// Raw memory manipulators -*- C++ -*- // Copyright (C) 2001-2025 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_uninitialized.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{memory} */ #ifndef _STL_UNINITIALIZED_H #define _STL_UNINITIALIZED_H 1 #if __cplusplus >= 201103L # include # include // to_address # include // pair # include // fill, fill_n #endif #include // __is_pointer #include // distance, advance #include // __niter_base #include // __alloc_traits namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /** @addtogroup memory * @{ */ /// @cond undocumented template struct _UninitDestroyGuard { _GLIBCXX20_CONSTEXPR explicit _UninitDestroyGuard(_ForwardIterator& __first, _Alloc& __a) : _M_first(__first), _M_cur(__builtin_addressof(__first)), _M_alloc(__a) { } _GLIBCXX20_CONSTEXPR ~_UninitDestroyGuard() { if (__builtin_expect(_M_cur != 0, 0)) std::_Destroy(_M_first, *_M_cur, _M_alloc); } _GLIBCXX20_CONSTEXPR void release() { _M_cur = 0; } private: _ForwardIterator const _M_first; _ForwardIterator* _M_cur; _Alloc& _M_alloc; _UninitDestroyGuard(const _UninitDestroyGuard&); }; template struct _UninitDestroyGuard<_ForwardIterator, void> { _GLIBCXX20_CONSTEXPR explicit _UninitDestroyGuard(_ForwardIterator& __first) : _M_first(__first), _M_cur(__builtin_addressof(__first)) { } _GLIBCXX20_CONSTEXPR ~_UninitDestroyGuard() { if (__builtin_expect(_M_cur != 0, 0)) std::_Destroy(_M_first, *_M_cur); } _GLIBCXX20_CONSTEXPR void release() { _M_cur = 0; } _ForwardIterator const _M_first; _ForwardIterator* _M_cur; private: _UninitDestroyGuard(const _UninitDestroyGuard&); }; // This is the default implementation of std::uninitialized_copy. // This can be used with C++20 iterators and non-common ranges. template _GLIBCXX20_CONSTEXPR _ForwardIterator __do_uninit_copy(_InputIterator __first, _Sentinel __last, _ForwardIterator __result) { _UninitDestroyGuard<_ForwardIterator> __guard(__result); for (; __first != __last; ++__first, (void)++__result) std::_Construct(std::__addressof(*__result), *__first); __guard.release(); return __result; } #if __cplusplus < 201103L // True if we can unwrap _Iter to get a pointer by using std::__niter_base. template struct __unwrappable_niter { enum { __value = false }; }; template struct __unwrappable_niter<_Iter, _Tp*> { enum { __value = true }; }; // Use template specialization for C++98 when 'if constexpr' can't be used. template struct __uninitialized_copy { template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { return std::__do_uninit_copy(__first, __last, __result); } }; template<> struct __uninitialized_copy { // Overload for generic iterators. template static _ForwardIterator __uninit_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { if (__unwrappable_niter<_InputIterator>::__value && __unwrappable_niter<_ForwardIterator>::__value) { __uninit_copy(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result)); std::advance(__result, std::distance(__first, __last)); return __result; } else return std::__do_uninit_copy(__first, __last, __result); } // Overload for pointers. template static _Up* __uninit_copy(_Tp* __first, _Tp* __last, _Up* __result) { // Ensure that we don't successfully memcpy in cases that should be // ill-formed because is_constructible<_Up, _Tp&> is false. typedef __typeof__(static_cast<_Up>(*__first)) __check __attribute__((__unused__)); const ptrdiff_t __n = __last - __first; if (__builtin_expect(__n > 0, true)) { __builtin_memcpy(__result, __first, __n * sizeof(_Tp)); __result += __n; } return __result; } }; #endif /// @endcond #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wc++17-extensions" /** * @brief Copies the range [first,last) into result. * @param __first An input iterator. * @param __last An input iterator. * @param __result A forward iterator. * @return __result + (__last - __first) * * Like std::copy, but does not require an initialized output range. */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { // We can use memcpy to copy the ranges under these conditions: // // _ForwardIterator and _InputIterator are both contiguous iterators, // so that we can turn them into pointers to pass to memcpy. // Before C++20 we can't detect all contiguous iterators, so we only // handle built-in pointers and __normal_iterator types. // // The value types of both iterators are trivially-copyable types, // so that memcpy is not undefined and can begin the lifetime of // new objects in the output range. // // Finally, memcpy from the source type, S, to the destination type, D, // must give the same value as initialization of D from S would give. // We require is_trivially_constructible to be true, but that is // not sufficient. Some cases of trivial initialization are not just a // bitwise copy, even when sizeof(D) == sizeof(S), // e.g. bit_cast(1.0f) != 1u because the corresponding bits // of the value representations do not have the same meaning. // We cannot tell when this condition is true in general, // so we rely on the __memcpyable trait. #if __cplusplus >= 201103L using _Dest = decltype(std::__niter_base(__result)); using _Src = decltype(std::__niter_base(__first)); using _ValT = typename iterator_traits<_ForwardIterator>::value_type; #if __glibcxx_raw_memory_algorithms >= 202411L // >= C++26 if consteval { return std::__do_uninit_copy(__first, __last, __result); } #endif if constexpr (!__is_trivially_constructible(_ValT, decltype(*__first))) return std::__do_uninit_copy(__first, __last, __result); else if constexpr (__memcpyable<_Dest, _Src>::__value) { ptrdiff_t __n = __last - __first; if (__n > 0) [[__likely__]] { using _ValT = typename remove_pointer<_Src>::type; __builtin_memcpy(std::__niter_base(__result), std::__niter_base(__first), __n * sizeof(_ValT)); __result += __n; } return __result; } #if __cpp_lib_concepts else if constexpr (contiguous_iterator<_ForwardIterator> && contiguous_iterator<_InputIterator>) { using _DestPtr = decltype(std::to_address(__result)); using _SrcPtr = decltype(std::to_address(__first)); if constexpr (__memcpyable<_DestPtr, _SrcPtr>::__value) { if (auto __n = __last - __first; __n > 0) [[likely]] { void* __dest = std::to_address(__result); const void* __src = std::to_address(__first); size_t __nbytes = __n * sizeof(remove_pointer_t<_DestPtr>); __builtin_memcpy(__dest, __src, __nbytes); __result += __n; } return __result; } else return std::__do_uninit_copy(__first, __last, __result); } #endif else return std::__do_uninit_copy(__first, __last, __result); #else // C++98 typedef typename iterator_traits<_InputIterator>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType2; const bool __can_memcpy = __memcpyable<_ValueType1*, _ValueType2*>::__value && __is_trivially_constructible(_ValueType2, __decltype(*__first)); return __uninitialized_copy<__can_memcpy>:: __uninit_copy(__first, __last, __result); #endif } #pragma GCC diagnostic pop /// @cond undocumented // This is the default implementation of std::uninitialized_fill. template _GLIBCXX20_CONSTEXPR void __do_uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); for (; __first != __last; ++__first) std::_Construct(std::__addressof(*__first), __x); __guard.release(); } #if __cplusplus < 201103L // Use template specialization for C++98 when 'if constexpr' can't be used. template struct __uninitialized_fill { template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { std::__do_uninit_fill(__first, __last, __x); } }; template<> struct __uninitialized_fill { // Overload for generic iterators. template static void __uninit_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { if (__unwrappable_niter<_ForwardIterator>::__value) __uninit_fill(std::__niter_base(__first), std::__niter_base(__last), __x); else std::__do_uninit_copy(__first, __last, __x); } // Overload for pointers. template static void __uninit_fill(_Up* __first, _Up* __last, const _Tp& __x) { // Ensure that we don't successfully memset in cases that should be // ill-formed because is_constructible<_Up, const _Tp&> is false. typedef __typeof__(static_cast<_Up>(__x)) __check __attribute__((__unused__)); if (__first != __last) __builtin_memset(__first, (unsigned char)__x, __last - __first); } }; #endif /// @endcond /** * @brief Copies the value x into the range [first,last). * @param __first A forward iterator. * @param __last A forward iterator. * @param __x The source value. * @return Nothing. * * Like std::fill, but does not require an initialized output range. */ template _GLIBCXX26_CONSTEXPR inline void uninitialized_fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x) { // We would like to use memset to optimize this loop when possible. // As for std::uninitialized_copy, the optimization requires // contiguous iterators and trivially copyable value types, // with the additional requirement that sizeof(_Tp) == 1 because // memset only writes single bytes. // FIXME: We could additionally enable this for 1-byte enums. // Maybe any 1-byte Val if is_trivially_constructible? typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; #if __cplusplus >= 201103L #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wc++17-extensions" #if __glibcxx_raw_memory_algorithms >= 202411L // >= C++26 if consteval { return std::__do_uninit_fill(__first, __last, __x); } #endif if constexpr (__is_byte<_ValueType>::__value) if constexpr (is_same<_ValueType, _Tp>::value || is_integral<_Tp>::value) { using _BasePtr = decltype(std::__niter_base(__first)); if constexpr (is_pointer<_BasePtr>::value) { void* __dest = std::__niter_base(__first); ptrdiff_t __n = __last - __first; if (__n > 0) [[__likely__]] __builtin_memset(__dest, (unsigned char)__x, __n); return; } #if __cpp_lib_concepts else if constexpr (contiguous_iterator<_ForwardIterator>) { auto __dest = std::to_address(__first); auto __n = __last - __first; if (__n > 0) [[__likely__]] __builtin_memset(__dest, (unsigned char)__x, __n); return; } #endif } std::__do_uninit_fill(__first, __last, __x); #pragma GCC diagnostic pop #else // C++98 const bool __can_memset = __is_byte<_ValueType>::__value && __is_integer<_Tp>::__value; __uninitialized_fill<__can_memset>::__uninit_fill(__first, __last, __x); #endif } /// @cond undocumented // This is the default implementation of std::uninitialized_fill_n. template _GLIBCXX20_CONSTEXPR _ForwardIterator __do_uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); #if __cplusplus >= 201103L #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wc++17-extensions" if constexpr (is_integral<_Size>::value) // Loop will never terminate if __n is negative. __glibcxx_assert(__n >= 0); else if constexpr (is_floating_point<_Size>::value) // Loop will never terminate if __n is not an integer. __glibcxx_assert(__n >= 0 && static_cast(__n) == __n); #pragma GCC diagnostic pop #endif for (; __n--; ++__first) std::_Construct(std::__addressof(*__first), __x); __guard.release(); return __first; } #if __cplusplus < 201103L // Use template specialization for C++98 when 'if constexpr' can't be used. template struct __uninitialized_fill_n { template static _ForwardIterator __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { return std::__do_uninit_fill_n(__first, __n, __x); } }; template<> struct __uninitialized_fill_n { // Overload for generic iterators. template static _ForwardIterator __uninit_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { if (__unwrappable_niter<_ForwardIterator>::__value) { _ForwardIterator __last = __first; std::advance(__last, __n); __uninitialized_fill::__uninit_fill(__first, __last, __x); return __last; } else return std::__do_uninit_fill_n(__first, __n, __x); } }; #endif /// @endcond #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wc++17-extensions" // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 1339. uninitialized_fill_n should return the end of its range /** * @brief Copies the value x into the range [first,first+n). * @param __first A forward iterator. * @param __n The number of copies to make. * @param __x The source value. * @return __first + __n. * * Like std::fill_n, but does not require an initialized output range. */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_fill_n(_ForwardIterator __first, _Size __n, const _Tp& __x) { // See uninitialized_fill conditions. We also require _Size to be // an integer. The standard only requires _Size to be decrementable // and contextually convertible to bool, so don't assume first+n works. // FIXME: We could additionally enable this for 1-byte enums. typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; #if __cplusplus >= 201103L #if __glibcxx_raw_memory_algorithms >= 202411L // >= C++26 if consteval { return std::__do_uninit_fill_n(__first, __n, __x); } #endif if constexpr (__is_byte<_ValueType>::__value) if constexpr (is_integral<_Tp>::value) if constexpr (is_integral<_Size>::value) { using _BasePtr = decltype(std::__niter_base(__first)); if constexpr (is_pointer<_BasePtr>::value) { void* __dest = std::__niter_base(__first); if (__n > 0) [[__likely__]] { __builtin_memset(__dest, (unsigned char)__x, __n); __first += __n; } return __first; } #if __cpp_lib_concepts else if constexpr (contiguous_iterator<_ForwardIterator>) { auto __dest = std::to_address(__first); if (__n > 0) [[__likely__]] { __builtin_memset(__dest, (unsigned char)__x, __n); __first += __n; } return __first; } #endif } return std::__do_uninit_fill_n(__first, __n, __x); #else // C++98 const bool __can_memset = __is_byte<_ValueType>::__value && __is_integer<_Tp>::__value && __is_integer<_Size>::__value; return __uninitialized_fill_n<__can_memset>:: __uninit_fill_n(__first, __n, __x); #endif } #pragma GCC diagnostic pop /// @cond undocumented // Extensions: versions of uninitialized_copy, uninitialized_fill, // and uninitialized_fill_n that take an allocator parameter. // We dispatch back to the standard versions when we're given the // default allocator. For nondefault allocators we do not use // any of the POD optimizations. template _GLIBCXX20_CONSTEXPR _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _Sentinel __last, _ForwardIterator __result, _Allocator& __alloc) { _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__result, __alloc); typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __first != __last; ++__first, (void)++__result) __traits::construct(__alloc, std::__addressof(*__result), *__first); __guard.release(); return __result; } #if _GLIBCXX_HOSTED template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_copy_a(_InputIterator __first, _Sentinel __last, _ForwardIterator __result, allocator<_Tp>&) { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) return std::__do_uninit_copy(std::move(__first), __last, __result); #endif #ifdef __glibcxx_ranges if constexpr (!is_same_v<_InputIterator, _Sentinel>) { // Convert to a common range if possible, to benefit from memcpy // optimizations that std::uninitialized_copy might use. if constexpr (sized_sentinel_for<_Sentinel, _InputIterator> && random_access_iterator<_InputIterator>) return std::uninitialized_copy(__first, __first + (__last - __first), __result); else // Just use default implementation. return std::__do_uninit_copy(std::move(__first), __last, __result); } else return std::uninitialized_copy(std::move(__first), __last, __result); #else return std::uninitialized_copy(__first, __last, __result); #endif } #endif template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_move_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { return std::__uninitialized_copy_a(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result, __alloc); } template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_move_if_noexcept_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) { return std::__uninitialized_copy_a (_GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(__last), __result, __alloc); } template _GLIBCXX20_CONSTEXPR void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, _Allocator& __alloc) { _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__first, __alloc); typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __first != __last; ++__first) __traits::construct(__alloc, std::__addressof(*__first), __x); __guard.release(); } #if _GLIBCXX_HOSTED template _GLIBCXX20_CONSTEXPR inline void __uninitialized_fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __x, allocator<_Tp2>&) { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) return std::__do_uninit_fill(__first, __last, __x); #endif std::uninitialized_fill(__first, __last, __x); } #endif template _GLIBCXX20_CONSTEXPR _ForwardIterator __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, _Allocator& __alloc) { _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__first, __alloc); typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __n > 0; --__n, (void) ++__first) __traits::construct(__alloc, std::__addressof(*__first), __x); __guard.release(); return __first; } #if _GLIBCXX_HOSTED template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_fill_n_a(_ForwardIterator __first, _Size __n, const _Tp& __x, allocator<_Tp2>&) { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) return std::__do_uninit_fill_n(__first, __n, __x); #endif return std::uninitialized_fill_n(__first, __n, __x); } #endif // Extensions: __uninitialized_copy_move, __uninitialized_move_copy, // __uninitialized_fill_move, __uninitialized_move_fill. // All of these algorithms take a user-supplied allocator, which is used // for construction and destruction. // __uninitialized_copy_move // Copies [first1, last1) into [result, result + (last1 - first1)), and // move [first2, last2) into // [result, result + (last1 - first1) + (last2 - first2)). template inline _ForwardIterator __uninitialized_copy_move(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_copy_a(__first1, __last1, __result, __alloc); _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__result, __alloc); __result = __mid; // Everything up to __mid is now guarded. __result = std::__uninitialized_move_a(__first2, __last2, __mid, __alloc); __guard.release(); return __result; } // __uninitialized_move_copy // Moves [first1, last1) into [result, result + (last1 - first1)), and // copies [first2, last2) into // [result, result + (last1 - first1) + (last2 - first2)). template inline _ForwardIterator __uninitialized_move_copy(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _ForwardIterator __result, _Allocator& __alloc) { _ForwardIterator __mid = std::__uninitialized_move_a(__first1, __last1, __result, __alloc); _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__result, __alloc); __result = __mid; // Everything up to __mid is now guarded. __result = std::__uninitialized_copy_a(__first2, __last2, __mid, __alloc); __guard.release(); return __result; } // __uninitialized_fill_move // Fills [result, mid) with x, and moves [first, last) into // [mid, mid + (last - first)). template inline _ForwardIterator __uninitialized_fill_move(_ForwardIterator __result, _ForwardIterator __mid, const _Tp& __x, _InputIterator __first, _InputIterator __last, _Allocator& __alloc) { std::__uninitialized_fill_a(__result, __mid, __x, __alloc); _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__result, __alloc); __result = __mid; // Everything up to __mid is now guarded. __result = std::__uninitialized_move_a(__first, __last, __mid, __alloc); __guard.release(); return __result; } // __uninitialized_move_fill // Moves [first1, last1) into [first2, first2 + (last1 - first1)), and // fills [first2 + (last1 - first1), last2) with x. template inline void __uninitialized_move_fill(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, const _Tp& __x, _Allocator& __alloc) { _ForwardIterator __mid2 = std::__uninitialized_move_a(__first1, __last1, __first2, __alloc); _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__first2, __alloc); __first2 = __mid2; // Everything up to __mid2 is now guarded. std::__uninitialized_fill_a(__mid2, __last2, __x, __alloc); __guard.release(); } /// @endcond #if __cplusplus >= 201103L /// @cond undocumented // Extensions: __uninitialized_default, __uninitialized_default_n, // __uninitialized_default_a, __uninitialized_default_n_a. template struct __uninitialized_default_1 { template _GLIBCXX26_CONSTEXPR static void __uninit_default(_ForwardIterator __first, _ForwardIterator __last) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); for (; __first != __last; ++__first) std::_Construct(std::__addressof(*__first)); __guard.release(); } }; template<> struct __uninitialized_default_1 { template _GLIBCXX26_CONSTEXPR static void __uninit_default(_ForwardIterator __first, _ForwardIterator __last) { if (__first == __last) return; typename iterator_traits<_ForwardIterator>::value_type* __val = std::__addressof(*__first); std::_Construct(__val); if (++__first != __last) std::fill(__first, __last, *__val); } }; template struct __uninitialized_default_n_1 { template _GLIBCXX20_CONSTEXPR static _ForwardIterator __uninit_default_n(_ForwardIterator __first, _Size __n) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); for (; __n > 0; --__n, (void) ++__first) std::_Construct(std::__addressof(*__first)); __guard.release(); return __first; } }; template<> struct __uninitialized_default_n_1 { template _GLIBCXX20_CONSTEXPR static _ForwardIterator __uninit_default_n(_ForwardIterator __first, _Size __n) { if (__n > 0) { typename iterator_traits<_ForwardIterator>::value_type* __val = std::__addressof(*__first); std::_Construct(__val); ++__first; __first = std::fill_n(__first, __n - 1, *__val); } return __first; } }; // __uninitialized_default // Fills [first, last) with value-initialized value_types. template _GLIBCXX26_CONSTEXPR inline void __uninitialized_default(_ForwardIterator __first, _ForwardIterator __last) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // trivial types can have deleted assignment const bool __assignable = is_copy_assignable<_ValueType>::value; std::__uninitialized_default_1<__is_trivial(_ValueType) && __assignable>:: __uninit_default(__first, __last); } // __uninitialized_default_n // Fills [first, first + n) with value-initialized value_types. template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_default_n(_ForwardIterator __first, _Size __n) { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) return __uninitialized_default_n_1:: __uninit_default_n(__first, __n); #endif typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // See uninitialized_fill_n for the conditions for using std::fill_n. constexpr bool __can_fill = __and_, is_copy_assignable<_ValueType>>::value; return __uninitialized_default_n_1<__is_trivial(_ValueType) && __can_fill>:: __uninit_default_n(__first, __n); } // __uninitialized_default_a // Fills [first, last) with value_types constructed by the allocator // alloc, with no arguments passed to the construct call. template void __uninitialized_default_a(_ForwardIterator __first, _ForwardIterator __last, _Allocator& __alloc) { _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__first, __alloc); typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __first != __last; ++__first) __traits::construct(__alloc, std::__addressof(*__first)); __guard.release(); } #if _GLIBCXX_HOSTED template inline void __uninitialized_default_a(_ForwardIterator __first, _ForwardIterator __last, allocator<_Tp>&) { std::__uninitialized_default(__first, __last); } #endif // __uninitialized_default_n_a // Fills [first, first + n) with value_types constructed by the allocator // alloc, with no arguments passed to the construct call. template _GLIBCXX20_CONSTEXPR _ForwardIterator __uninitialized_default_n_a(_ForwardIterator __first, _Size __n, _Allocator& __alloc) { _UninitDestroyGuard<_ForwardIterator, _Allocator> __guard(__first, __alloc); typedef __gnu_cxx::__alloc_traits<_Allocator> __traits; for (; __n > 0; --__n, (void) ++__first) __traits::construct(__alloc, std::__addressof(*__first)); __guard.release(); return __first; } #if _GLIBCXX_HOSTED // __uninitialized_default_n_a specialization for std::allocator, // which ignores the allocator and value-initializes the elements. template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __uninitialized_default_n_a(_ForwardIterator __first, _Size __n, allocator<_Tp>&) { return std::__uninitialized_default_n(__first, __n); } #endif template struct __uninitialized_default_novalue_1 { template _GLIBCXX26_CONSTEXPR static void __uninit_default_novalue(_ForwardIterator __first, _ForwardIterator __last) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); for (; __first != __last; ++__first) std::_Construct_novalue(std::__addressof(*__first)); __guard.release(); } }; template<> struct __uninitialized_default_novalue_1 { template _GLIBCXX26_CONSTEXPR static void __uninit_default_novalue(_ForwardIterator, _ForwardIterator) { } }; template struct __uninitialized_default_novalue_n_1 { template _GLIBCXX26_CONSTEXPR static _ForwardIterator __uninit_default_novalue_n(_ForwardIterator __first, _Size __n) { _UninitDestroyGuard<_ForwardIterator> __guard(__first); for (; __n > 0; --__n, (void) ++__first) std::_Construct_novalue(std::__addressof(*__first)); __guard.release(); return __first; } }; template<> struct __uninitialized_default_novalue_n_1 { template _GLIBCXX26_CONSTEXPR static _ForwardIterator __uninit_default_novalue_n(_ForwardIterator __first, _Size __n) { return std::next(__first, __n); } }; // __uninitialized_default_novalue // Fills [first, last) with default-initialized value_types. template _GLIBCXX26_CONSTEXPR inline void __uninitialized_default_novalue(_ForwardIterator __first, _ForwardIterator __last) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; std::__uninitialized_default_novalue_1< is_trivially_default_constructible<_ValueType>::value>:: __uninit_default_novalue(__first, __last); } // __uninitialized_default_novalue_n // Fills [first, first + n) with default-initialized value_types. template _GLIBCXX26_CONSTEXPR inline _ForwardIterator __uninitialized_default_novalue_n(_ForwardIterator __first, _Size __n) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; return __uninitialized_default_novalue_n_1< is_trivially_default_constructible<_ValueType>::value>:: __uninit_default_novalue_n(__first, __n); } template _GLIBCXX26_CONSTEXPR _ForwardIterator __uninitialized_copy_n(_InputIterator __first, _Size __n, _ForwardIterator __result, input_iterator_tag) { _UninitDestroyGuard<_ForwardIterator> __guard(__result); for (; __n > 0; --__n, (void) ++__first, ++__result) std::_Construct(std::__addressof(*__result), *__first); __guard.release(); return __result; } template _GLIBCXX26_CONSTEXPR inline _ForwardIterator __uninitialized_copy_n(_RandomAccessIterator __first, _Size __n, _ForwardIterator __result, random_access_iterator_tag) { return std::uninitialized_copy(__first, __first + __n, __result); } template _GLIBCXX26_CONSTEXPR pair<_InputIterator, _ForwardIterator> __uninitialized_copy_n_pair(_InputIterator __first, _Size __n, _ForwardIterator __result, input_iterator_tag) { _UninitDestroyGuard<_ForwardIterator> __guard(__result); for (; __n > 0; --__n, (void) ++__first, ++__result) std::_Construct(std::__addressof(*__result), *__first); __guard.release(); return {__first, __result}; } template _GLIBCXX26_CONSTEXPR inline pair<_RandomAccessIterator, _ForwardIterator> __uninitialized_copy_n_pair(_RandomAccessIterator __first, _Size __n, _ForwardIterator __result, random_access_iterator_tag) { auto __second_res = uninitialized_copy(__first, __first + __n, __result); auto __first_res = std::next(__first, __n); return {__first_res, __second_res}; } /// @endcond /** * @brief Copies the range [first,first+n) into result. * @param __first An input iterator. * @param __n The number of elements to copy. * @param __result An output iterator. * @return __result + __n * @since C++11 * * Like copy_n(), but does not require an initialized output range. */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_copy_n(_InputIterator __first, _Size __n, _ForwardIterator __result) { return std::__uninitialized_copy_n(__first, __n, __result, std::__iterator_category(__first)); } /// @cond undocumented template _GLIBCXX26_CONSTEXPR inline pair<_InputIterator, _ForwardIterator> __uninitialized_copy_n_pair(_InputIterator __first, _Size __n, _ForwardIterator __result) { return std::__uninitialized_copy_n_pair(__first, __n, __result, std::__iterator_category(__first)); } /// @endcond #endif #ifdef __glibcxx_raw_memory_algorithms // C++ >= 17 /** * @brief Default-initializes objects in the range [first,last). * @param __first A forward iterator. * @param __last A forward iterator. * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline void uninitialized_default_construct(_ForwardIterator __first, _ForwardIterator __last) { std::__uninitialized_default_novalue(__first, __last); } /** * @brief Default-initializes objects in the range [first,first+count). * @param __first A forward iterator. * @param __count The number of objects to construct. * @return __first + __count * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_default_construct_n(_ForwardIterator __first, _Size __count) { return std::__uninitialized_default_novalue_n(__first, __count); } /** * @brief Value-initializes objects in the range [first,last). * @param __first A forward iterator. * @param __last A forward iterator. * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline void uninitialized_value_construct(_ForwardIterator __first, _ForwardIterator __last) { return std::__uninitialized_default(__first, __last); } /** * @brief Value-initializes objects in the range [first,first+count). * @param __first A forward iterator. * @param __count The number of objects to construct. * @return __result + __count * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_value_construct_n(_ForwardIterator __first, _Size __count) { return std::__uninitialized_default_n(__first, __count); } /** * @brief Move-construct from the range [first,last) into result. * @param __first An input iterator. * @param __last An input iterator. * @param __result An output iterator. * @return __result + (__first - __last) * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline _ForwardIterator uninitialized_move(_InputIterator __first, _InputIterator __last, _ForwardIterator __result) { return std::uninitialized_copy (_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result); } /** * @brief Move-construct from the range [first,first+count) into result. * @param __first An input iterator. * @param __count The number of objects to initialize. * @param __result An output iterator. * @return __result + __count * @since C++17 */ template _GLIBCXX26_CONSTEXPR inline pair<_InputIterator, _ForwardIterator> uninitialized_move_n(_InputIterator __first, _Size __count, _ForwardIterator __result) { auto __res = std::__uninitialized_copy_n_pair (_GLIBCXX_MAKE_MOVE_ITERATOR(__first), __count, __result); return {__res.first.base(), __res.second}; } #endif // __glibcxx_raw_memory_algorithms #if __cplusplus >= 201103L /// @cond undocumented template _GLIBCXX20_CONSTEXPR inline void __relocate_object_a(_Tp* __restrict __dest, _Up* __restrict __orig, _Allocator& __alloc) noexcept(noexcept(std::allocator_traits<_Allocator>::construct(__alloc, __dest, std::move(*__orig))) && noexcept(std::allocator_traits<_Allocator>::destroy( __alloc, std::__addressof(*__orig)))) { typedef std::allocator_traits<_Allocator> __traits; __traits::construct(__alloc, __dest, std::move(*__orig)); __traits::destroy(__alloc, std::__addressof(*__orig)); } // This class may be specialized for specific types. // Also known as is_trivially_relocatable. template struct __is_bitwise_relocatable : __bool_constant<__is_trivial(_Tp)> { }; template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __relocate_a_1(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) noexcept(noexcept(std::__relocate_object_a(std::addressof(*__result), std::addressof(*__first), __alloc))) { typedef typename iterator_traits<_InputIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType2; static_assert(std::is_same<_ValueType, _ValueType2>::value, "relocation is only possible for values of the same type"); _ForwardIterator __cur = __result; for (; __first != __last; ++__first, (void)++__cur) std::__relocate_object_a(std::__addressof(*__cur), std::__addressof(*__first), __alloc); return __cur; } #if _GLIBCXX_HOSTED template _GLIBCXX20_CONSTEXPR inline __enable_if_t::value, _Tp*> __relocate_a_1(_Tp* __first, _Tp* __last, _Tp* __result, [[__maybe_unused__]] allocator<_Up>& __alloc) noexcept { ptrdiff_t __count = __last - __first; if (__count > 0) { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) { // Can't use memcpy. Wrap the pointer so that __relocate_a_1 // resolves to the non-trivial overload above. __gnu_cxx::__normal_iterator<_Tp*, void> __out(__result); __out = std::__relocate_a_1(__first, __last, __out, __alloc); return __out.base(); } #endif __builtin_memcpy(__result, __first, __count * sizeof(_Tp)); } return __result + __count; } #endif template _GLIBCXX20_CONSTEXPR inline _ForwardIterator __relocate_a(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _Allocator& __alloc) noexcept(noexcept(__relocate_a_1(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result), __alloc))) { return std::__relocate_a_1(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result), __alloc); } /// @endcond #endif // C++11 /// @} group memory _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif /* _STL_UNINITIALIZED_H */