aboutsummaryrefslogtreecommitdiff
path: root/bfd/ChangeLog
diff options
context:
space:
mode:
Diffstat (limited to 'bfd/ChangeLog')
-rw-r--r--bfd/ChangeLog167
1 files changed, 167 insertions, 0 deletions
diff --git a/bfd/ChangeLog b/bfd/ChangeLog
index 9e3190d..4b2d824 100644
--- a/bfd/ChangeLog
+++ b/bfd/ChangeLog
@@ -1,5 +1,172 @@
2020-02-19 Alan Modra <amodra@gmail.com>
+ * aix386-core.c (aix386_core_file_p): Use size_t for "amt".
+ * aout-target.h (object_p): Likewise.
+ * aout-tic30.c (tic30_aout_object_p): Likewise.
+ * aoutx.h (some_aout_object_p, mkobject, make_empty_symbol),
+ (emit_stringtab, write_syms, link_hash_table_create),
+ (aout_link_write_other_symbol): Likewise.
+ * archive.c (_bfd_generic_mkarchive, bfd_generic_archive_p),
+ (bfd_ar_hdr_from_filesystem, _bfd_write_archive_contents),
+ (_bfd_compute_and_write_armap): Likewise.
+ * archures.c (bfd_arch_list): Likewise.
+ * bfd.c (bfd_record_phdr): Likewise.
+ * binary.c (binary_canonicalize_symtab): Likewise.
+ * cisco-core.c (cisco_core_file_validate): Likewise.
+ * coff-arm.c (coff_arm_link_hash_table_create, find_thumb_glue),
+ (find_arm_glue, record_arm_to_thumb_glue),
+ (record_thumb_to_arm_glue): Likewise.
+ * coff-ppc.c (ppc_coff_link_hash_table_create, record_toc),
+ (ppc_allocate_toc_section): Likewise.
+ * coff-rs6000.c (_bfd_xcoff_mkobject, _bfd_xcoff_archive_p): Likewise.
+ * coff-sh.c (sh_relax_section): Likewise.
+ * coff64-rs6000.c (xcoff64_archive_p): Likewise.
+ * coffcode.h (handle_COMDAT, coff_new_section_hook),
+ (coff_set_alignment_hook, coff_mkobject),
+ (coff_compute_section_file_positions): Likewise.
+ * coffgen.c (coff_make_empty_symbol, coff_bfd_make_debug_symbol),
+ (coff_find_nearest_line_with_names),
+ ( bfd_coff_set_symbol_class): Likewise.
+ * cofflink.c (_bfd_coff_link_hash_table_create),
+ (_bfd_coff_link_input_bfd): Likewise.
+ * dwarf1.c (alloc_dwarf1_unit, alloc_dwarf1_func): Likewise.
+ * dwarf2.c (read_abbrevs, read_attribute_value, add_line_info),
+ (build_line_info_table, sort_line_sequences),
+ (line_info_add_include_dir, line_info_add_file_name),
+ (decode_line_info, scan_unit_for_symbols, parse_comp_unit),
+ (place_sections, _bfd_dwarf2_slurp_debug_info): Likewise.
+ * ecoff.c (_bfd_ecoff_mkobject, _bfd_ecoff_make_empty_symbol),
+ (_bfd_ecoff_find_nearest_line),
+ (_bfd_ecoff_bfd_link_hash_table_create): Likewise.
+ * ecofflink.c (bfd_ecoff_debug_init): Likewise.
+ * elf-hppa.h (_bfd_elf_hppa_gen_reloc_type): Likewise.
+ * elf-m10300.c (mn10300_elf_relax_section),
+ (elf32_mn10300_link_hash_table_create): Likewise.
+ * elf-strtab.c (_bfd_elf_strtab_init): Likewise.
+ * elf.c (make_mapping, copy_elf_program_header): Likewise.
+ * elf32-arm.c (elf32_arm_link_hash_table_create),
+ (elf32_arm_setup_section_lists, elf32_arm_check_relocs),
+ (elf32_arm_new_section_hook): Likewise.
+ * elf32-avr.c (elf_avr_new_section_hook),
+ (elf32_avr_link_hash_table_create, get_local_syms),
+ (elf32_avr_setup_section_lists): Likewise.
+ * elf32-bfin.c (bfinfdpic_elf_link_hash_table_create),
+ (bfin_link_hash_table_create): Likewise.
+ * elf32-cr16.c (elf32_cr16_link_hash_table_create): Likewise.
+ * elf32-cris.c (elf_cris_link_hash_table_create): Likewise.
+ * elf32-csky.c (csky_elf_link_hash_table_create),
+ (csky_elf_check_relocs, elf32_csky_setup_section_lists): Likewise.
+ * elf32-frv.c (frvfdpic_elf_link_hash_table_create): Likewise.
+ * elf32-hppa.c (elf32_hppa_link_hash_table_create),
+ (elf32_hppa_setup_section_lists, get_local_syms): Likewise.
+ * elf32-i386.c (elf_i386_check_relocs): Likewise.
+ * elf32-lm32.c (lm32_elf_link_hash_table_create): Likewise.
+ * elf32-m32r.c (m32r_elf_link_hash_table_create),
+ (m32r_elf_check_relocs): Likewise.
+ * elf32-m68hc1x.c (m68hc11_elf_hash_table_create),
+ (elf32_m68hc11_setup_section_lists),
+ (elf32_m68hc11_size_stubs): Likewise.
+ * elf32-m68k.c (elf_m68k_link_hash_table_create): Likewise.
+ * elf32-metag.c (elf_metag_link_hash_table_create),
+ (elf_metag_setup_section_lists): Likewise.
+ * elf32-microblaze.c (microblaze_elf_link_hash_table_create),
+ (microblaze_elf_check_relocs): Likewise.
+ * elf32-nds32.c (nds32_elf_link_hash_table_create),
+ (nds32_elf_check_relocs): Likewise.
+ * elf32-nios2.c (nios2_elf32_setup_section_lists),
+ (get_local_syms, nios2_elf32_check_relocs),
+ (nios2_elf32_link_hash_table_create): Likewise.
+ * elf32-or1k.c (or1k_elf_link_hash_table_create),
+ (or1k_elf_check_relocs): Likewise.
+ * elf32-ppc.c (ppc_elf_modify_segment_map, update_plt_info): Likewise.
+ * elf32-pru.c (pru_elf32_link_hash_table_create): Likewise.
+ * elf32-s390.c (elf_s390_link_hash_table_create),
+ (elf_s390_check_relocs): Likewise.
+ * elf32-score.c (score_elf_create_got_section),
+ (s3_elf32_score_new_section_hook),
+ (elf32_score_link_hash_table_create): Likewise.
+ * elf32-score7.c (score_elf_create_got_section),
+ (s7_elf32_score_new_section_hook): Likewise.
+ * elf32-sh.c (sh_elf_link_hash_table_create),
+ (sh_elf_check_relocs): Likewise.
+ * elf32-tic6x.c (elf32_tic6x_link_hash_table_create),
+ (elf32_tic6x_new_section_hook, elf32_tic6x_check_relocs): Likewise.
+ * elf32-tilepro.c (tilepro_elf_link_hash_table_create),
+ (tilepro_elf_check_relocs): Likewise.
+ * elf32-v850.c (remember_hi16s_reloc): Likewise.
+ * elf32-vax.c (elf_vax_link_hash_table_create): Likewise.
+ * elf32-xtensa.c (elf_xtensa_link_hash_table_create),
+ (elf_xtensa_new_section_hook): Likewise.
+ * elf64-alpha.c (elf64_alpha_bfd_link_hash_table_create),
+ (get_got_entry, elf64_alpha_check_relocs): Likewise.
+ * elf64-hppa.c (elf64_hppa_hash_table_create): Likewise.
+ * elf64-ia64-vms.c (elf64_ia64_object_p): Likewise.
+ * elf64-mmix.c (mmix_elf_new_section_hook): Likewise.
+ * elf64-ppc.c (ppc64_elf_new_section_hook),
+ (ppc64_elf_link_hash_table_create, update_local_sym_info),
+ (update_plt_info, ppc64_elf_check_relocs): Likewise.
+ * elf64-s390.c (elf_s390_link_hash_table_create),
+ (elf_s390_check_relocs): Likewise.
+ * elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
+ * elflink.c (bfd_elf_link_record_local_dynamic_symbol),
+ (_bfd_elf_link_find_version_dependencies, elf_link_add_object_symbols),
+ (elf_link_add_archive_symbols, compute_bucket_count),
+ (bfd_elf_size_dynsym_hash_dynstr, _bfd_elf_link_hash_table_create),
+ (bfd_elf_get_bfd_needed_list, elf_link_swap_symbols_out),
+ (bfd_elf_final_link): Likewise.
+ * elfnn-aarch64.c (elfNN_aarch64_link_hash_table_create),
+ (elfNN_aarch64_setup_section_lists, elfNN_aarch64_check_relocs),
+ (elfNN_aarch64_new_section_hook): Likewise.
+ * elfnn-ia64.c (elfNN_ia64_object_p): Likewise.
+ * elfnn-riscv.c (riscv_elf_link_hash_table_create),
+ (riscv_elf_check_relocs): Likewise.
+ * elfxx-mips.c (_bfd_mips_elf_new_section_hook),
+ (_bfd_mips_elf_add_symbol_hook, _bfd_mips_elf_check_relocs),
+ (_bfd_mips_elf_modify_segment_map, _bfd_mips_elf_set_section_contents),
+ (_bfd_mips_elf_link_hash_table_create): Likewise.
+ * elfxx-sparc.c (_bfd_sparc_elf_link_hash_table_create),
+ (_bfd_sparc_elf_check_relocs),
+ (_bfd_sparc_elf_new_section_hook): Likewise.
+ * elfxx-tilegx.c (tilegx_elf_link_hash_table_create),
+ (tilegx_elf_check_relocs): Likewise.
+ * elfxx-x86.c (_bfd_x86_elf_link_hash_table_create): Likewise.
+ * format.c (bfd_check_format_matches): Likewise.
+ * hash.c (_bfd_stringtab_init): Likewise.
+ * ihex.c (ihex_scan): Likewise.
+ * irix-core.c (irix_core_core_file_p): Likewise.
+ * linker.c (bfd_wrapped_link_hash_lookup),
+ (_bfd_generic_link_hash_table_create),
+ (_bfd_generic_reloc_link_order): Likewise.
+ * lynx-core.c (lynx_core_file_p): Likewise.
+ * netbsd-core.c (netbsd_core_file_p): Likewise.
+ * osf-core.c (osf_core_core_file_p): Likewise.
+ * pdp11.c (some_aout_object_p, mkobject, make_empty_symbol),
+ (link_hash_table_create, aout_link_write_other_symbol): Likewise.
+ * peXXigen.c (_bfd_XX_bfd_copy_private_section_data): Likewise.
+ * peicode.h (pe_mkobject): Likewise.
+ * ppcboot.c (ppcboot_mkobject, ppcboot_canonicalize_symtab): Likewise.
+ * ptrace-core.c (ptrace_unix_core_file_p): Likewise.
+ * sco5-core.c (read_uarea): Likewise.
+ * som.c (hppa_som_gen_reloc_type, som_object_p, som_prep_headers),
+ (som_write_fixups, som_write_space_strings, som_write_symbol_strings),
+ (som_finish_writing, som_canonicalize_symtab, som_new_section_hook),
+ (som_bfd_copy_private_section_data, bfd_som_set_section_attributes),
+ (bfd_som_attach_aux_hdr, som_write_armap): Likewise.
+ * srec.c (srec_scan): Likewise.
+ * syms.c (_bfd_generic_make_empty_symbol): Likewise.
+ * targets.c (bfd_target_list): Likewise.
+ * tekhex.c (first_phase, tekhex_sizeof_headers): Likewise.
+ * trad-core.c (trad_unix_core_file_p): Likewise.
+ * vms-alpha.c (vms_initialize, alpha_vms_bfd_link_hash_table_create),
+ (vms_new_section_hook): Likewise.
+ * wasm-module.c (wasm_make_empty_symbol): Likewise.
+ * xcofflink.c (xcoff_get_section_contents),
+ (_bfd_xcoff_bfd_link_hash_table_create, xcoff_set_import_path),
+ (xcoff_find_function, bfd_xcoff_link_record_set, xcoff_build_ldsym),
+ (bfd_xcoff_size_dynamic_sections, xcoff_link_input_bfd): Likewise.
+
+2020-02-19 Alan Modra <amodra@gmail.com>
+
* elfxx-riscv.c (riscv_multi_letter_ext_valid_p): Don't use C99.
2020-02-13 H.J. Lu <hongjiu.lu@intel.com>
='#n1195'>1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
/* Processing rules for constraints.
   Copyright (C) 2013-2021 Free Software Foundation, Inc.
   Contributed by Andrew Sutton (andrew.n.sutton@gmail.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "timevar.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "intl.h"
#include "flags.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "c-family/c-objc.h"
#include "cp-objcp-common.h"
#include "tree-inline.h"
#include "decl.h"
#include "toplev.h"
#include "type-utils.h"

static tree satisfaction_value (tree t);

/* When we're parsing or substuting a constraint expression, we have slightly
   different expression semantics.  In particular, we don't want to reduce a
   concept-id to a satisfaction value.  */

processing_constraint_expression_sentinel::
processing_constraint_expression_sentinel ()
{
  ++scope_chain->x_processing_constraint;
}

processing_constraint_expression_sentinel::
~processing_constraint_expression_sentinel ()
{
  --scope_chain->x_processing_constraint;
}

bool
processing_constraint_expression_p ()
{
  return scope_chain->x_processing_constraint != 0;
}

/*---------------------------------------------------------------------------
		       Constraint expressions
---------------------------------------------------------------------------*/

/* Information provided to substitution.  */

struct subst_info
{
  subst_info (tsubst_flags_t cmp, tree in)
    : complain (cmp), in_decl (in)
  { }

  /* True if we should not diagnose errors.  */
  bool quiet() const
  {
    return complain == tf_none;
  }

  /* True if we should diagnose errors.  */
  bool noisy() const
  {
    return !quiet ();
  }

  tsubst_flags_t complain;
  tree in_decl;
};

/* Provides additional context for satisfaction.

   During satisfaction:
    - The flag noisy() controls whether to diagnose ill-formed satisfaction,
      such as the satisfaction value of an atom being non-bool or non-constant.
    - The flag diagnose_unsatisfaction_p() controls whether to additionally
      explain why a constraint is not satisfied.
    - We enter satisfaction with noisy+unsat from diagnose_constraints.
    - We enter satisfaction with noisy-unsat from the replay inside
      constraint_satisfaction_value.
    - We enter satisfaction quietly (both flags cleared) from
      constraints_satisfied_p.

   During evaluation of a requires-expression:
    - The flag noisy() controls whether to diagnose ill-formed types and
      expressions inside its requirements.
    - The flag diagnose_unsatisfaction_p() controls whether to additionally
      explain why the requires-expression evaluates to false.
    - We enter tsubst_requires_expr with noisy+unsat from
      diagnose_atomic_constraint and potentially from
      satisfy_nondeclaration_constraints.
    - We enter tsubst_requires_expr with noisy-unsat from
      cp_parser_requires_expression when processing a requires-expression that
      appears outside a template.
    - We enter tsubst_requires_expr quietly (both flags cleared) when
      substituting through a requires-expression as part of template
      instantiation.  */

struct sat_info : subst_info
{
  sat_info (tsubst_flags_t cmp, tree in, bool diag_unsat = false)
    : subst_info (cmp, in), diagnose_unsatisfaction (diag_unsat)
  {
    if (diagnose_unsatisfaction_p ())
      gcc_checking_assert (noisy ());
  }

  /* True if we should diagnose the cause of satisfaction failure.
     Implies noisy().  */
  bool
  diagnose_unsatisfaction_p () const
  {
    return diagnose_unsatisfaction;
  }

  bool diagnose_unsatisfaction;
};

static tree constraint_satisfaction_value (tree, tree, sat_info);

/* True if T is known to be some type other than bool. Note that this
   is false for dependent types and errors.  */

static inline bool
known_non_bool_p (tree t)
{
  return (t && !WILDCARD_TYPE_P (t) && TREE_CODE (t) != BOOLEAN_TYPE);
}

static bool
check_constraint_atom (cp_expr expr)
{
  if (known_non_bool_p (TREE_TYPE (expr)))
    {
      error_at (expr.get_location (),
		"constraint expression does not have type %<bool%>");
      return false;
    }

  /* Check that we're using function concepts correctly.  */
  if (concept_check_p (expr))
    {
      tree id = unpack_concept_check (expr);
      tree tmpl = TREE_OPERAND (id, 0);
      if (OVL_P (tmpl) && TREE_CODE (expr) == TEMPLATE_ID_EXPR)
        {
	  error_at (EXPR_LOC_OR_LOC (expr, input_location),
		    "function concept must be called");
	  return false;
	}
    }

  return true;
}

static bool
check_constraint_operands (location_t, cp_expr lhs, cp_expr rhs)
{
  return check_constraint_atom (lhs) && check_constraint_atom (rhs);
}

/* Validate the semantic properties of the constraint expression.  */

static cp_expr
finish_constraint_binary_op (location_t loc,
			     tree_code code,
			     cp_expr lhs,
			     cp_expr rhs)
{
  gcc_assert (processing_constraint_expression_p ());
  if (lhs == error_mark_node || rhs == error_mark_node)
    return error_mark_node;
  if (!check_constraint_operands (loc, lhs, rhs))
    return error_mark_node;
  tree overload;
  cp_expr expr = build_x_binary_op (loc, code,
				    lhs, TREE_CODE (lhs),
				    rhs, TREE_CODE (rhs),
				    &overload, tf_none);
  /* When either operand is dependent, the overload set may be non-empty.  */
  if (expr == error_mark_node)
    return error_mark_node;
  expr.set_location (loc);
  expr.set_range (lhs.get_start (), rhs.get_finish ());
  return expr;
}

cp_expr
finish_constraint_or_expr (location_t loc, cp_expr lhs, cp_expr rhs)
{
  return finish_constraint_binary_op (loc, TRUTH_ORIF_EXPR, lhs, rhs);
}

cp_expr
finish_constraint_and_expr (location_t loc, cp_expr lhs, cp_expr rhs)
{
  return finish_constraint_binary_op (loc, TRUTH_ANDIF_EXPR, lhs, rhs);
}

cp_expr
finish_constraint_primary_expr (cp_expr expr)
{
  if (expr == error_mark_node)
    return error_mark_node;
  if (!check_constraint_atom (expr))
    return cp_expr (error_mark_node, expr.get_location ());
  return expr;
}

/* Combine two constraint-expressions with a logical-and.  */

tree
combine_constraint_expressions (tree lhs, tree rhs)
{
  processing_constraint_expression_sentinel pce;
  if (!lhs)
    return rhs;
  if (!rhs)
    return lhs;
  return finish_constraint_and_expr (input_location, lhs, rhs);
}

/* Extract the template-id from a concept check. For standard and variable
   checks, this is simply T. For function concept checks, this is the
   called function.  */

tree
unpack_concept_check (tree t)
{
  gcc_assert (concept_check_p (t));

  if (TREE_CODE (t) == CALL_EXPR)
    t = CALL_EXPR_FN (t);

  gcc_assert (TREE_CODE (t) == TEMPLATE_ID_EXPR);
  return t;
}

/* Extract the TEMPLATE_DECL from a concept check.  */

tree
get_concept_check_template (tree t)
{
  tree id = unpack_concept_check (t);
  tree tmpl = TREE_OPERAND (id, 0);
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);
  return tmpl;
}

/*---------------------------------------------------------------------------
                    Resolution of qualified concept names
---------------------------------------------------------------------------*/

/* This facility is used to resolve constraint checks from requirement
   expressions. A constraint check is a call to a function template declared
   with the keyword 'concept'.

   The result of resolution is a pair (a TREE_LIST) whose value is the
   matched declaration, and whose purpose contains the coerced template
   arguments that can be substituted into the call.  */

/* Given an overload set OVL, try to find a unique definition that can be
   instantiated by the template arguments ARGS.

   This function is not called for arbitrary call expressions. In particular,
   the call expression must be written with explicit template arguments
   and no function arguments. For example:

        f<T, U>()

   If a single match is found, this returns a TREE_LIST whose VALUE
   is the constraint function (not the template), and its PURPOSE is
   the complete set of arguments substituted into the parameter list.  */

static tree
resolve_function_concept_overload (tree ovl, tree args)
{
  int nerrs = 0;
  tree cands = NULL_TREE;
  for (lkp_iterator iter (ovl); iter; ++iter)
    {
      tree tmpl = *iter;
      if (TREE_CODE (tmpl) != TEMPLATE_DECL)
        continue;

      /* Don't try to deduce checks for non-concepts. We often end up trying
         to resolve constraints in functional casts as part of a
         postfix-expression. We can save time and headaches by not
         instantiating those declarations.

         NOTE: This masks a potential error, caused by instantiating
         non-deduced contexts using placeholder arguments. */
      tree fn = DECL_TEMPLATE_RESULT (tmpl);
      if (DECL_ARGUMENTS (fn))
        continue;
      if (!DECL_DECLARED_CONCEPT_P (fn))
        continue;

      /* Remember the candidate if we can deduce a substitution.  */
      ++processing_template_decl;
      tree parms = TREE_VALUE (DECL_TEMPLATE_PARMS (tmpl));
      if (tree subst = coerce_template_parms (parms, args, tmpl))
        {
          if (subst == error_mark_node)
            ++nerrs;
          else
	    cands = tree_cons (subst, fn, cands);
        }
      --processing_template_decl;
    }

  if (!cands)
    /* We either had no candidates or failed deductions.  */
    return nerrs ? error_mark_node : NULL_TREE;
  else if (TREE_CHAIN (cands))
    /* There are multiple candidates.  */
    return error_mark_node;

  return cands;
}

/* Determine if the call expression CALL is a constraint check, and
   return the concept declaration and arguments being checked. If CALL
   does not denote a constraint check, return NULL.  */

tree
resolve_function_concept_check (tree call)
{
  gcc_assert (TREE_CODE (call) == CALL_EXPR);

  /* A constraint check must be only a template-id expression.
     If it's a call to a base-link, its function(s) should be a
     template-id expression. If this is not a template-id, then
     it cannot be a concept-check.  */
  tree target = CALL_EXPR_FN (call);
  if (BASELINK_P (target))
    target = BASELINK_FUNCTIONS (target);
  if (TREE_CODE (target) != TEMPLATE_ID_EXPR)
    return NULL_TREE;

  /* Get the overload set and template arguments and try to
     resolve the target.  */
  tree ovl = TREE_OPERAND (target, 0);

  /* This is a function call of a variable concept... ill-formed.  */
  if (TREE_CODE (ovl) == TEMPLATE_DECL)
    {
      error_at (location_of (call),
		"function call of variable concept %qE", call);
      return error_mark_node;
    }

  tree args = TREE_OPERAND (target, 1);
  return resolve_function_concept_overload (ovl, args);
}

/* Returns a pair containing the checked concept and its associated
   prototype parameter. The result is a TREE_LIST whose TREE_VALUE
   is the concept (non-template) and whose TREE_PURPOSE contains
   the converted template arguments, including the deduced prototype
   parameter (in position 0). */

tree
resolve_concept_check (tree check)
{
  gcc_assert (concept_check_p (check));
  tree id = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (id, 0);

  /* If this is an overloaded function concept, perform overload
     resolution (this only happens when deducing prototype parameters
     and template introductions).  */
  if (TREE_CODE (tmpl) == OVERLOAD)
    {
      if (OVL_CHAIN (tmpl))
	return resolve_function_concept_check (check);
      tmpl = OVL_FIRST (tmpl);
    }

  tree args = TREE_OPERAND (id, 1);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  ++processing_template_decl;
  tree result = coerce_template_parms (parms, args, tmpl);
  --processing_template_decl;
  if (result == error_mark_node)
    return error_mark_node;
  return build_tree_list (result, DECL_TEMPLATE_RESULT (tmpl));
}

/* Given a call expression or template-id expression to a concept EXPR
   possibly including a wildcard, deduce the concept being checked and
   the prototype parameter. Returns true if the constraint and prototype
   can be deduced and false otherwise.  Note that the CHECK and PROTO
   arguments are set to NULL_TREE if this returns false.  */

bool
deduce_constrained_parameter (tree expr, tree& check, tree& proto)
{
  tree info = resolve_concept_check (expr);
  if (info && info != error_mark_node)
    {
      check = TREE_VALUE (info);
      tree arg = TREE_VEC_ELT (TREE_PURPOSE (info), 0);
      if (ARGUMENT_PACK_P (arg))
	arg = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0);
      proto = TREE_TYPE (arg);
      return true;
    }

  check = proto = NULL_TREE;
  return false;
}

/* Given a call expression or template-id expression to a concept, EXPR,
   deduce the concept being checked and return the template arguments.
   Returns NULL_TREE if deduction fails.  */
static tree
deduce_concept_introduction (tree check)
{
  tree info = resolve_concept_check (check);
  if (info && info != error_mark_node)
    return TREE_PURPOSE (info);
  return NULL_TREE;
}

/* Build a constrained placeholder type where SPEC is a type-constraint.
   SPEC can be anything were concept_definition_p is true.

   If DECLTYPE_P is true, then the placeholder is decltype(auto).

   Returns a pair whose FIRST is the concept being checked and whose
   SECOND is the prototype parameter.  */

tree_pair
finish_type_constraints (tree spec, tree args, tsubst_flags_t complain)
{
  gcc_assert (concept_definition_p (spec));

  /* Build an initial concept check.  */
  tree check = build_type_constraint (spec, args, complain);
  if (check == error_mark_node)
    return std::make_pair (error_mark_node, NULL_TREE);

  /* Extract the concept and prototype parameter from the check. */
  tree con;
  tree proto;
  if (!deduce_constrained_parameter (check, con, proto))
    return std::make_pair (error_mark_node, NULL_TREE);

  return std::make_pair (con, proto);
}

/*---------------------------------------------------------------------------
                       Expansion of concept definitions
---------------------------------------------------------------------------*/

/* Returns the expression of a function concept. */

static tree
get_returned_expression (tree fn)
{
  /* Extract the body of the function minus the return expression.  */
  tree body = DECL_SAVED_TREE (fn);
  if (!body)
    return error_mark_node;
  if (TREE_CODE (body) == BIND_EXPR)
    body = BIND_EXPR_BODY (body);
  if (TREE_CODE (body) != RETURN_EXPR)
    return error_mark_node;

  return TREE_OPERAND (body, 0);
}

/* Returns the initializer of a variable concept. */

static tree
get_variable_initializer (tree var)
{
  tree init = DECL_INITIAL (var);
  if (!init)
    return error_mark_node;
  if (BRACE_ENCLOSED_INITIALIZER_P (init)
      && CONSTRUCTOR_NELTS (init) == 1)
    init = CONSTRUCTOR_ELT (init, 0)->value;
  return init;
}

/* Returns the definition of a variable or function concept.  */

static tree
get_concept_definition (tree decl)
{
  if (TREE_CODE (decl) == OVERLOAD)
    decl = OVL_FIRST (decl);

  if (TREE_CODE (decl) == TEMPLATE_DECL)
    decl = DECL_TEMPLATE_RESULT (decl);

  if (TREE_CODE (decl) == CONCEPT_DECL)
    return DECL_INITIAL (decl);
  if (VAR_P (decl))
    return get_variable_initializer (decl);
  if (TREE_CODE (decl) == FUNCTION_DECL)
    return get_returned_expression (decl);
  gcc_unreachable ();
}

/*---------------------------------------------------------------------------
		      Normalization of expressions

This set of functions will transform an expression into a constraint
in a sequence of steps.
---------------------------------------------------------------------------*/

void
debug_parameter_mapping (tree map)
{
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      tree parm = TREE_VALUE (p);
      tree arg = TREE_PURPOSE (p);
      if (TYPE_P (parm))
	verbatim ("MAP %qD TO %qT", TEMPLATE_TYPE_DECL (parm), arg);
      else
	verbatim ("MAP %qD TO %qE", TEMPLATE_PARM_DECL (parm), arg);
      // debug_tree (parm);
      // debug_tree (arg);
    }
}

void
debug_argument_list (tree args)
{
  for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
    {
      tree arg = TREE_VEC_ELT (args, i);
      if (TYPE_P (arg))
	verbatim ("argument %qT", arg);
      else
	verbatim ("argument %qE", arg);
    }
}

/* Associate each parameter in PARMS with its corresponding template
   argument in ARGS.  */

static tree
map_arguments (tree parms, tree args)
{
  for (tree p = parms; p; p = TREE_CHAIN (p))
    if (args)
      {
	int level;
	int index;
	template_parm_level_and_index (TREE_VALUE (p), &level, &index);
	TREE_PURPOSE (p) = TMPL_ARG (args, level, index);
      }
    else
      TREE_PURPOSE (p) = template_parm_to_arg (p);

  return parms;
}

/* Build the parameter mapping for EXPR using ARGS, where CTX_PARMS
   are the template parameters in scope for EXPR.  */

static tree
build_parameter_mapping (tree expr, tree args, tree ctx_parms)
{
  tree parms = find_template_parameters (expr, ctx_parms);
  tree map = map_arguments (parms, args);
  return map;
}

/* True if the parameter mappings of two atomic constraints formed
   from the same expression are equivalent.  */

static bool
parameter_mapping_equivalent_p (tree t1, tree t2)
{
  tree map1 = ATOMIC_CONSTR_MAP (t1);
  tree map2 = ATOMIC_CONSTR_MAP (t2);
  while (map1 && map2)
    {
      gcc_checking_assert (TREE_VALUE (map1) == TREE_VALUE (map2));
      tree arg1 = TREE_PURPOSE (map1);
      tree arg2 = TREE_PURPOSE (map2);
      if (!template_args_equal (arg1, arg2))
        return false;
      map1 = TREE_CHAIN (map1);
      map2 = TREE_CHAIN (map2);
    }
  gcc_checking_assert (!map1 && !map2);
  return true;
}

/* Provides additional context for normalization.  */

struct norm_info : subst_info
{
  explicit norm_info (tsubst_flags_t cmp)
    : norm_info (NULL_TREE, cmp)
  {}

  /* Construct a top-level context for DECL.  */

  norm_info (tree in_decl, tsubst_flags_t complain)
    : subst_info (tf_warning_or_error | complain, in_decl)
  {
    if (in_decl)
      {
	initial_parms = DECL_TEMPLATE_PARMS (in_decl);
	if (generate_diagnostics ())
	  context = build_tree_list (NULL_TREE, in_decl);
      }
    else
      initial_parms = current_template_parms;
  }

  bool generate_diagnostics() const
  {
    return complain & tf_norm;
  }

  void update_context(tree expr, tree args)
  {
    if (generate_diagnostics ())
      {
	tree map = build_parameter_mapping (expr, args, ctx_parms ());
	context = tree_cons (map, expr, context);
      }
    in_decl = get_concept_check_template (expr);
  }

  /* Returns the template parameters that are in scope for the current
     normalization context.  */

  tree ctx_parms()
  {
    if (in_decl)
      return DECL_TEMPLATE_PARMS (in_decl);
    else
      return initial_parms;
  }

  /* Provides information about the source of a constraint. This is a
     TREE_LIST whose VALUE is either a concept check or a constrained
     declaration. The PURPOSE, for concept checks is a parameter mapping
     for that check.  */

  tree context = NULL_TREE;

  /* The declaration whose constraints we're normalizing.  The targets
     of the parameter mapping of each atom will be in terms of the
     template parameters of ORIG_DECL.  */

  tree initial_parms = NULL_TREE;
};

static tree normalize_expression (tree, tree, norm_info);

/* Transform a logical-or or logical-and expression into either
   a conjunction or disjunction. */

static tree
normalize_logical_operation (tree t, tree args, tree_code c, norm_info info)
{
  tree t0 = normalize_expression (TREE_OPERAND (t, 0), args, info);
  tree t1 = normalize_expression (TREE_OPERAND (t, 1), args, info);

  /* Build a new info object for the constraint.  */
  tree ci = info.generate_diagnostics()
    ? build_tree_list (t, info.context)
    : NULL_TREE;

  return build2 (c, ci, t0, t1);
}

static tree
normalize_concept_check (tree check, tree args, norm_info info)
{
  tree id = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (id, 0);
  tree targs = TREE_OPERAND (id, 1);

  /* A function concept is wrapped in an overload.  */
  if (TREE_CODE (tmpl) == OVERLOAD)
    {
      /* TODO: Can we diagnose this error during parsing?  */
      if (TREE_CODE (check) == TEMPLATE_ID_EXPR)
	error_at (EXPR_LOC_OR_LOC (check, input_location),
		  "function concept must be called");
      tmpl = OVL_FIRST (tmpl);
    }

  /* Substitute through the arguments of the concept check. */
  if (args)
    targs = tsubst_template_args (targs, args, info.complain, info.in_decl);
  if (targs == error_mark_node)
    return error_mark_node;

  /* Build the substitution for the concept definition.  */
  tree parms = TREE_VALUE (DECL_TEMPLATE_PARMS (tmpl));
  /* Turn on template processing; coercing non-type template arguments
     will automatically assume they're non-dependent.  */
  ++processing_template_decl;
  tree subst = coerce_template_parms (parms, targs, tmpl);
  --processing_template_decl;
  if (subst == error_mark_node)
    return error_mark_node;

  /* The concept may have been ill-formed.  */
  tree def = get_concept_definition (DECL_TEMPLATE_RESULT (tmpl));
  if (def == error_mark_node)
    return error_mark_node;

  info.update_context (check, args);
  return normalize_expression (def, subst, info);
}

/* Used by normalize_atom to cache ATOMIC_CONSTRs.  */

static GTY((deletable)) hash_table<atom_hasher> *atom_cache;

/* The normal form of an atom depends on the expression. The normal
   form of a function call to a function concept is a check constraint
   for that concept. The normal form of a reference to a variable
   concept is a check constraint for that concept. Otherwise, the
   constraint is a predicate constraint.  */

static tree
normalize_atom (tree t, tree args, norm_info info)
{
  /* Concept checks are not atomic.  */
  if (concept_check_p (t))
    return normalize_concept_check (t, args, info);

  /* Build the parameter mapping for the atom.  */
  tree map = build_parameter_mapping (t, args, info.ctx_parms ());

  /* Build a new info object for the atom.  */
  tree ci = build_tree_list (t, info.context);

  tree atom = build1 (ATOMIC_CONSTR, ci, map);
  if (!info.generate_diagnostics ())
    {
      /* Cache the ATOMIC_CONSTRs that we return, so that sat_hasher::equal
	 later can cheaply compare two atoms using just pointer equality.  */
      if (!atom_cache)
	atom_cache = hash_table<atom_hasher>::create_ggc (31);
      tree *slot = atom_cache->find_slot (atom, INSERT);
      if (*slot)
	return *slot;

      /* Find all template parameters used in the targets of the parameter
	 mapping, and store a list of them in the TREE_TYPE of the mapping.
	 This list will be used by sat_hasher to determine the subset of
	 supplied template arguments that the satisfaction value of the atom
	 depends on.  */
      if (map)
	{
	  tree targets = make_tree_vec (list_length (map));
	  int i = 0;
	  for (tree node = map; node; node = TREE_CHAIN (node))
	    {
	      tree target = TREE_PURPOSE (node);
	      TREE_VEC_ELT (targets, i++) = target;
	    }
	  tree target_parms = find_template_parameters (targets,
							info.initial_parms);
	  TREE_TYPE (map) = target_parms;
	}

      *slot = atom;
    }
  return atom;
}

/* Returns the normal form of an expression. */

static tree
normalize_expression (tree t, tree args, norm_info info)
{
  if (!t)
    return NULL_TREE;

  if (t == error_mark_node)
    return error_mark_node;

  switch (TREE_CODE (t))
    {
    case TRUTH_ANDIF_EXPR:
      return normalize_logical_operation (t, args, CONJ_CONSTR, info);
    case TRUTH_ORIF_EXPR:
      return normalize_logical_operation (t, args, DISJ_CONSTR, info);
    default:
      return normalize_atom (t, args, info);
    }
}

/* Cache of the normalized form of constraints.  Marked as deletable because it
   can all be recalculated.  */
static GTY((deletable)) hash_map<tree,tree> *normalized_map;

static tree
get_normalized_constraints (tree t, norm_info info)
{
  auto_timevar time (TV_CONSTRAINT_NORM);
  return normalize_expression (t, NULL_TREE, info);
}

/* Returns the normalized constraints from a constraint-info object
   or NULL_TREE if the constraints are null. IN_DECL provides the
   declaration to which the constraints belong.  */

static tree
get_normalized_constraints_from_info (tree ci, tree in_decl, bool diag = false)
{
  if (ci == NULL_TREE)
    return NULL_TREE;

  /* Substitution errors during normalization are fatal.  */
  ++processing_template_decl;
  norm_info info (in_decl, diag ? tf_norm : tf_none);
  tree t = get_normalized_constraints (CI_ASSOCIATED_CONSTRAINTS (ci), info);
  --processing_template_decl;

  return t;
}

/* Returns the normalized constraints for the declaration D.  */

static tree
get_normalized_constraints_from_decl (tree d, bool diag = false)
{
  tree tmpl;
  tree decl;

  /* For inherited constructors, consider the original declaration;
     it has the correct template information attached. */
  d = strip_inheriting_ctors (d);

  if (regenerated_lambda_fn_p (d))
    {
      /* If this lambda was regenerated, DECL_TEMPLATE_PARMS doesn't contain
	 all in-scope template parameters, but the lambda from which it was
	 ultimately regenerated does, so use that instead.  */
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (d));
      lambda = most_general_lambda (lambda);
      d = lambda_function (lambda);
    }

  if (TREE_CODE (d) == TEMPLATE_DECL)
    {
      tmpl = d;
      decl = DECL_TEMPLATE_RESULT (tmpl);
    }
  else
    {
      if (tree ti = DECL_TEMPLATE_INFO (d))
	tmpl = TI_TEMPLATE (ti);
      else
	tmpl = NULL_TREE;
      decl = d;
    }

  /* Get the most general template for the declaration, and compute
     arguments from that. This ensures that the arguments used for
     normalization are always template parameters and not arguments
     used for outer specializations.  For example:

        template<typename T>
        struct S {
	  template<typename U> requires C<T, U> void f(U);
        };

        S<int>::f(0);

     When we normalize the requirements for S<int>::f, we want the
     arguments to be {T, U}, not {int, U}. One reason for this is that
     accepting the latter causes the template parameter level of U
     to be reduced in a way that makes it overly difficult substitute
     concrete arguments (i.e., eventually {int, int} during satisfaction.  */
  if (tmpl)
  {
    if (DECL_LANG_SPECIFIC(tmpl) && !DECL_TEMPLATE_SPECIALIZATION (tmpl))
      tmpl = most_general_template (tmpl);
  }

  /* If we're not diagnosing errors, use cached constraints, if any.  */
  if (!diag)
    if (tree *p = hash_map_safe_get (normalized_map, tmpl))
      return *p;

  tree norm = NULL_TREE;
  if (tree ci = get_constraints (decl))
    {
      push_nested_class_guard pncs (DECL_CONTEXT (d));

      temp_override<tree> ovr (current_function_decl);
      if (TREE_CODE (decl) == FUNCTION_DECL)
	current_function_decl = decl;

      norm = get_normalized_constraints_from_info (ci, tmpl, diag);
    }

  if (!diag)
    hash_map_safe_put<hm_ggc> (normalized_map, tmpl, norm);

  return norm;
}

/* Returns the normal form of TMPL's definition.  */

static tree
normalize_concept_definition (tree tmpl, bool diag = false)
{
  if (!diag)
    if (tree *p = hash_map_safe_get (normalized_map, tmpl))
      return *p;

  gcc_assert (concept_definition_p (tmpl));
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree def = get_concept_definition (DECL_TEMPLATE_RESULT (tmpl));
  ++processing_template_decl;
  norm_info info (tmpl, diag ? tf_norm : tf_none);
  tree norm = get_normalized_constraints (def, info);
  --processing_template_decl;

  if (!diag)
    hash_map_safe_put<hm_ggc> (normalized_map, tmpl, norm);

  return norm;
}

/* Normalize an EXPR as a constraint.  */

static tree
normalize_constraint_expression (tree expr, norm_info info)
{
  if (!expr || expr == error_mark_node)
    return expr;

  if (!info.generate_diagnostics ())
    if (tree *p = hash_map_safe_get (normalized_map, expr))
      return *p;

  ++processing_template_decl;
  tree norm = get_normalized_constraints (expr, info);
  --processing_template_decl;

  if (!info.generate_diagnostics ())
    hash_map_safe_put<hm_ggc> (normalized_map, expr, norm);

  return norm;
}

/* 17.4.1.2p2. Two constraints are identical if they are formed
   from the same expression and the targets of the parameter mapping
   are equivalent.  */

bool
atomic_constraints_identical_p (tree t1, tree t2)
{
  gcc_assert (TREE_CODE (t1) == ATOMIC_CONSTR);
  gcc_assert (TREE_CODE (t2) == ATOMIC_CONSTR);

  if (ATOMIC_CONSTR_EXPR (t1) != ATOMIC_CONSTR_EXPR (t2))
    return false;

  if (!parameter_mapping_equivalent_p (t1, t2))
    return false;

  return true;
}

/* True if T1 and T2 are equivalent, meaning they have the same syntactic
   structure and all corresponding constraints are identical.  */

bool
constraints_equivalent_p (tree t1, tree t2)
{
  gcc_assert (CONSTR_P (t1));
  gcc_assert (CONSTR_P (t2));

  if (TREE_CODE (t1) != TREE_CODE (t2))
    return false;

  switch (TREE_CODE (t1))
  {
  case CONJ_CONSTR:
  case DISJ_CONSTR:
    if (!constraints_equivalent_p (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
      return false;
    if (!constraints_equivalent_p (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)))
      return false;
    break;
  case ATOMIC_CONSTR:
    if (!atomic_constraints_identical_p(t1, t2))
      return false;
    break;
  default:
    gcc_unreachable ();
  }
  return true;
}

/* Compute the hash value for T.  */

hashval_t
hash_atomic_constraint (tree t)
{
  gcc_assert (TREE_CODE (t) == ATOMIC_CONSTR);

  /* Hash the identity of the expression.  */
  hashval_t val = htab_hash_pointer (ATOMIC_CONSTR_EXPR (t));

  /* Hash the targets of the parameter map.  */
  tree p = ATOMIC_CONSTR_MAP (t);
  while (p)
    {
      val = iterative_hash_template_arg (TREE_PURPOSE (p), val);
      p = TREE_CHAIN (p);
    }

  return val;
}

namespace inchash
{

static void
add_constraint (tree t, hash& h)
{
  h.add_int(TREE_CODE (t));
  switch (TREE_CODE (t))
  {
  case CONJ_CONSTR:
  case DISJ_CONSTR:
    add_constraint (TREE_OPERAND (t, 0), h);
    add_constraint (TREE_OPERAND (t, 1), h);
    break;
  case ATOMIC_CONSTR:
    h.merge_hash (hash_atomic_constraint (t));
    break;
  default:
    gcc_unreachable ();
  }
}

}

/* Computes a hash code for the constraint T.  */

hashval_t
iterative_hash_constraint (tree t, hashval_t val)
{
  gcc_assert (CONSTR_P (t));
  inchash::hash h (val);
  inchash::add_constraint (t, h);
  return h.end ();
}

// -------------------------------------------------------------------------- //
// Constraint Semantic Processing
//
// The following functions are called by the parser and substitution rules
// to create and evaluate constraint-related nodes.

// The constraints associated with the current template parameters.
tree
current_template_constraints (void)
{
  if (!current_template_parms)
    return NULL_TREE;
  tree tmpl_constr = TEMPLATE_PARMS_CONSTRAINTS (current_template_parms);
  return build_constraints (tmpl_constr, NULL_TREE);
}

/* If the recently parsed TYPE declares or defines a template or
   template specialization, get its corresponding constraints from the
   current template parameters and bind them to TYPE's declaration.  */

tree
associate_classtype_constraints (tree type)
{
  if (!type || type == error_mark_node || !CLASS_TYPE_P (type))
    return type;

  /* An explicit class template specialization has no template parameters.  */
  if (!current_template_parms)
    return type;

  if (CLASSTYPE_IS_TEMPLATE (type) || CLASSTYPE_TEMPLATE_SPECIALIZATION (type))
    {
      tree decl = TYPE_STUB_DECL (type);
      tree ci = current_template_constraints ();

      /* An implicitly instantiated member template declaration already
	 has associated constraints. If it is defined outside of its
	 class, then we need match these constraints against those of
	 original declaration.  */
      if (tree orig_ci = get_constraints (decl))
        {
	  if (int extra_levels = (TMPL_PARMS_DEPTH (current_template_parms)
				  - TMPL_ARGS_DEPTH (TYPE_TI_ARGS (type))))
	    {
	      /* If there is a discrepancy between the current template depth
		 and the template depth of the original declaration, then we
		 must be redeclaring a class template as part of a friend
		 declaration within another class template.  Before matching
		 constraints, we need to reduce the template parameter level
		 within the current constraints via substitution.  */
	      tree outer_gtargs = template_parms_to_args (current_template_parms);
	      TREE_VEC_LENGTH (outer_gtargs) = extra_levels;
	      ci = tsubst_constraint_info (ci, outer_gtargs, tf_none, NULL_TREE);
	    }
          if (!equivalent_constraints (ci, orig_ci))
            {
	      error ("%qT does not match original declaration", type);
	      tree tmpl = CLASSTYPE_TI_TEMPLATE (type);
	      location_t loc = DECL_SOURCE_LOCATION (tmpl);
	      inform (loc, "original template declaration here");
	      /* Fall through, so that we define the type anyway.  */
            }
          return type;
        }
      set_constraints (decl, ci);
    }
  return type;
}

/* Create an empty constraint info block.  */

static inline tree_constraint_info*
build_constraint_info ()
{
  return (tree_constraint_info *)make_node (CONSTRAINT_INFO);
}

/* Build a constraint-info object that contains the associated constraints
   of a declaration.  This also includes the declaration's template
   requirements (TREQS) and any trailing requirements for a function
   declarator (DREQS).  Note that both TREQS and DREQS must be constraints.

   If the declaration has neither template nor declaration requirements
   this returns NULL_TREE, indicating an unconstrained declaration.  */

tree
build_constraints (tree tr, tree dr)
{
  if (!tr && !dr)
    return NULL_TREE;

  tree_constraint_info* ci = build_constraint_info ();
  ci->template_reqs = tr;
  ci->declarator_reqs = dr;
  ci->associated_constr = combine_constraint_expressions (tr, dr);

  return (tree)ci;
}

/* Add constraint RHS to the end of CONSTRAINT_INFO ci.  */

tree
append_constraint (tree ci, tree rhs)
{
  tree tr = ci ? CI_TEMPLATE_REQS (ci) : NULL_TREE;
  tree dr = ci ? CI_DECLARATOR_REQS (ci) : NULL_TREE;
  dr = combine_constraint_expressions (dr, rhs);
  if (ci)
    {
      CI_DECLARATOR_REQS (ci) = dr;
      tree ac = combine_constraint_expressions (tr, dr);
      CI_ASSOCIATED_CONSTRAINTS (ci) = ac;
    }
  else
    ci = build_constraints (tr, dr);
  return ci;
}

/* A mapping from declarations to constraint information.  */

static GTY ((cache)) decl_tree_cache_map *decl_constraints;

/* Returns the template constraints of declaration T. If T is not
   constrained, return NULL_TREE. Note that T must be non-null. */

tree
get_constraints (const_tree t)
{
  if (!flag_concepts)
    return NULL_TREE;
  if (!decl_constraints)
    return NULL_TREE;

  gcc_assert (DECL_P (t));
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);
  tree* found = decl_constraints->get (CONST_CAST_TREE (t));
  if (found)
    return *found;
  else
    return NULL_TREE;
}

/* Associate the given constraint information CI with the declaration
   T. If T is a template, then the constraints are associated with
   its underlying declaration. Don't build associations if CI is
   NULL_TREE.  */

void
set_constraints (tree t, tree ci)
{
  if (!ci)
    return;
  gcc_assert (t && flag_concepts);
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);
  bool found = hash_map_safe_put<hm_ggc> (decl_constraints, t, ci);
  gcc_assert (!found);
}

/* Remove the associated constraints of the declaration T.  */

void
remove_constraints (tree t)
{
  gcc_checking_assert (DECL_P (t));
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);

  if (decl_constraints)
    decl_constraints->remove (t);
}

/* If DECL is a friend, substitute into REQS to produce requirements suitable
   for declaration matching.  */

tree
maybe_substitute_reqs_for (tree reqs, const_tree decl_)
{
  if (reqs == NULL_TREE)
    return NULL_TREE;

  tree decl = CONST_CAST_TREE (decl_);
  tree result = STRIP_TEMPLATE (decl);

  if (DECL_UNIQUE_FRIEND_P (result))
    {
      tree tmpl = decl;
      if (TREE_CODE (decl) != TEMPLATE_DECL)
	tmpl = DECL_TI_TEMPLATE (result);

      tree gargs = generic_targs_for (tmpl);
      processing_template_decl_sentinel s;
      if (uses_template_parms (gargs))
	++processing_template_decl;
      reqs = tsubst_constraint (reqs, gargs,
				tf_warning_or_error, NULL_TREE);
    }
  return reqs;
}

/* Returns the trailing requires clause of the declarator of
   a template declaration T or NULL_TREE if none.  */

tree
get_trailing_function_requirements (tree t)
{
  tree ci = get_constraints (t);
  if (!ci)
    return NULL_TREE;
  return CI_DECLARATOR_REQS (ci);
}

/* Construct a sequence of template arguments by prepending
   ARG to REST. Either ARG or REST may be null. */
static tree
build_concept_check_arguments (tree arg, tree rest)
{
  gcc_assert (rest ? TREE_CODE (rest) == TREE_VEC : true);
  tree args;
  if (arg)
    {
      int n = rest ? TREE_VEC_LENGTH (rest) : 0;
      args = make_tree_vec (n + 1);
      TREE_VEC_ELT (args, 0) = arg;
      if (rest)
        for (int i = 0; i < n; ++i)
          TREE_VEC_ELT (args, i + 1) = TREE_VEC_ELT (rest, i);
      int def = rest ? GET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (rest) : 0;
      SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (args, def + 1);
    }
  else
    {
      args = rest;
    }
  return args;
}

/* Builds an id-expression of the form `C<Args...>()` where C is a function
   concept.  */

static tree
build_function_check (tree tmpl, tree args, tsubst_flags_t /*complain*/)
{
  if (TREE_CODE (tmpl) == TEMPLATE_DECL)
    {
      /* If we just got a template, wrap it in an overload so it looks like any
	 other template-id. */
      tmpl = ovl_make (tmpl);
      TREE_TYPE (tmpl) = boolean_type_node;
    }

  /* Perform function concept resolution now so we always have a single
     function of the overload set (even if we started with only one; the
     resolution function converts template arguments). Note that we still
     wrap this in an overload set so we don't upset other parts of the
     compiler that expect template-ids referring to function concepts
     to have an overload set.  */
  tree info = resolve_function_concept_overload (tmpl, args);
  if (info == error_mark_node)
    return error_mark_node;
  if (!info)
    {
      error ("no matching concepts for %qE", tmpl);
      return error_mark_node;
    }
  args = TREE_PURPOSE (info);
  tmpl = DECL_TI_TEMPLATE (TREE_VALUE (info));

  /* Rebuild the singleton overload set; mark the type bool.  */
  tmpl = ovl_make (tmpl, NULL_TREE);
  TREE_TYPE (tmpl) = boolean_type_node;

  /* Build the id-expression around the overload set.  */
  tree id = build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);

  /* Finally, build the call expression around the overload.  */
  ++processing_template_decl;
  vec<tree, va_gc> *fargs = make_tree_vector ();
  tree call = build_min_nt_call_vec (id, fargs);
  TREE_TYPE (call) = boolean_type_node;
  release_tree_vector (fargs);
  --processing_template_decl;

  return call;
}

/* Builds an id-expression of the form `C<Args...>` where C is a variable
   concept.  */

static tree
build_variable_check (tree tmpl, tree args, tsubst_flags_t complain)
{
  gcc_assert (variable_concept_p (tmpl));
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  args = coerce_template_parms (parms, args, tmpl, complain);
  if (args == error_mark_node)
    return error_mark_node;
  return build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);
}

/* Builds an id-expression of the form `C<Args...>` where C is a standard
   concept.  */

static tree
build_standard_check (tree tmpl, tree args, tsubst_flags_t complain)
{
  gcc_assert (standard_concept_p (tmpl));
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  args = coerce_template_parms (parms, args, tmpl, complain);
  if (args == error_mark_node)
    return error_mark_node;
  return build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);
}

/* Construct an expression that checks TARGET using ARGS.  */

tree
build_concept_check (tree target, tree args, tsubst_flags_t complain)
{
  return build_concept_check (target, NULL_TREE, args, complain);
}

/* Construct an expression that checks the concept given by DECL. If
   concept_definition_p (DECL) is false, this returns null.  */

tree
build_concept_check (tree decl, tree arg, tree rest, tsubst_flags_t complain)
{
  tree args = build_concept_check_arguments (arg, rest);

  if (standard_concept_p (decl))
    return build_standard_check (decl, args, complain);
  if (variable_concept_p (decl))
    return build_variable_check (decl, args, complain);
  if (function_concept_p (decl))
    return build_function_check (decl, args, complain);

  return error_mark_node;
}

/* Build a template-id that can participate in a concept check.  */

static tree
build_concept_id (tree decl, tree args)
{
  tree check = build_concept_check (decl, args, tf_warning_or_error);
  if (check == error_mark_node)
    return error_mark_node;
  return unpack_concept_check (check);
}

/* Build a template-id that can participate in a concept check, preserving
   the source location of the original template-id.  */

tree
build_concept_id (tree expr)
{
  gcc_assert (TREE_CODE (expr) == TEMPLATE_ID_EXPR);
  tree id = build_concept_id (TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
  protected_set_expr_location (id, cp_expr_location (expr));
  return id;
}

/* Build as template-id with a placeholder that can be used as a
   type constraint.

   Note that this will diagnose errors if the initial concept check
   cannot be built.  */

tree
build_type_constraint (tree decl, tree args, tsubst_flags_t complain)
{
  tree wildcard = build_nt (WILDCARD_DECL);
  ++processing_template_decl;
  tree check = build_concept_check (decl, wildcard, args, complain);
  --processing_template_decl;
  if (check == error_mark_node)
    return error_mark_node;
  return unpack_concept_check (check);
}

/* Returns a TYPE_DECL that contains sufficient information to
   build a template parameter of the same kind as PROTO and
   constrained by the concept declaration CNC.  Note that PROTO
   is the first template parameter of CNC.

   If specified, ARGS provides additional arguments to the
   constraint check.  */
tree
build_constrained_parameter (tree cnc, tree proto, tree args)
{
  tree name = DECL_NAME (cnc);
  tree type = TREE_TYPE (proto);
  tree decl = build_decl (input_location, TYPE_DECL, name, type);
  CONSTRAINED_PARM_PROTOTYPE (decl) = proto;
  CONSTRAINED_PARM_CONCEPT (decl) = cnc;
  CONSTRAINED_PARM_EXTRA_ARGS (decl) = args;
  return decl;
}

/* Create a constraint expression for the given DECL that evaluates the
   requirements specified by CONSTR, a TYPE_DECL that contains all the
   information necessary to build the requirements (see finish_concept_name
   for the layout of that TYPE_DECL).

   Note that the constraints are neither reduced nor decomposed. That is
   done only after the requires clause has been parsed (or not).  */

tree
finish_shorthand_constraint (tree decl, tree constr)
{
  /* No requirements means no constraints.  */
  if (!constr)
    return NULL_TREE;

  if (error_operand_p (constr))
    return NULL_TREE;

  tree proto = CONSTRAINED_PARM_PROTOTYPE (constr);
  tree con = CONSTRAINED_PARM_CONCEPT (constr);
  tree args = CONSTRAINED_PARM_EXTRA_ARGS (constr);

  /* The TS lets use shorthand to constrain a pack of arguments, but the
     standard does not.

     For the TS, consider:

	template<C... Ts> struct s;

     If C is variadic (and because Ts is a pack), we associate the
     constraint C<Ts...>. In all other cases, we associate
     the constraint (C<Ts> && ...).

     The standard behavior cannot be overridden by -fconcepts-ts.  */
  bool variadic_concept_p = template_parameter_pack_p (proto);
  bool declared_pack_p = template_parameter_pack_p (decl);
  bool apply_to_each_p = (cxx_dialect >= cxx20) ? true : !variadic_concept_p;

  /* Get the argument and overload used for the requirement
     and adjust it if we're going to expand later.  */
  tree arg = template_parm_to_arg (decl);
  if (apply_to_each_p && declared_pack_p)
    arg = PACK_EXPANSION_PATTERN (TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0));

  /* Build the concept constraint-expression.  */
  tree tmpl = DECL_TI_TEMPLATE (con);
  tree check = tmpl;
  if (TREE_CODE (con) == FUNCTION_DECL)
    check = ovl_make (tmpl);
  check = build_concept_check (check, arg, args, tf_warning_or_error);

  /* Make the check a fold-expression if needed.  */
  if (apply_to_each_p && declared_pack_p)
    check = finish_left_unary_fold_expr (check, TRUTH_ANDIF_EXPR);

  return check;
}

/* Returns a conjunction of shorthand requirements for the template
   parameter list PARMS. Note that the requirements are stored in
   the TYPE of each tree node. */

tree
get_shorthand_constraints (tree parms)
{
  tree result = NULL_TREE;
  parms = INNERMOST_TEMPLATE_PARMS (parms);
  for (int i = 0; i < TREE_VEC_LENGTH (parms); ++i)
    {
      tree parm = TREE_VEC_ELT (parms, i);
      tree constr = TEMPLATE_PARM_CONSTRAINTS (parm);
      result = combine_constraint_expressions (result, constr);
    }
  return result;
}

/* Get the deduced wildcard from a DEDUCED placeholder.  If the deduced
   wildcard is a pack, return the first argument of that pack.  */

static tree
get_deduced_wildcard (tree wildcard)
{
  if (ARGUMENT_PACK_P (wildcard))
    wildcard = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (wildcard), 0);
  gcc_assert (TREE_CODE (wildcard) == WILDCARD_DECL);
  return wildcard;
}

/* Returns the prototype parameter for the nth deduced wildcard.  */

static tree
get_introduction_prototype (tree wildcards, int index)
{
  return TREE_TYPE (get_deduced_wildcard (TREE_VEC_ELT (wildcards, index)));
}

/* Introduce a type template parameter.  */

static tree
introduce_type_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = false;
  return finish_template_type_parm (class_type_node, DECL_NAME (wildcard));
}

/* Introduce a template template parameter.  */

static tree
introduce_template_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = false;
  begin_template_parm_list ();
  current_template_parms = DECL_TEMPLATE_PARMS (TREE_TYPE (wildcard));
  end_template_parm_list ();
  return finish_template_template_parm (class_type_node, DECL_NAME (wildcard));
}

/* Introduce a template non-type parameter.  */

static tree
introduce_nontype_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = true;
  tree parm = copy_decl (TREE_TYPE (wildcard));
  DECL_NAME (parm) = DECL_NAME (wildcard);
  return parm;
}

/* Introduce a single template parameter.  */

static tree
build_introduced_template_parameter (tree wildcard, bool& non_type_p)
{
  tree proto = TREE_TYPE (wildcard);

  tree parm;
  if (TREE_CODE (proto) == TYPE_DECL)
    parm = introduce_type_template_parameter (wildcard, non_type_p);
  else if (TREE_CODE (proto) == TEMPLATE_DECL)
    parm = introduce_template_template_parameter (wildcard, non_type_p);
  else
    parm = introduce_nontype_template_parameter (wildcard, non_type_p);

  /* Wrap in a TREE_LIST for process_template_parm. Note that introduced
     parameters do not retain the defaults from the source parameter.  */
  return build_tree_list (NULL_TREE, parm);
}

/* Introduce a single template parameter.  */

static tree
introduce_template_parameter (tree parms, tree wildcard)
{
  gcc_assert (!ARGUMENT_PACK_P (wildcard));
  tree proto = TREE_TYPE (wildcard);
  location_t loc = DECL_SOURCE_LOCATION (wildcard);

  /* Diagnose the case where we have C{...Args}.  */
  if (WILDCARD_PACK_P (wildcard))
    {
      tree id = DECL_NAME (wildcard);
      error_at (loc, "%qE cannot be introduced with an ellipsis %<...%>", id);
      inform (DECL_SOURCE_LOCATION (proto), "prototype declared here");
    }

  bool non_type_p;
  tree parm = build_introduced_template_parameter (wildcard, non_type_p);
  return process_template_parm (parms, loc, parm, non_type_p, false);
}

/* Introduce a template parameter pack.  */

static tree
introduce_template_parameter_pack (tree parms, tree wildcard)
{
  bool non_type_p;
  tree parm = build_introduced_template_parameter (wildcard, non_type_p);
  location_t loc = DECL_SOURCE_LOCATION (wildcard);
  return process_template_parm (parms, loc, parm, non_type_p, true);
}

/* Introduce the nth template parameter.  */

static tree
introduce_template_parameter (tree parms, tree wildcards, int& index)
{
  tree deduced = TREE_VEC_ELT (wildcards, index++);
  return introduce_template_parameter (parms, deduced);
}

/* Introduce either a template parameter pack or a list of template
   parameters.  */

static tree
introduce_template_parameters (tree parms, tree wildcards, int& index)
{
  /* If the prototype was a parameter, we better have deduced an
     argument pack, and that argument must be the last deduced value
     in the wildcard vector.  */
  tree deduced = TREE_VEC_ELT (wildcards, index++);
  gcc_assert (ARGUMENT_PACK_P (deduced));
  gcc_assert (index == TREE_VEC_LENGTH (wildcards));

  /* Introduce each element in the pack.  */
  tree args = ARGUMENT_PACK_ARGS (deduced);
  for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
    {
      tree arg = TREE_VEC_ELT (args, i);
      if (WILDCARD_PACK_P (arg))
	parms = introduce_template_parameter_pack (parms, arg);
      else
	parms = introduce_template_parameter (parms, arg);
    }

  return parms;
}

/* Builds the template parameter list PARMS by chaining introduced
   parameters from the WILDCARD vector.  INDEX is the position of
   the current parameter.  */

static tree
process_introduction_parms (tree parms, tree wildcards, int& index)
{
  tree proto = get_introduction_prototype (wildcards, index);
  if (template_parameter_pack_p (proto))
    return introduce_template_parameters (parms, wildcards, index);
  else
    return introduce_template_parameter (parms, wildcards, index);
}

/* Ensure that all template parameters have been introduced for the concept
   named in CHECK.  If not, emit a diagnostic.

   Note that implicitly introducing a parameter with a default argument
     creates a case where a parameter is declared, but unnamed, making
     it unusable in the definition.  */

static bool
check_introduction_list (tree intros, tree check)
{
  check = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (check, 0);
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);

  tree parms = DECL_INNERMOST_TEMPLATE_PARMS (tmpl);
  if (TREE_VEC_LENGTH (intros) < TREE_VEC_LENGTH (parms))
    {
      error_at (input_location, "all template parameters of %qD must "
				"be introduced", tmpl);
      return false;
    }

   return true;
}

/* Associates a constraint check to the current template based on the
   introduction parameters.  INTRO_LIST must be a TREE_VEC of WILDCARD_DECLs
   containing a chained PARM_DECL which contains the identifier as well as
   the source location. TMPL_DECL is the decl for the concept being used.
   If we take a concept, C, this will form a check in the form of
   C<INTRO_LIST> filling in any extra arguments needed by the defaults
   deduced.

   Returns NULL_TREE if no concept could be matched and error_mark_node if
   an error occurred when matching.  */

tree
finish_template_introduction (tree tmpl_decl,
			      tree intro_list,
			      location_t intro_loc)
{
  /* Build a concept check to deduce the actual parameters.  */
  tree expr = build_concept_check (tmpl_decl, intro_list, tf_none);
  if (expr == error_mark_node)
    {
      error_at (intro_loc, "cannot deduce template parameters from "
			   "introduction list");
      return error_mark_node;
    }

  if (!check_introduction_list (intro_list, expr))
    return error_mark_node;

  tree parms = deduce_concept_introduction (expr);
  if (!parms)
    return NULL_TREE;

  /* Build template parameter scope for introduction.  */
  tree parm_list = NULL_TREE;
  begin_template_parm_list ();
  int nargs = MIN (TREE_VEC_LENGTH (parms), TREE_VEC_LENGTH (intro_list));
  for (int n = 0; n < nargs; )
    parm_list = process_introduction_parms (parm_list, parms, n);
  parm_list = end_template_parm_list (parm_list);

  /* Update the number of arguments to reflect the number of deduced
     template parameter introductions.  */
  nargs = TREE_VEC_LENGTH (parm_list);

  /* Determine if any errors occurred during matching.  */
  for (int i = 0; i < TREE_VEC_LENGTH (parm_list); ++i)
    if (TREE_VALUE (TREE_VEC_ELT (parm_list, i)) == error_mark_node)
      {
        end_template_decl ();
        return error_mark_node;
      }

  /* Build a concept check for our constraint.  */
  tree check_args = make_tree_vec (nargs);
  int n = 0;
  for (; n < TREE_VEC_LENGTH (parm_list); ++n)
    {
      tree parm = TREE_VEC_ELT (parm_list, n);
      TREE_VEC_ELT (check_args, n) = template_parm_to_arg (parm);
    }
  SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (check_args, n);

  /* If the template expects more parameters we should be able
     to use the defaults from our deduced concept.  */
  for (; n < TREE_VEC_LENGTH (parms); ++n)
    TREE_VEC_ELT (check_args, n) = TREE_VEC_ELT (parms, n);

  /* Associate the constraint.  */
  tree check = build_concept_check (tmpl_decl,
				    check_args,
				    tf_warning_or_error);
  TEMPLATE_PARMS_CONSTRAINTS (current_template_parms) = check;

  return parm_list;
}


/* Given the concept check T from a constrained-type-specifier, extract
   its TMPL and ARGS.  FIXME why do we need two different forms of
   constrained-type-specifier?  */

void
placeholder_extract_concept_and_args (tree t, tree &tmpl, tree &args)
{
  if (concept_check_p (t))
    {
      t = unpack_concept_check (t);
      tmpl = TREE_OPERAND (t, 0);
      if (TREE_CODE (tmpl) == OVERLOAD)
        tmpl = OVL_FIRST (tmpl);
      args = TREE_OPERAND (t, 1);
      return;
    }

  if (TREE_CODE (t) == TYPE_DECL)
    {
      /* A constrained parameter.  Build a constraint check
         based on the prototype parameter and then extract the
         arguments from that.  */
      tree proto = CONSTRAINED_PARM_PROTOTYPE (t);
      tree check = finish_shorthand_constraint (proto, t);
      placeholder_extract_concept_and_args (check, tmpl, args);
      return;
    }
}

/* Returns true iff the placeholders C1 and C2 are equivalent.  C1
   and C2 can be either TEMPLATE_TYPE_PARM or template-ids.  */

bool
equivalent_placeholder_constraints (tree c1, tree c2)
{
  if (c1 && TREE_CODE (c1) == TEMPLATE_TYPE_PARM)
    /* A constrained auto.  */
    c1 = PLACEHOLDER_TYPE_CONSTRAINTS (c1);
  if (c2 && TREE_CODE (c2) == TEMPLATE_TYPE_PARM)
    c2 = PLACEHOLDER_TYPE_CONSTRAINTS (c2);

  if (c1 == c2)
    return true;
  if (!c1 || !c2)
    return false;
  if (c1 == error_mark_node || c2 == error_mark_node)
    /* We get here during satisfaction; when a deduction constraint
       fails, substitution can produce an error_mark_node for the
       placeholder constraints.  */
    return false;

  tree t1, t2, a1, a2;
  placeholder_extract_concept_and_args (c1, t1, a1);
  placeholder_extract_concept_and_args (c2, t2, a2);

  if (t1 != t2)
    return false;

  int len1 = TREE_VEC_LENGTH (a1);
  int len2 = TREE_VEC_LENGTH (a2);
  if (len1 != len2)
    return false;

  /* Skip the first argument so we don't infinitely recurse.
     Also, they may differ in template parameter index.  */
  for (int i = 1; i < len1; ++i)
    {
      tree t1 = TREE_VEC_ELT (a1, i);
      tree t2 = TREE_VEC_ELT (a2, i);
      if (!template_args_equal (t1, t2))
      return false;
    }
  return true;
}

/* Return a hash value for the placeholder ATOMIC_CONSTR C.  */

hashval_t
hash_placeholder_constraint (tree c)
{
  tree t, a;
  placeholder_extract_concept_and_args (c, t, a);

  /* Like hash_tmpl_and_args, but skip the first argument.  */
  hashval_t val = iterative_hash_object (DECL_UID (t), 0);

  for (int i = TREE_VEC_LENGTH (a)-1; i > 0; --i)
    val = iterative_hash_template_arg (TREE_VEC_ELT (a, i), val);

  return val;
}

/* Substitute through the expression of a simple requirement or
   compound requirement.  */

static tree
tsubst_valid_expression_requirement (tree t, tree args, sat_info info)
{
  tree r = tsubst_expr (t, args, tf_none, info.in_decl, false);
  if (convert_to_void (r, ICV_STATEMENT, tf_none) != error_mark_node)
    return r;

  if (info.diagnose_unsatisfaction_p ())
    {
      location_t loc = cp_expr_loc_or_input_loc (t);
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  inform (loc, "the required expression %qE is invalid, because", t);
	  if (r == error_mark_node)
	    tsubst_expr (t, args, info.complain, info.in_decl, false);
	  else
	    convert_to_void (r, ICV_STATEMENT, info.complain);
	}
      else
	inform (loc, "the required expression %qE is invalid", t);
    }
  else if (info.noisy ())
    {
      r = tsubst_expr (t, args, info.complain, info.in_decl, false);
      convert_to_void (r, ICV_STATEMENT, info.complain);
    }

  return error_mark_node;
}


/* Substitute through the simple requirement.  */

static tree
tsubst_simple_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree expr = tsubst_valid_expression_requirement (t0, args, info);
  if (expr == error_mark_node)
    return error_mark_node;
  return boolean_true_node;
}

/* Subroutine of tsubst_type_requirement that performs the actual substitution
   and diagnosing.  Also used by tsubst_compound_requirement.  */

static tree
tsubst_type_requirement_1 (tree t, tree args, sat_info info, location_t loc)
{
  tree r = tsubst (t, args, tf_none, info.in_decl);
  if (r != error_mark_node)
    return r;

  if (info.diagnose_unsatisfaction_p ())
    {
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the substitution error.  */
	  inform (loc, "the required type %qT is invalid, because", t);
	  tsubst (t, args, info.complain, info.in_decl);
	}
      else
	inform (loc, "the required type %qT is invalid", t);
    }
  else if (info.noisy ())
    tsubst (t, args, info.complain, info.in_decl);

  return error_mark_node;
}


/* Substitute through the type requirement.  */

static tree
tsubst_type_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree type = tsubst_type_requirement_1 (t0, args, info, EXPR_LOCATION (t));
  if (type == error_mark_node)
    return error_mark_node;
  return boolean_true_node;
}

/* True if TYPE can be deduced from EXPR.  */

static bool
type_deducible_p (tree expr, tree type, tree placeholder, tree args,
                  subst_info info)
{
  /* Make sure deduction is performed against ( EXPR ), so that
     references are preserved in the result.  */
  expr = force_paren_expr_uneval (expr);

  /* When args is NULL, we're evaluating a non-templated requires expression,
     but even those are parsed under processing_template_decl == 1, and so the
     placeholder 'auto' inside this return-type-requirement has level 2.  In
     order to have all parms and arguments match up for satisfaction, we need
     to pass an empty level of OUTER_TARGS in this case.  */
  if (!args)
    args = make_tree_vec (0);

  tree deduced_type = do_auto_deduction (type, expr, placeholder,
					 info.complain, adc_requirement,
					 /*outer_targs=*/args);

  return deduced_type != error_mark_node;
}

/* True if EXPR can not be converted to TYPE.  */

static bool
expression_convertible_p (tree expr, tree type, subst_info info)
{
  tree conv =
    perform_direct_initialization_if_possible (type, expr, false,
					       info.complain);
  if (conv == error_mark_node)
    return false;
  if (conv == NULL_TREE)
    {
      if (info.complain & tf_error)
        {
          location_t loc = EXPR_LOC_OR_LOC (expr, input_location);
          error_at (loc, "cannot convert %qE to %qT", expr, type);
        }
      return false;
    }
  return true;
}


/* Substitute through the compound requirement.  */

static tree
tsubst_compound_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree t1 = TREE_OPERAND (t, 1);
  tree expr = tsubst_valid_expression_requirement (t0, args, info);
  if (expr == error_mark_node)
    return error_mark_node;

  location_t loc = cp_expr_loc_or_input_loc (expr);

  /* Check the noexcept condition.  */
  bool noexcept_p = COMPOUND_REQ_NOEXCEPT_P (t);
  if (noexcept_p && !expr_noexcept_p (expr, tf_none))
    {
      if (info.diagnose_unsatisfaction_p ())
	inform (loc, "%qE is not %<noexcept%>", expr);
      else
	return error_mark_node;
    }

  /* Substitute through the type expression, if any.  */
  tree type = tsubst_type_requirement_1 (t1, args, info, EXPR_LOCATION (t));
  if (type == error_mark_node)
    return error_mark_node;

  subst_info quiet (tf_none, info.in_decl);

  /* Check expression against the result type.  */
  if (type)
    {
      if (tree placeholder = type_uses_auto (type))
	{
	  if (!type_deducible_p (expr, type, placeholder, args, quiet))
	    {
	      if (info.diagnose_unsatisfaction_p ())
		{
		  if (diagnosing_failed_constraint::replay_errors_p ())
		    {
		      inform (loc,
			      "%qE does not satisfy return-type-requirement, "
			      "because", t0);
		      /* Further explain the reason for the error.  */
		      type_deducible_p (expr, type, placeholder, args, info);
		    }
		  else
		    inform (loc,
			    "%qE does not satisfy return-type-requirement", t0);
		}
	      return error_mark_node;
	    }
	}
      else if (!expression_convertible_p (expr, type, quiet))
	{
	  if (info.diagnose_unsatisfaction_p ())
	    {
	      if (diagnosing_failed_constraint::replay_errors_p ())
		{
		  inform (loc, "cannot convert %qE to %qT because", t0, type);
		  /* Further explain the reason for the error.  */
		  expression_convertible_p (expr, type, info);
		}
	      else
		inform (loc, "cannot convert %qE to %qT", t0, type);
	    }
	  return error_mark_node;
	}
    }

  return boolean_true_node;
}

/* Substitute through the nested requirement.  */

static tree
tsubst_nested_requirement (tree t, tree args, sat_info info)
{
  sat_info quiet (tf_none, info.in_decl);
  tree result = constraint_satisfaction_value (t, args, quiet);
  if (result == boolean_true_node)
    return boolean_true_node;

  if (result == boolean_false_node
      && info.diagnose_unsatisfaction_p ())
    {
      tree expr = TREE_OPERAND (t, 0);
      location_t loc = cp_expr_location (t);
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the substitution error.  */
	  inform (loc, "nested requirement %qE is not satisfied, because", expr);
	  constraint_satisfaction_value (t, args, info);
	}
      else
	inform (loc, "nested requirement %qE is not satisfied", expr);
    }

  return error_mark_node;
}

/* Substitute ARGS into the requirement T.  */

static tree
tsubst_requirement (tree t, tree args, sat_info info)
{
  iloc_sentinel loc_s (cp_expr_location (t));
  switch (TREE_CODE (t))
    {
    case SIMPLE_REQ:
      return tsubst_simple_requirement (t, args, info);
    case TYPE_REQ:
      return tsubst_type_requirement (t, args, info);
    case COMPOUND_REQ:
      return tsubst_compound_requirement (t, args, info);
    case NESTED_REQ:
      return tsubst_nested_requirement (t, args, info);
    default:
      break;
    }
  gcc_unreachable ();
}

static tree
declare_constraint_vars (tree parms, tree vars)
{
  tree s = vars;
  for (tree t = parms; t; t = DECL_CHAIN (t))
    {
      if (DECL_PACK_P (t))
        {
          tree pack = extract_fnparm_pack (t, &s);
          register_local_specialization (pack, t);
        }
      else
        {
          register_local_specialization (s, t);
          s = DECL_CHAIN (s);
        }
    }
  return vars;
}

/* Substitute through as if checking function parameter types. This
   will diagnose common parameter type errors.  Returns error_mark_node
   if an error occurred.  */

static tree
check_constraint_variables (tree t, tree args, subst_info info)
{
  tree types = NULL_TREE;
  tree p = t;
  while (p && !VOID_TYPE_P (p))
    {
      types = tree_cons (NULL_TREE, TREE_TYPE (p), types);
      p = TREE_CHAIN (p);
    }
  types = chainon (nreverse (types), void_list_node);
  return tsubst_function_parms (types, args, info.complain, info.in_decl);
}

/* A subroutine of tsubst_parameterized_constraint. Substitute ARGS
   into the parameter list T, producing a sequence of constraint
   variables, declared in the current scope.

   Note that the caller must establish a local specialization stack
   prior to calling this function since this substitution will
   declare the substituted parameters. */

static tree
tsubst_constraint_variables (tree t, tree args, subst_info info)
{
  /* Perform a trial substitution to check for type errors.  */
  tree parms = check_constraint_variables (t, args, info);
  if (parms == error_mark_node)
    return error_mark_node;

  /* Clear cp_unevaluated_operand across tsubst so that we get a proper chain
     of PARM_DECLs.  */
  int saved_unevaluated_operand = cp_unevaluated_operand;
  cp_unevaluated_operand = 0;
  tree vars = tsubst (t, args, info.complain, info.in_decl);
  cp_unevaluated_operand = saved_unevaluated_operand;
  if (vars == error_mark_node)
    return error_mark_node;
  return declare_constraint_vars (t, vars);
}

/* Substitute ARGS into the requires-expression T. [8.4.7]p6. The
   substitution of template arguments into a requires-expression
   may result in the formation of invalid types or expressions
   in its requirements ... In such cases, the expression evaluates
   to false; it does not cause the program to be ill-formed.

   When substituting through a REQUIRES_EXPR as part of template
   instantiation, we call this routine with info.quiet() true.

   When evaluating a REQUIRES_EXPR that appears outside a template in
   cp_parser_requires_expression, we call this routine with
   info.noisy() true.

   Finally, when diagnosing unsatisfaction from diagnose_atomic_constraint
   and when diagnosing a false REQUIRES_EXPR via diagnose_constraints,
   we call this routine with info.diagnose_unsatisfaction_p() true.  */

static tree
tsubst_requires_expr (tree t, tree args, sat_info info)
{
  local_specialization_stack stack (lss_copy);

  /* A requires-expression is an unevaluated context.  */
  cp_unevaluated u;

  args = add_extra_args (REQUIRES_EXPR_EXTRA_ARGS (t), args);
  if (processing_template_decl)
    {
      /* We're partially instantiating a generic lambda.  Substituting into
	 this requires-expression now may cause its requirements to get
	 checked out of order, so instead just remember the template
	 arguments and wait until we can substitute them all at once.  */
      t = copy_node (t);
      REQUIRES_EXPR_EXTRA_ARGS (t) = build_extra_args (t, args, info.complain);
      return t;
    }

  if (tree parms = REQUIRES_EXPR_PARMS (t))
    {
      parms = tsubst_constraint_variables (parms, args, info);
      if (parms == error_mark_node)
	return boolean_false_node;
    }

  tree result = boolean_true_node;
  for (tree reqs = REQUIRES_EXPR_REQS (t); reqs; reqs = TREE_CHAIN (reqs))
    {
      tree req = TREE_VALUE (reqs);
      if (tsubst_requirement (req, args, info) == error_mark_node)
	{
	  result = boolean_false_node;
	  if (info.diagnose_unsatisfaction_p ())
	    /* Keep going so that we diagnose all failed requirements.  */;
	  else
	    break;
	}
    }
  return result;
}

/* Public wrapper for the above.  */

tree
tsubst_requires_expr (tree t, tree args,
		      tsubst_flags_t complain, tree in_decl)
{
  sat_info info (complain, in_decl);
  return tsubst_requires_expr (t, args, info);
}

/* Substitute ARGS into the constraint information CI, producing a new
   constraint record.  */

tree
tsubst_constraint_info (tree t, tree args,
                        tsubst_flags_t complain, tree in_decl)
{
  if (!t || t == error_mark_node || !check_constraint_info (t))
    return NULL_TREE;

  tree tr = tsubst_constraint (CI_TEMPLATE_REQS (t), args, complain, in_decl);
  tree dr = tsubst_constraint (CI_DECLARATOR_REQS (t), args, complain, in_decl);
  return build_constraints (tr, dr);
}

/* Substitute through a parameter mapping, in order to get the actual
   arguments used to instantiate an atomic constraint.  This may fail
   if the substitution into arguments produces something ill-formed.  */

static tree
tsubst_parameter_mapping (tree map, tree args, subst_info info)
{
  if (!map)
    return NULL_TREE;

  tsubst_flags_t complain = info.complain;
  tree in_decl = info.in_decl;

  tree result = NULL_TREE;
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      if (p == error_mark_node)
        return error_mark_node;
      tree parm = TREE_VALUE (p);
      tree arg = TREE_PURPOSE (p);
      tree new_arg;
      if (ARGUMENT_PACK_P (arg))
	new_arg = tsubst_argument_pack (arg, args, complain, in_decl);
      else
	{
	  new_arg = tsubst_template_arg (arg, args, complain, in_decl);
	  if (TYPE_P (new_arg))
	    new_arg = canonicalize_type_argument (new_arg, complain);
	}
      if (TREE_CODE (new_arg) == TYPE_ARGUMENT_PACK)
	{
	  tree pack_args = ARGUMENT_PACK_ARGS (new_arg);
	  for (int i = 0; i < TREE_VEC_LENGTH (pack_args); i++)
	    {
	      tree& pack_arg = TREE_VEC_ELT (pack_args, i);
	      if (TYPE_P (pack_arg))
		pack_arg = canonicalize_type_argument (pack_arg, complain);
	    }
	}
      if (new_arg == error_mark_node)
	return error_mark_node;

      result = tree_cons (new_arg, parm, result);
    }
  return nreverse (result);
}

tree
tsubst_parameter_mapping (tree map, tree args, tsubst_flags_t complain, tree in_decl)
{
  return tsubst_parameter_mapping (map, args, subst_info (complain, in_decl));
}

/*---------------------------------------------------------------------------
                        Constraint satisfaction
---------------------------------------------------------------------------*/

/* True if we are currently satisfying a constraint.  */

static bool satisfying_constraint;

/* A vector of incomplete types (and of declarations with undeduced return type),
   appended to by note_failed_type_completion_for_satisfaction.  The
   satisfaction caches use this in order to keep track of "potentially unstable"
   satisfaction results.

   Since references to entries in this vector are stored only in the
   GC-deletable sat_cache, it's safe to make this deletable as well.  */

static GTY((deletable)) vec<tree, va_gc> *failed_type_completions;

/* Called whenever a type completion (or return type deduction) failure occurs
   that definitely affects the meaning of the program, by e.g. inducing
   substitution failure.  */

void
note_failed_type_completion_for_satisfaction (tree t)
{
  if (satisfying_constraint)
    {
      gcc_checking_assert ((TYPE_P (t) && !COMPLETE_TYPE_P (t))
			   || (DECL_P (t) && undeduced_auto_decl (t)));
      vec_safe_push (failed_type_completions, t);
    }
}

/* Returns true if the range [BEGIN, END) of elements within the
   failed_type_completions vector contains a complete type (or a
   declaration with a non-placeholder return type).  */

static bool
some_type_complete_p (int begin, int end)
{
  for (int i = begin; i < end; i++)
    {
      tree t = (*failed_type_completions)[i];
      if (TYPE_P (t) && COMPLETE_TYPE_P (t))
	return true;
      if (DECL_P (t) && !undeduced_auto_decl (t))
	return true;
    }
  return false;
}

/* Hash functions and data types for satisfaction cache entries.  */

struct GTY((for_user)) sat_entry
{
  /* The relevant ATOMIC_CONSTR.  */
  tree atom;

  /* The relevant template arguments.  */
  tree args;

  /* The result of satisfaction of ATOM+ARGS.
     This is either boolean_true_node, boolean_false_node or error_mark_node,
     where error_mark_node indicates ill-formed satisfaction.
     It's set to NULL_TREE while computing satisfaction of ATOM+ARGS for
     the first time.  */
  tree result;

  /* The value of input_location when satisfaction of ATOM+ARGS was first
     performed.  */
  location_t location;

  /* The range of elements appended to the failed_type_completions vector
     during computation of this satisfaction result, encoded as a begin/end
     pair of offsets.  */
  int ftc_begin, ftc_end;

  /* True if we want to diagnose the above instability when it's detected.
     We don't always want to do so, in order to avoid emitting duplicate
     diagnostics in some cases.  */
  bool diagnose_instability;

  /* True if we're in the middle of computing this satisfaction result.
     Used during both quiet and noisy satisfaction to detect self-recursive
     satisfaction.  */
  bool evaluating;
};

struct sat_hasher : ggc_ptr_hash<sat_entry>
{
  static hashval_t hash (sat_entry *e)
  {
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e->atom))
      {
	/* Atoms with instantiated mappings are built during satisfaction.
	   They live only inside the sat_cache, and we build one to query
	   the cache with each time we instantiate a mapping.  */
	gcc_assert (!e->args);
	return hash_atomic_constraint (e->atom);
      }

    /* Atoms with uninstantiated mappings are built during normalization.
       Since normalize_atom caches the atoms it returns, we can assume
       pointer-based identity for fast hashing and comparison.  Even if this
       assumption is violated, that's okay, we'll just get a cache miss.  */
    hashval_t value = htab_hash_pointer (e->atom);

    if (tree map = ATOMIC_CONSTR_MAP (e->atom))
      /* Only the parameters that are used in the targets of the mapping
	 affect the satisfaction value of the atom.  So we consider only
	 the arguments for these parameters, and ignore the rest.  */
      for (tree target_parms = TREE_TYPE (map);
	   target_parms;
	   target_parms = TREE_CHAIN (target_parms))
	{
	  int level, index;
	  tree parm = TREE_VALUE (target_parms);
	  template_parm_level_and_index (parm, &level, &index);
	  tree arg = TMPL_ARG (e->args, level, index);
	  value = iterative_hash_template_arg (arg, value);
	}
    return value;
  }

  static bool equal (sat_entry *e1, sat_entry *e2)
  {
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e1->atom)
	!= ATOMIC_CONSTR_MAP_INSTANTIATED_P (e2->atom))
      return false;

    /* See sat_hasher::hash.  */
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e1->atom))
      {
	gcc_assert (!e1->args && !e2->args);
	return atomic_constraints_identical_p (e1->atom, e2->atom);
      }

    if (e1->atom != e2->atom)
      return false;

    if (tree map = ATOMIC_CONSTR_MAP (e1->atom))
      for (tree target_parms = TREE_TYPE (map);
	   target_parms;
	   target_parms = TREE_CHAIN (target_parms))
	{
	  int level, index;
	  tree parm = TREE_VALUE (target_parms);
	  template_parm_level_and_index (parm, &level, &index);
	  tree arg1 = TMPL_ARG (e1->args, level, index);
	  tree arg2 = TMPL_ARG (e2->args, level, index);
	  if (!template_args_equal (arg1, arg2))
	    return false;
	}
    return true;
  }
};

/* Cache the result of satisfy_atom.  */
static GTY((deletable)) hash_table<sat_hasher> *sat_cache;

/* Cache the result of satisfy_declaration_constraints.  */
static GTY((deletable)) hash_map<tree, tree> *decl_satisfied_cache;

/* A tool used by satisfy_atom to help manage satisfaction caching and to
   diagnose "unstable" satisfaction values.  We insert into the cache only
   when performing satisfaction quietly.  */

struct satisfaction_cache
{
  satisfaction_cache (tree, tree, sat_info);
  tree get ();
  tree save (tree);

  sat_entry *entry;
  sat_info info;
  int ftc_begin;
};

/* Constructor for the satisfaction_cache class.  We're performing satisfaction
   of ATOM+ARGS according to INFO.  */

satisfaction_cache
::satisfaction_cache (tree atom, tree args, sat_info info)
  : entry(nullptr), info(info), ftc_begin(-1)
{
  if (!sat_cache)
    sat_cache = hash_table<sat_hasher>::create_ggc (31);

  /* When noisy, we query the satisfaction cache in order to diagnose
     "unstable" satisfaction values.  */
  if (info.noisy ())
    {
      /* When noisy, constraints have been re-normalized, and that breaks the
	 pointer-based identity assumption of sat_cache (for atoms with
	 uninstantiated mappings).  So undo this re-normalization by looking in
	 the atom_cache for the corresponding atom that was used during quiet
	 satisfaction.  */
      if (!ATOMIC_CONSTR_MAP_INSTANTIATED_P (atom))
	{
	  if (tree found = atom_cache->find (atom))
	    atom = found;
	  else
	    /* The lookup should always succeed, but if it fails then let's
	       just leave 'entry' empty, effectively disabling the cache.  */
	    return;
	}
    }

  /* Look up or create the corresponding satisfaction entry.  */
  sat_entry elt;
  elt.atom = atom;
  elt.args = args;
  sat_entry **slot = sat_cache->find_slot (&elt, INSERT);
  if (*slot)
    entry = *slot;
  else if (info.quiet ())
    {
      entry = ggc_alloc<sat_entry> ();
      entry->atom = atom;
      entry->args = args;
      entry->result = NULL_TREE;
      entry->location = input_location;
      entry->ftc_begin = entry->ftc_end = -1;
      entry->diagnose_instability = false;
      if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (atom))
	/* We always want to diagnose instability of an atom with an
	   instantiated parameter mapping.  For atoms with an uninstantiated
	   mapping, we set this flag (in satisfy_atom) only if substitution
	   into its mapping previously failed.  */
	entry->diagnose_instability = true;
      entry->evaluating = false;
      *slot = entry;
    }
  else
    /* We shouldn't get here, but if we do, let's just leave 'entry'
       empty, effectively disabling the cache.  */
    return;
}

/* Returns the cached satisfaction result if we have one and we're not
   recomputing the satisfaction result from scratch.  Otherwise returns
   NULL_TREE.  */

tree
satisfaction_cache::get ()
{
  if (!entry)
    return NULL_TREE;

  if (entry->evaluating)
    {
      /* If we get here, it means satisfaction is self-recursive.  */
      gcc_checking_assert (!entry->result);
      if (info.noisy ())
	error_at (EXPR_LOCATION (ATOMIC_CONSTR_EXPR (entry->atom)),
		  "satisfaction of atomic constraint %qE depends on itself",
		  entry->atom);
      return error_mark_node;
    }

  /* This satisfaction result is "potentially unstable" if a type for which
     type completion failed during its earlier computation is now complete.  */
  bool maybe_unstable = some_type_complete_p (entry->ftc_begin,
					      entry->ftc_end);

  if (info.noisy () || maybe_unstable || !entry->result)
    {
      /* We're computing the satisfaction result from scratch.  */
      entry->evaluating = true;
      ftc_begin = vec_safe_length (failed_type_completions);
      return NULL_TREE;
    }
  else
    return entry->result;
}

/* RESULT is the computed satisfaction result.  If RESULT differs from the
   previously cached result, this routine issues an appropriate error.
   Otherwise, when evaluating quietly, updates the cache appropriately.  */

tree
satisfaction_cache::save (tree result)
{
  if (!entry)
    return result;

  gcc_checking_assert (entry->evaluating);
  entry->evaluating = false;

  if (entry->result && result != entry->result)
    {
      if (info.quiet ())
	/* Return error_mark_node to force satisfaction to get replayed
	   noisily.  */
	return error_mark_node;
      else
	{
	  if (entry->diagnose_instability)
	    {
	      auto_diagnostic_group d;
	      error_at (EXPR_LOCATION (ATOMIC_CONSTR_EXPR (entry->atom)),
			"satisfaction value of atomic constraint %qE changed "
			"from %qE to %qE", entry->atom, entry->result, result);
	      inform (entry->location,
		      "satisfaction value first evaluated to %qE from here",
		      entry->result);
	    }
	  /* For sake of error recovery, allow this latest satisfaction result
	     to prevail.  */
	  entry->result = result;
	  return result;
	}
    }

  if (info.quiet ())
    {
      entry->result = result;
      /* Store into this entry the list of relevant failed type completions
	 that occurred during (re)computation of the satisfaction result.  */
      gcc_checking_assert (ftc_begin != -1);
      entry->ftc_begin = ftc_begin;
      entry->ftc_end = vec_safe_length (failed_type_completions);
    }

  return result;
}

/* Substitute ARGS into constraint-expression T during instantiation of
   a member of a class template.  */

tree
tsubst_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl)
{
  /* We also don't want to evaluate concept-checks when substituting the
     constraint-expressions of a declaration.  */
  processing_constraint_expression_sentinel s;
  cp_unevaluated u;
  tree expr = tsubst_expr (t, args, complain, in_decl, false);
  return expr;
}

static tree satisfy_constraint_r (tree, tree, sat_info info);

/* Compute the satisfaction of a conjunction.  */

static tree
satisfy_conjunction (tree t, tree args, sat_info info)
{
  tree lhs = satisfy_constraint_r (TREE_OPERAND (t, 0), args, info);
  if (lhs == error_mark_node || lhs == boolean_false_node)
    return lhs;
  return satisfy_constraint_r (TREE_OPERAND (t, 1), args, info);
}

/* The current depth at which we're replaying an error during recursive
   diagnosis of a constraint satisfaction failure.  */

static int current_constraint_diagnosis_depth;

/* Whether CURRENT_CONSTRAINT_DIAGNOSIS_DEPTH has ever exceeded
   CONCEPTS_DIAGNOSTICS_MAX_DEPTH during recursive diagnosis of a constraint
   satisfaction error.  */

static bool concepts_diagnostics_max_depth_exceeded_p;

/* Recursive subroutine of collect_operands_of_disjunction.  T is a normalized
   subexpression of a constraint (composed of CONJ_CONSTRs and DISJ_CONSTRs)
   and E is the corresponding unnormalized subexpression (composed of
   TRUTH_ANDIF_EXPRs and TRUTH_ORIF_EXPRs).  */

static void
collect_operands_of_disjunction_r (tree t, tree e,
				   auto_vec<tree_pair> *operands)
{
  if (TREE_CODE (e) == TRUTH_ORIF_EXPR)
    {
      collect_operands_of_disjunction_r (TREE_OPERAND (t, 0),
					 TREE_OPERAND (e, 0), operands);
      collect_operands_of_disjunction_r (TREE_OPERAND (t, 1),
					 TREE_OPERAND (e, 1), operands);
    }
  else
    {
      tree_pair p = std::make_pair (t, e);
      operands->safe_push (p);
    }
}

/* Recursively collect the normalized and unnormalized operands of the
   disjunction T and append them to OPERANDS in order.  */

static void
collect_operands_of_disjunction (tree t, auto_vec<tree_pair> *operands)
{
  collect_operands_of_disjunction_r (t, CONSTR_EXPR (t), operands);
}

/* Compute the satisfaction of a disjunction.  */

static tree
satisfy_disjunction (tree t, tree args, sat_info info)
{
  /* Evaluate each operand with unsatisfaction diagnostics disabled.  */
  sat_info sub = info;
  sub.diagnose_unsatisfaction = false;

  tree lhs = satisfy_constraint_r (TREE_OPERAND (t, 0), args, sub);
  if (lhs == boolean_true_node || lhs == error_mark_node)
    return lhs;

  tree rhs = satisfy_constraint_r (TREE_OPERAND (t, 1), args, sub);
  if (rhs == boolean_true_node || rhs == error_mark_node)
    return rhs;

  /* Both branches evaluated to false.  Explain the satisfaction failure in
     each branch.  */
  if (info.diagnose_unsatisfaction_p ())
    {
      diagnosing_failed_constraint failure (t, args, info.noisy ());
      cp_expr disj_expr = CONSTR_EXPR (t);
      inform (disj_expr.get_location (),
	      "no operand of the disjunction is satisfied");
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the error in each branch of the disjunction.  */
	  auto_vec<tree_pair> operands;
	  collect_operands_of_disjunction (t, &operands);
	  for (unsigned i = 0; i < operands.length (); i++)
	    {
	      tree norm_op = operands[i].first;
	      tree op = operands[i].second;
	      location_t loc = make_location (cp_expr_location (op),
					      disj_expr.get_start (),
					      disj_expr.get_finish ());
	      inform (loc, "the operand %qE is unsatisfied because", op);
	      satisfy_constraint_r (norm_op, args, info);
	    }
	}
    }

  return boolean_false_node;
}

/* Ensures that T is a truth value and not (accidentally, as sometimes
   happens) an integer value.  */

tree
satisfaction_value (tree t)
{
  if (t == error_mark_node || t == boolean_true_node || t == boolean_false_node)
    return t;

  gcc_assert (TREE_CODE (t) == INTEGER_CST
	      && same_type_p (TREE_TYPE (t), boolean_type_node));
  if (integer_zerop (t))
    return boolean_false_node;
  else
    return boolean_true_node;
}

/* Build a new template argument list with template arguments corresponding
   to the parameters used in an atomic constraint.  */

tree
get_mapped_args (tree map)
{
  /* No map, no arguments.  */
  if (!map)
    return NULL_TREE;

  /* Find the mapped parameter with the highest level.  */
  int count = 0;
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      int level;
      int index;
      template_parm_level_and_index (TREE_VALUE (p), &level, &index);
      if (level > count)
        count = level;
    }

  /* Place each argument at its corresponding position in the argument
     list. Note that the list will be sparse (not all arguments supplied),
     but instantiation is guaranteed to only use the parameters in the
     mapping, so null arguments would never be used.  */
  auto_vec< vec<tree> > lists (count);
  lists.quick_grow_cleared (count);
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      int level;
      int index;
      template_parm_level_and_index (TREE_VALUE (p), &level, &index);

      /* Insert the argument into its corresponding position.  */
      vec<tree> &list = lists[level - 1];
      if (index >= (int)list.length ())
	list.safe_grow_cleared (index + 1, true);
      list[index] = TREE_PURPOSE (p);
    }

  /* Build the new argument list.  */
  tree args = make_tree_vec (lists.length ());
  for (unsigned i = 0; i != lists.length (); ++i)
    {
      vec<tree> &list = lists[i];
      tree level = make_tree_vec (list.length ());
      for (unsigned j = 0; j < list.length(); ++j)
	TREE_VEC_ELT (level, j) = list[j];
      SET_TMPL_ARGS_LEVEL (args, i + 1, level);
      list.release ();
    }
  SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (args, 0);

  return args;
}

static void diagnose_atomic_constraint (tree, tree, tree, sat_info);

/* Compute the satisfaction of an atomic constraint.  */

static tree
satisfy_atom (tree t, tree args, sat_info info)
{
  /* In case there is a diagnostic, we want to establish the context
     prior to printing errors.  If no errors occur, this context is
     removed before returning.  */
  diagnosing_failed_constraint failure (t, args, info.noisy ());

  satisfaction_cache cache (t, args, info);
  if (tree r = cache.get ())
    return r;

  /* Perform substitution quietly.  */
  subst_info quiet (tf_none, NULL_TREE);

  /* Instantiate the parameter mapping.  */
  tree map = tsubst_parameter_mapping (ATOMIC_CONSTR_MAP (t), args, quiet);
  if (map == error_mark_node)
    {
      /* If instantiation of the parameter mapping fails, the constraint is
	 not satisfied.  Replay the substitution.  */
      if (info.diagnose_unsatisfaction_p ())
	tsubst_parameter_mapping (ATOMIC_CONSTR_MAP (t), args, info);
      if (info.quiet ())
	/* Since instantiation of the parameter mapping failed, we
	   want to diagnose potential instability of this satisfaction
	   result.  */
	cache.entry->diagnose_instability = true;
      return cache.save (boolean_false_node);
    }

  /* Now build a new atom using the instantiated mapping.  We use
     this atom as a second key to the satisfaction cache, and we
     also pass it to diagnose_atomic_constraint so that diagnostics
     which refer to the atom display the instantiated mapping.  */
  t = copy_node (t);
  ATOMIC_CONSTR_MAP (t) = map;
  gcc_assert (!ATOMIC_CONSTR_MAP_INSTANTIATED_P (t));
  ATOMIC_CONSTR_MAP_INSTANTIATED_P (t) = true;
  satisfaction_cache inst_cache (t, /*args=*/NULL_TREE, info);
  if (tree r = inst_cache.get ())
    {
      cache.entry->location = inst_cache.entry->location;
      return cache.save (r);
    }

  /* Rebuild the argument vector from the parameter mapping.  */
  args = get_mapped_args (map);

  /* Apply the parameter mapping (i.e., just substitute).  */
  tree expr = ATOMIC_CONSTR_EXPR (t);
  tree result = tsubst_expr (expr, args, quiet.complain, quiet.in_decl, false);
  if (result == error_mark_node)
    {
      /* If substitution results in an invalid type or expression, the constraint
	 is not satisfied. Replay the substitution.  */
      if (info.diagnose_unsatisfaction_p ())
	tsubst_expr (expr, args, info.complain, info.in_decl, false);
      return cache.save (inst_cache.save (boolean_false_node));
    }

  /* [17.4.1.2] ... lvalue-to-rvalue conversion is performed as necessary,
     and EXPR shall be a constant expression of type bool.  */
  result = force_rvalue (result, info.complain);
  if (result == error_mark_node)
    return cache.save (inst_cache.save (error_mark_node));
  if (!same_type_p (TREE_TYPE (result), boolean_type_node))
    {
      if (info.noisy ())
	diagnose_atomic_constraint (t, map, result, info);
      return cache.save (inst_cache.save (error_mark_node));
    }

  /* Compute the value of the constraint.  */
  if (info.noisy ())
    {
      iloc_sentinel ils (EXPR_LOCATION (result));
      result = cxx_constant_value (result);
    }
  else
    {
      result = maybe_constant_value (result, NULL_TREE,
				     /*manifestly_const_eval=*/true);
      if (!TREE_CONSTANT (result))
	result = error_mark_node;
    }
  result = satisfaction_value (result);
  if (result == boolean_false_node && info.diagnose_unsatisfaction_p ())
    diagnose_atomic_constraint (t, map, result, info);

  return cache.save (inst_cache.save (result));
}

/* Determine if the normalized constraint T is satisfied.
   Returns boolean_true_node if the expression/constraint is
   satisfied, boolean_false_node if not, and error_mark_node
   if the there was an error evaluating the constraint.

   The parameter mapping of atomic constraints is simply the
   set of template arguments that will be substituted into
   the expression, regardless of template parameters appearing
   withing. Whether a template argument is used in the atomic
   constraint only matters for subsumption.  */

static tree
satisfy_constraint_r (tree t, tree args, sat_info info)
{
  if (t == error_mark_node)
    return error_mark_node;

  switch (TREE_CODE (t))
    {
    case CONJ_CONSTR:
      return satisfy_conjunction (t, args, info);
    case DISJ_CONSTR:
      return satisfy_disjunction (t, args, info);
    case ATOMIC_CONSTR:
      return satisfy_atom (t, args, info);
    default:
      gcc_unreachable ();
    }
}

/* Check that the normalized constraint T is satisfied for ARGS.  */

static tree
satisfy_normalized_constraints (tree t, tree args, sat_info info)
{
  auto_timevar time (TV_CONSTRAINT_SAT);

  auto ovr = make_temp_override (satisfying_constraint, true);

  /* Turn off template processing. Constraint satisfaction only applies
     to non-dependent terms, so we want to ensure full checking here.  */
  processing_template_decl_sentinel proc (true);

  /* We need to check access during satisfaction.  */
  deferring_access_check_sentinel acs (dk_no_deferred);

  /* Constraints are unevaluated operands.  */
  cp_unevaluated u;

  return satisfy_constraint_r (t, args, info);
}

/* Return the normal form of the constraints on the placeholder 'auto'
   type T.  */

static tree
normalize_placeholder_type_constraints (tree t, bool diag)
{
  gcc_assert (is_auto (t));
  tree ci = PLACEHOLDER_TYPE_CONSTRAINTS_INFO (t);
  if (!ci)
    return NULL_TREE;

  tree constr = TREE_VALUE (ci);
  /* The TREE_PURPOSE contains the set of template parameters that were in
     scope for this placeholder type; use them as the initial template
     parameters for normalization.  */
  tree initial_parms = TREE_PURPOSE (ci);

  if (!initial_parms && TEMPLATE_TYPE_LEVEL (t) == 2)
    /* This is a return-type-requirement of a non-templated requires-expression,
       which are parsed under processing_template_decl == 1 and empty
       current_template_parms; hence the 'auto' has level 2 and initial_parms
       is empty.  Fix up initial_parms to be consistent with the value of
       processing_template_decl whence the 'auto' was created.  */
    initial_parms = build_tree_list (size_int (1), make_tree_vec (0));

  /* The 'auto' itself is used as the first argument in its own constraints,
     and its level is one greater than its template depth.  So in order to
     capture all used template parameters, we need to add an extra level of
     template parameters to the context; a dummy level suffices.  */
  initial_parms
    = tree_cons (size_int (initial_parms
			   ? TMPL_PARMS_DEPTH (initial_parms) + 1 : 1),
		 make_tree_vec (0), initial_parms);

  norm_info info (diag ? tf_norm : tf_none);
  info.initial_parms = initial_parms;
  return normalize_constraint_expression (constr, info);
}

/* Evaluate the constraints of T using ARGS, returning a satisfaction value.
   Here, T can be a concept-id, nested-requirement, placeholder 'auto', or
   requires-expression.  */

static tree
satisfy_nondeclaration_constraints (tree t, tree args, sat_info info)
{
  if (t == error_mark_node)
    return error_mark_node;

  /* Handle REQUIRES_EXPR directly, bypassing satisfaction.  */
  if (TREE_CODE (t) == REQUIRES_EXPR)
    {
      auto ovr = make_temp_override (current_constraint_diagnosis_depth);
      if (info.noisy ())
	++current_constraint_diagnosis_depth;
      return tsubst_requires_expr (t, args, info);
    }

  /* Get the normalized constraints.  */
  tree norm;
  if (concept_check_p (t))
    {
      gcc_assert (!args);
      tree id = unpack_concept_check (t);
      args = TREE_OPERAND (id, 1);
      tree tmpl = get_concept_check_template (id);
      norm = normalize_concept_definition (tmpl, info.noisy ());
    }
  else if (TREE_CODE (t) == NESTED_REQ)
    {
      norm_info ninfo (info.noisy () ? tf_norm : tf_none);
      /* The TREE_TYPE contains the set of template parameters that were in
	 scope for this nested requirement; use them as the initial template
	 parameters for normalization.  */
      ninfo.initial_parms = TREE_TYPE (t);
      norm = normalize_constraint_expression (TREE_OPERAND (t, 0), ninfo);
    }
  else if (is_auto (t))
    {
      norm = normalize_placeholder_type_constraints (t, info.noisy ());
      if (!norm)
	return boolean_true_node;
    }
  else
    gcc_unreachable ();

  /* Perform satisfaction.  */
  return satisfy_normalized_constraints (norm, args, info);
}

/* Evaluate the associated constraints of the template specialization T
   according to INFO, returning a satisfaction value.  */

static tree
satisfy_declaration_constraints (tree t, sat_info info)
{
  gcc_assert (DECL_P (t) && TREE_CODE (t) != TEMPLATE_DECL);
  const tree saved_t = t;

  /* For inherited constructors, consider the original declaration;
     it has the correct template information attached. */
  t = strip_inheriting_ctors (t);
  tree inh_ctor_targs = NULL_TREE;
  if (t != saved_t)
    if (tree ti = DECL_TEMPLATE_INFO (saved_t))
      /* The inherited constructor points to an instantiation of a constructor
	 template; remember its template arguments.  */
      inh_ctor_targs = TI_ARGS (ti);

  /* Update the declaration for diagnostics.  */
  info.in_decl = t;

  if (info.quiet ())
    if (tree *result = hash_map_safe_get (decl_satisfied_cache, saved_t))
      return *result;

  tree args = NULL_TREE;
  if (tree ti = DECL_TEMPLATE_INFO (t))
    {
      /* The initial parameter mapping is the complete set of
	 template arguments substituted into the declaration.  */
      args = TI_ARGS (ti);
      if (inh_ctor_targs)
	args = add_outermost_template_args (args, inh_ctor_targs);
    }

  if (regenerated_lambda_fn_p (t))
    {
      /* The TI_ARGS of a regenerated lambda contains only the innermost
	 set of template arguments.  Augment this with the outer template
	 arguments that were used to regenerate the lambda.  */
      gcc_assert (!args || TMPL_ARGS_DEPTH (args) == 1);
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (t));
      tree outer_args = TI_ARGS (LAMBDA_EXPR_REGEN_INFO (lambda));
      if (args)
	args = add_to_template_args (outer_args, args);
      else
	args = outer_args;
    }

  /* If any arguments depend on template parameters, we can't
     check constraints. Pretend they're satisfied for now.  */
  if (uses_template_parms (args))
    return boolean_true_node;

  /* Get the normalized constraints.  */
  tree norm = get_normalized_constraints_from_decl (t, info.noisy ());

  unsigned ftc_count = vec_safe_length (failed_type_completions);

  tree result = boolean_true_node;
  if (norm)
    {
      if (!push_tinst_level (t))
	return result;
      push_access_scope (t);
      result = satisfy_normalized_constraints (norm, args, info);
      pop_access_scope (t);
      pop_tinst_level ();
    }

  /* True if this satisfaction is (heuristically) potentially unstable, i.e.
     if its result may depend on where in the program it was performed.  */
  bool maybe_unstable_satisfaction = false;
  if (ftc_count != vec_safe_length (failed_type_completions))
    /* Type completion failure occurred during satisfaction.  The satisfaction
       result may (or may not) materially depend on the completeness of a type,
       so we consider it potentially unstable.   */
    maybe_unstable_satisfaction = true;

  if (maybe_unstable_satisfaction)
    /* Don't cache potentially unstable satisfaction, to allow satisfy_atom
       to check the stability the next time around.  */;
  else if (info.quiet ())
    hash_map_safe_put<hm_ggc> (decl_satisfied_cache, saved_t, result);

  return result;
}

/* Evaluate the associated constraints of the template T using ARGS as the
   innermost set of template arguments and according to INFO, returning a
   satisfaction value.  */

static tree
satisfy_declaration_constraints (tree t, tree args, sat_info info)
{
  /* Update the declaration for diagnostics.  */
  info.in_decl = t;

  gcc_assert (TREE_CODE (t) == TEMPLATE_DECL);

  if (regenerated_lambda_fn_p (t))
    {
      /* As in the two-parameter version of this function.  */
      gcc_assert (TMPL_ARGS_DEPTH (args) == 1);
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (t));
      tree outer_args = TI_ARGS (LAMBDA_EXPR_REGEN_INFO (lambda));
      args = add_to_template_args (outer_args, args);
    }
  else
    args = add_outermost_template_args (t, args);

  /* If any arguments depend on template parameters, we can't
     check constraints. Pretend they're satisfied for now.  */
  if (uses_template_parms (args))
    return boolean_true_node;

  tree result = boolean_true_node;
  if (tree norm = get_normalized_constraints_from_decl (t, info.noisy ()))
    {
      if (!push_tinst_level (t, args))
	return result;
      tree pattern = DECL_TEMPLATE_RESULT (t);
      push_access_scope (pattern);
      result = satisfy_normalized_constraints (norm, args, info);
      pop_access_scope (pattern);
      pop_tinst_level ();
    }

  return result;
}

/* A wrapper around satisfy_declaration_constraints and
   satisfy_nondeclaration_constraints which additionally replays
   quiet ill-formed satisfaction noisily, so that ill-formed
   satisfaction always gets diagnosed.  */

static tree
constraint_satisfaction_value (tree t, tree args, sat_info info)
{
  tree r;
  if (DECL_P (t))
    {
      if (args)
	r = satisfy_declaration_constraints (t, args, info);
      else
	r = satisfy_declaration_constraints (t, info);
    }
  else
    r = satisfy_nondeclaration_constraints (t, args, info);
  if (r == error_mark_node && info.quiet ()
      && !(DECL_P (t) && warning_suppressed_p (t)))
    {
      /* Replay the error noisily.  */
      sat_info noisy (tf_warning_or_error, info.in_decl);
      constraint_satisfaction_value (t, args, noisy);
      if (DECL_P (t) && !args)
	/* Avoid giving these errors again.  */
	suppress_warning (t);
    }
  return r;
}

/* True iff the result of satisfying T using ARGS is BOOLEAN_TRUE_NODE
   and false otherwise, even in the case of errors.

   Here, T can be:
     - a template declaration
     - a template specialization (in which case ARGS must be empty)
     - a concept-id (in which case ARGS must be empty)
     - a nested-requirement
     - a placeholder 'auto'
     - a requires-expression.  */

bool
constraints_satisfied_p (tree t, tree args/*= NULL_TREE */)
{
  if (!flag_concepts)
    return true;

  sat_info quiet (tf_none, NULL_TREE);
  return constraint_satisfaction_value (t, args, quiet) == boolean_true_node;
}

/* Evaluate a concept check of the form C<ARGS>. This is only used for the
   evaluation of template-ids as id-expressions.  */

tree