/* mem.c --- memory for RX simulator. Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by Red Hat, Inc. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This slows down the simulator and we get some false negatives from gcc, like when it uses a long-sized hole to hold a byte-sized variable, knowing that it doesn't care about the other bits. But, if you need to track down a read-from-unitialized bug, set this to 1. */ #define RDCHECK 0 #include "config.h" #include #include #include #include "opcode/rx.h" #include "mem.h" #include "cpu.h" #include "syscalls.h" #include "misc.h" #include "err.h" #define L1_BITS (10) #define L2_BITS (10) #define OFF_BITS PAGE_BITS #define L1_LEN (1 << L1_BITS) #define L2_LEN (1 << L2_BITS) #define OFF_LEN (1 << OFF_BITS) static unsigned char **pt[L1_LEN]; static unsigned char **ptr[L1_LEN]; static RX_Opcode_Decoded ***ptdc[L1_LEN]; /* [ get=0/put=1 ][ byte size ] */ static unsigned int mem_counters[2][5]; #define COUNT(isput,bytes) \ if (verbose && enable_counting) mem_counters[isput][bytes]++ void init_mem (void) { int i, j; for (i = 0; i < L1_LEN; i++) if (pt[i]) { for (j = 0; j < L2_LEN; j++) if (pt[i][j]) free (pt[i][j]); free (pt[i]); } memset (pt, 0, sizeof (pt)); memset (ptr, 0, sizeof (ptr)); memset (mem_counters, 0, sizeof (mem_counters)); } unsigned char * rx_mem_ptr (unsigned long address, enum mem_ptr_action action) { int pt1 = (address >> (L2_BITS + OFF_BITS)) & ((1 << L1_BITS) - 1); int pt2 = (address >> OFF_BITS) & ((1 << L2_BITS) - 1); int pto = address & ((1 << OFF_BITS) - 1); if (address == 0) execution_error (SIM_ERR_NULL_POINTER_DEREFERENCE, 0); if (pt[pt1] == 0) { pt[pt1] = (unsigned char **) calloc (L2_LEN, sizeof (char **)); ptr[pt1] = (unsigned char **) calloc (L2_LEN, sizeof (char **)); ptdc[pt1] = (RX_Opcode_Decoded ***) calloc (L2_LEN, sizeof (RX_Opcode_Decoded ***)); } if (pt[pt1][pt2] == 0) { if (action == MPA_READING) execution_error (SIM_ERR_READ_UNWRITTEN_PAGES, address); pt[pt1][pt2] = (unsigned char *) calloc (OFF_LEN, 1); ptr[pt1][pt2] = (unsigned char *) calloc (OFF_LEN, 1); ptdc[pt1][pt2] = (RX_Opcode_Decoded **) calloc (OFF_LEN, sizeof(RX_Opcode_Decoded *)); } else if (action == MPA_READING && ptr[pt1][pt2][pto] == MC_UNINIT) execution_error (SIM_ERR_READ_UNWRITTEN_BYTES, address); if (action == MPA_WRITING) { int pto_dc; if (ptr[pt1][pt2][pto] == MC_PUSHED_PC) execution_error (SIM_ERR_CORRUPT_STACK, address); ptr[pt1][pt2][pto] = MC_DATA; /* The instruction decoder doesn't store it's decoded instructions at word swapped addresses. Therefore, when clearing the decode cache, we have to account for that here. */ pto_dc = pto ^ (rx_big_endian ? 3 : 0); if (ptdc[pt1][pt2][pto_dc]) { free (ptdc[pt1][pt2][pto_dc]); ptdc[pt1][pt2][pto_dc] = NULL; } } if (action == MPA_CONTENT_TYPE) return (unsigned char *) (ptr[pt1][pt2] + pto); if (action == MPA_DECODE_CACHE) return (unsigned char *) (ptdc[pt1][pt2] + pto); return pt[pt1][pt2] + pto; } RX_Opcode_Decoded ** rx_mem_decode_cache (unsigned long address) { return (RX_Opcode_Decoded **) rx_mem_ptr (address, MPA_DECODE_CACHE); } static inline int is_reserved_address (unsigned int address) { return (address >= 0x00020000 && address < 0x00080000) || (address >= 0x00100000 && address < 0x01000000) || (address >= 0x08000000 && address < 0xff000000); } static void used (int rstart, int i, int j) { int rend = i << (L2_BITS + OFF_BITS); rend += j << OFF_BITS; if (rstart == 0xe0000 && rend == 0xe1000) return; printf ("mem: %08x - %08x (%dk bytes)\n", rstart, rend - 1, (rend - rstart) / 1024); } static char * mcs (int isput, int bytes) { return comma (mem_counters[isput][bytes]); } void mem_usage_stats () { int i, j; int rstart = 0; int pending = 0; for (i = 0; i < L1_LEN; i++) if (pt[i]) { for (j = 0; j < L2_LEN; j++) if (pt[i][j]) { if (!pending) { pending = 1; rstart = (i << (L2_BITS + OFF_BITS)) + (j << OFF_BITS); } } else if (pending) { pending = 0; used (rstart, i, j); } } else { if (pending) { pending = 0; used (rstart, i, 0); } } /* mem foo: 123456789012 123456789012 123456789012 123456789012 123456789012 */ printf (" byte short 3byte long" " opcode\n"); if (verbose > 1) { /* Only use comma separated numbers when being very verbose. Comma separated numbers are hard to parse in awk scripts. */ printf ("mem get: %12s %12s %12s %12s %12s\n", mcs (0, 1), mcs (0, 2), mcs (0, 3), mcs (0, 4), mcs (0, 0)); printf ("mem put: %12s %12s %12s %12s\n", mcs (1, 1), mcs (1, 2), mcs (1, 3), mcs (1, 4)); } else { printf ("mem get: %12u %12u %12u %12u %12u\n", mem_counters[0][1], mem_counters[0][2], mem_counters[0][3], mem_counters[0][4], mem_counters[0][0]); printf ("mem put: %12u %12u %12u %12u\n", mem_counters [1][1], mem_counters [1][2], mem_counters [1][3], mem_counters [1][4]); } } unsigned long mem_usage_cycles (void) { unsigned long rv = mem_counters[0][0]; rv += mem_counters[0][1] * 1; rv += mem_counters[0][2] * 2; rv += mem_counters[0][3] * 3; rv += mem_counters[0][4] * 4; rv += mem_counters[1][1] * 1; rv += mem_counters[1][2] * 2; rv += mem_counters[1][3] * 3; rv += mem_counters[1][4] * 4; return rv; } static int tpr = 0; static void s (int address, char *dir) { if (tpr == 0) printf ("MEM[%08x] %s", address, dir); tpr++; } #define S(d) if (trace) s(address, d) static void e () { if (!trace) return; tpr--; if (tpr == 0) printf ("\n"); } static char mtypec (int address) { unsigned char *cp = rx_mem_ptr (address, MPA_CONTENT_TYPE); return "udp"[*cp]; } #define E() if (trace) e() void mem_put_byte (unsigned int address, unsigned char value) { unsigned char *m; char tc = ' '; if (trace) tc = mtypec (address); m = rx_mem_ptr (address, MPA_WRITING); if (trace) printf (" %02x%c", value, tc); *m = value; switch (address) { case 0x0008c02a: /* PA.DR */ { static int old_led = -1; int red_on = 0; int i; if (old_led != value) { fputs (" ", stdout); for (i = 0; i < 8; i++) if (value & (1 << i)) { if (! red_on) { fputs ("\033[31m", stdout); red_on = 1; } fputs (" @", stdout); } else { if (red_on) { fputs ("\033[0m", stdout); red_on = 0; } fputs (" *", stdout); } if (red_on) fputs ("\033[0m", stdout); fputs ("\r", stdout); fflush (stdout); old_led = value; } } break; #ifdef CYCLE_STATS case 0x0008c02b: /* PB.DR */ { if (value == 0) halt_pipeline_stats (); else reset_pipeline_stats (); } #endif case 0x00088263: /* SCI4.TDR */ { static int pending_exit = 0; if (pending_exit == 2) { step_result = RX_MAKE_EXITED(value); longjmp (decode_jmp_buf, 1); } else if (value == 3) pending_exit ++; else pending_exit = 0; putchar(value); } break; default: if (is_reserved_address (address)) generate_access_exception (); } } void mem_put_qi (int address, unsigned char value) { S ("<="); mem_put_byte (address, value & 0xff); E (); COUNT (1, 1); } #ifdef CYCLE_ACCURATE static int tpu_base; #endif void mem_put_hi (int address, unsigned short value) { S ("<="); switch (address) { #ifdef CYCLE_ACCURATE case 0x00088126: /* TPU1.TCNT */ tpu_base = regs.cycle_count; break; case 0x00088136: /* TPU2.TCNT */ tpu_base = regs.cycle_count; break; #endif default: if (rx_big_endian) { mem_put_byte (address, value >> 8); mem_put_byte (address + 1, value & 0xff); } else { mem_put_byte (address, value & 0xff); mem_put_byte (address + 1, value >> 8); } } E (); COUNT (1, 2); } void mem_put_psi (int address, unsigned long value) { S ("<="); if (rx_big_endian) { mem_put_byte (address, value >> 16); mem_put_byte (address + 1, (value >> 8) & 0xff); mem_put_byte (address + 2, value & 0xff); } else { mem_put_byte (address, value & 0xff); mem_put_byte (address + 1, (value >> 8) & 0xff); mem_put_byte (address + 2, value >> 16); } E (); COUNT (1, 3); } void mem_put_si (int address, unsigned long value) { S ("<="); if (rx_big_endian) { mem_put_byte (address + 0, (value >> 24) & 0xff); mem_put_byte (address + 1, (value >> 16) & 0xff); mem_put_byte (address + 2, (value >> 8) & 0xff); mem_put_byte (address + 3, value & 0xff); } else { mem_put_byte (address + 0, value & 0xff); mem_put_byte (address + 1, (value >> 8) & 0xff); mem_put_byte (address + 2, (value >> 16) & 0xff); mem_put_byte (address + 3, (value >> 24) & 0xff); } E (); COUNT (1, 4); } void mem_put_blk (int address, void *bufptr, int nbytes) { S ("<="); if (enable_counting) mem_counters[1][1] += nbytes; while (nbytes--) mem_put_byte (address++, *(unsigned char *) bufptr++); E (); } unsigned char mem_get_pc (int address) { unsigned char *m = rx_mem_ptr (address, MPA_READING); COUNT (0, 0); return *m; } static unsigned char mem_get_byte (unsigned int address) { unsigned char *m; S ("=>"); m = rx_mem_ptr (address, MPA_READING); switch (address) { case 0x00088264: /* SCI4.SSR */ E(); return 0x04; /* transmitter empty */ break; default: if (trace) printf (" %02x%c", *m, mtypec (address)); if (is_reserved_address (address)) generate_access_exception (); break; } E (); return *m; } unsigned char mem_get_qi (int address) { unsigned char rv; S ("=>"); rv = mem_get_byte (address); COUNT (0, 1); E (); return rv; } unsigned short mem_get_hi (int address) { unsigned short rv; S ("=>"); switch (address) { #ifdef CYCLE_ACCURATE case 0x00088126: /* TPU1.TCNT */ rv = (regs.cycle_count - tpu_base) >> 16; break; case 0x00088136: /* TPU2.TCNT */ rv = (regs.cycle_count - tpu_base) >> 0; break; #endif default: if (rx_big_endian) { rv = mem_get_byte (address) << 8; rv |= mem_get_byte (address + 1); } else { rv = mem_get_byte (address); rv |= mem_get_byte (address + 1) << 8; } } COUNT (0, 2); E (); return rv; } unsigned long mem_get_psi (int address) { unsigned long rv; S ("=>"); if (rx_big_endian) { rv = mem_get_byte (address + 2); rv |= mem_get_byte (address + 1) << 8; rv |= mem_get_byte (address) << 16; } else { rv = mem_get_byte (address); rv |= mem_get_byte (address + 1) << 8; rv |= mem_get_byte (address + 2) << 16; } COUNT (0, 3); E (); return rv; } unsigned long mem_get_si (int address) { unsigned long rv; S ("=>"); if (rx_big_endian) { rv = mem_get_byte (address + 3); rv |= mem_get_byte (address + 2) << 8; rv |= mem_get_byte (address + 1) << 16; rv |= mem_get_byte (address) << 24; } else { rv = mem_get_byte (address); rv |= mem_get_byte (address + 1) << 8; rv |= mem_get_byte (address + 2) << 16; rv |= mem_get_byte (address + 3) << 24; } COUNT (0, 4); E (); return rv; } void mem_get_blk (int address, void *bufptr, int nbytes) { S ("=>"); if (enable_counting) mem_counters[0][1] += nbytes; while (nbytes--) *(char *) bufptr++ = mem_get_byte (address++); E (); } int sign_ext (int v, int bits) { if (bits < 32) { v &= (1 << bits) - 1; if (v & (1 << (bits - 1))) v -= (1 << bits); } return v; } void mem_set_content_type (int address, enum mem_content_type type) { unsigned char *mt = rx_mem_ptr (address, MPA_CONTENT_TYPE); *mt = type; } void mem_set_content_range (int start_address, int end_address, enum mem_content_type type) { while (start_address < end_address) { int sz, ofs; unsigned char *mt; sz = end_address - start_address; ofs = start_address % L1_LEN; if (sz + ofs > L1_LEN) sz = L1_LEN - ofs; mt = rx_mem_ptr (start_address, MPA_CONTENT_TYPE); memset (mt, type, sz); start_address += sz; } } enum mem_content_type mem_get_content_type (int address) { unsigned char *mt = rx_mem_ptr (address, MPA_CONTENT_TYPE); return *mt; }