// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/cpu"
	"internal/goarch"
	"unsafe"
)

// For gccgo, use go:linkname to export compiler-called functions.
//
//go:linkname memhash0
//go:linkname memhash8
//go:linkname memhash16
//go:linkname memhash32
//go:linkname memhash64
//go:linkname memhash128
//go:linkname strhash
//go:linkname f32hash
//go:linkname f64hash
//go:linkname c64hash
//go:linkname c128hash
//go:linkname interhash
//go:linkname nilinterhash
//go:linkname memequal0
//go:linkname memequal8
//go:linkname memequal16
//go:linkname memequal32
//go:linkname memequal64
//go:linkname memequal128
//go:linkname strequal
//go:linkname f32equal
//go:linkname f64equal
//go:linkname c64equal
//go:linkname c128equal
//go:linkname interequal
//go:linkname nilinterequal
//go:linkname efaceeq
//go:linkname ifaceeq
//go:linkname ifacevaleq
//go:linkname ifaceefaceeq
//go:linkname efacevaleq
//go:linkname cmpstring
//
// Temporary to be called from C code.
//go:linkname alginit

const (
	c0 = uintptr((8-goarch.PtrSize)/4*2860486313 + (goarch.PtrSize-4)/4*33054211828000289)
	c1 = uintptr((8-goarch.PtrSize)/4*3267000013 + (goarch.PtrSize-4)/4*23344194077549503)
)

func memhash0(p unsafe.Pointer, h uintptr) uintptr {
	return h
}

func memhash8(p unsafe.Pointer, h uintptr) uintptr {
	return memhash(p, h, 1)
}

func memhash16(p unsafe.Pointer, h uintptr) uintptr {
	return memhash(p, h, 2)
}

func memhash128(p unsafe.Pointer, h uintptr) uintptr {
	return memhash(p, h, 16)
}

// runtime variable to check if the processor we're running on
// actually supports the instructions used by the AES-based
// hash implementation.
var useAeshash bool

// in C code
func aeshashbody(p unsafe.Pointer, h, s uintptr, sched []byte) uintptr

func aeshash(p unsafe.Pointer, h, s uintptr) uintptr {
	return aeshashbody(p, h, s, aeskeysched[:])
}

func aeshashstr(p unsafe.Pointer, h uintptr) uintptr {
	ps := (*stringStruct)(p)
	return aeshashbody(unsafe.Pointer(ps.str), h, uintptr(ps.len), aeskeysched[:])
}

func strhash(a unsafe.Pointer, h uintptr) uintptr {
	x := (*stringStruct)(a)
	return memhash(x.str, h, uintptr(x.len))
}

// NOTE: Because NaN != NaN, a map can contain any
// number of (mostly useless) entries keyed with NaNs.
// To avoid long hash chains, we assign a random number
// as the hash value for a NaN.

func f32hash(p unsafe.Pointer, h uintptr) uintptr {
	f := *(*float32)(p)
	switch {
	case f == 0:
		return c1 * (c0 ^ h) // +0, -0
	case f != f:
		return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN
	default:
		return memhash(p, h, 4)
	}
}

func f64hash(p unsafe.Pointer, h uintptr) uintptr {
	f := *(*float64)(p)
	switch {
	case f == 0:
		return c1 * (c0 ^ h) // +0, -0
	case f != f:
		return c1 * (c0 ^ h ^ uintptr(fastrand())) // any kind of NaN
	default:
		return memhash(p, h, 8)
	}
}

func c64hash(p unsafe.Pointer, h uintptr) uintptr {
	x := (*[2]float32)(p)
	return f32hash(unsafe.Pointer(&x[1]), f32hash(unsafe.Pointer(&x[0]), h))
}

func c128hash(p unsafe.Pointer, h uintptr) uintptr {
	x := (*[2]float64)(p)
	return f64hash(unsafe.Pointer(&x[1]), f64hash(unsafe.Pointer(&x[0]), h))
}

func interhash(p unsafe.Pointer, h uintptr) uintptr {
	a := (*iface)(p)
	tab := a.tab
	if tab == nil {
		return h
	}
	t := *(**_type)(tab)
	if t.equal == nil {
		// Check hashability here. We could do this check inside
		// typehash, but we want to report the topmost type in
		// the error text (e.g. in a struct with a field of slice type
		// we want to report the struct, not the slice).
		panic(errorString("hash of unhashable type " + t.string()))
	}
	if isDirectIface(t) {
		return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
	} else {
		return c1 * typehash(t, a.data, h^c0)
	}
}

func nilinterhash(p unsafe.Pointer, h uintptr) uintptr {
	a := (*eface)(p)
	t := a._type
	if t == nil {
		return h
	}
	if t.equal == nil {
		// See comment in interhash above.
		panic(errorString("hash of unhashable type " + t.string()))
	}
	if isDirectIface(t) {
		return c1 * typehash(t, unsafe.Pointer(&a.data), h^c0)
	} else {
		return c1 * typehash(t, a.data, h^c0)
	}
}

// typehash computes the hash of the object of type t at address p.
// h is the seed.
// This function is seldom used. Most maps use for hashing either
// fixed functions (e.g. f32hash) or compiler-generated functions
// (e.g. for a type like struct { x, y string }). This implementation
// is slower but more general and is used for hashing interface types
// (called from interhash or nilinterhash, above) or for hashing in
// maps generated by reflect.MapOf (reflect_typehash, below).
// Note: this function must match the compiler generated
// functions exactly. See issue 37716.
func typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
	if t.tflag&tflagRegularMemory != 0 {
		// Handle ptr sizes specially, see issue 37086.
		switch t.size {
		case 4:
			return memhash32(p, h)
		case 8:
			return memhash64(p, h)
		default:
			return memhash(p, h, t.size)
		}
	}
	switch t.kind & kindMask {
	case kindFloat32:
		return f32hash(p, h)
	case kindFloat64:
		return f64hash(p, h)
	case kindComplex64:
		return c64hash(p, h)
	case kindComplex128:
		return c128hash(p, h)
	case kindString:
		return strhash(p, h)
	case kindInterface:
		i := (*interfacetype)(unsafe.Pointer(t))
		if len(i.methods) == 0 {
			return nilinterhash(p, h)
		}
		return interhash(p, h)
	case kindArray:
		a := (*arraytype)(unsafe.Pointer(t))
		for i := uintptr(0); i < a.len; i++ {
			h = typehash(a.elem, add(p, i*a.elem.size), h)
		}
		return h
	case kindStruct:
		s := (*structtype)(unsafe.Pointer(t))
		for _, f := range s.fields {
			if f.name != nil && *f.name == "_" {
				continue
			}
			h = typehash(f.typ, add(p, f.offset()), h)
		}
		return h
	default:
		// Should never happen, as typehash should only be called
		// with comparable types.
		panic(errorString("hash of unhashable type " + t.string()))
	}
}

//go:linkname reflect_typehash reflect.typehash
func reflect_typehash(t *_type, p unsafe.Pointer, h uintptr) uintptr {
	return typehash(t, p, h)
}

func memequal0(p, q unsafe.Pointer) bool {
	return true
}
func memequal8(p, q unsafe.Pointer) bool {
	return *(*int8)(p) == *(*int8)(q)
}
func memequal16(p, q unsafe.Pointer) bool {
	return *(*int16)(p) == *(*int16)(q)
}
func memequal32(p, q unsafe.Pointer) bool {
	return *(*int32)(p) == *(*int32)(q)
}
func memequal64(p, q unsafe.Pointer) bool {
	return *(*int64)(p) == *(*int64)(q)
}
func memequal128(p, q unsafe.Pointer) bool {
	return *(*[2]int64)(p) == *(*[2]int64)(q)
}
func f32equal(p, q unsafe.Pointer) bool {
	return *(*float32)(p) == *(*float32)(q)
}
func f64equal(p, q unsafe.Pointer) bool {
	return *(*float64)(p) == *(*float64)(q)
}
func c64equal(p, q unsafe.Pointer) bool {
	return *(*complex64)(p) == *(*complex64)(q)
}
func c128equal(p, q unsafe.Pointer) bool {
	return *(*complex128)(p) == *(*complex128)(q)
}
func strequal(p, q unsafe.Pointer) bool {
	return *(*string)(p) == *(*string)(q)
}
func interequal(p, q unsafe.Pointer) bool {
	return ifaceeq(*(*iface)(p), *(*iface)(q))
}
func nilinterequal(p, q unsafe.Pointer) bool {
	return efaceeq(*(*eface)(p), *(*eface)(q))
}
func efaceeq(x, y eface) bool {
	t := x._type
	if !eqtype(t, y._type) {
		return false
	}
	if t == nil {
		return true
	}
	eq := t.equal
	if eq == nil {
		panic(errorString("comparing uncomparable type " + t.string()))
	}
	if isDirectIface(t) {
		return x.data == y.data
	}
	return eq(x.data, y.data)
}

func ifaceeq(x, y iface) bool {
	xtab := x.tab
	if xtab == nil && y.tab == nil {
		return true
	}
	if xtab == nil || y.tab == nil {
		return false
	}
	t := *(**_type)(xtab)
	if !eqtype(t, *(**_type)(y.tab)) {
		return false
	}
	eq := t.equal
	if eq == nil {
		panic(errorString("comparing uncomparable type " + t.string()))
	}
	if isDirectIface(t) {
		// Direct interface types are ptr, chan, map, func, and single-element structs/arrays thereof.
		// Maps and funcs are not comparable, so they can't reach here.
		// Ptrs, chans, and single-element items can be compared directly using ==.
		return x.data == y.data
	}
	return eq(x.data, y.data)
}

func ifacevaleq(x iface, t *_type, p unsafe.Pointer) bool {
	if x.tab == nil {
		return false
	}
	xt := *(**_type)(x.tab)
	if !eqtype(xt, t) {
		return false
	}
	eq := t.equal
	if eq == nil {
		panic(errorString("comparing uncomparable type " + t.string()))
	}
	if isDirectIface(t) {
		return x.data == p
	}
	return eq(x.data, p)
}

func ifaceefaceeq(x iface, y eface) bool {
	if x.tab == nil && y._type == nil {
		return true
	}
	if x.tab == nil || y._type == nil {
		return false
	}
	xt := *(**_type)(x.tab)
	if !eqtype(xt, y._type) {
		return false
	}
	eq := xt.equal
	if eq == nil {
		panic(errorString("comparing uncomparable type " + xt.string()))
	}
	if isDirectIface(xt) {
		return x.data == y.data
	}
	return eq(x.data, y.data)
}

func efacevaleq(x eface, t *_type, p unsafe.Pointer) bool {
	if x._type == nil {
		return false
	}
	if !eqtype(x._type, t) {
		return false
	}
	eq := t.equal
	if eq == nil {
		panic(errorString("comparing uncomparable type " + t.string()))
	}
	if isDirectIface(t) {
		// See comment in efaceeq.
		return x.data == p
	}
	return eq(x.data, p)
}

func cmpstring(x, y string) int {
	a := stringStructOf(&x)
	b := stringStructOf(&y)
	l := a.len
	if l > b.len {
		l = b.len
	}
	i := memcmp(unsafe.Pointer(a.str), unsafe.Pointer(b.str), uintptr(l))
	if i != 0 {
		return int(i)
	}
	if a.len < b.len {
		return -1
	} else if a.len > b.len {
		return 1
	}
	return 0
}

// For the unsafe.Pointer type descriptor in libgo/runtime/go-unsafe-pointer.c.

func pointerhash(p unsafe.Pointer, h uintptr) uintptr {
	return memhash(p, h, unsafe.Sizeof(unsafe.Pointer))
}

func pointerequal(p, q unsafe.Pointer) bool {
	return *(*unsafe.Pointer)(p) == *(*unsafe.Pointer)(q)
}

// Force the creation of function descriptors for equality and hash
// functions.  These will be referenced directly by the compiler.
var _ = memhash
var _ = memhash0
var _ = memhash8
var _ = memhash16
var _ = memhash32
var _ = memhash64
var _ = memhash128
var _ = strhash
var _ = f32hash
var _ = f64hash
var _ = c64hash
var _ = c128hash
var _ = interhash
var _ = nilinterhash
var _ = memequal0
var _ = memequal8
var _ = memequal16
var _ = memequal32
var _ = memequal64
var _ = memequal128
var _ = f32equal
var _ = f64equal
var _ = c64equal
var _ = c128equal
var _ = strequal
var _ = interequal
var _ = nilinterequal
var _ = pointerhash
var _ = pointerequal

// Testing adapters for hash quality tests (see hash_test.go)
func stringHash(s string, seed uintptr) uintptr {
	return strhash(noescape(unsafe.Pointer(&s)), seed)
}

func bytesHash(b []byte, seed uintptr) uintptr {
	s := (*slice)(unsafe.Pointer(&b))
	return memhash(s.array, seed, uintptr(s.len))
}

func int32Hash(i uint32, seed uintptr) uintptr {
	return memhash32(noescape(unsafe.Pointer(&i)), seed)
}

func int64Hash(i uint64, seed uintptr) uintptr {
	return memhash64(noescape(unsafe.Pointer(&i)), seed)
}

func efaceHash(i any, seed uintptr) uintptr {
	return nilinterhash(noescape(unsafe.Pointer(&i)), seed)
}

func ifaceHash(i interface {
	F()
}, seed uintptr) uintptr {
	return interhash(noescape(unsafe.Pointer(&i)), seed)
}

const hashRandomBytes = goarch.PtrSize / 4 * 64

// used in asm_{386,amd64,arm64}.s to seed the hash function
var aeskeysched [hashRandomBytes]byte

// used in hash{32,64}.go to seed the hash function
var hashkey [4]uintptr

func alginit() {
	// Install AES hash algorithms if the instructions needed are present.
	if (GOARCH == "386" || GOARCH == "amd64") &&
		support_aes &&
		cpu.X86.HasAES && // AESENC
		cpu.X86.HasSSSE3 && // PSHUFB
		cpu.X86.HasSSE41 { // PINSR{D,Q}
		initAlgAES()
		return
	}
	if GOARCH == "arm64" && cpu.ARM64.HasAES {
		initAlgAES()
		return
	}
	getRandomData((*[len(hashkey) * goarch.PtrSize]byte)(unsafe.Pointer(&hashkey))[:])
	hashkey[0] |= 1 // make sure these numbers are odd
	hashkey[1] |= 1
	hashkey[2] |= 1
	hashkey[3] |= 1
}

func initAlgAES() {
	useAeshash = true
	// Initialize with random data so hash collisions will be hard to engineer.
	getRandomData(aeskeysched[:])
}

// Note: These routines perform the read with a native endianness.
func readUnaligned32(p unsafe.Pointer) uint32 {
	q := (*[4]byte)(p)
	if goarch.BigEndian {
		return uint32(q[3]) | uint32(q[2])<<8 | uint32(q[1])<<16 | uint32(q[0])<<24
	}
	return uint32(q[0]) | uint32(q[1])<<8 | uint32(q[2])<<16 | uint32(q[3])<<24
}

func readUnaligned64(p unsafe.Pointer) uint64 {
	q := (*[8]byte)(p)
	if goarch.BigEndian {
		return uint64(q[7]) | uint64(q[6])<<8 | uint64(q[5])<<16 | uint64(q[4])<<24 |
			uint64(q[3])<<32 | uint64(q[2])<<40 | uint64(q[1])<<48 | uint64(q[0])<<56
	}
	return uint64(q[0]) | uint64(q[1])<<8 | uint64(q[2])<<16 | uint64(q[3])<<24 | uint64(q[4])<<32 | uint64(q[5])<<40 | uint64(q[6])<<48 | uint64(q[7])<<56
}