// RB tree implementation -*- C++ -*-
// Copyright (C) 2001-2025 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/** @file bits/stl_tree.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{map,set}
*/
#ifndef _STL_TREE_H
#define _STL_TREE_H 1
#ifdef _GLIBCXX_SYSHDR
#pragma GCC system_header
#endif
#include
#include
#include
#include
#include
#include
#if __cplusplus >= 201103L
# include
#endif
#ifdef __glibcxx_node_extract // >= C++17
# include
#endif
#if __cplusplus < 201103L
# undef _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
# define _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE 0
#elif ! defined _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
# define _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE 1
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
// Red-black tree class, designed for use in implementing STL
// associative containers (set, multiset, map, and multimap). The
// insertion and deletion algorithms are based on those in Cormen,
// Leiserson, and Rivest, Introduction to Algorithms (MIT Press,
// 1990), except that
//
// (1) the header cell is maintained with links not only to the root
// but also to the leftmost node of the tree, to enable constant
// time begin(), and to the rightmost node of the tree, to enable
// linear time performance when used with the generic set algorithms
// (set_union, etc.)
//
// (2) when a node being deleted has two children its successor node
// is relinked into its place, rather than copied, so that the only
// iterators invalidated are those referring to the deleted node.
enum _Rb_tree_color { _S_red = false, _S_black = true };
struct _Rb_tree_node_base
{
typedef _Rb_tree_node_base* _Base_ptr;
_Rb_tree_color _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left != 0) __x = __x->_M_left;
return __x;
}
static _Base_ptr
_S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right != 0) __x = __x->_M_right;
return __x;
}
// This is not const-correct, but it's only used in a const access path
// by std::_Rb_tree::_M_end() where the pointer is used to initialize a
// const_iterator and so constness is restored.
_Base_ptr
_M_base_ptr() const _GLIBCXX_NOEXCEPT
{ return const_cast<_Rb_tree_node_base*>(this); }
};
// Helper type offering value initialization guarantee on the compare functor.
template
struct _Rb_tree_key_compare
{
_Key_compare _M_key_compare;
_Rb_tree_key_compare()
_GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Key_compare>::value)
: _M_key_compare()
{ }
_Rb_tree_key_compare(const _Key_compare& __comp)
: _M_key_compare(__comp)
{ }
#if __cplusplus >= 201103L
// Copy constructor added for consistency with C++98 mode.
_Rb_tree_key_compare(const _Rb_tree_key_compare&) = default;
_Rb_tree_key_compare(_Rb_tree_key_compare&& __x)
noexcept(is_nothrow_copy_constructible<_Key_compare>::value)
: _M_key_compare(__x._M_key_compare)
{ }
#endif
};
// Helper type to manage default initialization of node count and header.
struct _Rb_tree_header
{
_Rb_tree_node_base _M_header;
size_t _M_node_count; // Keeps track of size of tree.
_Rb_tree_header() _GLIBCXX_NOEXCEPT
{
_M_header._M_color = _S_red;
_M_reset();
}
#if __cplusplus >= 201103L
_Rb_tree_header(_Rb_tree_header&& __x) noexcept
{
if (__x._M_header._M_parent != nullptr)
_M_move_data(__x);
else
{
_M_header._M_color = _S_red;
_M_reset();
}
}
#endif
void
_M_move_data(_Rb_tree_header& __from)
{
_M_header._M_color = __from._M_header._M_color;
_M_header._M_parent = __from._M_header._M_parent;
_M_header._M_left = __from._M_header._M_left;
_M_header._M_right = __from._M_header._M_right;
_M_header._M_parent->_M_parent = &_M_header;
_M_node_count = __from._M_node_count;
__from._M_reset();
}
void
_M_reset()
{
_M_header._M_parent = 0;
_M_header._M_left = &_M_header;
_M_header._M_right = &_M_header;
_M_node_count = 0;
}
};
template
struct _Rb_tree_node : public _Rb_tree_node_base
{
#if __cplusplus < 201103L
_Val _M_value_field;
_Val*
_M_valptr()
{ return std::__addressof(_M_value_field); }
const _Val*
_M_valptr() const
{ return std::__addressof(_M_value_field); }
#else
__gnu_cxx::__aligned_membuf<_Val> _M_storage;
_Val*
_M_valptr()
{ return _M_storage._M_ptr(); }
const _Val*
_M_valptr() const
{ return _M_storage._M_ptr(); }
#endif
_Rb_tree_node*
_M_node_ptr() _GLIBCXX_NOEXCEPT
{ return this; }
};
#if _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
namespace __rb_tree
{
template
struct _Node_base
{
using _Base_ptr = __ptr_rebind<_VoidPtr, _Node_base>;
_Rb_tree_color _M_color;
_Base_ptr _M_parent;
_Base_ptr _M_left;
_Base_ptr _M_right;
static _Base_ptr
_S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left) __x = __x->_M_left;
return __x;
}
static _Base_ptr
_S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right) __x = __x->_M_right;
return __x;
}
// This is not const-correct, but it's only used in a const access path
// by std::_Rb_tree::_M_end() where the pointer is used to initialize a
// const_iterator and so constness is restored.
_Base_ptr
_M_base_ptr() const noexcept
{
return pointer_traits<_Base_ptr>::pointer_to
(*const_cast<_Node_base*>(this));
}
};
// Helper type to manage default initialization of node count and header.
template
struct _Header
{
private:
using _Base_ptr = typename _NodeBase::_Base_ptr;
public:
_NodeBase _M_header;
size_t _M_node_count; // Keeps track of size of tree.
_Header() noexcept
{
_M_header._M_color = _S_red;
_M_reset();
}
_Header(_Header&& __x) noexcept
{
if (__x._M_header._M_parent)
_M_move_data(__x);
else
{
_M_header._M_color = _S_red;
_M_reset();
}
}
void
_M_move_data(_Header& __from)
{
_M_header._M_color = __from._M_header._M_color;
_M_header._M_parent = __from._M_header._M_parent;
_M_header._M_left = __from._M_header._M_left;
_M_header._M_right = __from._M_header._M_right;
_M_header._M_parent->_M_parent = _M_header._M_base_ptr();
_M_node_count = __from._M_node_count;
__from._M_reset();
}
void
_M_reset()
{
_M_header._M_parent = nullptr;
_M_header._M_left = _M_header._M_right = _M_header._M_base_ptr();
_M_node_count = 0;
}
};
template
struct _Node : public __rb_tree::_Node_base<__ptr_rebind<_ValPtr, void>>
{
using value_type = typename pointer_traits<_ValPtr>::element_type;
using _Node_ptr = __ptr_rebind<_ValPtr, _Node>;
_Node() noexcept { }
~_Node() { }
_Node(_Node&&) = delete;
union _Uninit_storage
{
_Uninit_storage() noexcept { }
~_Uninit_storage() { }
value_type _M_data;
};
_Uninit_storage _M_u;
value_type*
_M_valptr()
{ return std::addressof(_M_u._M_data); }
value_type const*
_M_valptr() const
{ return std::addressof(_M_u._M_data); }
_Node_ptr
_M_node_ptr() noexcept
{ return pointer_traits<_Node_ptr>::pointer_to(*this); }
};
} // namespace __rb_tree
#endif // _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
_GLIBCXX_PURE _Rb_tree_node_base*
_Rb_tree_increment(_Rb_tree_node_base* __x) throw ();
_GLIBCXX_PURE _Rb_tree_node_base*
_Rb_tree_decrement(_Rb_tree_node_base* __x) throw ();
template
struct _Rb_tree_iterator
{
typedef _Tp value_type;
typedef _Tp& reference;
typedef _Tp* pointer;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef _Rb_tree_node<_Tp>* _Node_ptr;
_Rb_tree_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_Rb_tree_iterator(_Base_ptr __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { }
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Node_ptr>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Node_ptr>(_M_node)->_M_valptr(); }
_Rb_tree_iterator&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Rb_tree_iterator
operator++(int) _GLIBCXX_NOEXCEPT
{
_Rb_tree_iterator __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Rb_tree_iterator&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Rb_tree_iterator
operator--(int) _GLIBCXX_NOEXCEPT
{
_Rb_tree_iterator __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
friend bool
operator==(const _Rb_tree_iterator& __x,
const _Rb_tree_iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
#if ! __cpp_lib_three_way_comparison
friend bool
operator!=(const _Rb_tree_iterator& __x,
const _Rb_tree_iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
#endif
_Base_ptr _M_node;
};
template
struct _Rb_tree_const_iterator
{
typedef _Tp value_type;
typedef const _Tp& reference;
typedef const _Tp* pointer;
typedef _Rb_tree_iterator<_Tp> iterator;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef const _Rb_tree_node<_Tp>* _Node_ptr;
_Rb_tree_const_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { }
explicit
_Rb_tree_const_iterator(_Base_ptr __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { }
_Rb_tree_const_iterator(const iterator& __it) _GLIBCXX_NOEXCEPT
: _M_node(__it._M_node) { }
reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Node_ptr>(_M_node)->_M_valptr(); }
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Node_ptr>(_M_node)->_M_valptr(); }
_Rb_tree_const_iterator&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_increment(_M_node);
return *this;
}
_Rb_tree_const_iterator
operator++(int) _GLIBCXX_NOEXCEPT
{
_Rb_tree_const_iterator __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);
return __tmp;
}
_Rb_tree_const_iterator&
operator--() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
}
_Rb_tree_const_iterator
operator--(int) _GLIBCXX_NOEXCEPT
{
_Rb_tree_const_iterator __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
}
friend bool
operator==(const _Rb_tree_const_iterator& __x,
const _Rb_tree_const_iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
#if ! __cpp_lib_three_way_comparison
friend bool
operator!=(const _Rb_tree_const_iterator& __x,
const _Rb_tree_const_iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
#endif
_Base_ptr _M_node;
};
__attribute__((__nonnull__))
void
_Rb_tree_insert_and_rebalance(const bool __insert_left,
_Rb_tree_node_base* __x,
_Rb_tree_node_base* __p,
_Rb_tree_node_base& __header) throw ();
__attribute__((__nonnull__,__returns_nonnull__))
_Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* const __z,
_Rb_tree_node_base& __header) throw ();
namespace __rb_tree
{
#if _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
template
struct _Iterator
{
template
using __maybe_const = __conditional_t<_Const, const _Tp, _Tp>;
using __ptr_traits = pointer_traits<_ValPtr>;
using value_type = typename __ptr_traits::element_type;
using reference = __maybe_const&;
using pointer = __maybe_const*;
using iterator_category = bidirectional_iterator_tag;
using difference_type = ptrdiff_t;
using _Node = __rb_tree::_Node<_ValPtr>;
using _Node_base = __rb_tree::_Node_base<__ptr_rebind<_ValPtr, void>>;
using _Base_ptr = typename _Node_base::_Base_ptr;
_Iterator() noexcept
: _M_node() { }
constexpr explicit
_Iterator(_Base_ptr __x) noexcept
: _M_node(__x) { }
_Iterator(const _Iterator&) = default;
_Iterator& operator=(const _Iterator&) = default;
#ifdef __glibcxx_concepts
constexpr
_Iterator(const _Iterator& __it) requires _Const
#else
template>
constexpr
_Iterator(const _Iterator<_OtherConst, _ValPtr>& __it)
#endif
: _M_node(__it._M_node) { }
[[__nodiscard__]]
reference
operator*() const noexcept
{ return *static_cast<_Node&>(*_M_node)._M_valptr(); }
[[__nodiscard__]]
pointer
operator->() const noexcept
{ return static_cast<_Node&>(*_M_node)._M_valptr(); }
_GLIBCXX14_CONSTEXPR _Iterator&
operator++() noexcept
{
if (_M_node->_M_right)
{
_M_node = _M_node->_M_right;
while (_M_node->_M_left)
_M_node = _M_node->_M_left;
}
else
{
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_right)
{
_M_node = __y;
__y = __y->_M_parent;
}
if (_M_node->_M_right != __y)
_M_node = __y;
}
return *this;
}
_GLIBCXX14_CONSTEXPR _Iterator
operator++(int) noexcept
{
_Iterator __tmp(this->_M_node);
++*this;
return __tmp;
}
_GLIBCXX14_CONSTEXPR _Iterator&
operator--() noexcept
{
if (_M_node->_M_color == _S_red
&& _M_node->_M_parent->_M_parent == _M_node)
_M_node = _M_node->_M_right;
else if (_M_node->_M_left)
{
_Base_ptr __y = _M_node->_M_left;
while (__y->_M_right)
__y = __y->_M_right;
_M_node = __y;
}
else
{
_Base_ptr __y = _M_node->_M_parent;
while (_M_node == __y->_M_left)
{
_M_node = __y;
__y = __y->_M_parent;
}
_M_node = __y;
}
return *this;
}
_GLIBCXX14_CONSTEXPR _Iterator
operator--(int) noexcept
{
_Iterator __tmp(this->_M_node);
--*this;
return __tmp;
}
[[__nodiscard__]]
friend bool
operator==(const _Iterator& __x, const _Iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node == __y._M_node; }
#if ! __cpp_lib_three_way_comparison
[[__nodiscard__]]
friend bool
operator!=(const _Iterator& __x, const _Iterator& __y) _GLIBCXX_NOEXCEPT
{ return __x._M_node != __y._M_node; }
#endif
_Base_ptr _M_node;
};
#endif // USE_ALLOC_PTR_FOR_RB_TREE
// Determine the node and iterator types used by std::_Rb_tree.
template
struct _Node_traits;
#if _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE <= 9000
// Specialization for the simple case where the allocator's pointer type
// is the same type as value_type*.
// For ABI compatibility we can't change the types used for this case.
template
struct _Node_traits<_Val, _Val*>
{
typedef _Rb_tree_node<_Val> _Node;
typedef _Node* _Node_ptr;
typedef _Rb_tree_node_base _Node_base;
typedef _Node_base* _Base_ptr;
typedef _Rb_tree_header _Header_t;
typedef _Rb_tree_iterator<_Val> _Iterator;
typedef _Rb_tree_const_iterator<_Val> _Const_iterator;
__attribute__((__nonnull__))
static void
_S_insert_and_rebalance(const bool __insert_left,
_Node_base* __x, _Node_base* __p,
_Node_base& __header) _GLIBCXX_USE_NOEXCEPT
{
return _Rb_tree_insert_and_rebalance(__insert_left, __x, __p, __header);
}
__attribute__((__nonnull__,__returns_nonnull__))
static _Node_base*
_S_rebalance_for_erase(_Node_base* const __z,
_Node_base& __header) _GLIBCXX_USE_NOEXCEPT
{ return _Rb_tree_rebalance_for_erase(__z, __header); }
};
#endif
#if ! _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
// Always use the T* specialization.
template
struct _Node_traits
: _Node_traits<_Val, _Val*>
{ };
#else
// Primary template used when the allocator uses fancy pointers.
template
struct _Node_traits
{
using _Node = __rb_tree::_Node<_ValPtr>;
using _Node_ptr = __ptr_rebind<_ValPtr, _Node>;
using _Node_base = __rb_tree::_Node_base<__ptr_rebind<_ValPtr, void>>;
using _Base_ptr = __ptr_rebind<_ValPtr, _Node_base>;
using _Header_t = __rb_tree::_Header<_Node_base>;
using _Iterator = __rb_tree::_Iterator;
using _Const_iterator = __rb_tree::_Iterator;
static void
_Rotate_left(_Base_ptr __x, _Base_ptr& __root)
{
const _Base_ptr __y = __x->_M_right;
__x->_M_right = __y->_M_left;
if (__y->_M_left)
__y->_M_left->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;
else
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
static void
_Rotate_right(_Base_ptr __x, _Base_ptr& __root)
{
const _Base_ptr __y = __x->_M_left;
__x->_M_left = __y->_M_right;
if (__y->_M_right)
__y->_M_right->_M_parent = __x;
__y->_M_parent = __x->_M_parent;
if (__x == __root)
__root = __y;
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;
else
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
static void
_S_insert_and_rebalance(const bool __insert_left,
_Base_ptr __x, _Base_ptr __p,
_Node_base& __header)
{
_Base_ptr& __root = __header._M_parent;
// Initialize fields in new node to insert.
__x->_M_parent = __p;
__x->_M_left = __x->_M_right = nullptr;
__x->_M_color = _S_red;
// Insert.
// Make new node child of parent and maintain root, leftmost and
// rightmost nodes.
// N.B. First node is always inserted left.
if (__insert_left)
{
__p->_M_left = __x; // also makes leftmost = __x when __p == &__header
if (std::__to_address(__p) == std::addressof(__header))
{
__header._M_parent = __x;
__header._M_right = __x;
}
else if (__p == __header._M_left)
__header._M_left = __x; // maintain leftmost pointing to min node
}
else
{
__p->_M_right = __x;
if (__p == __header._M_right)
__header._M_right = __x; // maintain rightmost pointing to max node
}
// Rebalance.
while (__x != __root
&& __x->_M_parent->_M_color == _S_red)
{
const _Base_ptr __xpp = __x->_M_parent->_M_parent;
if (__x->_M_parent == __xpp->_M_left)
{
const _Base_ptr __y = __xpp->_M_right;
if (__y && __y->_M_color == _S_red)
{
__x->_M_parent->_M_color = _S_black;
__y->_M_color = _S_black;
__xpp->_M_color = _S_red;
__x = __xpp;
}
else
{
if (__x == __x->_M_parent->_M_right)
{
__x = __x->_M_parent;
_Rotate_left(__x, __root);
}
__x->_M_parent->_M_color = _S_black;
__xpp->_M_color = _S_red;
_Rotate_right(__xpp, __root);
}
}
else
{
const _Base_ptr __y = __xpp->_M_left;
if (__y && __y->_M_color == _S_red)
{
__x->_M_parent->_M_color = _S_black;
__y->_M_color = _S_black;
__xpp->_M_color = _S_red;
__x = __xpp;
}
else
{
if (__x == __x->_M_parent->_M_left)
{
__x = __x->_M_parent;
_Rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_black;
__xpp->_M_color = _S_red;
_Rotate_left(__xpp, __root);
}
}
}
__root->_M_color = _S_black;
}
static _Base_ptr
_S_rebalance_for_erase(_Base_ptr __z, _Node_base& __header)
{
_Base_ptr& __root = __header._M_parent;
_Base_ptr& __leftmost = __header._M_left;
_Base_ptr& __rightmost = __header._M_right;
_Base_ptr __y = __z;
_Base_ptr __x{};
_Base_ptr __x_parent{};
if (!__y->_M_left) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (!__y->_M_right) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else
{
// __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left)
__y = __y->_M_left;
__x = __y->_M_right;
}
if (__y != __z)
{
// relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right)
{
__x_parent = __y->_M_parent;
if (__x)
__x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
std::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else
{ // __y == __z
__x_parent = __y->_M_parent;
if (__x)
__x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
{
if (!__z->_M_right) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Node_base::_S_minimum(__x);
}
if (__rightmost == __z)
{
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Node_base::_S_maximum(__x);
}
}
if (__y->_M_color != _S_red)
{
while (__x != __root && (__x == 0 || __x->_M_color == _S_black))
if (__x == __x_parent->_M_left)
{
_Base_ptr __w = __x_parent->_M_right;
if (__w->_M_color == _S_red)
{
__w->_M_color = _S_black;
__x_parent->_M_color = _S_red;
_Rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((!__w->_M_left || __w->_M_left->_M_color == _S_black) &&
(!__w->_M_right || __w->_M_right->_M_color == _S_black))
{
__w->_M_color = _S_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
}
else
{
if (!__w->_M_right || __w->_M_right->_M_color == _S_black)
{
__w->_M_left->_M_color = _S_black;
__w->_M_color = _S_red;
_Rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_black;
if (__w->_M_right)
__w->_M_right->_M_color = _S_black;
_Rotate_left(__x_parent, __root);
break;
}
}
else
{
// same as above, with _M_right <-> _M_left.
_Base_ptr __w = __x_parent->_M_left;
if (__w->_M_color == _S_red)
{
__w->_M_color = _S_black;
__x_parent->_M_color = _S_red;
_Rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((!__w->_M_right || __w->_M_right->_M_color == _S_black) &&
(!__w->_M_left || __w->_M_left->_M_color == _S_black))
{
__w->_M_color = _S_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
}
else
{
if (!__w->_M_left || __w->_M_left->_M_color == _S_black)
{
__w->_M_right->_M_color = _S_black;
__w->_M_color = _S_red;
_Rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_black;
if (__w->_M_left)
__w->_M_left->_M_color = _S_black;
_Rotate_right(__x_parent, __root);
break;
}
}
if (__x)
__x->_M_color = _S_black;
}
return __y;
}
};
#endif
} // namespace __rb_tree
#ifdef __glibcxx_node_extract // >= C++17
template
struct _Rb_tree_merge_helper { };
#endif
template >
class _Rb_tree
{
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Val>::other _Val_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Val_alloc_type> _Val_alloc_traits;
typedef typename _Val_alloc_traits::pointer _ValPtr;
typedef __rb_tree::_Node_traits<_Val, _ValPtr> _Node_traits;
typedef typename _Node_traits::_Node_base _Node_base;
typedef typename _Node_traits::_Node _Node;
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Node>::other _Node_allocator;
typedef __gnu_cxx::__alloc_traits<_Node_allocator> _Node_alloc_traits;
protected:
typedef typename _Node_traits::_Base_ptr _Base_ptr;
typedef typename _Node_traits::_Node_ptr _Node_ptr;
private:
// Functor recycling a pool of nodes and using allocation once the pool
// is empty.
struct _Reuse_or_alloc_node
{
_Reuse_or_alloc_node(_Rb_tree& __t)
: _M_root(__t._M_root()), _M_nodes(__t._M_rightmost()), _M_t(__t)
{
if (_M_root)
{
_M_root->_M_parent = _Base_ptr();
if (_M_nodes->_M_left)
_M_nodes = _M_nodes->_M_left;
}
else
_M_nodes = _Base_ptr();
}
#if __cplusplus >= 201103L
_Reuse_or_alloc_node(const _Reuse_or_alloc_node&) = delete;
#endif
~_Reuse_or_alloc_node()
{
if (_M_root)
_M_t._M_erase(static_cast<_Node&>(*_M_root)._M_node_ptr());
}
template
_Node_ptr
operator()(_GLIBCXX_FWDREF(_Arg) __arg)
{
_Base_ptr __base = _M_extract();
if (__base)
{
_Node_ptr __node = static_cast<_Node&>(*__base)._M_node_ptr();
_M_t._M_destroy_node(__node);
_M_t._M_construct_node(__node, _GLIBCXX_FORWARD(_Arg, __arg));
return __node;
}
return _M_t._M_create_node(_GLIBCXX_FORWARD(_Arg, __arg));
}
private:
_Base_ptr
_M_extract()
{
if (!_M_nodes)
return _M_nodes;
_Base_ptr __node = _M_nodes;
_M_nodes = _M_nodes->_M_parent;
if (_M_nodes)
{
if (_M_nodes->_M_right == __node)
{
_M_nodes->_M_right = _Base_ptr();
if (_M_nodes->_M_left)
{
_M_nodes = _M_nodes->_M_left;
while (_M_nodes->_M_right)
_M_nodes = _M_nodes->_M_right;
if (_M_nodes->_M_left)
_M_nodes = _M_nodes->_M_left;
}
}
else // __node is on the left.
_M_nodes->_M_left = _Base_ptr();
}
else
_M_root = _Base_ptr();
return __node;
}
_Base_ptr _M_root;
_Base_ptr _M_nodes;
_Rb_tree& _M_t;
};
// Functor similar to the previous one but without any pool of nodes to
// recycle.
struct _Alloc_node
{
_Alloc_node(_Rb_tree& __t)
: _M_t(__t) { }
template
_Node_ptr
operator()(_GLIBCXX_FWDREF(_Arg) __arg) const
{ return _M_t._M_create_node(_GLIBCXX_FORWARD(_Arg, __arg)); }
private:
_Rb_tree& _M_t;
};
public:
typedef _Key key_type;
typedef _Val value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
_Node_allocator&
_M_get_Node_allocator() _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
const _Node_allocator&
_M_get_Node_allocator() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_get_Node_allocator()); }
protected:
_Node_ptr
_M_get_node()
{
#if __cplusplus < 201102L || _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
return _Node_alloc_traits::allocate(_M_get_Node_allocator(), 1);
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr
using __alloc_pointer = typename _Node_alloc_traits::pointer;
if constexpr (is_same<_Node_ptr, __alloc_pointer>::value)
return _Node_alloc_traits::allocate(_M_get_Node_allocator(), 1);
else
{
auto __ptr =
_Node_alloc_traits::allocate(_M_get_Node_allocator(), 1);
return std::__to_address(__ptr);
}
#pragma GCC diagnostic pop
#endif
}
void
_M_put_node(_Node_ptr __p) _GLIBCXX_NOEXCEPT
{
#if __cplusplus < 201102L || _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
_Node_alloc_traits::deallocate(_M_get_Node_allocator(), __p, 1);
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr
using __alloc_pointer = typename _Node_alloc_traits::pointer;
if constexpr (is_same<_Node_ptr, __alloc_pointer>::value)
_Node_alloc_traits::deallocate(_M_get_Node_allocator(), __p, 1);
else
{
// When not using the allocator's pointer type internally we must
// convert __p to __alloc_pointer so it can be deallocated.
auto __ap = pointer_traits<__alloc_pointer>::pointer_to(*__p);
_Node_alloc_traits::deallocate(_M_get_Node_allocator(), __ap, 1);
}
#pragma GCC diagnostic pop
#endif
}
#if __cplusplus < 201103L
void
_M_construct_node(_Node_ptr __node, const value_type& __x)
{
__try
{ get_allocator().construct(__node->_M_valptr(), __x); }
__catch(...)
{
_M_put_node(__node);
__throw_exception_again;
}
}
_Node_ptr
_M_create_node(const value_type& __x)
{
_Node_ptr __tmp = _M_get_node();
_M_construct_node(__tmp, __x);
return __tmp;
}
#else
template
void
_M_construct_node(_Node_ptr __node, _Args&&... __args)
{
__try
{
::new(std::addressof(*__node)) _Node;
_Node_alloc_traits::construct(_M_get_Node_allocator(),
__node->_M_valptr(),
std::forward<_Args>(__args)...);
}
__catch(...)
{
__node->~_Node();
_M_put_node(__node);
__throw_exception_again;
}
}
template
_Node_ptr
_M_create_node(_Args&&... __args)
{
_Node_ptr __tmp = _M_get_node();
_M_construct_node(__tmp, std::forward<_Args>(__args)...);
return __tmp;
}
#endif
void
_M_destroy_node(_Node_ptr __p) _GLIBCXX_NOEXCEPT
{
#if __cplusplus < 201103L
get_allocator().destroy(__p->_M_valptr());
#else
_Node_alloc_traits::destroy(_M_get_Node_allocator(), __p->_M_valptr());
__p->~_Node();
#endif
}
void
_M_drop_node(_Node_ptr __p) _GLIBCXX_NOEXCEPT
{
_M_destroy_node(__p);
_M_put_node(__p);
}
template
_Node_ptr
_M_clone_node(_Node_ptr __x, _NodeGen& __node_gen)
{
#if __cplusplus >= 201103L
using _Vp = __conditional_t<_MoveValue,
value_type&&,
const value_type&>;
#endif
_Node_ptr __tmp
= __node_gen(_GLIBCXX_FORWARD(_Vp, *__x->_M_valptr()));
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = __tmp->_M_right = _Base_ptr();
return __tmp;
}
protected:
typedef typename _Node_traits::_Header_t _Header_t;
#if _GLIBCXX_INLINE_VERSION
template
#else
// Unused _Is_pod_comparator is kept as it is part of mangled name.
template
#endif
struct _Rb_tree_impl
: public _Node_allocator
, public _Rb_tree_key_compare<_Key_compare>
, public _Header_t
{
typedef _Rb_tree_key_compare<_Key_compare> _Base_key_compare;
_Rb_tree_impl()
_GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Node_allocator>::value
&& is_nothrow_default_constructible<_Base_key_compare>::value )
: _Node_allocator()
{ }
_Rb_tree_impl(const _Rb_tree_impl& __x)
: _Node_allocator(_Node_alloc_traits::_S_select_on_copy(__x))
, _Base_key_compare(__x._M_key_compare)
, _Header_t()
{ }
#if __cplusplus < 201103L
_Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a)
: _Node_allocator(__a), _Base_key_compare(__comp)
{ }
#else
_Rb_tree_impl(_Rb_tree_impl&&)
noexcept( is_nothrow_move_constructible<_Base_key_compare>::value )
= default;
explicit
_Rb_tree_impl(_Node_allocator&& __a)
: _Node_allocator(std::move(__a))
{ }
_Rb_tree_impl(_Rb_tree_impl&& __x, _Node_allocator&& __a)
: _Node_allocator(std::move(__a)),
_Base_key_compare(std::move(__x)),
_Header_t(std::move(__x))
{ }
_Rb_tree_impl(const _Key_compare& __comp, _Node_allocator&& __a)
: _Node_allocator(std::move(__a)), _Base_key_compare(__comp)
{ }
#endif
};
_Rb_tree_impl<_Compare> _M_impl;
protected:
_Base_ptr&
_M_root() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_parent; }
_Base_ptr
_M_root() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_parent; }
_Base_ptr&
_M_leftmost() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_left; }
_Base_ptr
_M_leftmost() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_left; }
_Base_ptr&
_M_rightmost() _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_right; }
_Base_ptr
_M_rightmost() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_right; }
_Base_ptr
_M_begin() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_parent; }
_Node_ptr
_M_begin_node() const _GLIBCXX_NOEXCEPT
{
_Base_ptr __begin = this->_M_impl._M_header._M_parent;
return __begin
? static_cast<_Node&>(*__begin)._M_node_ptr()
: _Node_ptr();
}
_Base_ptr
_M_end() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl._M_header._M_base_ptr(); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 2542. Missing const requirements for associative containers
template
bool
_M_key_compare(const _Key1& __k1, const _Key2& __k2) const
{
#if __cplusplus >= 201103L
// Enforce this here with a user-friendly message.
static_assert(
__is_invocable::value,
"comparison object must be invocable with two arguments of key type"
);
#endif
return _M_impl._M_key_compare(__k1, __k2);
}
static const _Key&
_S_key(const _Node& __node)
{ return _KeyOfValue()(*__node._M_valptr()); }
static const _Key&
_S_key(_Base_ptr __x)
{ return _S_key(static_cast(*__x)); }
static const _Key&
_S_key(_Node_ptr __x)
{ return _S_key(*__x); }
static _Base_ptr
_S_left(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return __x->_M_left; }
static _Node_ptr
_S_left(_Node_ptr __x)
{
return __x->_M_left
? static_cast<_Node&>(*__x->_M_left)._M_node_ptr()
: _Node_ptr();
}
static _Base_ptr
_S_right(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{ return __x->_M_right; }
static _Node_ptr
_S_right(_Node_ptr __x) _GLIBCXX_NOEXCEPT
{
return __x->_M_right
? static_cast<_Node&>(*__x->_M_right)._M_node_ptr()
: _Node_ptr();
}
public:
typedef typename _Node_traits::_Iterator iterator;
typedef typename _Node_traits::_Const_iterator const_iterator;
typedef std::reverse_iterator reverse_iterator;
typedef std::reverse_iterator const_reverse_iterator;
#ifdef __glibcxx_node_extract // >= C++17
using node_type = _Node_handle<_Key, _Val, _Node_allocator>;
using insert_return_type = _Node_insert_return<
__conditional_t, const_iterator, iterator>,
node_type>;
#endif
pair<_Base_ptr, _Base_ptr>
_M_get_insert_unique_pos(const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_equal_pos(const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_hint_unique_pos(const_iterator __pos,
const key_type& __k);
pair<_Base_ptr, _Base_ptr>
_M_get_insert_hint_equal_pos(const_iterator __pos,
const key_type& __k);
private:
#if __cplusplus >= 201103L
template
iterator
_M_insert_(_Base_ptr __x, _Base_ptr __y, _Arg&& __v, _NodeGen&);
iterator
_M_insert_node(_Base_ptr __x, _Base_ptr __y, _Node_ptr __z);
template
iterator
_M_insert_lower(_Base_ptr __y, _Arg&& __v);
template
iterator
_M_insert_equal_lower(_Arg&& __x);
iterator
_M_insert_lower_node(_Base_ptr __p, _Node_ptr __z);
iterator
_M_insert_equal_lower_node(_Node_ptr __z);
#else
template
iterator
_M_insert_(_Base_ptr __x, _Base_ptr __y,
const value_type& __v, _NodeGen&);
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 233. Insertion hints in associative containers.
iterator
_M_insert_lower(_Base_ptr __y, const value_type& __v);
iterator
_M_insert_equal_lower(const value_type& __x);
#endif
enum { __as_lvalue, __as_rvalue };
template
_Base_ptr
_M_copy(_Node_ptr, _Base_ptr, _NodeGen&);
template
_Base_ptr
_M_copy(const _Rb_tree& __x, _NodeGen& __gen)
{
_Base_ptr __root =
_M_copy<_MoveValues>(__x._M_begin_node(), _M_end(), __gen);
_M_leftmost() = _Node_base::_S_minimum(__root);
_M_rightmost() = _Node_base::_S_maximum(__root);
_M_impl._M_node_count = __x._M_impl._M_node_count;
return __root;
}
_Base_ptr
_M_copy(const _Rb_tree& __x)
{
_Alloc_node __an(*this);
return _M_copy<__as_lvalue>(__x, __an);
}
void
_M_erase(_Node_ptr __x);
_Base_ptr
_M_lower_bound(_Base_ptr __x, _Base_ptr __y,
const _Key& __k) const;
_Base_ptr
_M_upper_bound(_Base_ptr __x, _Base_ptr __y,
const _Key& __k) const;
public:
// allocation/deallocation
#if __cplusplus < 201103L
_Rb_tree() { }
#else
_Rb_tree() = default;
#endif
_Rb_tree(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_impl(__comp, _Node_allocator(__a)) { }
_Rb_tree(const _Rb_tree& __x)
: _M_impl(__x._M_impl)
{
if (__x._M_root())
_M_root() = _M_copy(__x);
}
#if __cplusplus >= 201103L
_Rb_tree(const allocator_type& __a)
: _M_impl(_Node_allocator(__a))
{ }
_Rb_tree(const _Rb_tree& __x, const allocator_type& __a)
: _M_impl(__x._M_impl._M_key_compare, _Node_allocator(__a))
{
if (__x._M_root())
_M_root() = _M_copy(__x);
}
_Rb_tree(_Rb_tree&&) = default;
_Rb_tree(_Rb_tree&& __x, const allocator_type& __a)
: _Rb_tree(std::move(__x), _Node_allocator(__a))
{ }
private:
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a, true_type)
noexcept(is_nothrow_default_constructible<_Compare>::value)
: _M_impl(std::move(__x._M_impl), std::move(__a))
{ }
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a, false_type)
: _M_impl(__x._M_impl._M_key_compare, std::move(__a))
{
if (__x._M_root())
_M_move_data(__x, false_type{});
}
public:
_Rb_tree(_Rb_tree&& __x, _Node_allocator&& __a)
noexcept( noexcept(
_Rb_tree(std::declval<_Rb_tree&&>(), std::declval<_Node_allocator&&>(),
std::declval())) )
: _Rb_tree(std::move(__x), std::move(__a),
typename _Node_alloc_traits::is_always_equal{})
{ }
#endif
~_Rb_tree() _GLIBCXX_NOEXCEPT
{ _M_erase(_M_begin_node()); }
_Rb_tree&
operator=(const _Rb_tree& __x);
// Accessors.
_Compare
key_comp() const
{ return _M_impl._M_key_compare; }
iterator
begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_header._M_left); }
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_header._M_left); }
iterator
end() _GLIBCXX_NOEXCEPT
{ return iterator(_M_end()); }
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return const_iterator(_M_end()); }
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(end()); }
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(begin()); }
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return _M_impl._M_node_count == 0; }
size_type
size() const _GLIBCXX_NOEXCEPT
{ return _M_impl._M_node_count; }
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _Node_alloc_traits::max_size(_M_get_Node_allocator()); }
void
swap(_Rb_tree& __t)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value);
// Insert/erase.
#if __cplusplus >= 201103L
template
pair
_M_insert_unique(_Arg&& __x);
template
iterator
_M_insert_equal(_Arg&& __x);
template
iterator
_M_insert_unique_(const_iterator __pos, _Arg&& __x, _NodeGen&);
template
iterator
_M_insert_unique_(const_iterator __pos, _Arg&& __x)
{
_Alloc_node __an(*this);
return _M_insert_unique_(__pos, std::forward<_Arg>(__x), __an);
}
template
iterator
_M_insert_equal_(const_iterator __pos, _Arg&& __x, _NodeGen&);
template
iterator
_M_insert_equal_(const_iterator __pos, _Arg&& __x)
{
_Alloc_node __an(*this);
return _M_insert_equal_(__pos, std::forward<_Arg>(__x), __an);
}
template
pair
_M_emplace_unique(_Args&&... __args);
template
iterator
_M_emplace_equal(_Args&&... __args);
template
iterator
_M_emplace_hint_unique(const_iterator __pos, _Args&&... __args);
template
iterator
_M_emplace_hint_equal(const_iterator __pos, _Args&&... __args);
template
using __same_value_type
= is_same::value_type>;
template
__enable_if_t<__same_value_type<_InputIterator>::value>
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __an);
}
template
__enable_if_t::value>
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
for (; __first != __last; ++__first)
_M_emplace_unique(*__first);
}
template
__enable_if_t<__same_value_type<_InputIterator>::value>
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __an);
}
template
__enable_if_t::value>
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
for (; __first != __last; ++__first)
_M_emplace_equal(*__first);
}
#else
pair
_M_insert_unique(const value_type& __x);
iterator
_M_insert_equal(const value_type& __x);
template
iterator
_M_insert_unique_(const_iterator __pos, const value_type& __x,
_NodeGen&);
iterator
_M_insert_unique_(const_iterator __pos, const value_type& __x)
{
_Alloc_node __an(*this);
return _M_insert_unique_(__pos, __x, __an);
}
template
iterator
_M_insert_equal_(const_iterator __pos, const value_type& __x,
_NodeGen&);
iterator
_M_insert_equal_(const_iterator __pos, const value_type& __x)
{
_Alloc_node __an(*this);
return _M_insert_equal_(__pos, __x, __an);
}
template
void
_M_insert_range_unique(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __an);
}
template
void
_M_insert_range_equal(_InputIterator __first, _InputIterator __last)
{
_Alloc_node __an(*this);
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __an);
}
#endif
private:
void
_M_erase_aux(const_iterator __position);
void
_M_erase_aux(const_iterator __first, const_iterator __last);
public:
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __position)
{
__glibcxx_assert(__position != end());
const_iterator __result = __position;
++__result;
_M_erase_aux(__position);
return iterator(__result._M_node);
}
// LWG 2059.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(iterator __position)
{
__glibcxx_assert(__position != end());
iterator __result = __position;
++__result;
_M_erase_aux(__position);
return __result;
}
#else
void
erase(iterator __position)
{
__glibcxx_assert(__position != end());
_M_erase_aux(__position);
}
void
erase(const_iterator __position)
{
__glibcxx_assert(__position != end());
_M_erase_aux(__position);
}
#endif
size_type
erase(const key_type& __x);
#if __cplusplus >= 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 130. Associative erase should return an iterator.
_GLIBCXX_ABI_TAG_CXX11
iterator
erase(const_iterator __first, const_iterator __last)
{
_M_erase_aux(__first, __last);
return iterator(__last._M_node);
}
#else
void
erase(iterator __first, iterator __last)
{ _M_erase_aux(__first, __last); }
void
erase(const_iterator __first, const_iterator __last)
{ _M_erase_aux(__first, __last); }
#endif
void
clear() _GLIBCXX_NOEXCEPT
{
_M_erase(_M_begin_node());
_M_impl._M_reset();
}
// Set operations.
iterator
find(const key_type& __k);
const_iterator
find(const key_type& __k) const;
size_type
count(const key_type& __k) const;
iterator
lower_bound(const key_type& __k)
{ return iterator(_M_lower_bound(_M_begin(), _M_end(), __k)); }
const_iterator
lower_bound(const key_type& __k) const
{
return const_iterator
(_M_lower_bound(_M_begin(), _M_end(), __k));
}
iterator
upper_bound(const key_type& __k)
{ return iterator(_M_upper_bound(_M_begin(), _M_end(), __k)); }
const_iterator
upper_bound(const key_type& __k) const
{
return const_iterator
(_M_upper_bound(_M_begin(), _M_end(), __k));
}
pair
equal_range(const key_type& __k);
pair
equal_range(const key_type& __k) const;
#if __cplusplus >= 201402L
template>
iterator
_M_find_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
return iterator(__const_this->_M_find_tr(__k)._M_node);
}
template>
const_iterator
_M_find_tr(const _Kt& __k) const
{
const_iterator __j(_M_lower_bound_tr(__k));
if (__j != end() && _M_key_compare(__k, _S_key(__j._M_node)))
__j = end();
return __j;
}
template>
size_type
_M_count_tr(const _Kt& __k) const
{
auto __p = _M_equal_range_tr(__k);
return std::distance(__p.first, __p.second);
}
template>
_Base_ptr
_M_lower_bound_tr(const _Kt& __k) const
{
auto __x = _M_begin();
auto __y = _M_end();
while (__x)
if (!_M_key_compare(_S_key(__x), __k))
{
__y = __x;
__x = _S_left(__x);
}
else
__x = _S_right(__x);
return __y;
}
template>
_Base_ptr
_M_upper_bound_tr(const _Kt& __k) const
{
auto __x = _M_begin();
auto __y = _M_end();
while (__x)
if (_M_key_compare(__k, _S_key(__x)))
{
__y = __x;
__x = _S_left(__x);
}
else
__x = _S_right(__x);
return __y;
}
template>
pair
_M_equal_range_tr(const _Kt& __k)
{
const _Rb_tree* __const_this = this;
auto __ret = __const_this->_M_equal_range_tr(__k);
return
{ iterator(__ret.first._M_node), iterator(__ret.second._M_node) };
}
template>
pair
_M_equal_range_tr(const _Kt& __k) const
{
const_iterator __low(_M_lower_bound_tr(__k));
auto __high = __low;
auto& __cmp = _M_impl._M_key_compare;
while (__high != end() && !__cmp(__k, _S_key(__high._M_node)))
++__high;
return { __low, __high };
}
#endif
// Debugging.
bool
__rb_verify() const;
#if __cplusplus >= 201103L
_Rb_tree&
operator=(_Rb_tree&&)
noexcept(_Node_alloc_traits::_S_nothrow_move()
&& is_nothrow_move_assignable<_Compare>::value);
template
void
_M_assign_unique(_Iterator, _Iterator);
template
void
_M_assign_equal(_Iterator, _Iterator);
private:
// Move elements from container with equal allocator.
void
_M_move_data(_Rb_tree& __x, true_type)
{ _M_impl._M_move_data(__x._M_impl); }
// Move elements from container with possibly non-equal allocator,
// which might result in a copy not a move.
void
_M_move_data(_Rb_tree&, false_type);
// Move assignment from container with equal allocator.
void
_M_move_assign(_Rb_tree&, true_type);
// Move assignment from container with possibly non-equal allocator,
// which might result in a copy not a move.
void
_M_move_assign(_Rb_tree&, false_type);
#endif
#if __glibcxx_node_extract // >= C++17
static _Node_ptr
_S_adapt(typename _Node_alloc_traits::pointer __ptr)
{
#if _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
return __ptr;
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr
using __alloc_ptr = typename _Node_alloc_traits::pointer;
if constexpr (is_same<_Node_ptr, __alloc_ptr>::value)
return __ptr;
else
return std::__to_address(__ptr);
#pragma GCC diagnostic pop
#endif
}
public:
/// Re-insert an extracted node.
insert_return_type
_M_reinsert_node_unique(node_type&& __nh)
{
insert_return_type __ret;
if (__nh.empty())
__ret.position = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_unique_pos(__nh._M_key());
if (__res.second)
{
__ret.position
= _M_insert_node(__res.first, __res.second,
_S_adapt(__nh._M_ptr));
__nh.release();
__ret.inserted = true;
}
else
{
__ret.node = std::move(__nh);
__ret.position = iterator(__res.first);
__ret.inserted = false;
}
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_equal(node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_equal_pos(__nh._M_key());
if (__res.second)
__ret = _M_insert_node(__res.first, __res.second,
_S_adapt(__nh._M_ptr));
else
__ret = _M_insert_equal_lower_node(_S_adapt(__nh._M_ptr));
__nh.release();
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_hint_unique(const_iterator __hint, node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_hint_unique_pos(__hint, __nh._M_key());
if (__res.second)
{
__ret = _M_insert_node(__res.first, __res.second,
_S_adapt(__nh._M_ptr));
__nh.release();
}
else
__ret = iterator(__res.first);
}
return __ret;
}
/// Re-insert an extracted node.
iterator
_M_reinsert_node_hint_equal(const_iterator __hint, node_type&& __nh)
{
iterator __ret;
if (__nh.empty())
__ret = end();
else
{
__glibcxx_assert(_M_get_Node_allocator() == *__nh._M_alloc);
auto __res = _M_get_insert_hint_equal_pos(__hint, __nh._M_key());
if (__res.second)
__ret = _M_insert_node(__res.first, __res.second,
_S_adapt(__nh._M_ptr));
else
__ret = _M_insert_equal_lower_node(_S_adapt(__nh._M_ptr));
__nh.release();
}
return __ret;
}
/// Extract a node.
node_type
extract(const_iterator __pos)
{
auto __ptr = _Node_traits::_S_rebalance_for_erase
(__pos._M_node, _M_impl._M_header);
--_M_impl._M_node_count;
auto __node_ptr = static_cast<_Node&>(*__ptr)._M_node_ptr();
#if _GLIBCXX_USE_ALLOC_PTR_FOR_RB_TREE
return { __node_ptr, _M_get_Node_allocator() };
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr
using __alloc_ptr = typename _Node_alloc_traits::pointer;
if constexpr (is_same<_Node_ptr, __alloc_ptr>::value)
return { __node_ptr, _M_get_Node_allocator() };
else
{
auto __ap = pointer_traits<__alloc_ptr>::pointer_to(*__node_ptr);
return { __ap, _M_get_Node_allocator() };
}
#pragma GCC diagnostic pop
#endif
}
/// Extract a node.
node_type
extract(const key_type& __k)
{
node_type __nh;
auto __pos = find(__k);
if (__pos != end())
__nh = extract(const_iterator(__pos));
return __nh;
}
template
using _Compatible_tree
= _Rb_tree<_Key, _Val, _KeyOfValue, _Compare2, _Alloc>;
template
friend struct _Rb_tree_merge_helper;
/// Merge from a compatible container into one with unique keys.
template
void
_M_merge_unique(_Compatible_tree<_Compare2>& __src) noexcept
{
using _Merge_helper = _Rb_tree_merge_helper<_Rb_tree, _Compare2>;
for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
{
auto __pos = __i++;
auto __res = _M_get_insert_unique_pos(_KeyOfValue()(*__pos));
if (__res.second)
{
auto& __src_impl = _Merge_helper::_S_get_impl(__src);
auto __ptr = _Node_traits::_S_rebalance_for_erase
(__pos._M_node, __src_impl._M_header);
--__src_impl._M_node_count;
auto __node_ptr = static_cast<_Node&>(*__ptr)._M_node_ptr();
_M_insert_node(__res.first, __res.second, __node_ptr);
}
}
}
/// Merge from a compatible container into one with equivalent keys.
template
void
_M_merge_equal(_Compatible_tree<_Compare2>& __src) noexcept
{
using _Merge_helper = _Rb_tree_merge_helper<_Rb_tree, _Compare2>;
for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
{
auto __pos = __i++;
auto __res = _M_get_insert_equal_pos(_KeyOfValue()(*__pos));
if (__res.second)
{
auto& __src_impl = _Merge_helper::_S_get_impl(__src);
auto __ptr = _Node_traits::_S_rebalance_for_erase
(__pos._M_node, __src_impl._M_header);
--__src_impl._M_node_count;
auto __node_ptr = static_cast<_Node&>(*__ptr)._M_node_ptr();
_M_insert_node(__res.first, __res.second, __node_ptr);
}
}
}
#endif // C++17 node_extract
friend bool
operator==(const _Rb_tree& __x, const _Rb_tree& __y)
{
return __x.size() == __y.size()
&& std::equal(__x.begin(), __x.end(), __y.begin());
}
#if __cpp_lib_three_way_comparison
friend auto
operator<=>(const _Rb_tree& __x, const _Rb_tree& __y)
{
if constexpr (requires { typename __detail::__synth3way_t<_Val>; })
return std::lexicographical_compare_three_way(__x.begin(), __x.end(),
__y.begin(), __y.end(),
__detail::__synth3way);
}
#else
friend bool
operator<(const _Rb_tree& __x, const _Rb_tree& __y)
{
return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#endif
private:
#if __cplusplus >= 201103L
// An RAII _Node handle
struct _Auto_node
{
template
_Auto_node(_Rb_tree& __t, _Args&&... __args)
: _M_t(__t),
_M_node(__t._M_create_node(std::forward<_Args>(__args)...))
{ }
~_Auto_node()
{
if (_M_node)
_M_t._M_drop_node(_M_node);
}
_Auto_node(_Auto_node&& __n)
: _M_t(__n._M_t), _M_node(__n._M_node)
{ __n._M_node = nullptr; }
const _Key&
_M_key() const
{ return _S_key(_M_node); }
iterator
_M_insert(pair<_Base_ptr, _Base_ptr> __p)
{
auto __it = _M_t._M_insert_node(__p.first, __p.second, _M_node);
_M_node = nullptr;
return __it;
}
iterator
_M_insert_equal_lower()
{
auto __it = _M_t._M_insert_equal_lower_node(_M_node);
_M_node = nullptr;
return __it;
}
_Rb_tree& _M_t;
_Node_ptr _M_node;
};
#endif // C++11
};
template
inline void
swap(_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x,
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __y)
{ __x.swap(__y); }
#if __cplusplus >= 201103L
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_data(_Rb_tree& __x, false_type)
{
if (_M_get_Node_allocator() == __x._M_get_Node_allocator())
_M_move_data(__x, true_type());
else
{
constexpr bool __move = !__move_if_noexcept_cond::value;
_Alloc_node __an(*this);
_M_root() = _M_copy<__move>(__x, __an);
if _GLIBCXX17_CONSTEXPR (__move)
__x.clear();
}
}
template
inline void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_assign(_Rb_tree& __x, true_type)
{
clear();
if (__x._M_root())
_M_move_data(__x, true_type());
std::__alloc_on_move(_M_get_Node_allocator(),
__x._M_get_Node_allocator());
}
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_move_assign(_Rb_tree& __x, false_type)
{
if (_M_get_Node_allocator() == __x._M_get_Node_allocator())
return _M_move_assign(__x, true_type{});
// Try to move each node reusing existing nodes and copying __x nodes
// structure.
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
if (__x._M_root())
{
_M_root() = _M_copy<__as_rvalue>(__x, __roan);
__x.clear();
}
}
template
inline _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
operator=(_Rb_tree&& __x)
noexcept(_Node_alloc_traits::_S_nothrow_move()
&& is_nothrow_move_assignable<_Compare>::value)
{
_M_impl._M_key_compare = std::move(__x._M_impl._M_key_compare);
_M_move_assign(__x,
__bool_constant<_Node_alloc_traits::_S_nothrow_move()>());
return *this;
}
template
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_assign_unique(_Iterator __first, _Iterator __last)
{
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
for (; __first != __last; ++__first)
_M_insert_unique_(end(), *__first, __roan);
}
template
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_assign_equal(_Iterator __first, _Iterator __last)
{
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
for (; __first != __last; ++__first)
_M_insert_equal_(end(), *__first, __roan);
}
#endif
template
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>&
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
operator=(const _Rb_tree& __x)
{
if (this != std::__addressof(__x))
{
// Note that _Key may be a constant type.
#if __cplusplus >= 201103L
if (_Node_alloc_traits::_S_propagate_on_copy_assign())
{
auto& __this_alloc = this->_M_get_Node_allocator();
auto& __that_alloc = __x._M_get_Node_allocator();
if (!_Node_alloc_traits::_S_always_equal()
&& __this_alloc != __that_alloc)
{
// Replacement allocator cannot free existing storage, we need
// to erase nodes first.
clear();
std::__alloc_on_copy(__this_alloc, __that_alloc);
}
}
#endif
_Reuse_or_alloc_node __roan(*this);
_M_impl._M_reset();
_M_impl._M_key_compare = __x._M_impl._M_key_compare;
if (__x._M_root())
_M_root() = _M_copy<__as_lvalue>(__x, __roan);
}
return *this;
}
template
#if __cplusplus >= 201103L
template
#else
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_(_Base_ptr __x, _Base_ptr __p,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
bool __insert_left = (__x || __p == _M_end()
|| _M_key_compare(_KeyOfValue()(__v),
_S_key(__p)));
_Base_ptr __z =
__node_gen(_GLIBCXX_FORWARD(_Arg, __v))->_M_base_ptr();
_Node_traits::_S_insert_and_rebalance
(__insert_left, __z, __p, this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template
#if __cplusplus >= 201103L
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_lower(_Base_ptr __p, _Arg&& __v)
#else
_M_insert_lower(_Base_ptr __p, const _Val& __v)
#endif
{
bool __insert_left = (__p == _M_end()
|| !_M_key_compare(_S_key(__p),
_KeyOfValue()(__v)));
_Base_ptr __z =
_M_create_node(_GLIBCXX_FORWARD(_Arg, __v))->_M_base_ptr();
_Node_traits::_S_insert_and_rebalance
(__insert_left, __z, __p, this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__z);
}
template
#if __cplusplus >= 201103L
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_equal_lower(_Arg&& __v)
#else
_M_insert_equal_lower(const _Val& __v)
#endif
{
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x)
{
__y = __x;
__x = !_M_key_compare(_S_key(__x), _KeyOfValue()(__v)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_lower(__y, _GLIBCXX_FORWARD(_Arg, __v));
}
template
template
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Base_ptr
_Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::
_M_copy(_Node_ptr __x, _Base_ptr __p, _NodeGen& __node_gen)
{
// Structural copy. __x and __p must be non-null.
_Node_ptr __top = _M_clone_node<_MoveValues>(__x, __node_gen);
_Base_ptr __top_base = __top->_M_base_ptr();
__top->_M_parent = __p;
__try
{
if (__x->_M_right)
__top->_M_right =
_M_copy<_MoveValues>(_S_right(__x), __top_base, __node_gen);
__p = __top_base;
__x = _S_left(__x);
while (__x)
{
_Base_ptr __y =
_M_clone_node<_MoveValues>(__x, __node_gen)->_M_base_ptr();
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy<_MoveValues>(_S_right(__x),
__y, __node_gen);
__p = __y;
__x = _S_left(__x);
}
}
__catch(...)
{
_M_erase(__top);
__throw_exception_again;
}
return __top_base;
}
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase(_Node_ptr __x)
{
// Erase without rebalancing.
while (__x)
{
_M_erase(_S_right(__x));
_Node_ptr __y = _S_left(__x);
_M_drop_node(__x);
__x = __y;
}
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_lower_bound(_Base_ptr __x, _Base_ptr __y,
const _Key& __k) const
{
while (__x)
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return __y;
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_upper_bound(_Base_ptr __x, _Base_ptr __y,
const _Key& __k) const
{
while (__x)
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
return __y;
}
template
pair::iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k)
{
typedef pair _Ret;
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x)
{
if (_M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Base_ptr __xu(__x);
_Base_ptr __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return _Ret(iterator(_M_lower_bound(__x, __y, __k)),
iterator(_M_upper_bound(__xu, __yu, __k)));
}
}
return _Ret(iterator(__y), iterator(__y));
}
template
pair::const_iterator,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
equal_range(const _Key& __k) const
{
typedef pair _Ret;
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x)
{
if (_M_key_compare(_S_key(__x), __k))
__x = _S_right(__x);
else if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
{
_Base_ptr __xu(__x);
_Base_ptr __yu(__y);
__y = __x, __x = _S_left(__x);
__xu = _S_right(__xu);
return _Ret(const_iterator(_M_lower_bound(__x, __y, __k)),
const_iterator(_M_upper_bound(__xu, __yu, __k)));
}
}
return _Ret(const_iterator(__y), const_iterator(__y));
}
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
swap(_Rb_tree& __t)
_GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
{
if (!_M_root())
{
if (__t._M_root())
_M_impl._M_move_data(__t._M_impl);
}
else if (!__t._M_root())
__t._M_impl._M_move_data(_M_impl);
else
{
std::swap(_M_root(),__t._M_root());
std::swap(_M_leftmost(),__t._M_leftmost());
std::swap(_M_rightmost(),__t._M_rightmost());
_M_root()->_M_parent = _M_end();
__t._M_root()->_M_parent = __t._M_end();
std::swap(this->_M_impl._M_node_count, __t._M_impl._M_node_count);
}
// No need to swap header's color as it does not change.
using std::swap;
swap(this->_M_impl._M_key_compare, __t._M_impl._M_key_compare);
_Node_alloc_traits::_S_on_swap(_M_get_Node_allocator(),
__t._M_get_Node_allocator());
}
template
pair::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_unique_pos(const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
bool __comp = true;
while (__x)
{
__y = __x;
__comp = _M_key_compare(__k, _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
iterator __j = iterator(__y);
if (__comp)
{
if (__j == begin())
return _Res(__x, __y);
else
--__j;
}
if (_M_key_compare(_S_key(__j._M_node), __k))
return _Res(__x, __y);
return _Res(__j._M_node, _Base_ptr());
}
template
pair::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_equal_pos(const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x)
{
__y = __x;
__x = _M_key_compare(__k, _S_key(__x)) ? _S_left(__x) : _S_right(__x);
}
return _Res(__x, __y);
}
template
#if __cplusplus >= 201103L
template
#endif
pair::iterator, bool>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_unique(_Arg&& __v)
#else
_M_insert_unique(const _Val& __v)
#endif
{
typedef pair _Res;
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_unique_pos(_KeyOfValue()(__v));
if (__res.second)
{
_Alloc_node __an(*this);
return _Res(_M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v), __an),
true);
}
return _Res(iterator(__res.first), false);
}
template
#if __cplusplus >= 201103L
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
#if __cplusplus >= 201103L
_M_insert_equal(_Arg&& __v)
#else
_M_insert_equal(const _Val& __v)
#endif
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_equal_pos(_KeyOfValue()(__v));
_Alloc_node __an(*this);
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v), __an);
}
template
pair::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_hint_unique_pos(const_iterator __position,
const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
// end()
if (__position._M_node == _M_end())
{
if (size() > 0 && _M_key_compare(_S_key(_M_rightmost()), __k))
return _Res(_Base_ptr(), _M_rightmost());
else
return _M_get_insert_unique_pos(__k);
}
else if (_M_key_compare(__k, _S_key(__position._M_node)))
{
// First, try before...
iterator __before(__position._M_node);
if (__position._M_node == _M_leftmost()) // begin()
return _Res(_M_leftmost(), _M_leftmost());
else if (_M_key_compare(_S_key((--__before)._M_node), __k))
{
if (!_S_right(__before._M_node))
return _Res(_Base_ptr(), __before._M_node);
else
return _Res(__position._M_node, __position._M_node);
}
else
return _M_get_insert_unique_pos(__k);
}
else if (_M_key_compare(_S_key(__position._M_node), __k))
{
// ... then try after.
iterator __after(__position._M_node);
if (__position._M_node == _M_rightmost())
return _Res(_Base_ptr(), _M_rightmost());
else if (_M_key_compare(__k, _S_key((++__after)._M_node)))
{
if (!_S_right(__position._M_node))
return _Res(_Base_ptr(), __position._M_node);
else
return _Res(__after._M_node, __after._M_node);
}
else
return _M_get_insert_unique_pos(__k);
}
else
// Equivalent keys.
return _Res(__position._M_node, _Base_ptr());
}
template
#if __cplusplus >= 201103L
template
#else
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_unique_(const_iterator __position,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_hint_unique_pos(__position, _KeyOfValue()(__v));
if (__res.second)
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v),
__node_gen);
return iterator(__res.first);
}
template
pair::_Base_ptr,
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::_Base_ptr>
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_get_insert_hint_equal_pos(const_iterator __position, const key_type& __k)
{
typedef pair<_Base_ptr, _Base_ptr> _Res;
// end()
if (__position._M_node == _M_end())
{
if (size() > 0
&& !_M_key_compare(__k, _S_key(_M_rightmost())))
return _Res(_Base_ptr(), _M_rightmost());
else
return _M_get_insert_equal_pos(__k);
}
else if (!_M_key_compare(_S_key(__position._M_node), __k))
{
// First, try before...
iterator __before(__position._M_node);
if (__position._M_node == _M_leftmost()) // begin()
return _Res(_M_leftmost(), _M_leftmost());
else if (!_M_key_compare(__k, _S_key((--__before)._M_node)))
{
if (!_S_right(__before._M_node))
return _Res(_Base_ptr(), __before._M_node);
else
return _Res(__position._M_node, __position._M_node);
}
else
return _M_get_insert_equal_pos(__k);
}
else
{
// ... then try after.
iterator __after(__position._M_node);
if (__position._M_node == _M_rightmost())
return _Res(_Base_ptr(), _M_rightmost());
else if (!_M_key_compare(_S_key((++__after)._M_node), __k))
{
if (!_S_right(__position._M_node))
return _Res(_Base_ptr(), __position._M_node);
else
return _Res(__after._M_node, __after._M_node);
}
else
return _Res(_Base_ptr(), _Base_ptr());
}
}
template
#if __cplusplus >= 201103L
template
#else
template
#endif
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_(const_iterator __position,
#if __cplusplus >= 201103L
_Arg&& __v,
#else
const _Val& __v,
#endif
_NodeGen& __node_gen)
{
pair<_Base_ptr, _Base_ptr> __res
= _M_get_insert_hint_equal_pos(__position, _KeyOfValue()(__v));
if (__res.second)
return _M_insert_(__res.first, __res.second,
_GLIBCXX_FORWARD(_Arg, __v),
__node_gen);
return _M_insert_equal_lower(_GLIBCXX_FORWARD(_Arg, __v));
}
#if __cplusplus >= 201103L
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_node(_Base_ptr __x, _Base_ptr __p, _Node_ptr __z)
-> iterator
{
bool __insert_left = (__x || __p == _M_end()
|| _M_key_compare(_S_key(__z), _S_key(__p)));
_Base_ptr __base_z = __z->_M_base_ptr();
_Node_traits::_S_insert_and_rebalance
(__insert_left, __base_z, __p, this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__base_z);
}
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_lower_node(_Base_ptr __p, _Node_ptr __z)
-> iterator
{
bool __insert_left = (__p == _M_end()
|| !_M_key_compare(_S_key(__p), _S_key(__z)));
_Base_ptr __base_z = __z->_M_base_ptr();
_Node_traits::_S_insert_and_rebalance
(__insert_left, __base_z, __p, this->_M_impl._M_header);
++_M_impl._M_node_count;
return iterator(__base_z);
}
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_insert_equal_lower_node(_Node_ptr __z)
-> iterator
{
_Base_ptr __x = _M_begin();
_Base_ptr __y = _M_end();
while (__x)
{
__y = __x;
__x = !_M_key_compare(_S_key(__x), _S_key(__z)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert_lower_node(__y, __z);
}
template
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_unique(_Args&&... __args)
-> pair
{
_Auto_node __z(*this, std::forward<_Args>(__args)...);
auto __res = _M_get_insert_unique_pos(__z._M_key());
if (__res.second)
return {__z._M_insert(__res), true};
return {iterator(__res.first), false};
}
template
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_equal(_Args&&... __args)
-> iterator
{
_Auto_node __z(*this, std::forward<_Args>(__args)...);
auto __res = _M_get_insert_equal_pos(__z._M_key());
return __z._M_insert(__res);
}
template
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_hint_unique(const_iterator __pos, _Args&&... __args)
-> iterator
{
_Auto_node __z(*this, std::forward<_Args>(__args)...);
auto __res = _M_get_insert_hint_unique_pos(__pos, __z._M_key());
if (__res.second)
return __z._M_insert(__res);
return iterator(__res.first);
}
template
template
auto
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_emplace_hint_equal(const_iterator __pos, _Args&&... __args)
-> iterator
{
_Auto_node __z(*this, std::forward<_Args>(__args)...);
auto __res = _M_get_insert_hint_equal_pos(__pos, __z._M_key());
if (__res.second)
return __z._M_insert(__res);
return __z._M_insert_equal_lower();
}
#endif
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase_aux(const_iterator __position)
{
_Base_ptr __y = _Node_traits::_S_rebalance_for_erase
(__position._M_node, this->_M_impl._M_header);
_M_drop_node(static_cast<_Node&>(*__y)._M_node_ptr());
--_M_impl._M_node_count;
}
template
void
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
_M_erase_aux(const_iterator __first, const_iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last)
_M_erase_aux(__first++);
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
erase(const _Key& __x)
{
pair __p = equal_range(__x);
const size_type __old_size = size();
_M_erase_aux(__p.first, __p.second);
return __old_size - size();
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k)
{
iterator __j(_M_lower_bound(_M_begin(), _M_end(), __k));
return (__j == end()
|| _M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j;
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue,
_Compare, _Alloc>::const_iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
find(const _Key& __k) const
{
const_iterator __j(_M_lower_bound(_M_begin(), _M_end(), __k));
return (__j == end()
|| _M_key_compare(__k, _S_key(__j._M_node))) ? end() : __j;
}
template
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
count(const _Key& __k) const
{
pair __p = equal_range(__k);
const size_type __n = std::distance(__p.first, __p.second);
return __n;
}
_GLIBCXX_PURE unsigned int
_Rb_tree_black_count(const _Rb_tree_node_base* __node,
const _Rb_tree_node_base* __root) throw ();
template
bool
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
if (_M_impl._M_node_count == 0 || begin() == end())
return _M_impl._M_node_count == 0 && begin() == end()
&& this->_M_impl._M_header._M_left == _M_end()
&& this->_M_impl._M_header._M_right == _M_end();
unsigned int __len = _Rb_tree_black_count(_M_leftmost(), _M_root());
for (const_iterator __it = begin(); __it != end(); ++__it)
{
_Base_ptr __x = __it._M_node;
_Base_ptr __L = _S_left(__x);
_Base_ptr __R = _S_right(__x);
if (__x->_M_color == _S_red)
if ((__L && __L->_M_color == _S_red)
|| (__R && __R->_M_color == _S_red))
return false;
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false;
if (!__L && !__R && _Rb_tree_black_count(__x, _M_root()) != __len)
return false;
}
if (_M_leftmost() != _Node_base::_S_minimum(_M_root()))
return false;
if (_M_rightmost() != _Node_base::_S_maximum(_M_root()))
return false;
return true;
}
#ifdef __glibcxx_node_extract // >= C++17
// Allow access to internals of compatible _Rb_tree specializations.
template
struct _Rb_tree_merge_helper<_Rb_tree<_Key, _Val, _Sel, _Cmp1, _Alloc>,
_Cmp2>
{
private:
friend class _Rb_tree<_Key, _Val, _Sel, _Cmp1, _Alloc>;
static auto&
_S_get_impl(_Rb_tree<_Key, _Val, _Sel, _Cmp2, _Alloc>& __tree)
{ return __tree._M_impl; }
};
#endif // C++17
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif