aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
blob: ff96a59fd97ac1cd8138a515c05762601bf29051 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
/* Target-dependent code for SPARC.

   Copyright (C) 2003-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "dis-asm.h"
#include "dwarf2.h"
#include "dwarf2/frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "symtab.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "target.h"
#include "target-descriptions.h"
#include "value.h"

#include "sparc-tdep.h"
#include "sparc-ravenscar-thread.h"
#include <algorithm>

struct regset;

/* This file implements the SPARC 32-bit ABI as defined by the section
   "Low-Level System Information" of the SPARC Compliance Definition
   (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC.  The SCD
   lists changes with respect to the original 32-bit psABI as defined
   in the "System V ABI, SPARC Processor Supplement".

   Note that if we talk about SunOS, we mean SunOS 4.x, which was
   BSD-based, which is sometimes (retroactively?) referred to as
   Solaris 1.x.  If we talk about Solaris we mean Solaris 2.x and
   above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
   suffering from severe version number inflation).  Solaris 2.x is
   also known as SunOS 5.x, since that's what uname(1) says.  Solaris
   2.x is SVR4-based.  */

/* Please use the sparc32_-prefix for 32-bit specific code, the
   sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
   code that can handle both.  The 64-bit specific code lives in
   sparc64-tdep.c; don't add any here.  */

/* The SPARC Floating-Point Quad-Precision format is similar to
   big-endian IA-64 Quad-Precision format.  */
#define floatformats_sparc_quad floatformats_ia64_quad

/* The stack pointer is offset from the stack frame by a BIAS of 2047
   (0x7ff) for 64-bit code.  BIAS is likely to be defined on SPARC
   hosts, so undefine it first.  */
#undef BIAS
#define BIAS 2047

/* Macros to extract fields from SPARC instructions.  */
#define X_OP(i) (((i) >> 30) & 0x3)
#define X_RD(i) (((i) >> 25) & 0x1f)
#define X_A(i) (((i) >> 29) & 1)
#define X_COND(i) (((i) >> 25) & 0xf)
#define X_OP2(i) (((i) >> 22) & 0x7)
#define X_IMM22(i) ((i) & 0x3fffff)
#define X_OP3(i) (((i) >> 19) & 0x3f)
#define X_RS1(i) (((i) >> 14) & 0x1f)
#define X_RS2(i) ((i) & 0x1f)
#define X_I(i) (((i) >> 13) & 1)
/* Sign extension macros.  */
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
/* Macros to identify some instructions.  */
/* RETURN (RETT in V8) */
#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))

/* Fetch the instruction at PC.  Instructions are always big-endian
   even if the processor operates in little-endian mode.  */

unsigned long
sparc_fetch_instruction (CORE_ADDR pc)
{
  gdb_byte buf[4];
  unsigned long insn;
  int i;

  /* If we can't read the instruction at PC, return zero.  */
  if (target_read_memory (pc, buf, sizeof (buf)))
    return 0;

  insn = 0;
  for (i = 0; i < sizeof (buf); i++)
    insn = (insn << 8) | buf[i];
  return insn;
}


/* Return non-zero if the instruction corresponding to PC is an "unimp"
   instruction.  */

static int
sparc_is_unimp_insn (CORE_ADDR pc)
{
  const unsigned long insn = sparc_fetch_instruction (pc);
  
  return ((insn & 0xc1c00000) == 0);
}

/* Return non-zero if the instruction corresponding to PC is an
   "annulled" branch, i.e. the annul bit is set.  */

int
sparc_is_annulled_branch_insn (CORE_ADDR pc)
{
  /* The branch instructions featuring an annul bit can be identified
     by the following bit patterns:

     OP=0
      OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
      OP2=2: Branch on Integer Condition Codes (Bcc).
      OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
      OP2=6: Branch on FP Condition Codes (FBcc).
      OP2=3 && Bit28=0:
	     Branch on Integer Register with Prediction (BPr).

     This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
     coprocessor branch instructions (Op2=7).  */

  const unsigned long insn = sparc_fetch_instruction (pc);
  const unsigned op2 = X_OP2 (insn);

  if ((X_OP (insn) == 0)
      && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
	  || ((op2 == 3) && ((insn & 0x10000000) == 0))))
    return X_A (insn);
  else
    return 0;
}

/* OpenBSD/sparc includes StackGhost, which according to the author's
   website http://stackghost.cerias.purdue.edu "... transparently and
   automatically protects applications' stack frames; more
   specifically, it guards the return pointers.  The protection
   mechanisms require no application source or binary modification and
   imposes only a negligible performance penalty."

   The same website provides the following description of how
   StackGhost works:

   "StackGhost interfaces with the kernel trap handler that would
   normally write out registers to the stack and the handler that
   would read them back in.  By XORing a cookie into the
   return-address saved in the user stack when it is actually written
   to the stack, and then XOR it out when the return-address is pulled
   from the stack, StackGhost can cause attacker corrupted return
   pointers to behave in a manner the attacker cannot predict.
   StackGhost can also use several unused bits in the return pointer
   to detect a smashed return pointer and abort the process."

   For GDB this means that whenever we're reading %i7 from a stack
   frame's window save area, we'll have to XOR the cookie.

   More information on StackGuard can be found on in:

   Mike Frantzen and Mike Shuey.  "StackGhost: Hardware Facilitated
   Stack Protection."  2001.  Published in USENIX Security Symposium
   '01.  */

/* Fetch StackGhost Per-Process XOR cookie.  */

ULONGEST
sparc_fetch_wcookie (struct gdbarch *gdbarch)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct target_ops *ops = current_top_target ();
  gdb_byte buf[8];
  int len;

  len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
  if (len == -1)
    return 0;

  /* We should have either an 32-bit or an 64-bit cookie.  */
  gdb_assert (len == 4 || len == 8);

  return extract_unsigned_integer (buf, len, byte_order);
}


/* The functions on this page are intended to be used to classify
   function arguments.  */

/* Check whether TYPE is "Integral or Pointer".  */

static int
sparc_integral_or_pointer_p (const struct type *type)
{
  int len = TYPE_LENGTH (type);

  switch (type->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      /* We have byte, half-word, word and extended-word/doubleword
	 integral types.  The doubleword is an extension to the
	 original 32-bit ABI by the SCD 2.4.x.  */
      return (len == 1 || len == 2 || len == 4 || len == 8);
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      /* Allow either 32-bit or 64-bit pointers.  */
      return (len == 4 || len == 8);
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Floating".  */

static int
sparc_floating_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_FLT:
      {
	int len = TYPE_LENGTH (type);
	return (len == 4 || len == 8 || len == 16);
      }
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Complex Floating".  */

static int
sparc_complex_floating_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_COMPLEX:
      {
	int len = TYPE_LENGTH (type);
	return (len == 8 || len == 16 || len == 32);
      }
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is "Structure or Union".

   In terms of Ada subprogram calls, arrays are treated the same as
   struct and union types.  So this function also returns non-zero
   for array types.  */

static int
sparc_structure_or_union_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_ARRAY:
      return 1;
    default:
      break;
    }

  return 0;
}

/* Return true if TYPE is returned by memory, false if returned by
   register.  */

static bool
sparc_structure_return_p (const struct type *type)
{
  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    {
      /* Float vectors are always returned by memory.  */
      if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
	return true;
      /* Integer vectors are returned by memory if the vector size
	 is greater than 8 bytes long.  */
      return (TYPE_LENGTH (type) > 8);
    }

  if (sparc_floating_p (type))
    {
      /* Floating point types are passed by register for size 4 and
	 8 bytes, and by memory for size 16 bytes.  */
      return (TYPE_LENGTH (type) == 16);
    }

  /* Other than that, only aggregates of all sizes get returned by
     memory.  */
  return sparc_structure_or_union_p (type);
}

/* Return true if arguments of the given TYPE are passed by
   memory; false if returned by register.  */

static bool
sparc_arg_by_memory_p (const struct type *type)
{
  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    {
      /* Float vectors are always passed by memory.  */
      if (sparc_floating_p (check_typedef (TYPE_TARGET_TYPE (type))))
	return true;
      /* Integer vectors are passed by memory if the vector size
	 is greater than 8 bytes long.  */
      return (TYPE_LENGTH (type) > 8);
    }

  /* Floats are passed by register for size 4 and 8 bytes, and by memory
     for size 16 bytes.  */
  if (sparc_floating_p (type))
    return (TYPE_LENGTH (type) == 16);

  /* Complex floats and aggregates of all sizes are passed by memory.  */
  if (sparc_complex_floating_p (type) || sparc_structure_or_union_p (type))
    return true;

  /* Everything else gets passed by register.  */
  return false;
}

/* Register information.  */
#define SPARC32_FPU_REGISTERS                             \
  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",         \
  "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",   \
  "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
  "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
#define SPARC32_CP0_REGISTERS \
  "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"

static const char * const sparc_core_register_names[] = {
  SPARC_CORE_REGISTERS
};
static const char * const sparc32_fpu_register_names[] = {
  SPARC32_FPU_REGISTERS
};
static const char * const sparc32_cp0_register_names[] = {
  SPARC32_CP0_REGISTERS
};

static const char * const sparc32_register_names[] =
{
  SPARC_CORE_REGISTERS,
  SPARC32_FPU_REGISTERS,
  SPARC32_CP0_REGISTERS
};

/* Total number of registers.  */
#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)

/* We provide the aliases %d0..%d30 for the floating registers as
   "psuedo" registers.  */

static const char * const sparc32_pseudo_register_names[] =
{
  "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
  "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
};

/* Total number of pseudo registers.  */
#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)

/* Return the name of pseudo register REGNUM.  */

static const char *
sparc32_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  if (regnum < SPARC32_NUM_PSEUDO_REGS)
    return sparc32_pseudo_register_names[regnum];

  internal_error (__FILE__, __LINE__,
		  _("sparc32_pseudo_register_name: bad register number %d"),
		  regnum);
}

/* Return the name of register REGNUM.  */

static const char *
sparc32_register_name (struct gdbarch *gdbarch, int regnum)
{
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, regnum);

  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    return sparc32_register_names[regnum];

  return sparc32_pseudo_register_name (gdbarch, regnum);
}

/* Construct types for ISA-specific registers.  */

static struct type *
sparc_psr_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->sparc_psr_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 32);
      append_flags_type_flag (type, 5, "ET");
      append_flags_type_flag (type, 6, "PS");
      append_flags_type_flag (type, 7, "S");
      append_flags_type_flag (type, 12, "EF");
      append_flags_type_flag (type, 13, "EC");

      tdep->sparc_psr_type = type;
    }

  return tdep->sparc_psr_type;
}

static struct type *
sparc_fsr_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->sparc_fsr_type)
    {
      struct type *type;

      type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 32);
      append_flags_type_flag (type, 0, "NXA");
      append_flags_type_flag (type, 1, "DZA");
      append_flags_type_flag (type, 2, "UFA");
      append_flags_type_flag (type, 3, "OFA");
      append_flags_type_flag (type, 4, "NVA");
      append_flags_type_flag (type, 5, "NXC");
      append_flags_type_flag (type, 6, "DZC");
      append_flags_type_flag (type, 7, "UFC");
      append_flags_type_flag (type, 8, "OFC");
      append_flags_type_flag (type, 9, "NVC");
      append_flags_type_flag (type, 22, "NS");
      append_flags_type_flag (type, 23, "NXM");
      append_flags_type_flag (type, 24, "DZM");
      append_flags_type_flag (type, 25, "UFM");
      append_flags_type_flag (type, 26, "OFM");
      append_flags_type_flag (type, 27, "NVM");

      tdep->sparc_fsr_type = type;
    }

  return tdep->sparc_fsr_type;
}

/* Return the GDB type object for the "standard" data type of data in
   pseudo register REGNUM.  */

static struct type *
sparc32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  regnum -= gdbarch_num_regs (gdbarch);

  if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
    return builtin_type (gdbarch)->builtin_double;

  internal_error (__FILE__, __LINE__,
		  _("sparc32_pseudo_register_type: bad register number %d"),
		  regnum);
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  */

static struct type *
sparc32_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_type (gdbarch, regnum);

  if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
    return builtin_type (gdbarch)->builtin_float;

  if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;

  if (regnum == SPARC32_PSR_REGNUM)
    return sparc_psr_type (gdbarch);

  if (regnum == SPARC32_FSR_REGNUM)
    return sparc_fsr_type (gdbarch);

  if (regnum >= gdbarch_num_regs (gdbarch))
    return sparc32_pseudo_register_type (gdbarch, regnum);

  return builtin_type (gdbarch)->builtin_int32;
}

static enum register_status
sparc32_pseudo_register_read (struct gdbarch *gdbarch,
			      readable_regcache *regcache,
			      int regnum, gdb_byte *buf)
{
  enum register_status status;

  regnum -= gdbarch_num_regs (gdbarch);
  gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);

  regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
  status = regcache->raw_read (regnum, buf);
  if (status == REG_VALID)
    status = regcache->raw_read (regnum + 1, buf + 4);
  return status;
}

static void
sparc32_pseudo_register_write (struct gdbarch *gdbarch,
			       struct regcache *regcache,
			       int regnum, const gdb_byte *buf)
{
  regnum -= gdbarch_num_regs (gdbarch);
  gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);

  regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
  regcache->raw_write (regnum, buf);
  regcache->raw_write (regnum + 1, buf + 4);
}

/* Implement the stack_frame_destroyed_p gdbarch method.  */

int
sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  /* This function must return true if we are one instruction after an
     instruction that destroyed the stack frame of the current
     function.  The SPARC instructions used to restore the callers
     stack frame are RESTORE and RETURN/RETT.

     Of these RETURN/RETT is a branch instruction and thus we return
     true if we are in its delay slot.

     RESTORE is almost always found in the delay slot of a branch
     instruction that transfers control to the caller, such as JMPL.
     Thus the next instruction is in the caller frame and we don't
     need to do anything about it.  */

  unsigned int insn = sparc_fetch_instruction (pc - 4);

  return X_RETTURN (insn);
}


static CORE_ADDR
sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
{
  /* The ABI requires double-word alignment.  */
  return address & ~0x7;
}

static CORE_ADDR
sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
			 CORE_ADDR funcaddr,
			 struct value **args, int nargs,
			 struct type *value_type,
			 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
			 struct regcache *regcache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  *bp_addr = sp - 4;
  *real_pc = funcaddr;

  if (using_struct_return (gdbarch, NULL, value_type))
    {
      gdb_byte buf[4];

      /* This is an UNIMP instruction.  */
      store_unsigned_integer (buf, 4, byte_order,
			      TYPE_LENGTH (value_type) & 0x1fff);
      write_memory (sp - 8, buf, 4);
      return sp - 8;
    }

  return sp - 4;
}

static CORE_ADDR
sparc32_store_arguments (struct regcache *regcache, int nargs,
			 struct value **args, CORE_ADDR sp,
			 function_call_return_method return_method,
			 CORE_ADDR struct_addr)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* Number of words in the "parameter array".  */
  int num_elements = 0;
  int element = 0;
  int i;

  for (i = 0; i < nargs; i++)
    {
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);

      if (sparc_arg_by_memory_p (type))
	{
	  /* Structure, Union and Quad-Precision Arguments.  */
	  sp -= len;

	  /* Use doubleword alignment for these values.  That's always
	     correct, and wasting a few bytes shouldn't be a problem.  */
	  sp &= ~0x7;

	  write_memory (sp, value_contents (args[i]), len);
	  args[i] = value_from_pointer (lookup_pointer_type (type), sp);
	  num_elements++;
	}
      else if (sparc_floating_p (type))
	{
	  /* Floating arguments.  */
	  gdb_assert (len == 4 || len == 8);
	  num_elements += (len / 4);
	}
      else
	{
	  /* Arguments passed via the General Purpose Registers.  */
	  num_elements += ((len + 3) / 4);
	}
    }

  /* Always allocate at least six words.  */
  sp -= std::max (6, num_elements) * 4;

  /* The psABI says that "Software convention requires space for the
     struct/union return value pointer, even if the word is unused."  */
  sp -= 4;

  /* The psABI says that "Although software convention and the
     operating system require every stack frame to be doubleword
     aligned."  */
  sp &= ~0x7;

  for (i = 0; i < nargs; i++)
    {
      const bfd_byte *valbuf = value_contents (args[i]);
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);
      gdb_byte buf[4];

      if (len < 4)
	{
	  memset (buf, 0, 4 - len);
	  memcpy (buf + 4 - len, valbuf, len);
	  valbuf = buf;
	  len = 4;
	}

      gdb_assert (len == 4 || len == 8);

      if (element < 6)
	{
	  int regnum = SPARC_O0_REGNUM + element;

	  regcache->cooked_write (regnum, valbuf);
	  if (len > 4 && element < 5)
	    regcache->cooked_write (regnum + 1, valbuf + 4);
	}

      /* Always store the argument in memory.  */
      write_memory (sp + 4 + element * 4, valbuf, len);
      element += len / 4;
    }

  gdb_assert (element == num_elements);

  if (return_method == return_method_struct)
    {
      gdb_byte buf[4];

      store_unsigned_integer (buf, 4, byte_order, struct_addr);
      write_memory (sp, buf, 4);
    }

  return sp;
}

static CORE_ADDR
sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			 struct regcache *regcache, CORE_ADDR bp_addr,
			 int nargs, struct value **args, CORE_ADDR sp,
			 function_call_return_method return_method,
			 CORE_ADDR struct_addr)
{
  CORE_ADDR call_pc = (return_method == return_method_struct
		       ? (bp_addr - 12) : (bp_addr - 8));

  /* Set return address.  */
  regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);

  /* Set up function arguments.  */
  sp = sparc32_store_arguments (regcache, nargs, args, sp, return_method,
				struct_addr);

  /* Allocate the 16-word window save area.  */
  sp -= 16 * 4;

  /* Stack should be doubleword aligned at this point.  */
  gdb_assert (sp % 8 == 0);

  /* Finally, update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);

  return sp;
}


/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.  */
constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };

typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;


/* Allocate and initialize a frame cache.  */

static struct sparc_frame_cache *
sparc_alloc_frame_cache (void)
{
  struct sparc_frame_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->frameless_p = 1;
  cache->frame_offset = 0;
  cache->saved_regs_mask = 0;
  cache->copied_regs_mask = 0;
  cache->struct_return_p = 0;

  return cache;
}

/* GCC generates several well-known sequences of instructions at the begining
   of each function prologue when compiling with -fstack-check.  If one of
   such sequences starts at START_PC, then return the address of the
   instruction immediately past this sequence.  Otherwise, return START_PC.  */
   
static CORE_ADDR
sparc_skip_stack_check (const CORE_ADDR start_pc)
{
  CORE_ADDR pc = start_pc;
  unsigned long insn;
  int probing_loop = 0;

  /* With GCC, all stack checking sequences begin with the same two
     instructions, plus an optional one in the case of a probing loop:

	 sethi <some immediate>, %g1
	 sub %sp, %g1, %g1

     or:

	 sethi <some immediate>, %g1
	 sethi <some immediate>, %g4
	 sub %sp, %g1, %g1

     or:

	 sethi <some immediate>, %g1
	 sub %sp, %g1, %g1
	 sethi <some immediate>, %g4

     If the optional instruction is found (setting g4), assume that a
     probing loop will follow.  */

  /* sethi <some immediate>, %g1 */
  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;
  if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
    return start_pc;

  /* optional: sethi <some immediate>, %g4 */
  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
    {
      probing_loop = 1;
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
    }

  /* sub %sp, %g1, %g1 */
  if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
	&& X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
    return start_pc;

  insn = sparc_fetch_instruction (pc);
  pc = pc + 4;

  /* optional: sethi <some immediate>, %g4 */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
    {
      probing_loop = 1;
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
    }

  /* First possible sequence:
	 [first two instructions above]
	 clr [%g1 - some immediate]  */

  /* clr [%g1 - some immediate]  */
  if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
      && X_RS1 (insn) == 1 && X_RD (insn) == 0)
    {
      /* Valid stack-check sequence, return the new PC.  */
      return pc;
    }

  /* Second possible sequence: A small number of probes.
	 [first two instructions above]
	 clr [%g1]
	 add   %g1, -<some immediate>, %g1
	 clr [%g1]
	 [repeat the two instructions above any (small) number of times]
	 clr [%g1 - some immediate]  */

  /* clr [%g1] */
  else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
      && X_RS1 (insn) == 1 && X_RD (insn) == 0)
    {
      while (1)
	{
	  /* add %g1, -<some immediate>, %g1 */
	  insn = sparc_fetch_instruction (pc);
	  pc = pc + 4;
	  if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
		&& X_RS1 (insn) == 1 && X_RD (insn) == 1))
	    break;

	  /* clr [%g1] */
	  insn = sparc_fetch_instruction (pc);
	  pc = pc + 4;
	  if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
		&& X_RD (insn) == 0 && X_RS1 (insn) == 1))
	    return start_pc;
	}

      /* clr [%g1 - some immediate] */
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
	    && X_RS1 (insn) == 1 && X_RD (insn) == 0))
	return start_pc;

      /* We found a valid stack-check sequence, return the new PC.  */
      return pc;
    }
  
  /* Third sequence: A probing loop.
	 [first three instructions above]
	 sub  %g1, %g4, %g4
	 cmp  %g1, %g4
	 be  <disp>
	 add  %g1, -<some immediate>, %g1
	 ba  <disp>
	 clr  [%g1]

     And an optional last probe for the remainder:

	 clr [%g4 - some immediate]  */

  if (probing_loop)
    {
      /* sub  %g1, %g4, %g4 */
      if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
	    && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
	return start_pc;

      /* cmp  %g1, %g4 */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
	    && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
	return start_pc;

      /* be  <disp> */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
	return start_pc;

      /* add  %g1, -<some immediate>, %g1 */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 2  && X_OP3(insn) == 0 && X_I(insn)
	    && X_RS1 (insn) == 1 && X_RD (insn) == 1))
	return start_pc;

      /* ba  <disp> */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
	return start_pc;

      /* clr  [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
	    && X_RD (insn) == 0 && X_RS1 (insn) == 1
	    && (!X_I(insn) || X_SIMM13 (insn) == 0)))
	return start_pc;

      /* We found a valid stack-check sequence, return the new PC.  */

      /* optional: clr [%g4 - some immediate]  */
      insn = sparc_fetch_instruction (pc);
      pc = pc + 4;
      if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
	    && X_RS1 (insn) == 4 && X_RD (insn) == 0))
	return pc - 4;
      else
	return pc;
    }

  /* No stack check code in our prologue, return the start_pc.  */
  return start_pc;
}

/* Record the effect of a SAVE instruction on CACHE.  */

void
sparc_record_save_insn (struct sparc_frame_cache *cache)
{
  /* The frame is set up.  */
  cache->frameless_p = 0;

  /* The frame pointer contains the CFA.  */
  cache->frame_offset = 0;

  /* The `local' and `in' registers are all saved.  */
  cache->saved_regs_mask = 0xffff;

  /* The `out' registers are all renamed.  */
  cache->copied_regs_mask = 0xff;
}

/* Do a full analysis of the prologue at PC and update CACHE accordingly.
   Bail out early if CURRENT_PC is reached.  Return the address where
   the analysis stopped.

   We handle both the traditional register window model and the single
   register window (aka flat) model.  */

CORE_ADDR
sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
			CORE_ADDR current_pc, struct sparc_frame_cache *cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  unsigned long insn;
  int offset = 0;
  int dest = -1;

  pc = sparc_skip_stack_check (pc);

  if (current_pc <= pc)
    return current_pc;

  /* We have to handle to "Procedure Linkage Table" (PLT) special.  On
     SPARC the linker usually defines a symbol (typically
     _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
     This symbol makes us end up here with PC pointing at the start of
     the PLT and CURRENT_PC probably pointing at a PLT entry.  If we
     would do our normal prologue analysis, we would probably conclude
     that we've got a frame when in reality we don't, since the
     dynamic linker patches up the first PLT with some code that
     starts with a SAVE instruction.  Patch up PC such that it points
     at the start of our PLT entry.  */
  if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
    pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);

  insn = sparc_fetch_instruction (pc);

  /* Recognize store insns and record their sources.  */
  while (X_OP (insn) == 3
	 && (X_OP3 (insn) == 0x4     /* stw */
	     || X_OP3 (insn) == 0x7  /* std */
	     || X_OP3 (insn) == 0xe) /* stx */
	 && X_RS1 (insn) == SPARC_SP_REGNUM)
    {
      int regnum = X_RD (insn);

      /* Recognize stores into the corresponding stack slots.  */
      if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
	  && ((X_I (insn)
	       && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
				      ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
				      : (regnum - SPARC_L0_REGNUM) * 4))
	      || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
	{
	  cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
	  if (X_OP3 (insn) == 0x7)
	    cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
	}

      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Recognize a SETHI insn and record its destination.  */
  if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
    {
      dest = X_RD (insn);
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Allow for an arithmetic operation on DEST or %g1.  */
  if (X_OP (insn) == 2 && X_I (insn)
      && (X_RD (insn) == 1 || X_RD (insn) == dest))
    {
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);
    }

  /* Check for the SAVE instruction that sets up the frame.  */
  if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
    {
      sparc_record_save_insn (cache);
      offset += 4;
      return pc + offset;
    }

  /* Check for an arithmetic operation on %sp.  */
  if (X_OP (insn) == 2
      && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
      && X_RS1 (insn) == SPARC_SP_REGNUM
      && X_RD (insn) == SPARC_SP_REGNUM)
    {
      if (X_I (insn))
	{
	  cache->frame_offset = X_SIMM13 (insn);
	  if (X_OP3 (insn) == 0)
	    cache->frame_offset = -cache->frame_offset;
	}
      offset += 4;

      insn = sparc_fetch_instruction (pc + offset);

      /* Check for an arithmetic operation that sets up the frame.  */
      if (X_OP (insn) == 2
	  && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
	  && X_RS1 (insn) == SPARC_SP_REGNUM
	  && X_RD (insn) == SPARC_FP_REGNUM)
	{
	  cache->frameless_p = 0;
	  cache->frame_offset = 0;
	  /* We could check that the amount subtracted to %sp above is the
	     same as the one added here, but this seems superfluous.  */
	  cache->copied_regs_mask |= 0x40;
	  offset += 4;

	  insn = sparc_fetch_instruction (pc + offset);
	}

      /* Check for a move (or) operation that copies the return register.  */
      if (X_OP (insn) == 2
	  && X_OP3 (insn) == 0x2
	  && !X_I (insn)
	  && X_RS1 (insn) == SPARC_G0_REGNUM
	  && X_RS2 (insn) == SPARC_O7_REGNUM
	  && X_RD (insn) == SPARC_I7_REGNUM)
	{
	   cache->copied_regs_mask |= 0x80;
	   offset += 4;
	}

      return pc + offset;
    }

  return pc;
}

/* Return PC of first real instruction of the function starting at
   START_PC.  */

static CORE_ADDR
sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_addr;
  struct sparc_frame_cache cache;

  /* This is the preferred method, find the end of the prologue by
     using the debugging information.  */

  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
	return std::max (start_pc, post_prologue_pc);
    }

  start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);

  /* The psABI says that "Although the first 6 words of arguments
     reside in registers, the standard stack frame reserves space for
     them.".  It also suggests that a function may use that space to
     "write incoming arguments 0 to 5" into that space, and that's
     indeed what GCC seems to be doing.  In that case GCC will
     generate debug information that points to the stack slots instead
     of the registers, so we should consider the instructions that
     write out these incoming arguments onto the stack.  */

  while (1)
    {
      unsigned long insn = sparc_fetch_instruction (start_pc);

      /* Recognize instructions that store incoming arguments into the
	 corresponding stack slots.  */
      if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
	  && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
	{
	  int regnum = X_RD (insn);

	  /* Case of arguments still in %o[0..5].  */
	  if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
	      && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
	    {
	      start_pc += 4;
	      continue;
	    }

	  /* Case of arguments copied into %i[0..5].  */
	  if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
	      && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
	      && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
	    {
	      start_pc += 4;
	      continue;
	    }
	}

      break;
    }

  return start_pc;
}

/* Normal frames.  */

struct sparc_frame_cache *
sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache;

  if (*this_cache)
    return (struct sparc_frame_cache *) *this_cache;

  cache = sparc_alloc_frame_cache ();
  *this_cache = cache;

  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
    sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
			    get_frame_pc (this_frame), cache);

  if (cache->frameless_p)
    {
      /* This function is frameless, so %fp (%i6) holds the frame
	 pointer for our calling frame.  Use %sp (%o6) as this frame's
	 base address.  */
      cache->base =
	get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
    }
  else
    {
      /* For normal frames, %fp (%i6) holds the frame pointer, the
	 base address for the current stack frame.  */
      cache->base =
	get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
    }

  cache->base += cache->frame_offset;

  if (cache->base & 1)
    cache->base += BIAS;

  return cache;
}

static int
sparc32_struct_return_from_sym (struct symbol *sym)
{
  struct type *type = check_typedef (SYMBOL_TYPE (sym));
  enum type_code code = type->code ();

  if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
    {
      type = check_typedef (TYPE_TARGET_TYPE (type));
      if (sparc_structure_or_union_p (type)
	  || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
	return 1;
    }

  return 0;
}

struct sparc_frame_cache *
sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache;
  struct symbol *sym;

  if (*this_cache)
    return (struct sparc_frame_cache *) *this_cache;

  cache = sparc_frame_cache (this_frame, this_cache);

  sym = find_pc_function (cache->pc);
  if (sym)
    {
      cache->struct_return_p = sparc32_struct_return_from_sym (sym);
    }
  else
    {
      /* There is no debugging information for this function to
	 help us determine whether this function returns a struct
	 or not.  So we rely on another heuristic which is to check
	 the instruction at the return address and see if this is
	 an "unimp" instruction.  If it is, then it is a struct-return
	 function.  */
      CORE_ADDR pc;
      int regnum =
	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;

      pc = get_frame_register_unsigned (this_frame, regnum) + 8;
      if (sparc_is_unimp_insn (pc))
	cache->struct_return_p = 1;
    }

  return cache;
}

static void
sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
		       struct frame_id *this_id)
{
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  (*this_id) = frame_id_build (cache->base, cache->pc);
}

static struct value *
sparc32_frame_prev_register (struct frame_info *this_frame,
			     void **this_cache, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
    {
      CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;

      /* If this functions has a Structure, Union or Quad-Precision
	 return value, we have to skip the UNIMP instruction that encodes
	 the size of the structure.  */
      if (cache->struct_return_p)
	pc += 4;

      regnum =
	(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
      pc += get_frame_register_unsigned (this_frame, regnum) + 8;
      return frame_unwind_got_constant (this_frame, regnum, pc);
    }

  /* Handle StackGhost.  */
  {
    ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);

    if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
      {
	CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
	ULONGEST i7;

	/* Read the value in from memory.  */
	i7 = get_frame_memory_unsigned (this_frame, addr, 4);
	return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
      }
  }

  /* The previous frame's `local' and `in' registers may have been saved
     in the register save area.  */
  if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
      && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
    {
      CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;

      return frame_unwind_got_memory (this_frame, regnum, addr);
    }

  /* The previous frame's `out' registers may be accessible as the current
     frame's `in' registers.  */
  if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
      && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
    regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind sparc32_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  sparc32_frame_this_id,
  sparc32_frame_prev_register,
  NULL,
  default_frame_sniffer
};


static CORE_ADDR
sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct sparc_frame_cache *cache =
    sparc32_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base sparc32_frame_base =
{
  &sparc32_frame_unwind,
  sparc32_frame_base_address,
  sparc32_frame_base_address,
  sparc32_frame_base_address
};

static struct frame_id
sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp;

  sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
  if (sp & 1)
    sp += BIAS;
  return frame_id_build (sp, get_frame_pc (this_frame));
}


/* Extract a function return value of TYPE from REGCACHE, and copy
   that into VALBUF.  */

static void
sparc32_extract_return_value (struct type *type, struct regcache *regcache,
			      gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[32];

  gdb_assert (!sparc_structure_return_p (type));

  if (sparc_floating_p (type) || sparc_complex_floating_p (type)
      || type->code () == TYPE_CODE_ARRAY)
    {
      /* Floating return values.  */
      regcache->cooked_read (SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache->cooked_read (SPARC_F1_REGNUM, buf + 4);
      if (len > 8)
	{
	  regcache->cooked_read (SPARC_F2_REGNUM, buf + 8);
	  regcache->cooked_read (SPARC_F3_REGNUM, buf + 12);
	}
      if (len > 16)
	{
	  regcache->cooked_read (SPARC_F4_REGNUM, buf + 16);
	  regcache->cooked_read (SPARC_F5_REGNUM, buf + 20);
	  regcache->cooked_read (SPARC_F6_REGNUM, buf + 24);
	  regcache->cooked_read (SPARC_F7_REGNUM, buf + 28);
	}
      memcpy (valbuf, buf, len);
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      regcache->cooked_read (SPARC_O0_REGNUM, buf);
      if (len > 4)
	{
	  regcache->cooked_read (SPARC_O1_REGNUM, buf + 4);
	  gdb_assert (len == 8);
	  memcpy (valbuf, buf, 8);
	}
      else
	{
	  /* Just stripping off any unused bytes should preserve the
	     signed-ness just fine.  */
	  memcpy (valbuf, buf + 4 - len, len);
	}
    }
}

/* Store the function return value of type TYPE from VALBUF into
   REGCACHE.  */

static void
sparc32_store_return_value (struct type *type, struct regcache *regcache,
			    const gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (type);
  gdb_byte buf[32];

  gdb_assert (!sparc_structure_return_p (type));

  if (sparc_floating_p (type) || sparc_complex_floating_p (type))
    {
      /* Floating return values.  */
      memcpy (buf, valbuf, len);
      regcache->cooked_write (SPARC_F0_REGNUM, buf);
      if (len > 4)
	regcache->cooked_write (SPARC_F1_REGNUM, buf + 4);
      if (len > 8)
	{
	  regcache->cooked_write (SPARC_F2_REGNUM, buf + 8);
	  regcache->cooked_write (SPARC_F3_REGNUM, buf + 12);
	}
      if (len > 16)
	{
	  regcache->cooked_write (SPARC_F4_REGNUM, buf + 16);
	  regcache->cooked_write (SPARC_F5_REGNUM, buf + 20);
	  regcache->cooked_write (SPARC_F6_REGNUM, buf + 24);
	  regcache->cooked_write (SPARC_F7_REGNUM, buf + 28);
	}
    }
  else
    {
      /* Integral and pointer return values.  */
      gdb_assert (sparc_integral_or_pointer_p (type));

      if (len > 4)
	{
	  gdb_assert (len == 8);
	  memcpy (buf, valbuf, 8);
	  regcache->cooked_write (SPARC_O1_REGNUM, buf + 4);
	}
      else
	{
	  /* ??? Do we need to do any sign-extension here?  */
	  memcpy (buf + 4 - len, valbuf, len);
	}
      regcache->cooked_write (SPARC_O0_REGNUM, buf);
    }
}

static enum return_value_convention
sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
		      struct type *type, struct regcache *regcache,
		      gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The psABI says that "...every stack frame reserves the word at
     %fp+64.  If a function returns a structure, union, or
     quad-precision value, this word should hold the address of the
     object into which the return value should be copied."  This
     guarantees that we can always find the return value, not just
     before the function returns.  */

  if (sparc_structure_return_p (type))
    {
      ULONGEST sp;
      CORE_ADDR addr;

      if (readbuf)
	{
	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}
      if (writebuf)
	{
	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
	  write_memory (addr, writebuf, TYPE_LENGTH (type));
	}

      return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
    }

  if (readbuf)
    sparc32_extract_return_value (type, regcache, readbuf);
  if (writebuf)
    sparc32_store_return_value (type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

static int
sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
{
  return (sparc_structure_or_union_p (type)
	  || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
	  || sparc_complex_floating_p (type));
}

static int
sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct symbol *sym = find_pc_function (pc);

  if (sym)
    return sparc32_struct_return_from_sym (sym);
  return 0;
}

static void
sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			       struct dwarf2_frame_state_reg *reg,
			       struct frame_info *this_frame)
{
  int off;

  switch (regnum)
    {
    case SPARC_G0_REGNUM:
      /* Since %g0 is always zero, there is no point in saving it, and
	 people will be inclined omit it from the CFI.  Make sure we
	 don't warn about that.  */
      reg->how = DWARF2_FRAME_REG_SAME_VALUE;
      break;
    case SPARC_SP_REGNUM:
      reg->how = DWARF2_FRAME_REG_CFA;
      break;
    case SPARC32_PC_REGNUM:
    case SPARC32_NPC_REGNUM:
      reg->how = DWARF2_FRAME_REG_RA_OFFSET;
      off = 8;
      if (sparc32_dwarf2_struct_return_p (this_frame))
	off += 4;
      if (regnum == SPARC32_NPC_REGNUM)
	off += 4;
      reg->loc.offset = off;
      break;
    }
}

/* Implement the execute_dwarf_cfa_vendor_op method.  */

static bool
sparc_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
				   struct dwarf2_frame_state *fs)
{
  /* Only DW_CFA_GNU_window_save is expected on SPARC.  */
  if (op != DW_CFA_GNU_window_save)
    return false;

  uint64_t reg;
  int size = register_size (gdbarch, 0);

  fs->regs.alloc_regs (32);
  for (reg = 8; reg < 16; reg++)
    {
      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
      fs->regs.reg[reg].loc.reg = reg + 16;
    }
  for (reg = 16; reg < 32; reg++)
    {
      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
      fs->regs.reg[reg].loc.offset = (reg - 16) * size;
    }

  return true;
}


/* The SPARC Architecture doesn't have hardware single-step support,
   and most operating systems don't implement it either, so we provide
   software single-step mechanism.  */

static CORE_ADDR
sparc_analyze_control_transfer (struct regcache *regcache,
				CORE_ADDR pc, CORE_ADDR *npc)
{
  unsigned long insn = sparc_fetch_instruction (pc);
  int conditional_p = X_COND (insn) & 0x7;
  int branch_p = 0, fused_p = 0;
  long offset = 0;			/* Must be signed for sign-extend.  */

  if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
    {
      if ((insn & 0x10000000) == 0)
	{
	  /* Branch on Integer Register with Prediction (BPr).  */
	  branch_p = 1;
	  conditional_p = 1;
	}
      else
	{
	  /* Compare and Branch  */
	  branch_p = 1;
	  fused_p = 1;
	  offset = 4 * X_DISP10 (insn);
	}
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
    {
      /* Branch on Floating-Point Condition Codes (FBfcc).  */
      branch_p = 1;
      offset = 4 * X_DISP22 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
    {
      /* Branch on Floating-Point Condition Codes with Prediction
	 (FBPfcc).  */
      branch_p = 1;
      offset = 4 * X_DISP19 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
    {
      /* Branch on Integer Condition Codes (Bicc).  */
      branch_p = 1;
      offset = 4 * X_DISP22 (insn);
    }
  else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
    {
      /* Branch on Integer Condition Codes with Prediction (BPcc).  */
      branch_p = 1;
      offset = 4 * X_DISP19 (insn);
    }
  else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
    {
      struct frame_info *frame = get_current_frame ();

      /* Trap instruction (TRAP).  */
      return gdbarch_tdep (regcache->arch ())->step_trap (frame,
								     insn);
    }

  /* FIXME: Handle DONE and RETRY instructions.  */

  if (branch_p)
    {
      if (fused_p)
	{
	  /* Fused compare-and-branch instructions are non-delayed,
	     and do not have an annulling capability.  So we need to
	     always set a breakpoint on both the NPC and the branch
	     target address.  */
	  gdb_assert (offset != 0);
	  return pc + offset;
	}
      else if (conditional_p)
	{
	  /* For conditional branches, return nPC + 4 iff the annul
	     bit is 1.  */
	  return (X_A (insn) ? *npc + 4 : 0);
	}
      else
	{
	  /* For unconditional branches, return the target if its
	     specified condition is "always" and return nPC + 4 if the
	     condition is "never".  If the annul bit is 1, set *NPC to
	     zero.  */
	  if (X_COND (insn) == 0x0)
	    pc = *npc, offset = 4;
	  if (X_A (insn))
	    *npc = 0;

	  return pc + offset;
	}
    }

  return 0;
}

static CORE_ADDR
sparc_step_trap (struct frame_info *frame, unsigned long insn)
{
  return 0;
}

static std::vector<CORE_ADDR>
sparc_software_single_step (struct regcache *regcache)
{
  struct gdbarch *arch = regcache->arch ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  CORE_ADDR npc, nnpc;

  CORE_ADDR pc, orig_npc;
  std::vector<CORE_ADDR> next_pcs;

  pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
  orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);

  /* Analyze the instruction at PC.  */
  nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
  if (npc != 0)
    next_pcs.push_back (npc);

  if (nnpc != 0)
    next_pcs.push_back (nnpc);

  /* Assert that we have set at least one breakpoint, and that
     they're not set at the same spot - unless we're going
     from here straight to NULL, i.e. a call or jump to 0.  */
  gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
  gdb_assert (nnpc != npc || orig_npc == 0);

  return next_pcs;
}

static void
sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());

  regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
  regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
}


/* Iterate over core file register note sections.  */

static void
sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
				    iterate_over_regset_sections_cb *cb,
				    void *cb_data,
				    const struct regcache *regcache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, tdep->gregset, NULL,
      cb_data);
  cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
      NULL, cb_data);
}


static int
validate_tdesc_registers (const struct target_desc *tdesc,
			  struct tdesc_arch_data *tdesc_data,
			  const char *feature_name,
			  const char * const register_names[],
			  unsigned int registers_num,
			  unsigned int reg_start)
{
  int valid_p = 1;
  const struct tdesc_feature *feature;

  feature = tdesc_find_feature (tdesc, feature_name);
  if (feature == NULL)
    return 0;

  for (unsigned int i = 0; i < registers_num; i++)
    valid_p &= tdesc_numbered_register (feature, tdesc_data,
					reg_start + i,
					register_names[i]);

  return valid_p;
}

static struct gdbarch *
sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  const struct target_desc *tdesc = info.target_desc;
  struct gdbarch *gdbarch;
  int valid_p = 1;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  tdep = XCNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  tdep->pc_regnum = SPARC32_PC_REGNUM;
  tdep->npc_regnum = SPARC32_NPC_REGNUM;
  tdep->step_trap = sparc_step_trap;
  tdep->fpu_register_names = sparc32_fpu_register_names;
  tdep->fpu_registers_num = ARRAY_SIZE (sparc32_fpu_register_names);
  tdep->cp0_register_names = sparc32_cp0_register_names;
  tdep->cp0_registers_num = ARRAY_SIZE (sparc32_cp0_register_names);

  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);

  set_gdbarch_wchar_bit (gdbarch, 16);
  set_gdbarch_wchar_signed (gdbarch, 1);

  set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
  set_gdbarch_register_name (gdbarch, sparc32_register_name);
  set_gdbarch_register_type (gdbarch, sparc32_register_type);
  set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
  set_tdesc_pseudo_register_name (gdbarch, sparc32_pseudo_register_name);
  set_tdesc_pseudo_register_type (gdbarch, sparc32_pseudo_register_type);
  set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
  set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
  set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */

  /* Call dummy code.  */
  set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
  set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);

  set_gdbarch_return_value (gdbarch, sparc32_return_value);
  set_gdbarch_stabs_argument_has_addr
    (gdbarch, sparc32_stabs_argument_has_addr);

  set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       sparc_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       sparc_breakpoint::bp_from_kind);

  set_gdbarch_frame_args_skip (gdbarch, 8);

  set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
  set_gdbarch_write_pc (gdbarch, sparc_write_pc);

  set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);

  frame_base_set_default (gdbarch, &sparc32_frame_base);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
  /* Register DWARF vendor CFI handler.  */
  set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
					   sparc_execute_dwarf_cfa_vendor_op);
  /* FIXME: kettenis/20050423: Don't enable the unwinder until the
     StackGhost issues have been resolved.  */

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);

  if (tdesc_has_registers (tdesc))
    {
      tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();

      /* Validate that the descriptor provides the mandatory registers
	 and allocate their numbers. */
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.cpu",
					   sparc_core_register_names,
					   ARRAY_SIZE (sparc_core_register_names),
					   SPARC_G0_REGNUM);
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.fpu",
					   tdep->fpu_register_names,
					   tdep->fpu_registers_num,
					   SPARC_F0_REGNUM);
      valid_p &= validate_tdesc_registers (tdesc, tdesc_data.get (),
					   "org.gnu.gdb.sparc.cp0",
					   tdep->cp0_register_names,
					   tdep->cp0_registers_num,
					   SPARC_F0_REGNUM
					   + tdep->fpu_registers_num);
      if (!valid_p)
	return NULL;

      /* Target description may have changed. */
      info.tdesc_data = tdesc_data.get ();
      tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
    }

  /* If we have register sets, enable the generic core file support.  */
  if (tdep->gregset)
    set_gdbarch_iterate_over_regset_sections
      (gdbarch, sparc_iterate_over_regset_sections);

  register_sparc_ravenscar_ops (gdbarch);

  return gdbarch;
}

/* Helper functions for dealing with register windows.  */

void
sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int offset = 0;
  gdb_byte buf[8];
  int i;

  if (sp & 1)
    {
      /* Registers are 64-bit.  */
      sp += BIAS;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    {
	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
		  store_unsigned_integer (buf + offset, 8, byte_order,
					  i7 ^ wcookie);
		}

	      regcache->raw_supply (i, buf);
	    }
	}
    }
  else
    {
      /* Registers are 32-bit.  Toss any sign-extension of the stack
	 pointer.  */
      sp &= 0xffffffffUL;

      /* Clear out the top half of the temporary buffer, and put the
	 register value in the bottom half if we're in 64-bit mode.  */
      if (gdbarch_ptr_bit (regcache->arch ()) == 64)
	{
	  memset (buf, 0, 4);
	  offset = 4;
	}

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    {
	      target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
				  buf + offset, 4);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
		  store_unsigned_integer (buf + offset, 4, byte_order,
					  i7 ^ wcookie);
		}

	      regcache->raw_supply (i, buf);
	    }
	}
    }
}

void
sparc_collect_rwindow (const struct regcache *regcache,
		       CORE_ADDR sp, int regnum)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int offset = 0;
  gdb_byte buf[8];
  int i;

  if (sp & 1)
    {
      /* Registers are 64-bit.  */
      sp += BIAS;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
	    {
	      regcache->raw_collect (i, buf);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
		  store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
		}

	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
	    }
	}
    }
  else
    {
      /* Registers are 32-bit.  Toss any sign-extension of the stack
	 pointer.  */
      sp &= 0xffffffffUL;

      /* Only use the bottom half if we're in 64-bit mode.  */
      if (gdbarch_ptr_bit (regcache->arch ()) == 64)
	offset = 4;

      for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	{
	  if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
	    {
	      regcache->raw_collect (i, buf);

	      /* Handle StackGhost.  */
	      if (i == SPARC_I7_REGNUM)
		{
		  ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
		  ULONGEST i7;

		  i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
		  store_unsigned_integer (buf + offset, 4, byte_order,
					  i7 ^ wcookie);
		}

	      target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
				   buf + offset, 4);
	    }
	}
    }
}

/* Helper functions for dealing with register sets.  */

void
sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
			struct regcache *regcache,
			int regnum, const void *gregs)
{
  const gdb_byte *regs = (const gdb_byte *) gregs;
  gdb_byte zero[4] = { 0 };
  int i;

  if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);

  if (regnum == SPARC32_PC_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);

  if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);

  if (regnum == SPARC32_Y_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);

  if (regnum == SPARC_G0_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC_G0_REGNUM, &zero);

  if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
    {
      int offset = gregmap->r_g1_offset;

      for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache->raw_supply (i, regs + offset);
	  offset += 4;
	}
    }

  if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
    {
      /* Not all of the register set variants include Locals and
	 Inputs.  For those that don't, we read them off the stack.  */
      if (gregmap->r_l0_offset == -1)
	{
	  ULONGEST sp;

	  regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
	  sparc_supply_rwindow (regcache, sp, regnum);
	}
      else
	{
	  int offset = gregmap->r_l0_offset;

	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	    {
	      if (regnum == i || regnum == -1)
		regcache->raw_supply (i, regs + offset);
	      offset += 4;
	    }
	}
    }
}

void
sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
			 const struct regcache *regcache,
			 int regnum, void *gregs)
{
  gdb_byte *regs = (gdb_byte *) gregs;
  int i;

  if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_PSR_REGNUM, regs + gregmap->r_psr_offset);

  if (regnum == SPARC32_PC_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_PC_REGNUM, regs + gregmap->r_pc_offset);

  if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_NPC_REGNUM, regs + gregmap->r_npc_offset);

  if (regnum == SPARC32_Y_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_Y_REGNUM, regs + gregmap->r_y_offset);

  if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
    {
      int offset = gregmap->r_g1_offset;

      /* %g0 is always zero.  */
      for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
	{
	  if (regnum == i || regnum == -1)
	    regcache->raw_collect (i, regs + offset);
	  offset += 4;
	}
    }

  if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
    {
      /* Not all of the register set variants include Locals and
	 Inputs.  For those that don't, we read them off the stack.  */
      if (gregmap->r_l0_offset != -1)
	{
	  int offset = gregmap->r_l0_offset;

	  for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
	    {
	      if (regnum == i || regnum == -1)
		regcache->raw_collect (i, regs + offset);
	      offset += 4;
	    }
	}
    }
}

void
sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
			 struct regcache *regcache,
			 int regnum, const void *fpregs)
{
  const gdb_byte *regs = (const gdb_byte *) fpregs;
  int i;

  for (i = 0; i < 32; i++)
    {
      if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
	regcache->raw_supply (SPARC_F0_REGNUM + i,
			      regs + fpregmap->r_f0_offset + (i * 4));
    }

  if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
    regcache->raw_supply (SPARC32_FSR_REGNUM, regs + fpregmap->r_fsr_offset);
}

void
sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
			  const struct regcache *regcache,
			  int regnum, void *fpregs)
{
  gdb_byte *regs = (gdb_byte *) fpregs;
  int i;

  for (i = 0; i < 32; i++)
    {
      if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
	regcache->raw_collect (SPARC_F0_REGNUM + i,
			       regs + fpregmap->r_f0_offset + (i * 4));
    }

  if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
    regcache->raw_collect (SPARC32_FSR_REGNUM,
			   regs + fpregmap->r_fsr_offset);
}


/* SunOS 4.  */

/* From <machine/reg.h>.  */
const struct sparc_gregmap sparc32_sunos4_gregmap =
{
  0 * 4,			/* %psr */
  1 * 4,			/* %pc */
  2 * 4,			/* %npc */
  3 * 4,			/* %y */
  -1,				/* %wim */
  -1,				/* %tbr */
  4 * 4,			/* %g1 */
  -1				/* %l0 */
};

const struct sparc_fpregmap sparc32_sunos4_fpregmap =
{
  0 * 4,			/* %f0 */
  33 * 4,			/* %fsr */
};

const struct sparc_fpregmap sparc32_bsd_fpregmap =
{
  0 * 4,			/* %f0 */
  32 * 4,			/* %fsr */
};

void _initialize_sparc_tdep ();
void
_initialize_sparc_tdep ()
{
  register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
}