLETE case 0xc: // OBSOLETE return TARGET_SIGNAL_BUS; /* process fault */ // OBSOLETE case 0xd: // OBSOLETE return TARGET_SIGNAL_SEGV; /* descriptor fault */ // OBSOLETE case 0xe: // OBSOLETE return TARGET_SIGNAL_BUS; /* event fault */ // OBSOLETE case 0xf: // OBSOLETE return TARGET_SIGNAL_UNKNOWN; /* reserved fault */ // OBSOLETE case 0x10: // OBSOLETE return TARGET_SIGNAL_TRAP; /* single-step trace */ // OBSOLETE case 0x11: // OBSOLETE return TARGET_SIGNAL_TRAP; /* branch trace */ // OBSOLETE case 0x12: // OBSOLETE return TARGET_SIGNAL_TRAP; /* call trace */ // OBSOLETE case 0x13: // OBSOLETE return TARGET_SIGNAL_TRAP; /* return trace */ // OBSOLETE case 0x14: // OBSOLETE return TARGET_SIGNAL_TRAP; /* pre-return trace */ // OBSOLETE case 0x15: // OBSOLETE return TARGET_SIGNAL_TRAP; /* supervisor call trace */ // OBSOLETE case 0x16: // OBSOLETE return TARGET_SIGNAL_TRAP; /* breakpoint trace */ // OBSOLETE default: // OBSOLETE return TARGET_SIGNAL_UNKNOWN; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /****************************************/ // OBSOLETE /* MEM format */ // OBSOLETE /****************************************/ // OBSOLETE // OBSOLETE struct tabent // OBSOLETE { // OBSOLETE char *name; // OBSOLETE char numops; // OBSOLETE }; // OBSOLETE // OBSOLETE /* Return instruction length, either 4 or 8. When NOPRINT is non-zero // OBSOLETE (TRUE), don't output any text. (Actually, as implemented, if NOPRINT // OBSOLETE is 0, abort() is called.) */ // OBSOLETE // OBSOLETE static int // OBSOLETE mem (unsigned long memaddr, unsigned long word1, unsigned long word2, // OBSOLETE int noprint) // OBSOLETE { // OBSOLETE int i, j; // OBSOLETE int len; // OBSOLETE int mode; // OBSOLETE int offset; // OBSOLETE const char *reg1, *reg2, *reg3; // OBSOLETE // OBSOLETE /* This lookup table is too sparse to make it worth typing in, but not // OBSOLETE * so large as to make a sparse array necessary. We allocate the // OBSOLETE * table at runtime, initialize all entries to empty, and copy the // OBSOLETE * real ones in from an initialization table. // OBSOLETE * // OBSOLETE * NOTE: In this table, the meaning of 'numops' is: // OBSOLETE * 1: single operand // OBSOLETE * 2: 2 operands, load instruction // OBSOLETE * -2: 2 operands, store instruction // OBSOLETE */ // OBSOLETE static struct tabent *mem_tab = NULL; // OBSOLETE /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */ // OBSOLETE #define MEM_MIN 0x80 // OBSOLETE #define MEM_MAX 0xcf // OBSOLETE #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent)) // OBSOLETE // OBSOLETE static struct // OBSOLETE { // OBSOLETE int opcode; // OBSOLETE char *name; // OBSOLETE char numops; // OBSOLETE } // OBSOLETE mem_init[] = // OBSOLETE { // OBSOLETE 0x80, "ldob", 2, // OBSOLETE 0x82, "stob", -2, // OBSOLETE 0x84, "bx", 1, // OBSOLETE 0x85, "balx", 2, // OBSOLETE 0x86, "callx", 1, // OBSOLETE 0x88, "ldos", 2, // OBSOLETE 0x8a, "stos", -2, // OBSOLETE 0x8c, "lda", 2, // OBSOLETE 0x90, "ld", 2, // OBSOLETE 0x92, "st", -2, // OBSOLETE 0x98, "ldl", 2, // OBSOLETE 0x9a, "stl", -2, // OBSOLETE 0xa0, "ldt", 2, // OBSOLETE 0xa2, "stt", -2, // OBSOLETE 0xb0, "ldq", 2, // OBSOLETE 0xb2, "stq", -2, // OBSOLETE 0xc0, "ldib", 2, // OBSOLETE 0xc2, "stib", -2, // OBSOLETE 0xc8, "ldis", 2, // OBSOLETE 0xca, "stis", -2, // OBSOLETE 0, NULL, 0 // OBSOLETE }; // OBSOLETE // OBSOLETE if (mem_tab == NULL) // OBSOLETE { // OBSOLETE mem_tab = (struct tabent *) xmalloc (MEM_SIZ); // OBSOLETE memset (mem_tab, '\0', MEM_SIZ); // OBSOLETE for (i = 0; mem_init[i].opcode != 0; i++) // OBSOLETE { // OBSOLETE j = mem_init[i].opcode - MEM_MIN; // OBSOLETE mem_tab[j].name = mem_init[i].name; // OBSOLETE mem_tab[j].numops = mem_init[i].numops; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE i = ((word1 >> 24) & 0xff) - MEM_MIN; // OBSOLETE mode = (word1 >> 10) & 0xf; // OBSOLETE // OBSOLETE if ((mem_tab[i].name != NULL) /* Valid instruction */ // OBSOLETE && ((mode == 5) || (mode >= 12))) // OBSOLETE { /* With 32-bit displacement */ // OBSOLETE len = 8; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE len = 4; // OBSOLETE } // OBSOLETE // OBSOLETE if (noprint) // OBSOLETE { // OBSOLETE return len; // OBSOLETE } // OBSOLETE internal_error (__FILE__, __LINE__, "failed internal consistency check"); // OBSOLETE } // OBSOLETE // OBSOLETE /* Read the i960 instruction at 'memaddr' and return the address of // OBSOLETE the next instruction after that, or 0 if 'memaddr' is not the // OBSOLETE address of a valid instruction. The first word of the instruction // OBSOLETE is stored at 'pword1', and the second word, if any, is stored at // OBSOLETE 'pword2'. */ // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE next_insn (CORE_ADDR memaddr, unsigned int *pword1, unsigned int *pword2) // OBSOLETE { // OBSOLETE int len; // OBSOLETE char buf[8]; // OBSOLETE // OBSOLETE /* Read the two (potential) words of the instruction at once, // OBSOLETE to eliminate the overhead of two calls to read_memory (). // OBSOLETE FIXME: Loses if the first one is readable but the second is not // OBSOLETE (e.g. last word of the segment). */ // OBSOLETE // OBSOLETE read_memory (memaddr, buf, 8); // OBSOLETE *pword1 = extract_unsigned_integer (buf, 4); // OBSOLETE *pword2 = extract_unsigned_integer (buf + 4, 4); // OBSOLETE // OBSOLETE /* Divide instruction set into classes based on high 4 bits of opcode */ // OBSOLETE // OBSOLETE switch ((*pword1 >> 28) & 0xf) // OBSOLETE { // OBSOLETE case 0x0: // OBSOLETE case 0x1: /* ctrl */ // OBSOLETE // OBSOLETE case 0x2: // OBSOLETE case 0x3: /* cobr */ // OBSOLETE // OBSOLETE case 0x5: // OBSOLETE case 0x6: // OBSOLETE case 0x7: /* reg */ // OBSOLETE len = 4; // OBSOLETE break; // OBSOLETE // OBSOLETE case 0x8: // OBSOLETE case 0x9: // OBSOLETE case 0xa: // OBSOLETE case 0xb: // OBSOLETE case 0xc: // OBSOLETE len = mem (memaddr, *pword1, *pword2, 1); // OBSOLETE break; // OBSOLETE // OBSOLETE default: /* invalid instruction */ // OBSOLETE len = 0; // OBSOLETE break; // OBSOLETE } // OBSOLETE // OBSOLETE if (len) // OBSOLETE return memaddr + len; // OBSOLETE else // OBSOLETE return 0; // OBSOLETE } // OBSOLETE // OBSOLETE /* 'start_frame' is a variable in the MON960 runtime startup routine // OBSOLETE that contains the frame pointer of the 'start' routine (the routine // OBSOLETE that calls 'main'). By reading its contents out of remote memory, // OBSOLETE we can tell where the frame chain ends: backtraces should halt before // OBSOLETE they display this frame. */ // OBSOLETE // OBSOLETE int // OBSOLETE mon960_frame_chain_valid (CORE_ADDR chain, struct frame_info *curframe) // OBSOLETE { // OBSOLETE struct symbol *sym; // OBSOLETE struct minimal_symbol *msymbol; // OBSOLETE // OBSOLETE /* crtmon960.o is an assembler module that is assumed to be linked // OBSOLETE * first in an i80960 executable. It contains the true entry point; // OBSOLETE * it performs startup up initialization and then calls 'main'. // OBSOLETE * // OBSOLETE * 'sf' is the name of a variable in crtmon960.o that is set // OBSOLETE * during startup to the address of the first frame. // OBSOLETE * // OBSOLETE * 'a' is the address of that variable in 80960 memory. // OBSOLETE */ // OBSOLETE static char sf[] = "start_frame"; // OBSOLETE CORE_ADDR a; // OBSOLETE // OBSOLETE // OBSOLETE chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers // OBSOLETE contain return status info in them. */ // OBSOLETE if (chain == 0) // OBSOLETE { // OBSOLETE return 0; // OBSOLETE } // OBSOLETE // OBSOLETE sym = lookup_symbol (sf, 0, VAR_NAMESPACE, (int *) NULL, // OBSOLETE (struct symtab **) NULL); // OBSOLETE if (sym != 0) // OBSOLETE { // OBSOLETE a = SYMBOL_VALUE (sym); // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE msymbol = lookup_minimal_symbol (sf, NULL, NULL); // OBSOLETE if (msymbol == NULL) // OBSOLETE return 0; // OBSOLETE a = SYMBOL_VALUE_ADDRESS (msymbol); // OBSOLETE } // OBSOLETE // OBSOLETE return (chain != read_memory_integer (a, 4)); // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE void // OBSOLETE _initialize_i960_tdep (void) // OBSOLETE { // OBSOLETE check_host (); // OBSOLETE // OBSOLETE tm_print_insn = print_insn_i960; // OBSOLETE }