// Copyright (C) 2020-2025 Free Software Foundation, Inc.
// This file is part of GCC.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with GCC; see the file COPYING3. If not see
// .
#include "rust-ast-resolve-expr.h"
#include "rust-ast-resolve-stmt.h"
#include "rust-ast-resolve-struct-expr-field.h"
#include "rust-ast-resolve-type.h"
#include "rust-ast-resolve-pattern.h"
#include "rust-ast-resolve-path.h"
#include "rust-expr.h"
#include "rust-ice-finalizer.h"
namespace Rust {
namespace Resolver {
void
ResolveExpr::go (AST::Expr &expr, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix, bool funny_error)
{
ResolveExpr resolver (prefix, canonical_prefix, funny_error);
expr.accept_vis (resolver);
}
void
ResolveExpr::visit (AST::TupleIndexExpr &expr)
{
ResolveExpr::go (expr.get_tuple_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::TupleExpr &expr)
{
if (expr.is_unit ())
return;
for (auto &elem : expr.get_tuple_elems ())
ResolveExpr::go (*elem, prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::PathInExpression &expr)
{
ResolvePath::go (expr);
}
void
ResolveExpr::visit (AST::QualifiedPathInExpression &expr)
{
ResolvePath::go (expr);
}
void
ResolveExpr::visit (AST::ReturnExpr &expr)
{
if (expr.has_returned_expr ())
ResolveExpr::go (expr.get_returned_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::CallExpr &expr)
{
ResolveExpr::go (expr.get_function_expr (), prefix, canonical_prefix);
for (auto ¶m : expr.get_params ())
ResolveExpr::go (*param, prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::MethodCallExpr &expr)
{
ResolveExpr::go (expr.get_receiver_expr (), prefix, canonical_prefix);
if (expr.get_method_name ().has_generic_args ())
{
AST::GenericArgs &args = expr.get_method_name ().get_generic_args ();
ResolveGenericArgs::go (args, prefix, canonical_prefix);
}
auto const &in_params = expr.get_params ();
for (auto ¶m : in_params)
ResolveExpr::go (*param, prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ErrorPropagationExpr &expr)
{
ResolveExpr::go (expr.get_propagating_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::AssignmentExpr &expr)
{
ResolveExpr::go (expr.get_left_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_right_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::IdentifierExpr &expr)
{
if (resolver->get_name_scope ().lookup (
CanonicalPath::new_seg (expr.get_node_id (), expr.as_string ()),
&resolved_node))
{
resolver->insert_resolved_name (expr.get_node_id (), resolved_node);
}
else if (resolver->get_type_scope ().lookup (
CanonicalPath::new_seg (expr.get_node_id (), expr.as_string ()),
&resolved_node))
{
resolver->insert_resolved_type (expr.get_node_id (), resolved_node);
}
else if (funny_error)
{
/* This was a "break rust" or "break gcc", and the identifier failed to
resolve. Emit a funny ICE. We set the finalizer to our custom one,
and use the lower-level emit_diagnostic () instead of the more common
internal_error_no_backtrace () in order to pass our locus. */
diagnostic_text_finalizer (global_dc) = funny_ice_text_finalizer;
emit_diagnostic (DK_ICE_NOBT, expr.get_locus (), -1,
"are you trying to break %s? how dare you?",
expr.as_string ().c_str ());
}
else
{
rust_error_at (expr.get_locus (), ErrorCode::E0425,
"cannot find value %qs in this scope",
expr.as_string ().c_str ());
}
}
void
ResolveExpr::visit (AST::ArithmeticOrLogicalExpr &expr)
{
ResolveExpr::go (expr.get_left_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_right_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::CompoundAssignmentExpr &expr)
{
ResolveExpr::go (expr.get_left_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_right_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ComparisonExpr &expr)
{
ResolveExpr::go (expr.get_left_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_right_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::LazyBooleanExpr &expr)
{
ResolveExpr::go (expr.get_left_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_right_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::NegationExpr &expr)
{
ResolveExpr::go (expr.get_negated_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::TypeCastExpr &expr)
{
ResolveType::go (expr.get_type_to_cast_to ());
ResolveExpr::go (expr.get_casted_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::IfExpr &expr)
{
ResolveExpr::go (expr.get_condition_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_if_block (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::IfExprConseqElse &expr)
{
ResolveExpr::go (expr.get_condition_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_if_block (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_else_block (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::IfLetExpr &expr)
{
ResolveExpr::go (expr.get_value_expr (), prefix, canonical_prefix);
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
// We know expr.get_patterns () has one pattern at most
// so there's no reason to handle it like an AltPattern.
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
for (auto &pattern : expr.get_patterns ())
{
PatternDeclaration::go (*pattern, Rib::ItemType::Var, bindings);
}
ResolveExpr::go (expr.get_if_block (), prefix, canonical_prefix);
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExpr::visit (AST::IfLetExprConseqElse &expr)
{
ResolveExpr::go (expr.get_value_expr (), prefix, canonical_prefix);
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
// We know expr.get_patterns () has one pattern at most
// so there's no reason to handle it like an AltPattern.
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
for (auto &pattern : expr.get_patterns ())
{
PatternDeclaration::go (*pattern, Rib::ItemType::Var, bindings);
}
ResolveExpr::go (expr.get_if_block (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_else_block (), prefix, canonical_prefix);
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExpr::visit (AST::BlockExpr &expr)
{
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
if (expr.has_label ())
{
auto label = expr.get_label ();
if (label.get_lifetime ().get_lifetime_type ()
!= AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
auto label_name = label.get_lifetime ().get_lifetime_name ();
auto label_lifetime_node_id = label.get_lifetime ().get_node_id ();
resolver->get_label_scope ().insert (
CanonicalPath::new_seg (label.get_node_id (), label_name),
label_lifetime_node_id, label.get_locus (), false, Rib::ItemType::Label,
[&] (const CanonicalPath &, NodeId, location_t locus) -> void {
rust_error_at (label.get_locus (), "label defined multiple times");
rust_error_at (locus, "was defined here");
});
}
for (auto &s : expr.get_statements ())
{
if (s->is_item ())
ResolveStmt::go (*s, prefix, canonical_prefix,
CanonicalPath::create_empty ());
}
for (auto &s : expr.get_statements ())
{
if (!s->is_item ())
ResolveStmt::go (*s, prefix, canonical_prefix,
CanonicalPath::create_empty ());
}
if (expr.has_tail_expr ())
ResolveExpr::go (expr.get_tail_expr (), prefix, canonical_prefix);
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
translate_operand (AST::InlineAsm &expr, const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix)
{
const auto &operands = expr.get_operands ();
using RegisterType = AST::InlineAsmOperand::RegisterType;
for (auto &operand : operands)
{
switch (operand.get_register_type ())
{
case RegisterType::In: {
auto in = operand.get_in ();
ResolveExpr::go (*in.expr, prefix, canonical_prefix);
break;
}
case RegisterType::Out: {
auto out = operand.get_out ();
ResolveExpr::go (*out.expr, prefix, canonical_prefix);
break;
}
case RegisterType::InOut: {
auto in_out = operand.get_in_out ();
ResolveExpr::go (*in_out.expr, prefix, canonical_prefix);
break;
}
case RegisterType::SplitInOut: {
auto split_in_out = operand.get_split_in_out ();
ResolveExpr::go (*split_in_out.in_expr, prefix, canonical_prefix);
ResolveExpr::go (*split_in_out.out_expr, prefix, canonical_prefix);
break;
}
case RegisterType::Const: {
auto anon_const = operand.get_const ().anon_const;
ResolveExpr::go (*anon_const.expr, prefix, canonical_prefix);
break;
}
case RegisterType::Sym: {
auto sym = operand.get_sym ();
ResolveExpr::go (*sym.expr, prefix, canonical_prefix);
break;
}
case RegisterType::Label: {
auto label = operand.get_label ();
ResolveExpr::go (*label.expr, prefix, canonical_prefix);
break;
}
}
}
}
void
ResolveExpr::visit (AST::InlineAsm &expr)
{
translate_operand (expr, prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::UnsafeBlockExpr &expr)
{
expr.get_block_expr ().accept_vis (*this);
}
void
ResolveExpr::visit (AST::ArrayElemsValues &elems)
{
for (auto &elem : elems.get_values ())
ResolveExpr::go (*elem, prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ArrayExpr &expr)
{
expr.get_array_elems ()->accept_vis (*this);
}
void
ResolveExpr::visit (AST::ArrayIndexExpr &expr)
{
ResolveExpr::go (expr.get_array_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_index_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ArrayElemsCopied &expr)
{
ResolveExpr::go (expr.get_num_copies (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_elem_to_copy (), prefix, canonical_prefix);
}
// this this an empty struct constructor like 'S {}'
void
ResolveExpr::visit (AST::StructExprStruct &struct_expr)
{
ResolveExpr::go (struct_expr.get_struct_name (), prefix, canonical_prefix);
}
// this this a struct constructor with fields
void
ResolveExpr::visit (AST::StructExprStructFields &struct_expr)
{
ResolveExpr::go (struct_expr.get_struct_name (), prefix, canonical_prefix);
if (struct_expr.has_struct_base ())
{
AST::StructBase &base = struct_expr.get_struct_base ();
ResolveExpr::go (base.get_base_struct (), prefix, canonical_prefix);
}
auto const &struct_fields = struct_expr.get_fields ();
for (auto &struct_field : struct_fields)
{
ResolveStructExprField::go (*struct_field, prefix, canonical_prefix);
}
}
void
ResolveExpr::visit (AST::GroupedExpr &expr)
{
ResolveExpr::go (expr.get_expr_in_parens (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::FieldAccessExpr &expr)
{
ResolveExpr::go (expr.get_receiver_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::LoopExpr &expr)
{
if (expr.has_loop_label ())
{
auto label = expr.get_loop_label ();
if (label.get_lifetime ().get_lifetime_type ()
!= AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
auto label_name = label.get_lifetime ().get_lifetime_name ();
auto label_lifetime_node_id = label.get_lifetime ().get_node_id ();
resolver->get_label_scope ().insert (
CanonicalPath::new_seg (expr.get_node_id (), label_name),
label_lifetime_node_id, label.get_locus (), false, Rib::ItemType::Label,
[&] (const CanonicalPath &, NodeId, location_t locus) -> void {
rust_error_at (label.get_locus (), "label defined multiple times");
rust_error_at (locus, "was defined here");
});
}
ResolveExpr::go (expr.get_loop_block (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::BreakExpr &expr)
{
if (expr.has_label ())
{
auto label = expr.get_label ().get_lifetime ();
if (label.get_lifetime_type () != AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
NodeId resolved_node = UNKNOWN_NODEID;
if (!resolver->get_label_scope ().lookup (
CanonicalPath::new_seg (label.get_node_id (),
label.get_lifetime_name ()),
&resolved_node))
{
rust_error_at (label.get_locus (), ErrorCode::E0426,
"use of undeclared label %qs in %",
label.get_lifetime_name ().c_str ());
return;
}
resolver->insert_resolved_label (label.get_node_id (), resolved_node);
}
if (expr.has_break_expr ())
{
bool funny_error = false;
auto &break_expr = expr.get_break_expr ();
if (break_expr.get_expr_kind () == AST::Expr::Kind::Identifier)
{
/* This is a break with an expression, and the expression is
just a single identifier. See if the identifier is either
"rust" or "gcc", in which case we have "break rust" or "break
gcc", and so may need to emit our funny error. We cannot yet
emit the error here though, because the identifier may still
be in scope, and ICE'ing on valid programs would not be very
funny. */
std::string ident
= static_cast (break_expr).as_string ();
if (ident == "rust" || ident == "gcc")
funny_error = true;
}
ResolveExpr::go (break_expr, prefix, canonical_prefix, funny_error);
}
}
void
ResolveExpr::visit (AST::WhileLoopExpr &expr)
{
if (expr.has_loop_label ())
{
auto label = expr.get_loop_label ();
if (label.get_lifetime ().get_lifetime_type ()
!= AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
auto label_name = label.get_lifetime ().get_lifetime_name ();
auto label_lifetime_node_id = label.get_lifetime ().get_node_id ();
resolver->get_label_scope ().insert (
CanonicalPath::new_seg (label.get_node_id (), label_name),
label_lifetime_node_id, label.get_locus (), false, Rib::ItemType::Label,
[&] (const CanonicalPath &, NodeId, location_t locus) -> void {
rust_error_at (label.get_locus (), "label defined multiple times");
rust_error_at (locus, "was defined here");
});
}
ResolveExpr::go (expr.get_predicate_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_loop_block (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ForLoopExpr &expr)
{
if (expr.has_loop_label ())
{
auto label = expr.get_loop_label ();
if (label.get_lifetime ().get_lifetime_type ()
!= AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
auto label_name = label.get_lifetime ().get_lifetime_name ();
auto label_lifetime_node_id = label.get_lifetime ().get_node_id ();
resolver->get_label_scope ().insert (
CanonicalPath::new_seg (label.get_node_id (), label_name),
label_lifetime_node_id, label.get_locus (), false, Rib::ItemType::Label,
[&] (const CanonicalPath &, NodeId, location_t locus) -> void {
rust_error_at (label.get_locus (), "label defined multiple times");
rust_error_at (locus, "was defined here");
});
}
// this needs a new rib to contain the pattern
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
// resolve the expression
PatternDeclaration::go (expr.get_pattern (), Rib::ItemType::Var);
ResolveExpr::go (expr.get_iterator_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_loop_block (), prefix, canonical_prefix);
// done
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExpr::visit (AST::ContinueExpr &expr)
{
if (expr.has_label ())
{
auto label = expr.get_label ();
if (label.get_lifetime_type () != AST::Lifetime::LifetimeType::NAMED)
{
rust_error_at (label.get_locus (),
"Labels must be a named lifetime value");
return;
}
NodeId resolved_node = UNKNOWN_NODEID;
if (!resolver->get_label_scope ().lookup (
CanonicalPath::new_seg (label.get_node_id (),
label.get_lifetime_name ()),
&resolved_node))
{
rust_error_at (expr.get_label ().get_locus (), ErrorCode::E0426,
"use of undeclared label %qs in %",
label.get_lifetime_name ().c_str ());
return;
}
resolver->insert_resolved_label (label.get_node_id (), resolved_node);
}
}
void
ResolveExpr::visit (AST::BorrowExpr &expr)
{
ResolveExpr::go (expr.get_borrowed_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::DereferenceExpr &expr)
{
ResolveExpr::go (expr.get_dereferenced_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::MatchExpr &expr)
{
ResolveExpr::go (expr.get_scrutinee_expr (), prefix, canonical_prefix);
for (auto &match_case : expr.get_match_cases ())
{
// each arm is in its own scope
NodeId scope_node_id = match_case.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
// resolve
AST::MatchArm &arm = match_case.get_arm ();
if (arm.has_match_arm_guard ())
ResolveExpr::go (arm.get_guard_expr (), prefix, canonical_prefix);
// We know expr.get_patterns () has one pattern at most
// so there's no reason to handle it like an AltPattern.
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
// insert any possible new patterns
for (auto &pattern : arm.get_patterns ())
{
PatternDeclaration::go (*pattern, Rib::ItemType::Var, bindings);
}
// resolve the body
ResolveExpr::go (match_case.get_expr (), prefix, canonical_prefix);
// done
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
}
void
ResolveExpr::visit (AST::RangeFromToExpr &expr)
{
ResolveExpr::go (expr.get_from_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_to_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::RangeFromExpr &expr)
{
ResolveExpr::go (expr.get_from_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::RangeToExpr &expr)
{
ResolveExpr::go (expr.get_to_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::RangeFullExpr &)
{
// nothing to do
}
void
ResolveExpr::visit (AST::RangeFromToInclExpr &expr)
{
ResolveExpr::go (expr.get_from_expr (), prefix, canonical_prefix);
ResolveExpr::go (expr.get_to_expr (), prefix, canonical_prefix);
}
void
ResolveExpr::visit (AST::ClosureExprInner &expr)
{
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
for (auto &p : expr.get_params ())
{
resolve_closure_param (p, bindings);
}
resolver->push_closure_context (expr.get_node_id ());
ResolveExpr::go (expr.get_definition_expr (), prefix, canonical_prefix);
resolver->pop_closure_context ();
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExpr::visit (AST::ClosureExprInnerTyped &expr)
{
NodeId scope_node_id = expr.get_node_id ();
resolver->get_name_scope ().push (scope_node_id);
resolver->get_type_scope ().push (scope_node_id);
resolver->get_label_scope ().push (scope_node_id);
resolver->push_new_name_rib (resolver->get_name_scope ().peek ());
resolver->push_new_type_rib (resolver->get_type_scope ().peek ());
resolver->push_new_label_rib (resolver->get_label_scope ().peek ());
std::vector bindings
= {PatternBinding (PatternBoundCtx::Product, std::set ())};
for (auto &p : expr.get_params ())
{
resolve_closure_param (p, bindings);
}
ResolveType::go (expr.get_return_type ());
resolver->push_closure_context (expr.get_node_id ());
ResolveExpr::go (expr.get_definition_block (), prefix, canonical_prefix);
resolver->pop_closure_context ();
resolver->get_name_scope ().pop ();
resolver->get_type_scope ().pop ();
resolver->get_label_scope ().pop ();
}
void
ResolveExpr::resolve_closure_param (AST::ClosureParam ¶m,
std::vector &bindings)
{
PatternDeclaration::go (param.get_pattern (), Rib::ItemType::Param, bindings);
if (param.has_type_given ())
ResolveType::go (param.get_type ());
}
ResolveExpr::ResolveExpr (const CanonicalPath &prefix,
const CanonicalPath &canonical_prefix,
bool funny_error)
: ResolverBase (), prefix (prefix), canonical_prefix (canonical_prefix),
funny_error (funny_error)
{}
} // namespace Resolver
} // namespace Rust