/* SSA range support functions. Copyright (C) 2017-2018 Free Software Foundation, Inc. Contributed by Andrew MacLeod . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "insn-codes.h" #include "rtl.h" #include "tree.h" #include "gimple.h" #include "cfghooks.h" #include "tree-pass.h" #include "ssa.h" #include "optabs-tree.h" #include "gimple-pretty-print.h" #include "diagnostic-core.h" #include "flags.h" #include "fold-const.h" #include "stor-layout.h" #include "calls.h" #include "cfganal.h" #include "gimple-fold.h" #include "tree-eh.h" #include "gimple-iterator.h" #include "gimple-walk.h" #include "tree-cfg.h" #include "wide-int.h" #include "ssa-range.h" #include "ssa-range-gori.h" #include "fold-const.h" #include "cfgloop.h" #include "tree-scalar-evolution.h" #include "tree-ssa-loop.h" #include "alloc-pool.h" #include "vr-values.h" #include "dbgcnt.h" irange stmt_ranger::range_of_ssa_name (tree name, gimple *s ATTRIBUTE_UNUSED) { return ssa_name_range (name); } // This function returns a range for a tree node. If optional statement S // is present, then the range would be if it were to appear as a use on S. // Return false if ranges are not supported. bool stmt_ranger::range_of_expr (irange &r, tree expr, gimple *s) { tree type; if (TYPE_P (expr)) type = expr; else type = TREE_TYPE (expr); // Return false if the type isn't suported. if (!irange::supports_type_p (type)) return false; switch (TREE_CODE (expr)) { case INTEGER_CST: // If we encounter an overflow, simply punt and drop to varying // since we have no idea how it will be used. if (!TREE_OVERFLOW_P (expr)) { r = irange (expr, expr); return true; } break; case SSA_NAME: r = range_of_ssa_name (expr, s); return true; case ADDR_EXPR: { // handle &var which can show up in phi arguments bool ov; if (tree_single_nonzero_warnv_p (expr, &ov)) { r = range_nonzero (type); return true; } break; } default: break; } r = irange (type); return true; } // Calculate a range for statement S and return it in R. If NAME is provided it // represents the SSA_NAME on the LHS of the statement. It is only required // if there is more than one lhs/output. If a range cannot // be calculated, return false. bool stmt_ranger::range_of_stmt (irange &r, gimple *s, tree name) { bool res = false; // If name is specified, make sure it a LHS of S. gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true); if (is_a (s)) res = range_of_grange (r, as_a (s)); else if (is_a(s)) res = range_of_phi (r, as_a (s)); else if (is_a(s)) res = range_of_call (r, as_a (s)); else if (is_a (s) && gimple_assign_rhs_code (s) == COND_EXPR) res = range_of_cond_expr (r, as_a (s)); else { // If no name is specified, try the expression kind. if (!name) { tree t = gimple_expr_type (s); if (!irange::supports_type_p (t)) return false; r.set_varying (t); return true; } // We don't understand the stmt, so return the global range. r = ssa_name_range (name); return true; } if (res) { if (r.undefined_p ()) return true; if (name && TREE_TYPE (name) != r.type ()) range_cast (r, TREE_TYPE (name)); return true; } return false; } // Calculate a range for statement S and return it in R. If NAME is found // in any of the operands, replace it with NAME_RANGE rather than looking it // up. If a range cannot be calculated on this statement, return false. bool stmt_ranger::range_of_stmt_with_range (irange &r, gimple *s, tree name, const irange &name_range) { if (is_a (s)) return range_of_grange (r, as_a (s), name, &name_range); if (is_a(s)) return range_of_phi (r, as_a (s), name, &name_range); if (is_a(s)) return range_of_call (r, as_a (s), name, &name_range); if (is_a (s) && gimple_assign_rhs_code (s) == COND_EXPR) return range_of_cond_expr (r, as_a (s), name, &name_range); return false; } // Calculate a range for range_op statement S and return it in R. If any // operand matches NAME, replace it with NAME_RANGE. If a range // cannot be calculated, return false. bool stmt_ranger::range_of_grange (irange &r, grange *s, tree name, const irange *name_range) { irange range1, range2; bool res = true; tree type = gimple_expr_type (s); gcc_checking_assert (irange::supports_type_p (type)); tree op1 = gimple_range_operand1 (s); tree op2 = gimple_range_operand2 (s); // Calculate a range for operand 1. if (op1 == name) range1 = *name_range; else res = range_of_expr (range1, op1, s); if (res) { if (!op2) return gimple_range_fold (s, r, range1); if (op2 == name) range2 = *name_range; else res = range_of_expr (range2, op2, s); if (res) return gimple_range_fold (s, r, range1, range2); } r.set_varying (type); return true; } // Calculate a range for phi statement S and return it in R. // If NAME is non-null, replace any occurences of NAME in arguments with // NAME_RANGE. // If EVAL_FOM is non-null, evaluate the PHI as if it occured right before // EVAL_FROM. // if ON_EDGE is non-null, only evaluate the argument on edge ON_EDGE. // If a range cannot be calculated, return false. bool stmt_ranger::range_of_phi (irange &r, gphi *phi, tree name, const irange *name_range) { tree phi_def = gimple_phi_result (phi); tree type = TREE_TYPE (phi_def); irange phi_range; unsigned x; if (!irange::supports_type_p (type)) return false; // And start with an empty range, unioning in each argument's range. r.set_undefined (); for (x = 0; x < gimple_phi_num_args (phi); x++) { irange arg_range; tree arg = gimple_phi_arg_def (phi, x); if (name == arg) arg_range = *name_range; else gcc_assert (range_of_expr (arg_range, arg, phi)); r.union_ (arg_range); // Once the value reaches varying, stop looking. if (r.varying_p ()) break; } return true; } // Calculate a range for call statement S and return it in R. // If NAME is non-null, replace any occurences of NAME in arguments with // NAME_RANGE. // If EVAL_FOM is non-null, evaluate the PHI as if it occured right before // EVAL_FROM. // if ON_EDGE is non-null, only evaluate the argument on edge ON_EDGE. // If a range cannot be calculated, return false. bool stmt_ranger::range_of_call (irange &r, gcall *call, tree name ATTRIBUTE_UNUSED, const irange *name_range ATTRIBUTE_UNUSED) { tree type = gimple_call_return_type (call); if (!irange::supports_type_p (type)) return false; if (gimple_call_nonnull_result_p (call)) { r = range_nonzero (type); return true; } r.set_varying (type); return true; } // Calculate a range for COND_EXPR statement S and return it in R. // If NAME is non-null, replace any occurences of NAME in arguments with // NAME_RANGE. // If EVAL_FOM is non-null, evaluate the COND_EXPR as if it occured right // before EVAL_FROM. // If a range cannot be calculated, return false. bool stmt_ranger::range_of_cond_expr (irange &r, gassign *s, tree name, const irange *name_range) { irange cond_range, range1, range2; tree cond = gimple_assign_rhs1 (s); tree op1 = gimple_assign_rhs2 (s); tree op2 = gimple_assign_rhs3 (s); gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); gcc_checking_assert (useless_type_conversion_p (TREE_TYPE (op1), TREE_TYPE (op2))); if (!irange::supports_type_p (TREE_TYPE (op1))) return false; if (name == cond) cond_range = *name_range; else gcc_assert (range_of_expr (cond_range, cond, s)); if (name == op1) range1 = *name_range; else gcc_assert (range_of_expr (range1, op1, s)); if (name == op2) range2 = *name_range; else gcc_assert (range_of_expr (range2, op2, s)); if (cond_range.singleton_p ()) { // False, pick second operand if (cond_range.zero_p ()) r = range2; else r = range1; } else r = range_union (range1, range2); return true; } // Calculate a range on edge E and return it in R. Try to evaluate a range // for NAME on this edge. Return FALSE if this is either not a control edge // or NAME is not defined by this edge. bool ssa_ranger::outgoing_edge_range_p (irange &r, edge e, tree name, irange *name_range) { irange lhs; gcc_checking_assert (valid_range_ssa_p (name)); // Determine if there is an outgoing edge. gimple *s = gimple_outgoing_edge_range_p (lhs, e); // If there is no outgoing stmt, there is no range produced. if (!s) return false; // Otherwise use the outgoing edge as a LHS and try to calculate a range. return compute_operand_range_on_stmt (r, s, lhs, name, name_range); } // Calculate a range for NAME on edge E and return it in R. // if NAME is a PHI node at the dest of E, get the argument result. // Return false if no range can be determined. void ssa_ranger::range_on_edge (irange &r, edge e, tree name) { irange edge_range; gcc_checking_assert (irange::supports_p (name)); if (!valid_range_ssa_p (name)) { gcc_assert (range_of_expr (r, name)); return; } range_on_exit (r, e->src, name); gcc_checking_assert (r.undefined_p () || types_compatible_p (r.type(), TREE_TYPE (name))); // Check to see if NAME is defined on edge e. if (outgoing_edge_range_p (edge_range, e, name, &r)) r = edge_range; } // Return the range for NAME on entry to basic block BB in R. // Return false if no range can be calculated. // Calculation is performed by unioning all the ranges on incoming edges. void ssa_ranger::range_on_entry (irange &r, basic_block bb, tree name) { edge_iterator ei; edge e; tree type = TREE_TYPE (name); irange pred_range; gcc_checking_assert (irange::supports_type_p (type)); // Start with an empty range. r.set_undefined (); gcc_checking_assert (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)); // Visit each predecessor to resolve them. FOR_EACH_EDGE (e, ei, bb->preds) { range_on_edge (pred_range, e, name); r.union_ (pred_range); // If varying is reach, stop processing. if (r.varying_p ()) break; } } // Calculate the range for NAME at the end of block BB and return it in R. // Return false if no range can be calculated. void ssa_ranger::range_on_exit (irange &r, basic_block bb, tree name) { // on-exit from the exit block? gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)); gimple *s = last_stmt (bb); // If there is no statement in the block and this isnt the entry block, // go get the range_on_entry for this block. // For the entry block, a NULL stmt will return the global value for NAME. if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)) range_on_entry (r, bb, name); else gcc_assert (range_of_expr (r, name, s)); gcc_checking_assert (r.undefined_p () || types_compatible_p (r.type(), TREE_TYPE (name))); } bool ssa_ranger::range_of_phi (irange &r, gphi *phi, tree name, const irange *name_range) { tree phi_def = gimple_phi_result (phi); tree type = TREE_TYPE (phi_def); irange phi_range; unsigned x; if (!irange::supports_type_p (type)) return false; // And start with an empty range, unioning in each argument's range. r.set_undefined (); for (x = 0; x < gimple_phi_num_args (phi); x++) { irange arg_range; tree arg = gimple_phi_arg_def (phi, x); edge e = gimple_phi_arg_edge (phi, x); if (name == arg) arg_range = *name_range; else range_on_edge (arg_range, e, arg); r.union_ (arg_range); // Once the value reaches varying, stop looking. if (r.varying_p ()) break; } return true; } // ------------------------------------------------------------------------- // Initialize a global_ranger. global_ranger::global_ranger () { } // Deallocate global_ranger members. global_ranger::~global_ranger () { } // Return the range of NAME on entry to block BB in R. void global_ranger::range_on_entry (irange &r, basic_block bb, tree name) { irange entry_range; gcc_checking_assert (valid_range_ssa_p (name)); // Start with any known range gcc_assert (range_of_stmt (r, SSA_NAME_DEF_STMT (name), name)); // Now see if there is any on_entry value which may refine it . if (m_gori.block_range (entry_range, bb, name)) r.intersect (entry_range); } // Calculate a range for statement S and return it in R. If NAME is provided // it represents the SSA_NAME on the LHS of the statement. It is only required // if there is more than one lhs/output. // Check the global cache for NAME first to see if the evaluation can be // avoided. If a range cannot be calculated, return false. bool global_ranger::range_of_stmt (irange &r, gimple *s, tree name) { // If no name, simply call the base routine. if (!name) { // first check to see if the stmt has a name. name = gimple_get_lhs (s); if (!name) return ssa_ranger::range_of_stmt (r, s, name); } gcc_checking_assert (irange::supports_ssa_p (name)); // If this STMT has already been processed, return that value. if (m_gori.m_globals.get_global_range (r, name)) return true; // Avoid infinite recursion by initializing global cache irange tmp = ssa_name_range (name); m_gori.m_globals.set_global_range (name, tmp); gcc_assert (ssa_ranger::range_of_stmt (r, s, name)); if (is_a (s)) r.intersect (tmp); m_gori.m_globals.set_global_range (name, r); return true; } // Determine a range for OP on stmt S, returning the result in R. // If OP is not defined in BB, find the range on entry to this block. irange global_ranger::range_of_ssa_name (tree name, gimple *s) { // If there is no statement, just get the global value. if (!s) return ssa_name_range (name); irange r; basic_block bb = gimple_bb (s); gimple *def_stmt = SSA_NAME_DEF_STMT (name); // if name is defined in this block, try to get an range from S. if (def_stmt && gimple_bb (def_stmt) == bb) gcc_assert (range_of_stmt (r, def_stmt, name)); else // Otherwise OP comes from outside this block, use range on entry. range_on_entry (r, bb, name); // No range yet, see if there is a dereference in the block. // We don't care if it's between the def and a use within a block // because the entire block must be executed anyway. // FIXME:?? For non-call exceptions we could have a statement throw // which causes an early block exit. // in which case we may need to walk from S back to the def/top of block // to make sure the deref happens between S and there before claiming // there is a deref. Punt for now. if (!cfun->can_throw_non_call_exceptions && r.varying_p () && m_gori.non_null_deref_p (name, bb)) r = range_nonzero (TREE_TYPE (name)); return r; } // Calculate a range on edge E and return it in R. Try to evaluate a range // for NAME on this edge. Return FALSE if this is either not a control edge // or NAME is not defined by this edge. bool global_ranger::outgoing_edge_range_p (irange &r, edge e, tree name, irange *name_range) { return m_gori.outgoing_edge_range_p (r, e, name, name_range); } // If NAME's derived chain has a termnial name, return it otherwise NULL_TREE. tree global_ranger::terminal_name (tree name) { return m_gori.terminal_name (name); } // This routine will export whatever global ranges are known to GCC // SSA_RANGE_NAME_INFO fields. void global_ranger::export_global_ranges () { unsigned x; irange r; if (dump_file) { fprintf (dump_file, "Exported global range table\n"); fprintf (dump_file, "===========================\n"); } for ( x = 1; x < num_ssa_names; x++) { tree name = ssa_name (x); if (name && !SSA_NAME_IN_FREE_LIST (name) && valid_range_ssa_p (name) && m_gori.m_globals.get_global_range (r, name) && !r.varying_p()) { // Make sure the new range is a subset of the old range. irange old_range; old_range = ssa_name_range (name); old_range.intersect (r); /* Disable this while we fix tree-ssa/pr61743-2.c. */ //gcc_checking_assert (old_range == r); // WTF? Can't write non-null pointer ranges?? stupid set_range_info! if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ()) { if (!dbg_cnt (ranger_export_count)) return; value_range_base vr = irange_to_value_range (r); set_range_info (name, vr); if (dump_file) { print_generic_expr (dump_file, name , TDF_SLIM); fprintf (dump_file, " --> "); vr.dump (dump_file); fprintf (dump_file, "\n"); fprintf (dump_file, " irange : "); r.dump (dump_file); fprintf (dump_file, "\n"); } } } } } // Print the known table values to file F. void global_ranger::dump (FILE *f) { basic_block bb; FOR_EACH_BB_FN (bb, cfun) { unsigned x; edge_iterator ei; edge e; irange range; fprintf (f, "\n=========== BB %d ============\n", bb->index); m_gori.dump_block (f, bb); dump_bb (f, bb, 4, TDF_NONE); // Now find any globals defined in this block for (x = 1; x < num_ssa_names; x++) { tree name = ssa_name (x); if (valid_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb && m_gori.m_globals.get_global_range (range, name)) { if (!range.varying_p ()) { print_generic_expr (f, name, TDF_SLIM); fprintf (f, " : "); range.dump (f); fprintf (f, "\n"); } } } // And now outgoing edges, if they define anything. FOR_EACH_EDGE (e, ei, bb->succs) { for (x = 1; x < num_ssa_names; x++) { tree name = valid_range_ssa_p (ssa_name (x)); if (name && outgoing_edge_range_p (range, e, name)) { gimple *s = SSA_NAME_DEF_STMT (name); // Only print the range if this is the def block, // or the on entry cache for either end of the edge is set. if ((s && bb == gimple_bb (s)) || m_gori.block_range (range, bb, name, false) || m_gori.block_range (range, e->dest, name, false)) { range_on_edge (range, e, name); if (!range.varying_p ()) { fprintf (f, "%d->%d ", e->src->index, e->dest->index); char c = (m_gori.is_export_p (name, bb) ? ' ' : '*'); if (e->flags & EDGE_TRUE_VALUE) fprintf (f, " (T)%c", c); else if (e->flags & EDGE_FALSE_VALUE) fprintf (f, " (F)%c", c); else fprintf (f, " "); print_generic_expr (f, name, TDF_SLIM); fprintf(f, " : \t"); range.dump(f); fprintf (f, "\n"); } } } } } } m_gori.m_globals.dump (dump_file); fprintf (f, "\n"); if (dump_flags & TDF_DETAILS) { fprintf (f, "\nDUMPING GORI MAP\n"); m_gori.dump (f); fprintf (f, "\n"); } } // Calculate all ranges by visiting every block and asking for the range of // each ssa_name on each statement, and then dump those ranges to OUTPUT. void global_ranger::calculate_and_dump (FILE *output) { basic_block bb; irange r; // Walk every statement asking for a range. FOR_EACH_BB_FN (bb, cfun) { for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); gsi_next (&gpi)) { gphi *phi = gpi.phi (); tree phi_def = gimple_phi_result (phi); if (valid_range_ssa_p (phi_def)) gcc_assert (range_of_stmt (r, phi)); } for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple *stmt = gsi_stmt (gsi); ssa_op_iter iter; use_operand_p use_p; // Calculate a range for the LHS if there is one. if (valid_range_ssa_p (gimple_get_lhs (stmt))) range_of_stmt (r, stmt); // and make sure to query every operand. FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) { tree use = valid_range_ssa_p (USE_FROM_PTR (use_p)); if (use) range_of_expr (r, use, stmt); } } } // The dump it. dump (output); fprintf (output, "\n"); } loop_ranger::loop_ranger () { m_vr_values = new vr_values; } loop_ranger::~loop_ranger () { delete m_vr_values; } // Adjust a PHI result with loop information. void loop_ranger::adjust_phi_with_loop_info (irange &r, gphi *phi) { struct loop *l = loop_containing_stmt (phi); if (l && l->header == gimple_bb (phi)) { tree phi_result = PHI_RESULT (phi); value_range_base vr = irange_to_value_range (r); m_vr_values->adjust_range_with_scev (&vr, l, phi, phi_result); if (vr.constant_p ()) { irange old = r; r = vr; if (old != r && dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "LOOP_RANGER refined this PHI result: "); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); fprintf (dump_file, " from this range: "); old.dump (dump_file); fprintf (dump_file, "\n"); fprintf (dump_file, " into this range: "); r.dump (dump_file); fprintf (dump_file, "\n"); } } } } // Virtual override of global_ranger::range_of_phi() that adjusts the // result with loop information if available. bool loop_ranger::range_of_phi (irange &r, gphi *phi, tree name, const irange *name_range) { bool result = global_ranger::range_of_phi (r, phi, name, name_range); if (result && scev_initialized_p ()) adjust_phi_with_loop_info (r, phi); return result; } // Constructor for trace_ranger. trace_ranger::trace_ranger () { indent = 0; trace_count = 0; } // If dumping, return true and print the prefix for the next output line. inline bool trace_ranger::dumping (unsigned counter, bool trailing) { if (dump_file && (dump_flags & TDF_DETAILS)) { // Print counter index as well as INDENT spaces. if (!trailing) fprintf (dump_file, " %-7u ", counter); else fprintf (dump_file, " "); unsigned x; for (x = 0; x< indent; x++) fputc (' ', dump_file); return true; } return false; } // After calling a routine, if dumping, print the CALLER, NAME, and RESULT, // returning RESULT. bool trace_ranger::trailer (unsigned counter, const char *caller, bool result, tree name, const irange &r) { indent -= bump; if (dumping (counter, true)) { fputs(result ? "TRUE : " : "FALSE : ", dump_file); fprintf (dump_file, "(%u) ", counter); fputs (caller, dump_file); fputs (" (",dump_file); if (name) print_generic_expr (dump_file, name, TDF_SLIM); fputs (") ",dump_file); if (result) { r.dump (dump_file); fputc('\n', dump_file); } else fputc('\n', dump_file); } // Marks the end of a request. if (indent == 0) fputc('\n', dump_file); return result; } // Tracing version of range_of_expr. Call it with printing wrappers. irange trace_ranger::range_of_ssa_name (tree name, gimple *s) { irange r; unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_of_ssa_name ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") at stmt "); if (s) print_gimple_stmt (dump_file, s , 0, TDF_SLIM); else fprintf (dump_file, " NULL\n"); indent += bump; } r = super::range_of_ssa_name (name, s); trailer (idx, "range_of_ssa_name", true, name, r); return r; } // Tracing version of range_on_edge. Call it with printing wrappers. void trace_ranger::range_on_edge (irange &r, edge e, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_edge ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index); indent += bump; } super::range_on_edge (r, e, name); trailer (idx, "range_on_edge", true, name, r); } // Tracing version of range_on_entry. Call it with printing wrappers. void trace_ranger::range_on_entry (irange &r, basic_block bb, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_entry ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") to BB %d\n", bb->index); indent += bump; } super::range_on_entry (r, bb, name); trailer (idx, "range_on_entry", true, name, r); } // Tracing version of range_on_exit. Call it with printing wrappers. void trace_ranger::range_on_exit (irange &r, basic_block bb, tree name) { unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_on_exit ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") from BB %d\n", bb->index); indent += bump; } super::range_on_exit (r, bb, name); trailer (idx, "range_on_exit", true, name, r); } // Tracing version of range_of_stmt. Call it with printing wrappers. bool trace_ranger::range_of_stmt (irange &r, gimple *s, tree name) { bool res; unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "range_of_stmt ("); if (name) print_generic_expr (dump_file, name, TDF_SLIM); fputs (") at stmt ", dump_file); print_gimple_stmt (dump_file, s, 0, TDF_SLIM); indent += bump; } res = super::range_of_stmt (r, s, name); return trailer (idx, "range_of_stmt", res, name, r); } // Tracing version of outgoing_edge_range_p. Call it with printing wrappers. bool trace_ranger::outgoing_edge_range_p (irange &r, edge e, tree name, irange *name_range) { bool res; unsigned idx = ++trace_count; if (dumping (idx)) { fprintf (dump_file, "outgoing_edge_range_p ("); print_generic_expr (dump_file, name, TDF_SLIM); fprintf (dump_file, ") on edge %d->%d, with range ", e->src->index, e->dest->index); if (name_range) { name_range->dump (dump_file); fprintf (dump_file, "\n"); } else fputs ("NULL\n", dump_file); indent += bump; } res = super::outgoing_edge_range_p (r, e, name, name_range); return trailer (idx, "outgoing_edge_range_p", res, name, r); }