aboutsummaryrefslogtreecommitdiff
path: root/gcc/ssa-range.c
blob: 61aa0c6d6acb2ec006f0934d24c6ba235e0cbfb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/* On-demand ssa range generator.
   Copyright (C) 2017-2018 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "domwalk.h"
#include "ssa-range.h"
#include "ssa-range-global.h"


class ssa_block_ranges
{
private:
  vec<irange_storage *> tab;
  irange_storage *type_range;
  const_tree type;
public:
  ssa_block_ranges (tree t);
  ~ssa_block_ranges ();

  void set_bb_range (const basic_block bb, const irange &r);
  void set_bb_range_for_type (const basic_block bb);
  bool get_bb_range (irange& r, const basic_block bb);
  bool bb_range_p (const basic_block bb);

  void dump(FILE *f);
};

ssa_block_ranges::ssa_block_ranges (tree t)
{
  irange tr;
  gcc_assert (TYPE_P (t));
  type = t;

  tab.create (0);
  tab.safe_grow_cleared (last_basic_block_for_fn (cfun));

  tr.set_range_for_type (t);
  type_range = irange_storage::ggc_alloc_init (tr);

  tab[ENTRY_BLOCK_PTR_FOR_FN (cfun)->index] = type_range;
}

ssa_block_ranges::~ssa_block_ranges ()
{
  tab.release ();
}

void
ssa_block_ranges::set_bb_range (const basic_block bb, const irange& r)
{
  irange_storage *m = tab[bb->index];

  if (m && m != type_range)
    m->set_irange (r);
  else
    m = irange_storage::ggc_alloc_init (r);

  tab[bb->index] = m;
}

void
ssa_block_ranges::set_bb_range_for_type (const basic_block bb)
{
  tab[bb->index] = type_range;
}


bool
ssa_block_ranges::get_bb_range (irange& r, const basic_block bb)
{
  irange_storage *m = tab[bb->index];
  if (m)
    {
      r.set_range (m, type);
      return true;
    }
  return false;
}


// Returns true if a range is present
bool
ssa_block_ranges::bb_range_p (const basic_block bb)
{
  return tab[bb->index] != NULL;
}

void
ssa_block_ranges::dump (FILE *f)
{
  basic_block bb;
  irange r;

  FOR_EACH_BB_FN (bb, cfun)
    if (get_bb_range (r, bb))
      {
	fprintf (f, "BB%d  -> ", bb->index);
	r.dump (f);
      }
}

// -------------------------------------------------------------------------

class block_range_cache
{
private:
  vec<ssa_block_ranges *> ssa_ranges;
public:
  block_range_cache ();
  ~block_range_cache ();
  ssa_block_ranges& get_block_ranges (tree name);

  void dump (FILE *f);
};



block_range_cache::block_range_cache ()
{
  ssa_ranges.create (0);
  ssa_ranges.safe_grow_cleared (num_ssa_names);
}

block_range_cache::~block_range_cache ()
{
  unsigned x;
  for (x = 0; x < ssa_ranges.length (); ++x)
    {
      if (ssa_ranges[x])
	delete ssa_ranges[x];
    }
  ssa_ranges.release ();
}

ssa_block_ranges&
block_range_cache::get_block_ranges (tree name)
{
  unsigned v = SSA_NAME_VERSION (name);
  if (!ssa_ranges[v])
    ssa_ranges[v] = new ssa_block_ranges (TREE_TYPE (name));

  return *(ssa_ranges[v]);
}

void
block_range_cache::dump (FILE *f)
{
  unsigned x;
  for (x = 0; x < num_ssa_names; ++x)
    {
      if (ssa_ranges[x])
        {
	  fprintf (f, " Ranges for ");
	  print_generic_expr (f, ssa_name (x), 0);
	  fprintf (f, ":\n");
	  ssa_ranges[x]->dump (f);
	}
    }
  
}
// -------------------------------------------------------------------------

path_ranger::path_ranger () 
{
  block_cache = new block_range_cache ();
}

path_ranger::~path_ranger () 
{
  delete block_cache;
}


void
path_ranger::range_for_bb (irange &r, tree name, basic_block bb,
			   basic_block def_bb)
{
  bool res;
  determine_block (name, bb, def_bb);
  res = block_cache->get_block_ranges (name).get_bb_range (r, bb);
  gcc_assert (res);
}

bool
path_ranger::path_range_entry (irange& r, tree name, basic_block bb)
{
  gimple *def_stmt;
  basic_block def_bb = NULL;

  if (!valid_irange_ssa (name))
    return false;

  def_stmt = SSA_NAME_DEF_STMT (name);
  if (def_stmt)
    def_bb = gimple_bb (def_stmt);;

  if (!def_bb)
    def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);

  /* Start with any known range.  */
  get_global_ssa_range (r, name);

  /* If its defined in this basic block, then there is no range on entry,
     otherwise, go figure out what is known in predecessor blocks.  */
  if (def_bb != bb)
    {
      irange block_range;
      range_for_bb (block_range, name, bb, def_bb);
      r.intersect (block_range);
    }

  return true;
}


/* Known range on an edge on the path back to the DEF of name.  */
bool
path_ranger::path_range_edge (irange& r, tree name, edge e)
{
  basic_block bb = e->src;

  if (!valid_irange_ssa (name))
    return false;

  /* Get an initial range for NAME.  */
  
  gimple *stmt = SSA_NAME_DEF_STMT (name);
  if (stmt && gimple_bb (stmt) == e->src)
    {
      /* If it is in this block, evaluate it.  */
      if (!path_range_stmt (r, stmt))
        r.set_range (name);
    }
  else
    /* The name comes from outside this block, so evaluate it's value on
       entry to the block.  */
    if (!path_range_entry (r, name, bb))
      error (" Why can't we get a live on entry range? ");

  /* Now intersect it with what NAME evaluates to on this edge.  */
  irange edge_range;
  if (range_on_edge (edge_range, name, e))
    {
      normalize_bool_type (edge_range, r);
      r.intersect (edge_range);
    }
  return true;

}

void
path_ranger::determine_block (tree name, basic_block bb, basic_block def_bb)
{
  edge_iterator ei;
  edge e;
  irange er;
  irange block_result;

  if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
      || bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
      || bb == def_bb)
    return;

  /* If the block cache is set, then we've already visited this block.  */
  if (block_cache->get_block_ranges (name).bb_range_p (bb))
    return;

  /* Avoid infinite recursion by marking this block as calculated.  */
  block_cache->get_block_ranges (name).set_bb_range_for_type (bb);

  /* Visit each predecessor to resolve them.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      determine_block (name, e->src, def_bb);
    }

  block_result.clear (TREE_TYPE (name));
  /* Now Union all the ranges on the incoming edges.  */
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      irange pred_range;
      basic_block src = e->src;
      // Should be using range_on_def??? or something.
      if (src == def_bb)
        get_global_ssa_range (pred_range, name);
      else
        {
	  bool res;
	  res = block_cache->get_block_ranges (name).get_bb_range (pred_range,
								   src);
	  gcc_assert (res);
	}

      if (range_on_edge (er, name, e))
        {
	  pred_range.intersect (er);
	  er.intersect (pred_range);
	}

      block_result.union_ (pred_range);

      if (block_result.range_for_type_p ())
        break;
    }

  if (block_result.range_for_type_p ())
    block_cache->get_block_ranges (name).set_bb_range_for_type (bb);
  else
    block_cache->get_block_ranges (name).set_bb_range (bb, block_result);
}


bool
path_ranger::process_phi (irange &r, gphi *phi)
{
  tree phi_def = gimple_phi_result (phi);
  unsigned x;

  if (!valid_irange_ssa (phi_def))
    return false;

  // If this node has already been processed, just return it.
  if (get_global_ssa_range (r, phi_def))
    return true;

  // Avoid infinite recursion by initializing global cache 
  r.set_range (phi_def);
  set_global_ssa_range (phi_def, r);
 
  // And start with an empty range, unioning in each areument's range.
  r.clear (TREE_TYPE (phi_def));
  for (x = 0; x < gimple_phi_num_args (phi); x++)
    {
      irange arg_range;
      tree arg = gimple_phi_arg_def (phi, x);
      edge e = gimple_phi_arg_edge (phi, x);
      if (!path_range_edge (arg_range, arg, e))
	if (!get_operand_range (arg_range, arg))
	  return false;

      normalize_bool_type (r, arg_range);
      r.union_ (arg_range);
      if (r.range_for_type_p ())
	break;
    }

  set_global_ssa_range (phi_def, r);
  return true;
}


bool
path_ranger::path_range_stmt (irange& r, gimple *g)
{
  tree name = gimple_get_lhs (g);
  irange range_op1, range_op2;
  range_stmt rn;
  basic_block bb = gimple_bb (g);
  bool res;

  if (is_a <gphi *> (g))
    {
      gphi *phi = as_a <gphi *> (g);
      return process_phi (r, phi);
    }
 
  // Not all statements have a LHS.  */
  if (name)
    {
      // If this STMT has already been processed, return that value. 
      if (get_global_ssa_range (r, name))
	return true;
     
      // avoid infinite recursion by initializing global cache 
      r.set_range (name);
      set_global_ssa_range (name, r);
    }

  rn = g;
  if (!rn.valid ())
    return false;

  if (!path_get_operand (range_op1, rn.operand1 (), bb))
    return false;
    
  // If this is a unary operation, call fold now.  
  if (!rn.operand2 ())
    res = rn.fold (r, range_op1);
  else
    {

      if (!path_get_operand (range_op2, rn.operand2 (), bb))
	return false;

      normalize_bool_type (range_op1, range_op2);
      res = rn.fold (r, range_op1, range_op2);
    }

  if (name)
    {
      if (res)
	set_global_ssa_range (name, r);
      else
	clear_global_ssa_range (name);
    }
  return res;
}


static inline gimple *
ssa_name_same_bb_p (tree name, basic_block bb)
{
  gimple *g = SSA_NAME_DEF_STMT (name);
  if (!g || gimple_bb (g) != bb)
   return NULL;
  return g;
}


/* Determine a range for NAME in basic block BB.
   If FULL is true, then rescursively call the path ranger to fully evaluate
   a range for NAME.
   if FULL is false, then dont go outside the current block to find a best 
   guess range.
   if edge E is specified, then only follow E for calculations.  */

bool
path_ranger::path_get_operand (irange &r, tree name, basic_block bb)
{
  if (!valid_irange_ssa (name))
    return get_operand_range (r, name);
    
  // check if the defining statement is in the same block.
  gimple *s = ssa_name_same_bb_p (name, bb);
  if (s)
    {
      // This means NAME is defined in the same block, simply try to extract 
      // a range from that statement. 
      if (!path_range_stmt (r, s))
	return block_ranger::get_operand_range (r, name);
      return true;
    }

  if (path_range_entry (r, name, bb))
    return true;
  return block_ranger::get_operand_range (r, name);
}

bool
path_ranger::get_operand_range (irange&r, tree op, gimple *s)
{
    
  if (!s)
    return block_ranger::get_operand_range (r, op, s);
  else
    return path_get_operand (r, op, gimple_bb (s));
}

bool
path_ranger::path_fold_stmt (irange &r, range_stmt &rn, basic_block bb, edge e)
{
  irange range_op1, range_op2;

  if (!rn.ssa_operand1 () || !ssa_name_same_bb_p (rn.ssa_operand1 (), bb) ||
      !path_range_of_def (range_op1, SSA_NAME_DEF_STMT (rn.ssa_operand1 ()), e))
    get_operand_range (range_op1, rn.operand1 ());

  // If this is a unary operation, call fold now.  
  if (!rn.operand2 ())
    return rn.fold (r, range_op1);

  if (!rn.ssa_operand2 () || !ssa_name_same_bb_p (rn.ssa_operand2 (), bb) ||
      !path_range_of_def (range_op2,
			  SSA_NAME_DEF_STMT (rn.ssa_operand2 ()), e))
    get_operand_range (range_op2, rn.operand2 ());

  normalize_bool_type (range_op1, range_op2);
  return rn.fold (r, range_op1, range_op2);
}

// Attempt to evaluate NAME within the basic block it is defined as far
// as possible. With an edge provided, we must do the calculation on demand
// since the global cache involves collating ALL the incoming edges.  This
// can potentially change all the values in the block.
bool
path_ranger::path_range_of_def (irange &r, gimple *g, edge e)
{
  if (!e)
    return path_range_of_def (r, g);

  basic_block bb = gimple_bb (g);
  tree arg;

  /* If an edge is provided, it must be an incoming edge to this BB.  */
  gcc_assert (e->dest == bb);

  // Note that since we are remaining within BB, we do not attempt to further
  // evaluate any of the arguments of a PHI at this point.
  // a recursive call could be made to evaluate any SSA_NAMEs on their
  // repsective edgesin PATH form, but we leave that as something to look into
  // later.  For the moment, just pick up any edge information since its cheap.
  if (is_a <gphi *> (g))
    {
      gphi *phi = as_a <gphi *> (g);
      gcc_assert (e->dest == bb);
      arg = gimple_phi_arg_def (phi, e->dest_idx);
      // Pick up anything simple we might know about the incoming edge. 
	if (!range_on_edge (r, arg, e))
	  return get_operand_range (r, arg);
	return true;
      }

    range_stmt rn(g);
    if (!rn.valid())
      return false; 
    return path_fold_stmt (r, rn, bb, e);

  }

  // Attempt to evaluate NAME within the basic block it is defined as far
  // as possible. IF a PHI is encountered at the beginning of the block, either
  // fully evalaute it, or if E is provided, use just the value from that edge.
  bool
  path_ranger::path_range_of_def (irange &r, gimple *g)
  {
    tree name;
    basic_block bb = gimple_bb (g);
    tree arg;
    irange range_op1, range_op2;

    // Note that since we are remaining within BB, we do not attempt to further
    // evaluate any of the arguments of a PHI at this point.
    // a recursive call could be made to evaluate any SSA_NAMEs on their
    // repsective edgesin PATH form, but we leave that as something to look into
    // later.  For the moment, just pick up any edge information since its cheap.
    if (is_a <gphi *> (g))
      {
	gphi *phi = as_a <gphi *> (g);
	tree phi_def = gimple_phi_result (phi);
	irange tmp;
	unsigned x;
	edge e;

	if (!valid_irange_ssa (phi_def))
	  return false;
	if (get_global_ssa_range (r, phi_def))
	  return true;

	// Avoid infinite recursion by initializing global cache 
	r.set_range (phi_def);
	set_global_ssa_range (phi_def, r);

	r.clear (TREE_TYPE (phi_def));
	for (x = 0; x < gimple_phi_num_args (phi); x++)
	  {
	    arg = gimple_phi_arg_def (phi, x);
	    e = gimple_phi_arg_edge (phi, x);
	    if (!path_range_edge (range_op2, arg, e))
	      if (!get_operand_range (range_op2, arg))
		return false;

	    normalize_bool_type (r, range_op2);
	    r.union_ (range_op2);
	    if (r.range_for_type_p ())
	      return true;
	  }

	set_global_ssa_range (phi_def, r);
	return true;
      }

    range_stmt rn(g);
    if (!rn.valid())
      return false;

    name = gimple_get_lhs (g);

    /* If there is no LHS, then we are simply folding an expression.  */
    if (!name)
      return path_fold_stmt (r, rn, bb);

    if (get_global_ssa_range (r, name))
      return true;

    // avoid infinite recursion by initializing global cache 
    r.set_range (name);
    set_global_ssa_range (name, r);

    bool res = path_fold_stmt (r, rn, bb);

    if (res)
      set_global_ssa_range (name, r);
    return res;
  }

  /* Calculate the known range for NAME on a path of basic blocks in
     BBS.  If such a range exists, store it in R and return TRUE,
     otherwise return FALSE.

     DIR is FORWARD if BBS[0] is the definition and the last block is
     the use.  DIR is REVERSE if the blocks are in reverse order.

     If there is an edge leading into this path that we'd like to take
     into account, such edge is START_EDGE.  Otherwise, START_EDGE is
     set to NULL.  */

  bool
  path_ranger::path_range (irange &r, tree name, const vec<basic_block> &bbs,
			   enum path_range_direction dir, edge start_edge)
  {
    if (bbs.is_empty ())
      return false;

    /* If the first block defines NAME and it has meaningful range
       information, use it, otherwise fall back to range for type.

       Note: The first block may not always define NAME because we may
       have pruned the paths such that the first block (bb1) is just the
       first block that contains range info (bb99).  For example:

       bb1:
	 x = 55;
	 ...
	 ...
       bb99:
	 if (x > blah).
    */
    basic_block first_bb = dir == FORWARD ? bbs[0] : bbs[bbs.length () - 1];
    gimple *def_stmt = SSA_NAME_DEF_STMT (name);
    if (gimple_bb (def_stmt) == first_bb && start_edge)
      {
	if (!path_range_of_def (r, def_stmt, start_edge))
	  get_global_ssa_range (r, name);
      }
    else
      get_global_ssa_range (r, name);

    if (dir == REVERSE)
      return path_range_reverse (r, name, bbs);

    for (unsigned i = 1; i < bbs.length (); ++i)
      {
	edge e = find_edge (bbs[i - 1], bbs[i]);
	gcc_assert (e);
	irange redge;
	if (range_on_edge (redge, name, e))
	r.intersect (redge);
    }

  if (r.range_for_type_p ())
    return false;
  return true;
}

/* The same as above, but handle the case where BBS are a path of
   basic blocks in reverse order.

   BBS[0] is the USE of NAME.
   BBS[LEN-1] is the DEF of NAME.  */

bool
path_ranger::path_range_reverse (irange &r, tree name,
				 const vec<basic_block> &bbs)
{
  for (int i = bbs.length () - 1; i > 0; --i)
    {
      edge e = find_edge (bbs[i], bbs[i - 1]);
      gcc_assert (e);
      irange redge;
      if (range_on_edge (redge, name, e))
	r.intersect (redge);
    }

  if (r.range_for_type_p ())
    return false;
  return true;
}

void
path_ranger::dump(FILE *f)
{
  block_ranger::dump (f);
}


void
path_ranger::exercise (FILE *output)
{

  basic_block bb;
  irange range;

  FOR_EACH_BB_FN (bb, cfun)
    {
      unsigned x;
      edge_iterator ei;
      edge e;
      bool printed = false;

      /* This dramatically slows down builds, so only when printing.  */
      if (output)
        {
	  fprintf (output, "----- BB%d -----\n", bb->index);
	  for (x = 1; x < num_ssa_names; x++)
	    {
	      tree name = ssa_name (x);
	      if (name && path_range_entry (range, name, bb))
		{
		  if (output && !range.range_for_type_p ())
		    {
		      if (!printed)
			fprintf (output,"   Ranges on entry :\n");
		      printed = true;
		      fprintf (output, "     ");
		      print_generic_expr (output, name, 0);
		      fprintf (output, " : ");
		      range.dump (output);
		    }
		}
	    }
	  if (printed)
	    fprintf (output, "\n");
	  dump_bb (output, bb, 2, 0);
	  printed = false;
	}

      FOR_EACH_EDGE (e, ei, bb->succs)
        {
	  for (x = 1; x < num_ssa_names; x++)
	    {
	      tree name = ssa_name (x);
	      if (name && range_p (bb, name))
		{
		  if (path_range_edge (range, name, e))
		    {
		      if (output && !range.range_for_type_p ())
			{
			  printed = true;
			  fprintf (output, "     %d->%d ", e->src->index,
				   e->dest->index);
			  if (e->flags & EDGE_TRUE_VALUE)
			    fprintf (output, " (T) ");
			  else if (e->flags & EDGE_FALSE_VALUE)
			    fprintf (output, " (F) ");
			  else
			    fprintf (output, "     ");
			  print_generic_expr (output, name, TDF_SLIM);
			  fprintf(output, "  \t");
			  range.dump(output);
			}
		    }
		}
	    }
	}
      if (printed)
        fprintf (output, "\n");

    }

  if (output)
    dump (output);

}