/* Machine-dependent code which would otherwise be in inflow.c and core.c, for GDB, the GNU debugger. This code is for the HP PA-RISC cpu. Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Contributed by the Center for Software Science at the University of Utah (pa-gdb-bugs@cs.utah.edu). This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "value.h" /* For argument passing to the inferior */ #include "symtab.h" #ifdef USG #include #endif #include #include #include #include #ifdef COFF_ENCAPSULATE #include "a.out.encap.h" #else #include #endif #ifndef N_SET_MAGIC #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val)) #endif /*#include After a.out.h */ #include #include #include #include "wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "symfile.h" #include "objfiles.h" static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr)); static int hppa_alignof PARAMS ((struct type *arg)); CORE_ADDR frame_saved_pc PARAMS ((FRAME frame)); static int prologue_inst_adjust_sp PARAMS ((unsigned long)); static int is_branch PARAMS ((unsigned long)); static int inst_saves_gr PARAMS ((unsigned long)); static int inst_saves_fr PARAMS ((unsigned long)); /* Routines to extract various sized constants out of hppa instructions. */ /* This assumes that no garbage lies outside of the lower bits of value. */ int sign_extend (val, bits) unsigned val, bits; { return (int)(val >> bits - 1 ? (-1 << bits) | val : val); } /* For many immediate values the sign bit is the low bit! */ int low_sign_extend (val, bits) unsigned val, bits; { return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1); } /* extract the immediate field from a ld{bhw}s instruction */ unsigned get_field (val, from, to) unsigned val, from, to; { val = val >> 31 - to; return val & ((1 << 32 - from) - 1); } unsigned set_field (val, from, to, new_val) unsigned *val, from, to; { unsigned mask = ~((1 << (to - from + 1)) << (31 - from)); return *val = *val & mask | (new_val << (31 - from)); } /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */ extract_3 (word) unsigned word; { return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17); } extract_5_load (word) unsigned word; { return low_sign_extend (word >> 16 & MASK_5, 5); } /* extract the immediate field from a st{bhw}s instruction */ int extract_5_store (word) unsigned word; { return low_sign_extend (word & MASK_5, 5); } /* extract the immediate field from a break instruction */ unsigned extract_5r_store (word) unsigned word; { return (word & MASK_5); } /* extract the immediate field from a {sr}sm instruction */ unsigned extract_5R_store (word) unsigned word; { return (word >> 16 & MASK_5); } /* extract an 11 bit immediate field */ int extract_11 (word) unsigned word; { return low_sign_extend (word & MASK_11, 11); } /* extract a 14 bit immediate field */ int extract_14 (word) unsigned word; { return low_sign_extend (word & MASK_14, 14); } /* deposit a 14 bit constant in a word */ unsigned deposit_14 (opnd, word) int opnd; unsigned word; { unsigned sign = (opnd < 0 ? 1 : 0); return word | ((unsigned)opnd << 1 & MASK_14) | sign; } /* extract a 21 bit constant */ int extract_21 (word) unsigned word; { int val; word &= MASK_21; word <<= 11; val = GET_FIELD (word, 20, 20); val <<= 11; val |= GET_FIELD (word, 9, 19); val <<= 2; val |= GET_FIELD (word, 5, 6); val <<= 5; val |= GET_FIELD (word, 0, 4); val <<= 2; val |= GET_FIELD (word, 7, 8); return sign_extend (val, 21) << 11; } /* deposit a 21 bit constant in a word. Although 21 bit constants are usually the top 21 bits of a 32 bit constant, we assume that only the low 21 bits of opnd are relevant */ unsigned deposit_21 (opnd, word) unsigned opnd, word; { unsigned val = 0; val |= GET_FIELD (opnd, 11 + 14, 11 + 18); val <<= 2; val |= GET_FIELD (opnd, 11 + 12, 11 + 13); val <<= 2; val |= GET_FIELD (opnd, 11 + 19, 11 + 20); val <<= 11; val |= GET_FIELD (opnd, 11 + 1, 11 + 11); val <<= 1; val |= GET_FIELD (opnd, 11 + 0, 11 + 0); return word | val; } /* extract a 12 bit constant from branch instructions */ int extract_12 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | (word & 0x1) << 11, 12) << 2; } /* extract a 17 bit constant from branch instructions, returning the 19 bit signed value. */ int extract_17 (word) unsigned word; { return sign_extend (GET_FIELD (word, 19, 28) | GET_FIELD (word, 29, 29) << 10 | GET_FIELD (word, 11, 15) << 11 | (word & 0x1) << 16, 17) << 2; } /* Lookup the unwind (stack backtrace) info for the given PC. We search all of the objfiles seeking the unwind table entry for this PC. Each objfile contains a sorted list of struct unwind_table_entry. Since we do a binary search of the unwind tables, we depend upon them to be sorted. */ static struct unwind_table_entry * find_unwind_entry(pc) CORE_ADDR pc; { int first, middle, last; struct objfile *objfile; ALL_OBJFILES (objfile) { struct obj_unwind_info *ui; ui = OBJ_UNWIND_INFO (objfile); if (!ui) continue; /* First, check the cache */ if (ui->cache && pc >= ui->cache->region_start && pc <= ui->cache->region_end) return ui->cache; /* Not in the cache, do a binary search */ first = 0; last = ui->last; while (first <= last) { middle = (first + last) / 2; if (pc >= ui->table[middle].region_start && pc <= ui->table[middle].region_end) { ui->cache = &ui->table[middle]; return &ui->table[middle]; } if (pc < ui->table[middle].region_start) last = middle - 1; else first = middle + 1; } } /* ALL_OBJFILES() */ return NULL; } /* Called when no unwind descriptor was found for PC. Returns 1 if it appears that PC is in a linker stub. */ static int pc_in_linker_stub PARAMS ((CORE_ADDR)); static int pc_in_linker_stub (pc) CORE_ADDR pc; { int found_magic_instruction = 0; int i; char buf[4]; /* If unable to read memory, assume pc is not in a linker stub. */ if (target_read_memory (pc, buf, 4) != 0) return 0; /* We are looking for something like ; $$dyncall jams RP into this special spot in the frame (RP') ; before calling the "call stub" ldw -18(sp),rp ldsid (rp),r1 ; Get space associated with RP into r1 mtsp r1,sp ; Move it into space register 0 be,n 0(sr0),rp) ; back to your regularly scheduled program */ /* Maximum known linker stub size is 4 instructions. Search forward from the given PC, then backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc + i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc + i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } if (found_magic_instruction != 0) return 1; /* Now look backward. */ for (i = 0; i < 4; i++) { /* If we hit something with an unwind, stop searching this direction. */ if (find_unwind_entry (pc - i * 4) != 0) break; /* Check for ldsid (rp),r1 which is the magic instruction for a return from a cross-space function call. */ if (read_memory_integer (pc - i * 4, 4) == 0x004010a1) { found_magic_instruction = 1; break; } /* Add code to handle long call/branch and argument relocation stubs here. */ } return found_magic_instruction; } static int find_return_regnum(pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) return RP_REGNUM; if (u->Millicode) return 31; return RP_REGNUM; } /* Return size of frame, or -1 if we should use a frame pointer. */ int find_proc_framesize(pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* Linker stubs have a zero size frame. */ return 0; else return -1; } if (u->Save_SP) /* If this bit is set, it means there is a frame pointer and we should use it. */ return -1; return u->Total_frame_size << 3; } /* Return offset from sp at which rp is saved, or 0 if not saved. */ static int rp_saved PARAMS ((CORE_ADDR)); static int rp_saved (pc) CORE_ADDR pc; { struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) { if (pc_in_linker_stub (pc)) /* This is the so-called RP'. */ return -24; else return 0; } if (u->Save_RP) return -20; else if (u->stub_type != 0) { switch (u->stub_type) { case EXPORT: return -24; case PARAMETER_RELOCATION: return -8; default: return 0; } } else return 0; } int frameless_function_invocation (frame) FRAME frame; { struct unwind_table_entry *u; u = find_unwind_entry (frame->pc); if (u == 0) return frameless_look_for_prologue (frame); return (u->Total_frame_size == 0 && u->stub_type == 0); } CORE_ADDR saved_pc_after_call (frame) FRAME frame; { int ret_regnum; ret_regnum = find_return_regnum (get_frame_pc (frame)); return read_register (ret_regnum) & ~0x3; } CORE_ADDR frame_saved_pc (frame) FRAME frame; { CORE_ADDR pc = get_frame_pc (frame); if (frameless_function_invocation (frame)) { int ret_regnum; ret_regnum = find_return_regnum (pc); return read_register (ret_regnum) & ~0x3; } else { int rp_offset = rp_saved (pc); if (rp_offset == 0) return read_register (RP_REGNUM) & ~0x3; else return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3; } } /* We need to correct the PC and the FP for the outermost frame when we are in a system call. */ void init_extra_frame_info (fromleaf, frame) int fromleaf; struct frame_info *frame; { int flags; int framesize; if (frame->next && !fromleaf) return; /* If the next frame represents a frameless function invocation then we have to do some adjustments that are normally done by FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */ if (fromleaf) { /* Find the framesize of *this* frame without peeking at the PC in the current frame structure (it isn't set yet). */ framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame))); /* Now adjust our base frame accordingly. If we have a frame pointer use it, else subtract the size of this frame from the current frame. (we always want frame->frame to point at the lowest address in the frame). */ if (framesize == -1) frame->frame = read_register (FP_REGNUM); else frame->frame -= framesize; return; } flags = read_register (FLAGS_REGNUM); if (flags & 2) /* In system call? */ frame->pc = read_register (31) & ~0x3; /* The outermost frame is always derived from PC-framesize One might think frameless innermost frames should have a frame->frame that is the same as the parent's frame->frame. That is wrong; frame->frame in that case should be the *high* address of the parent's frame. It's complicated as hell to explain, but the parent *always* creates some stack space for the child. So the child actually does have a frame of some sorts, and its base is the high address in its parent's frame. */ framesize = find_proc_framesize(frame->pc); if (framesize == -1) frame->frame = read_register (FP_REGNUM); else frame->frame = read_register (SP_REGNUM) - framesize; } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. This may involve searching through prologues for several functions at boundaries where GCC calls HP C code, or where code which has a frame pointer calls code without a frame pointer. */ FRAME_ADDR frame_chain (frame) struct frame_info *frame; { int my_framesize, caller_framesize; struct unwind_table_entry *u; /* Get frame sizes for the current frame and the frame of the caller. */ my_framesize = find_proc_framesize (frame->pc); caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame)); /* If caller does not have a frame pointer, then its frame can be found at current_frame - caller_framesize. */ if (caller_framesize != -1) return frame->frame - caller_framesize; /* Both caller and callee have frame pointers and are GCC compiled (SAVE_SP bit in unwind descriptor is on for both functions. The previous frame pointer is found at the top of the current frame. */ if (caller_framesize == -1 && my_framesize == -1) return read_memory_integer (frame->frame, 4); /* Caller has a frame pointer, but callee does not. This is a little more difficult as GCC and HP C lay out locals and callee register save areas very differently. The previous frame pointer could be in a register, or in one of several areas on the stack. Walk from the current frame to the innermost frame examining unwind descriptors to determine if %r3 ever gets saved into the stack. If so return whatever value got saved into the stack. If it was never saved in the stack, then the value in %r3 is still valid, so use it. We use information from unwind descriptors to determine if %r3 is saved into the stack (Entry_GR field has this information). */ while (frame) { u = find_unwind_entry (frame->pc); if (!u) { /* We could find this information by examining prologues. I don't think anyone has actually written any tools (not even "strip") which leave them out of an executable, so maybe this is a moot point. */ warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc); return 0; } /* Entry_GR specifies the number of callee-saved general registers saved in the stack. It starts at %r3, so %r3 would be 1. */ if (u->Entry_GR >= 1 || u->Save_SP) break; else frame = frame->next; } if (frame) { /* We may have walked down the chain into a function with a frame pointer. */ if (u->Save_SP) return read_memory_integer (frame->frame, 4); /* %r3 was saved somewhere in the stack. Dig it out. */ else { struct frame_info *fi; struct frame_saved_regs saved_regs; fi = get_frame_info (frame); get_frame_saved_regs (fi, &saved_regs); return read_memory_integer (saved_regs.regs[FP_REGNUM], 4); } } else { /* The value in %r3 was never saved into the stack (thus %r3 still holds the value of the previous frame pointer). */ return read_register (FP_REGNUM); } } /* To see if a frame chain is valid, see if the caller looks like it was compiled with gcc. */ int frame_chain_valid (chain, thisframe) FRAME_ADDR chain; FRAME thisframe; { struct minimal_symbol *msym_us; struct minimal_symbol *msym_start; struct unwind_table_entry *u; if (!chain) return 0; u = find_unwind_entry (thisframe->pc); /* We can't just check that the same of msym_us is "_start", because someone idiotically decided that they were going to make a Ltext_end symbol with the same address. This Ltext_end symbol is totally indistinguishable (as nearly as I can tell) from the symbol for a function which is (legitimately, since it is in the user's namespace) named Ltext_end, so we can't just ignore it. */ msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe)); msym_start = lookup_minimal_symbol ("_start", NULL); if (msym_us && msym_start && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start)) return 0; if (u == NULL) return 1; if (u->Save_SP || u->Total_frame_size || u->stub_type != 0) return 1; if (pc_in_linker_stub (thisframe->pc)) return 1; return 0; } /* * These functions deal with saving and restoring register state * around a function call in the inferior. They keep the stack * double-word aligned; eventually, on an hp700, the stack will have * to be aligned to a 64-byte boundary. */ int push_dummy_frame () { register CORE_ADDR sp; register int regnum; int int_buffer; double freg_buffer; /* Space for "arguments"; the RP goes in here. */ sp = read_register (SP_REGNUM) + 48; int_buffer = read_register (RP_REGNUM) | 0x3; write_memory (sp - 20, (char *)&int_buffer, 4); int_buffer = read_register (FP_REGNUM); write_memory (sp, (char *)&int_buffer, 4); write_register (FP_REGNUM, sp); sp += 8; for (regnum = 1; regnum < 32; regnum++) if (regnum != RP_REGNUM && regnum != FP_REGNUM) sp = push_word (sp, read_register (regnum)); sp += 4; for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++) { read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); sp = push_bytes (sp, (char *)&freg_buffer, 8); } sp = push_word (sp, read_register (IPSW_REGNUM)); sp = push_word (sp, read_register (SAR_REGNUM)); sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM)); sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM)); sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM)); sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM)); write_register (SP_REGNUM, sp); } find_dummy_frame_regs (frame, frame_saved_regs) struct frame_info *frame; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR fp = frame->frame; int i; frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3; frame_saved_regs->regs[FP_REGNUM] = fp; frame_saved_regs->regs[1] = fp + 8; for (fp += 12, i = 3; i < 32; i++) { if (i != FP_REGNUM) { frame_saved_regs->regs[i] = fp; fp += 4; } } fp += 4; for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8) frame_saved_regs->regs[i] = fp; frame_saved_regs->regs[IPSW_REGNUM] = fp; frame_saved_regs->regs[SAR_REGNUM] = fp + 4; frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8; frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12; frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16; frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20; } int hppa_pop_frame () { register FRAME frame = get_current_frame (); register CORE_ADDR fp; register int regnum; struct frame_saved_regs fsr; struct frame_info *fi; double freg_buffer; fi = get_frame_info (frame); fp = fi->frame; get_frame_saved_regs (fi, &fsr); if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */ restore_pc_queue (&fsr); for (regnum = 31; regnum > 0; regnum--) if (fsr.regs[regnum]) write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--) if (fsr.regs[regnum]) { read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8); write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8); } if (fsr.regs[IPSW_REGNUM]) write_register (IPSW_REGNUM, read_memory_integer (fsr.regs[IPSW_REGNUM], 4)); if (fsr.regs[SAR_REGNUM]) write_register (SAR_REGNUM, read_memory_integer (fsr.regs[SAR_REGNUM], 4)); /* If the PC was explicitly saved, then just restore it. */ if (fsr.regs[PCOQ_TAIL_REGNUM]) write_register (PCOQ_TAIL_REGNUM, read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4)); /* Else use the value in %rp to set the new PC. */ else target_write_pc (read_register (RP_REGNUM)); write_register (FP_REGNUM, read_memory_integer (fp, 4)); if (fsr.regs[IPSW_REGNUM]) /* call dummy */ write_register (SP_REGNUM, fp - 48); else write_register (SP_REGNUM, fp); flush_cached_frames (); set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ())); } /* * After returning to a dummy on the stack, restore the instruction * queue space registers. */ static int restore_pc_queue (fsr) struct frame_saved_regs *fsr; { CORE_ADDR pc = read_pc (); CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4); int pid; struct target_waitstatus w; int insn_count; /* Advance past break instruction in the call dummy. */ write_register (PCOQ_HEAD_REGNUM, pc + 4); write_register (PCOQ_TAIL_REGNUM, pc + 8); /* * HPUX doesn't let us set the space registers or the space * registers of the PC queue through ptrace. Boo, hiss. * Conveniently, the call dummy has this sequence of instructions * after the break: * mtsp r21, sr0 * ble,n 0(sr0, r22) * * So, load up the registers and single step until we are in the * right place. */ write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4)); write_register (22, new_pc); for (insn_count = 0; insn_count < 3; insn_count++) { /* FIXME: What if the inferior gets a signal right now? Want to merge this into wait_for_inferior (as a special kind of watchpoint? By setting a breakpoint at the end? Is there any other choice? Is there *any* way to do this stuff with ptrace() or some equivalent?). */ resume (1, 0); target_wait (inferior_pid, &w); if (w.kind == TARGET_WAITKIND_SIGNALLED) { stop_signal = w.value.sig; terminal_ours_for_output (); printf_unfiltered ("\nProgram terminated with signal %s, %s.\n", target_signal_to_name (stop_signal), target_signal_to_string (stop_signal)); gdb_flush (gdb_stdout); return 0; } } target_terminal_ours (); fetch_inferior_registers (-1); return 1; } CORE_ADDR hppa_push_arguments (nargs, args, sp, struct_return, struct_addr) int nargs; value *args; CORE_ADDR sp; int struct_return; CORE_ADDR struct_addr; { /* array of arguments' offsets */ int *offset = (int *)alloca(nargs * sizeof (int)); int cum = 0; int i, alignment; for (i = 0; i < nargs; i++) { /* Coerce chars to int & float to double if necessary */ args[i] = value_arg_coerce (args[i]); cum += TYPE_LENGTH (VALUE_TYPE (args[i])); /* value must go at proper alignment. Assume alignment is a power of two.*/ alignment = hppa_alignof (VALUE_TYPE (args[i])); if (cum % alignment) cum = (cum + alignment) & -alignment; offset[i] = -cum; } sp += max ((cum + 7) & -8, 16); for (i = 0; i < nargs; i++) write_memory (sp + offset[i], VALUE_CONTENTS (args[i]), TYPE_LENGTH (VALUE_TYPE (args[i]))); if (struct_return) write_register (28, struct_addr); return sp + 32; } /* * Insert the specified number of args and function address * into a call sequence of the above form stored at DUMMYNAME. * * On the hppa we need to call the stack dummy through $$dyncall. * Therefore our version of FIX_CALL_DUMMY takes an extra argument, * real_pc, which is the location where gdb should start up the * inferior to do the function call. */ CORE_ADDR hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p) char *dummy; CORE_ADDR pc; CORE_ADDR fun; int nargs; value *args; struct type *type; int gcc_p; { CORE_ADDR dyncall_addr, sr4export_addr; struct minimal_symbol *msymbol; int flags = read_register (FLAGS_REGNUM); msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL); if (msymbol == NULL) error ("Can't find an address for $$dyncall trampoline"); dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol); msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL); if (msymbol == NULL) error ("Can't find an address for _sr4export trampoline"); sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol); store_unsigned_integer (&dummy[9*REGISTER_SIZE], REGISTER_SIZE, deposit_21 (fun >> 11, extract_unsigned_integer (&dummy[9*REGISTER_SIZE], REGISTER_SIZE))); store_unsigned_integer (&dummy[10*REGISTER_SIZE], REGISTER_SIZE, deposit_14 (fun & MASK_11, extract_unsigned_integer (&dummy[10*REGISTER_SIZE], REGISTER_SIZE))); store_unsigned_integer (&dummy[12*REGISTER_SIZE], REGISTER_SIZE, deposit_21 (sr4export_addr >> 11, extract_unsigned_integer (&dummy[12*REGISTER_SIZE], REGISTER_SIZE))); store_unsigned_integer (&dummy[13*REGISTER_SIZE], REGISTER_SIZE, deposit_14 (sr4export_addr & MASK_11, extract_unsigned_integer (&dummy[13*REGISTER_SIZE], REGISTER_SIZE))); write_register (22, pc); /* If we are in a syscall, then we should call the stack dummy directly. $$dyncall is not needed as the kernel sets up the space id registers properly based on the value in %r31. In fact calling $$dyncall will not work because the value in %r22 will be clobbered on the syscall exit path. */ if (flags & 2) return pc; else return dyncall_addr; } /* Get the PC from %r31 if currently in a syscall. Also mask out privilege bits. */ CORE_ADDR target_read_pc () { int flags = read_register (FLAGS_REGNUM); if (flags & 2) return read_register (31) & ~0x3; return read_register (PC_REGNUM) & ~0x3; } /* Write out the PC. If currently in a syscall, then also write the new PC value into %r31. */ void target_write_pc (v) CORE_ADDR v; { int flags = read_register (FLAGS_REGNUM); /* If in a syscall, then set %r31. Also make sure to get the privilege bits set correctly. */ if (flags & 2) write_register (31, (long) (v | 0x3)); write_register (PC_REGNUM, (long) v); write_register (NPC_REGNUM, (long) v + 4); } /* return the alignment of a type in bytes. Structures have the maximum alignment required by their fields. */ static int hppa_alignof (arg) struct type *arg; { int max_align, align, i; switch (TYPE_CODE (arg)) { case TYPE_CODE_PTR: case TYPE_CODE_INT: case TYPE_CODE_FLT: return TYPE_LENGTH (arg); case TYPE_CODE_ARRAY: return hppa_alignof (TYPE_FIELD_TYPE (arg, 0)); case TYPE_CODE_STRUCT: case TYPE_CODE_UNION: max_align = 2; for (i = 0; i < TYPE_NFIELDS (arg); i++) { /* Bit fields have no real alignment. */ if (!TYPE_FIELD_BITPOS (arg, i)) { align = hppa_alignof (TYPE_FIELD_TYPE (arg, i)); max_align = max (max_align, align); } } return max_align; default: return 4; } } /* Print the register regnum, or all registers if regnum is -1 */ pa_do_registers_info (regnum, fpregs) int regnum; int fpregs; { char raw_regs [REGISTER_BYTES]; int i; for (i = 0; i < NUM_REGS; i++) read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i)); if (regnum == -1) pa_print_registers (raw_regs, regnum, fpregs); else if (regnum < FP0_REGNUM) printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs + REGISTER_BYTE (regnum))); else pa_print_fp_reg (regnum); } pa_print_registers (raw_regs, regnum, fpregs) char *raw_regs; int regnum; int fpregs; { int i; for (i = 0; i < 18; i++) printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n", reg_names[i], *(int *)(raw_regs + REGISTER_BYTE (i)), reg_names[i + 18], *(int *)(raw_regs + REGISTER_BYTE (i + 18)), reg_names[i + 36], *(int *)(raw_regs + REGISTER_BYTE (i + 36)), reg_names[i + 54], *(int *)(raw_regs + REGISTER_BYTE (i + 54))); if (fpregs) for (i = 72; i < NUM_REGS; i++) pa_print_fp_reg (i); } pa_print_fp_reg (i) int i; { unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE]; unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE]; /* Get the data in raw format. */ read_relative_register_raw_bytes (i, raw_buffer); /* Convert raw data to virtual format if necessary. */ #ifdef REGISTER_CONVERTIBLE if (REGISTER_CONVERTIBLE (i)) { REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i), raw_buffer, virtual_buffer); } else #endif memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i)); fputs_filtered (reg_names[i], gdb_stdout); print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout); val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("\n"); } /* Function calls that pass into a new compilation unit must pass through a small piece of code that does long format (`external' in HPPA parlance) jumps. We figure out where the trampoline is going to end up, and return the PC of the final destination. If we aren't in a trampoline, we just return NULL. For computed calls, we just extract the new PC from r22. */ CORE_ADDR skip_trampoline_code (pc, name) CORE_ADDR pc; char *name; { long inst0, inst1; static CORE_ADDR dyncall = 0; struct minimal_symbol *msym; /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */ if (!dyncall) { msym = lookup_minimal_symbol ("$$dyncall", NULL); if (msym) dyncall = SYMBOL_VALUE_ADDRESS (msym); else dyncall = -1; } if (pc == dyncall) return (CORE_ADDR)(read_register (22) & ~0x3); inst0 = read_memory_integer (pc, 4); inst1 = read_memory_integer (pc+4, 4); if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */ && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */ pc = extract_21 (inst0) + extract_17 (inst1); else pc = (CORE_ADDR)NULL; return pc; } /* For the given instruction (INST), return any adjustment it makes to the stack pointer or zero for no adjustment. This only handles instructions commonly found in prologues. */ static int prologue_inst_adjust_sp (inst) unsigned long inst; { /* This must persist across calls. */ static int save_high21; /* The most common way to perform a stack adjustment ldo X(sp),sp */ if ((inst & 0xffffc000) == 0x37de0000) return extract_14 (inst); /* stwm X,D(sp) */ if ((inst & 0xffe00000) == 0x6fc00000) return extract_14 (inst); /* addil high21,%r1; ldo low11,(%r1),%r30) save high bits in save_high21 for later use. */ if ((inst & 0xffe00000) == 0x28200000) { save_high21 = extract_21 (inst); return 0; } if ((inst & 0xffff0000) == 0x343e0000) return save_high21 + extract_14 (inst); /* fstws as used by the HP compilers. */ if ((inst & 0xffffffe0) == 0x2fd01220) return extract_5_load (inst); /* No adjustment. */ return 0; } /* Return nonzero if INST is a branch of some kind, else return zero. */ static int is_branch (inst) unsigned long inst; { switch (inst >> 26) { case 0x20: case 0x21: case 0x22: case 0x23: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x30: case 0x31: case 0x32: case 0x33: case 0x38: case 0x39: case 0x3a: return 1; default: return 0; } } /* Return the register number for a GR which is saved by INST or zero it INST does not save a GR. Note we only care about full 32bit register stores (that's the only kind of stores the prologue will use). */ static int inst_saves_gr (inst) unsigned long inst; { /* Does it look like a stw? */ if ((inst >> 26) == 0x1a) return extract_5R_store (inst); /* Does it look like a stwm? */ if ((inst >> 26) == 0x1b) return extract_5R_store (inst); return 0; } /* Return the register number for a FR which is saved by INST or zero it INST does not save a FR. Note we only care about full 64bit register stores (that's the only kind of stores the prologue will use). */ static int inst_saves_fr (inst) unsigned long inst; { if ((inst & 0xfc1fffe0) == 0x2c101220) return extract_5r_store (inst); return 0; } /* Advance PC across any function entry prologue instructions to reach some "real" code. Use information in the unwind table to determine what exactly should be in the prologue. */ CORE_ADDR skip_prologue(pc) CORE_ADDR pc; { char buf[4]; unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; int status, i; struct unwind_table_entry *u; u = find_unwind_entry (pc); if (!u) return 0; /* This is how much of a frame adjustment we need to account for. */ stack_remaining = u->Total_frame_size << 3; /* Magic register saves we want to know about. */ save_rp = u->Save_RP; save_sp = u->Save_SP; /* Turn the Entry_GR field into a bitmask. */ save_gr = 0; for (i = 3; i < u->Entry_GR + 3; i++) { /* Frame pointer gets saved into a special location. */ if (u->Save_SP && i == FP_REGNUM) continue; save_gr |= (1 << i); } /* Turn the Entry_FR field into a bitmask too. */ save_fr = 0; for (i = 12; i < u->Entry_FR + 12; i++) save_fr |= (1 << i); /* Loop until we find everything of interest or hit a branch. For unoptimized GCC code and for any HP CC code this will never ever examine any user instructions. For optimzied GCC code we're faced with problems. GCC will schedule its prologue and make prologue instructions available for delay slot filling. The end result is user code gets mixed in with the prologue and a prologue instruction may be in the delay slot of the first branch or call. Some unexpected things are expected with debugging optimized code, so we allow this routine to walk past user instructions in optimized GCC code. */ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) { status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); /* Yow! */ if (status != 0) return pc; /* Note the interesting effects of this instruction. */ stack_remaining -= prologue_inst_adjust_sp (inst); /* There is only one instruction used for saving RP into the stack. */ if (inst == 0x6bc23fd9) save_rp = 0; /* This is the only way we save SP into the stack. At this time the HP compilers never bother to save SP into the stack. */ if ((inst & 0xffffc000) == 0x6fc10000) save_sp = 0; /* Account for general and floating-point register saves. */ save_gr &= ~(1 << inst_saves_gr (inst)); save_fr &= ~(1 << inst_saves_fr (inst)); /* Quit if we hit any kind of branch. This can happen if a prologue instruction is in the delay slot of the first call/branch. */ if (is_branch (inst)) break; /* Bump the PC. */ pc += 4; } return pc; } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void hppa_frame_find_saved_regs (frame_info, frame_saved_regs) struct frame_info *frame_info; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR pc; struct unwind_table_entry *u; unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; int status, i, reg; char buf[4]; int fp_loc = -1; /* Zero out everything. */ memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs)); /* Call dummy frames always look the same, so there's no need to examine the dummy code to determine locations of saved registers; instead, let find_dummy_frame_regs fill in the correct offsets for the saved registers. */ if ((frame_info->pc >= frame_info->frame && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 + 6 * 4))) find_dummy_frame_regs (frame_info, frame_saved_regs); /* Get the starting address of the function referred to by the PC saved in frame_info. */ pc = get_pc_function_start (frame_info->pc); /* Yow! */ u = find_unwind_entry (pc); if (!u) return; /* This is how much of a frame adjustment we need to account for. */ stack_remaining = u->Total_frame_size << 3; /* Magic register saves we want to know about. */ save_rp = u->Save_RP; save_sp = u->Save_SP; /* Turn the Entry_GR field into a bitmask. */ save_gr = 0; for (i = 3; i < u->Entry_GR + 3; i++) { /* Frame pointer gets saved into a special location. */ if (u->Save_SP && i == FP_REGNUM) continue; save_gr |= (1 << i); } /* Turn the Entry_FR field into a bitmask too. */ save_fr = 0; for (i = 12; i < u->Entry_FR + 12; i++) save_fr |= (1 << i); /* Loop until we find everything of interest or hit a branch. For unoptimized GCC code and for any HP CC code this will never ever examine any user instructions. For optimzied GCC code we're faced with problems. GCC will schedule its prologue and make prologue instructions available for delay slot filling. The end result is user code gets mixed in with the prologue and a prologue instruction may be in the delay slot of the first branch or call. Some unexpected things are expected with debugging optimized code, so we allow this routine to walk past user instructions in optimized GCC code. */ while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) { status = target_read_memory (pc, buf, 4); inst = extract_unsigned_integer (buf, 4); /* Yow! */ if (status != 0) return; /* Note the interesting effects of this instruction. */ stack_remaining -= prologue_inst_adjust_sp (inst); /* There is only one instruction used for saving RP into the stack. */ if (inst == 0x6bc23fd9) { save_rp = 0; frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20; } /* This is the only way we save SP into the stack. At this time the HP compilers never bother to save SP into the stack. */ if ((inst & 0xffffc000) == 0x6fc10000) { save_sp = 0; frame_saved_regs->regs[SP_REGNUM] = frame_info->frame; } /* Account for general and floating-point register saves. */ reg = inst_saves_gr (inst); if (reg >= 3 && reg <= 18 && (!u->Save_SP || reg != FP_REGNUM)) { save_gr &= ~(1 << reg); /* stwm with a positive displacement is a *post modify*. */ if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0) frame_saved_regs->regs[reg] = frame_info->frame; else { /* Handle code with and without frame pointers. */ if (u->Save_SP) frame_saved_regs->regs[reg] = frame_info->frame + extract_14 (inst); else frame_saved_regs->regs[reg] = frame_info->frame + (u->Total_frame_size << 3) + extract_14 (inst); } } /* GCC handles callee saved FP regs a little differently. It emits an instruction to put the value of the start of the FP store area into %r1. It then uses fstds,ma with a basereg of %r1 for the stores. HP CC emits them at the current stack pointer modifying the stack pointer as it stores each register. */ /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ if ((inst & 0xffffc000) == 0x34610000 || (inst & 0xffffc000) == 0x37c10000) fp_loc = extract_14 (inst); reg = inst_saves_fr (inst); if (reg >= 12 && reg <= 21) { /* Note +4 braindamage below is necessary because the FP status registers are internally 8 registers rather than the expected 4 registers. */ save_fr &= ~(1 << reg); if (fp_loc == -1) { /* 1st HP CC FP register store. After this instruction we've set enough state that the GCC and HPCC code are both handled in the same manner. */ frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame; fp_loc = 8; } else { frame_saved_regs->regs[reg + FP0_REGNUM + 4] = frame_info->frame + fp_loc; fp_loc += 8; } } /* Quit if we hit any kind of branch. This can happen if a prologue instruction is in the delay slot of the first call/branch. */ if (is_branch (inst)) break; /* Bump the PC. */ pc += 4; } } #ifdef MAINTENANCE_CMDS static void unwind_command (exp, from_tty) char *exp; int from_tty; { CORE_ADDR address; union { int *foo; struct unwind_table_entry *u; } xxx; /* If we have an expression, evaluate it and use it as the address. */ if (exp != 0 && *exp != 0) address = parse_and_eval_address (exp); else return; xxx.u = find_unwind_entry (address); if (!xxx.u) { printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address); return; } printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2], xxx.foo[3]); } #endif /* MAINTENANCE_CMDS */ void _initialize_hppa_tdep () { #ifdef MAINTENANCE_CMDS add_cmd ("unwind", class_maintenance, unwind_command, "Print unwind table entry at given address.", &maintenanceprintlist); #endif /* MAINTENANCE_CMDS */ }