// symtab.cc -- the gold symbol table // Copyright 2006, 2007 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include #include #include "demangle.h" #include "object.h" #include "dwarf_reader.h" #include "dynobj.h" #include "output.h" #include "target.h" #include "workqueue.h" #include "symtab.h" namespace gold { // Class Symbol. // Initialize fields in Symbol. This initializes everything except u_ // and source_. void Symbol::init_fields(const char* name, const char* version, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->name_ = name; this->version_ = version; this->symtab_index_ = 0; this->dynsym_index_ = 0; this->got_offset_ = 0; this->plt_offset_ = 0; this->type_ = type; this->binding_ = binding; this->visibility_ = visibility; this->nonvis_ = nonvis; this->is_target_special_ = false; this->is_def_ = false; this->is_forwarder_ = false; this->has_alias_ = false; this->needs_dynsym_entry_ = false; this->in_reg_ = false; this->in_dyn_ = false; this->has_got_offset_ = false; this->has_plt_offset_ = false; this->has_warning_ = false; this->is_copied_from_dynobj_ = false; } // Return the demangled version of the symbol's name, but only // if the --demangle flag was set. static std::string demangle(const char* name) { if (!parameters->demangle()) return name; // cplus_demangle allocates memory for the result it returns, // and returns NULL if the name is already demangled. char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS); if (demangled_name == NULL) return name; std::string retval(demangled_name); free(demangled_name); return retval; } std::string Symbol::demangled_name() const { return demangle(this->name()); } // Initialize the fields in the base class Symbol for SYM in OBJECT. template void Symbol::init_base(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(), sym.get_st_visibility(), sym.get_st_nonvis()); this->u_.from_object.object = object; // FIXME: Handle SHN_XINDEX. this->u_.from_object.shndx = sym.get_st_shndx(); this->source_ = FROM_OBJECT; this->in_reg_ = !object->is_dynamic(); this->in_dyn_ = object->is_dynamic(); } // Initialize the fields in the base class Symbol for a symbol defined // in an Output_data. void Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->u_.in_output_data.output_data = od; this->u_.in_output_data.offset_is_from_end = offset_is_from_end; this->source_ = IN_OUTPUT_DATA; this->in_reg_ = true; } // Initialize the fields in the base class Symbol for a symbol defined // in an Output_segment. void Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Segment_offset_base offset_base) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->u_.in_output_segment.output_segment = os; this->u_.in_output_segment.offset_base = offset_base; this->source_ = IN_OUTPUT_SEGMENT; this->in_reg_ = true; } // Initialize the fields in the base class Symbol for a symbol defined // as a constant. void Symbol::init_base(const char* name, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->source_ = CONSTANT; this->in_reg_ = true; } // Allocate a common symbol in the base. void Symbol::allocate_base_common(Output_data* od) { gold_assert(this->is_common()); this->source_ = IN_OUTPUT_DATA; this->u_.in_output_data.output_data = od; this->u_.in_output_data.offset_is_from_end = false; } // Initialize the fields in Sized_symbol for SYM in OBJECT. template template void Sized_symbol::init(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_base(name, version, object, sym); this->value_ = sym.get_st_value(); this->symsize_ = sym.get_st_size(); } // Initialize the fields in Sized_symbol for a symbol defined in an // Output_data. template void Sized_symbol::init(const char* name, Output_data* od, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end) { this->init_base(name, od, type, binding, visibility, nonvis, offset_is_from_end); this->value_ = value; this->symsize_ = symsize; } // Initialize the fields in Sized_symbol for a symbol defined in an // Output_segment. template void Sized_symbol::init(const char* name, Output_segment* os, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Segment_offset_base offset_base) { this->init_base(name, os, type, binding, visibility, nonvis, offset_base); this->value_ = value; this->symsize_ = symsize; } // Initialize the fields in Sized_symbol for a symbol defined as a // constant. template void Sized_symbol::init(const char* name, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->init_base(name, type, binding, visibility, nonvis); this->value_ = value; this->symsize_ = symsize; } // Allocate a common symbol. template void Sized_symbol::allocate_common(Output_data* od, Value_type value) { this->allocate_base_common(od); this->value_ = value; } // Return true if this symbol should be added to the dynamic symbol // table. inline bool Symbol::should_add_dynsym_entry() const { // If the symbol is used by a dynamic relocation, we need to add it. if (this->needs_dynsym_entry()) return true; // If exporting all symbols or building a shared library, // and the symbol is defined in a regular object and is // externally visible, we need to add it. if ((parameters->export_dynamic() || parameters->output_is_shared()) && !this->is_from_dynobj() && this->is_externally_visible()) return true; return false; } // Return true if the final value of this symbol is known at link // time. bool Symbol::final_value_is_known() const { // If we are not generating an executable, then no final values are // known, since they will change at runtime. if (!parameters->output_is_executable()) return false; // If the symbol is not from an object file, then it is defined, and // known. if (this->source_ != FROM_OBJECT) return true; // If the symbol is from a dynamic object, then the final value is // not known. if (this->object()->is_dynamic()) return false; // If the symbol is not undefined (it is defined or common), then // the final value is known. if (!this->is_undefined()) return true; // If the symbol is undefined, then whether the final value is known // depends on whether we are doing a static link. If we are doing a // dynamic link, then the final value could be filled in at runtime. // This could reasonably be the case for a weak undefined symbol. return parameters->doing_static_link(); } // Class Symbol_table. Symbol_table::Symbol_table(unsigned int count) : saw_undefined_(0), offset_(0), table_(count), namepool_(), forwarders_(), commons_(), warnings_() { namepool_.reserve(count); } Symbol_table::~Symbol_table() { } // The hash function. The key values are Stringpool keys. inline size_t Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const { return key.first ^ key.second; } // The symbol table key equality function. This is called with // Stringpool keys. inline bool Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1, const Symbol_table_key& k2) const { return k1.first == k2.first && k1.second == k2.second; } // Make TO a symbol which forwards to FROM. void Symbol_table::make_forwarder(Symbol* from, Symbol* to) { gold_assert(from != to); gold_assert(!from->is_forwarder() && !to->is_forwarder()); this->forwarders_[from] = to; from->set_forwarder(); } // Resolve the forwards from FROM, returning the real symbol. Symbol* Symbol_table::resolve_forwards(const Symbol* from) const { gold_assert(from->is_forwarder()); Unordered_map::const_iterator p = this->forwarders_.find(from); gold_assert(p != this->forwarders_.end()); return p->second; } // Look up a symbol by name. Symbol* Symbol_table::lookup(const char* name, const char* version) const { Stringpool::Key name_key; name = this->namepool_.find(name, &name_key); if (name == NULL) return NULL; Stringpool::Key version_key = 0; if (version != NULL) { version = this->namepool_.find(version, &version_key); if (version == NULL) return NULL; } Symbol_table_key key(name_key, version_key); Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key); if (p == this->table_.end()) return NULL; return p->second; } // Resolve a Symbol with another Symbol. This is only used in the // unusual case where there are references to both an unversioned // symbol and a symbol with a version, and we then discover that that // version is the default version. Because this is unusual, we do // this the slow way, by converting back to an ELF symbol. template void Symbol_table::resolve(Sized_symbol* to, const Sized_symbol* from, const char* version ACCEPT_SIZE_ENDIAN) { unsigned char buf[elfcpp::Elf_sizes::sym_size]; elfcpp::Sym_write esym(buf); // We don't bother to set the st_name field. esym.put_st_value(from->value()); esym.put_st_size(from->symsize()); esym.put_st_info(from->binding(), from->type()); esym.put_st_other(from->visibility(), from->nonvis()); esym.put_st_shndx(from->shndx()); this->resolve(to, esym.sym(), esym.sym(), from->object(), version); if (from->in_reg()) to->set_in_reg(); if (from->in_dyn()) to->set_in_dyn(); } // Add one symbol from OBJECT to the symbol table. NAME is symbol // name and VERSION is the version; both are canonicalized. DEF is // whether this is the default version. // If DEF is true, then this is the definition of a default version of // a symbol. That means that any lookup of NAME/NULL and any lookup // of NAME/VERSION should always return the same symbol. This is // obvious for references, but in particular we want to do this for // definitions: overriding NAME/NULL should also override // NAME/VERSION. If we don't do that, it would be very hard to // override functions in a shared library which uses versioning. // We implement this by simply making both entries in the hash table // point to the same Symbol structure. That is easy enough if this is // the first time we see NAME/NULL or NAME/VERSION, but it is possible // that we have seen both already, in which case they will both have // independent entries in the symbol table. We can't simply change // the symbol table entry, because we have pointers to the entries // attached to the object files. So we mark the entry attached to the // object file as a forwarder, and record it in the forwarders_ map. // Note that entries in the hash table will never be marked as // forwarders. // // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the // symbol exactly as it existed in the input file. SYM is usually // that as well, but can be modified, for instance if we determine // it's in a to-be-discarded section. template Sized_symbol* Symbol_table::add_from_object(Object* object, const char *name, Stringpool::Key name_key, const char *version, Stringpool::Key version_key, bool def, const elfcpp::Sym& sym, const elfcpp::Sym& orig_sym) { Symbol* const snull = NULL; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name_key, version_key), snull)); std::pair insdef = std::make_pair(this->table_.end(), false); if (def) { const Stringpool::Key vnull_key = 0; insdef = this->table_.insert(std::make_pair(std::make_pair(name_key, vnull_key), snull)); } // ins.first: an iterator, which is a pointer to a pair. // ins.first->first: the key (a pair of name and version). // ins.first->second: the value (Symbol*). // ins.second: true if new entry was inserted, false if not. Sized_symbol* ret; bool was_undefined; bool was_common; if (!ins.second) { // We already have an entry for NAME/VERSION. ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second SELECT_SIZE(size)); gold_assert(ret != NULL); was_undefined = ret->is_undefined(); was_common = ret->is_common(); this->resolve(ret, sym, orig_sym, object, version); if (def) { if (insdef.second) { // This is the first time we have seen NAME/NULL. Make // NAME/NULL point to NAME/VERSION. insdef.first->second = ret; } else if (insdef.first->second != ret) { // This is the unfortunate case where we already have // entries for both NAME/VERSION and NAME/NULL. const Sized_symbol* sym2; sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) ( insdef.first->second SELECT_SIZE(size)); Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian)); this->make_forwarder(insdef.first->second, ret); insdef.first->second = ret; } } } else { // This is the first time we have seen NAME/VERSION. gold_assert(ins.first->second == NULL); was_undefined = false; was_common = false; if (def && !insdef.second) { // We already have an entry for NAME/NULL. If we override // it, then change it to NAME/VERSION. ret = this->get_sized_symbol SELECT_SIZE_NAME(size) ( insdef.first->second SELECT_SIZE(size)); this->resolve(ret, sym, orig_sym, object, version); ins.first->second = ret; } else { Sized_target* target = object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( SELECT_SIZE_ENDIAN_ONLY(size, big_endian)); if (!target->has_make_symbol()) ret = new Sized_symbol(); else { ret = target->make_symbol(); if (ret == NULL) { // This means that we don't want a symbol table // entry after all. if (!def) this->table_.erase(ins.first); else { this->table_.erase(insdef.first); // Inserting insdef invalidated ins. this->table_.erase(std::make_pair(name_key, version_key)); } return NULL; } } ret->init(name, version, object, sym); ins.first->second = ret; if (def) { // This is the first time we have seen NAME/NULL. Point // it at the new entry for NAME/VERSION. gold_assert(insdef.second); insdef.first->second = ret; } } } // Record every time we see a new undefined symbol, to speed up // archive groups. if (!was_undefined && ret->is_undefined()) ++this->saw_undefined_; // Keep track of common symbols, to speed up common symbol // allocation. if (!was_common && ret->is_common()) this->commons_.push_back(ret); return ret; } // Add all the symbols in a relocatable object to the hash table. template void Symbol_table::add_from_relobj( Sized_relobj* relobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, typename Sized_relobj::Symbols* sympointers) { gold_assert(size == relobj->target()->get_size()); gold_assert(size == parameters->get_size()); const int sym_size = elfcpp::Elf_sizes::sym_size; const unsigned char* p = syms; for (size_t i = 0; i < count; ++i, p += sym_size) { elfcpp::Sym sym(p); elfcpp::Sym* psym = &sym; unsigned int st_name = psym->get_st_name(); if (st_name >= sym_name_size) { relobj->error(_("bad global symbol name offset %u at %zu"), st_name, i); continue; } const char* name = sym_names + st_name; // A symbol defined in a section which we are not including must // be treated as an undefined symbol. unsigned char symbuf[sym_size]; elfcpp::Sym sym2(symbuf); unsigned int st_shndx = psym->get_st_shndx(); if (st_shndx != elfcpp::SHN_UNDEF && st_shndx < elfcpp::SHN_LORESERVE && !relobj->is_section_included(st_shndx)) { memcpy(symbuf, p, sym_size); elfcpp::Sym_write sw(symbuf); sw.put_st_shndx(elfcpp::SHN_UNDEF); psym = &sym2; } // In an object file, an '@' in the name separates the symbol // name from the version name. If there are two '@' characters, // this is the default version. const char* ver = strchr(name, '@'); Sized_symbol* res; if (ver == NULL) { Stringpool::Key name_key; name = this->namepool_.add(name, true, &name_key); res = this->add_from_object(relobj, name, name_key, NULL, 0, false, *psym, sym); } else { Stringpool::Key name_key; name = this->namepool_.add_prefix(name, ver - name, &name_key); bool def = false; ++ver; if (*ver == '@') { def = true; ++ver; } Stringpool::Key ver_key; ver = this->namepool_.add(ver, true, &ver_key); res = this->add_from_object(relobj, name, name_key, ver, ver_key, def, *psym, sym); } (*sympointers)[i] = res; } } // Add all the symbols in a dynamic object to the hash table. template void Symbol_table::add_from_dynobj( Sized_dynobj* dynobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, const unsigned char* versym, size_t versym_size, const std::vector* version_map) { gold_assert(size == dynobj->target()->get_size()); gold_assert(size == parameters->get_size()); if (versym != NULL && versym_size / 2 < count) { dynobj->error(_("too few symbol versions")); return; } const int sym_size = elfcpp::Elf_sizes::sym_size; // We keep a list of all STT_OBJECT symbols, so that we can resolve // weak aliases. This is necessary because if the dynamic object // provides the same variable under two names, one of which is a // weak definition, and the regular object refers to the weak // definition, we have to put both the weak definition and the // strong definition into the dynamic symbol table. Given a weak // definition, the only way that we can find the corresponding // strong definition, if any, is to search the symbol table. std::vector*> object_symbols; const unsigned char* p = syms; const unsigned char* vs = versym; for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2) { elfcpp::Sym sym(p); // Ignore symbols with local binding. if (sym.get_st_bind() == elfcpp::STB_LOCAL) continue; unsigned int st_name = sym.get_st_name(); if (st_name >= sym_name_size) { dynobj->error(_("bad symbol name offset %u at %zu"), st_name, i); continue; } const char* name = sym_names + st_name; Sized_symbol* res; if (versym == NULL) { Stringpool::Key name_key; name = this->namepool_.add(name, true, &name_key); res = this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym, sym); } else { // Read the version information. unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs); bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0; v &= elfcpp::VERSYM_VERSION; // The Sun documentation says that V can be VER_NDX_LOCAL, // or VER_NDX_GLOBAL, or a version index. The meaning of // VER_NDX_LOCAL is defined as "Symbol has local scope." // The old GNU linker will happily generate VER_NDX_LOCAL // for an undefined symbol. I don't know what the Sun // linker will generate. if (v == static_cast(elfcpp::VER_NDX_LOCAL) && sym.get_st_shndx() != elfcpp::SHN_UNDEF) { // This symbol should not be visible outside the object. continue; } // At this point we are definitely going to add this symbol. Stringpool::Key name_key; name = this->namepool_.add(name, true, &name_key); if (v == static_cast(elfcpp::VER_NDX_LOCAL) || v == static_cast(elfcpp::VER_NDX_GLOBAL)) { // This symbol does not have a version. res = this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym, sym); } else { if (v >= version_map->size()) { dynobj->error(_("versym for symbol %zu out of range: %u"), i, v); continue; } const char* version = (*version_map)[v]; if (version == NULL) { dynobj->error(_("versym for symbol %zu has no name: %u"), i, v); continue; } Stringpool::Key version_key; version = this->namepool_.add(version, true, &version_key); // If this is an absolute symbol, and the version name // and symbol name are the same, then this is the // version definition symbol. These symbols exist to // support using -u to pull in particular versions. We // do not want to record a version for them. if (sym.get_st_shndx() == elfcpp::SHN_ABS && name_key == version_key) res = this->add_from_object(dynobj, name, name_key, NULL, 0, false, sym, sym); else { const bool def = (!hidden && (sym.get_st_shndx() != elfcpp::SHN_UNDEF)); res = this->add_from_object(dynobj, name, name_key, version, version_key, def, sym, sym); } } } if (sym.get_st_shndx() != elfcpp::SHN_UNDEF && sym.get_st_type() == elfcpp::STT_OBJECT) object_symbols.push_back(res); } this->record_weak_aliases(&object_symbols); } // This is used to sort weak aliases. We sort them first by section // index, then by offset, then by weak ahead of strong. template class Weak_alias_sorter { public: bool operator()(const Sized_symbol*, const Sized_symbol*) const; }; template bool Weak_alias_sorter::operator()(const Sized_symbol* s1, const Sized_symbol* s2) const { if (s1->shndx() != s2->shndx()) return s1->shndx() < s2->shndx(); if (s1->value() != s2->value()) return s1->value() < s2->value(); if (s1->binding() != s2->binding()) { if (s1->binding() == elfcpp::STB_WEAK) return true; if (s2->binding() == elfcpp::STB_WEAK) return false; } return std::string(s1->name()) < std::string(s2->name()); } // SYMBOLS is a list of object symbols from a dynamic object. Look // for any weak aliases, and record them so that if we add the weak // alias to the dynamic symbol table, we also add the corresponding // strong symbol. template void Symbol_table::record_weak_aliases(std::vector*>* symbols) { // Sort the vector by section index, then by offset, then by weak // ahead of strong. std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter()); // Walk through the vector. For each weak definition, record // aliases. for (typename std::vector*>::const_iterator p = symbols->begin(); p != symbols->end(); ++p) { if ((*p)->binding() != elfcpp::STB_WEAK) continue; // Build a circular list of weak aliases. Each symbol points to // the next one in the circular list. Sized_symbol* from_sym = *p; typename std::vector*>::const_iterator q; for (q = p + 1; q != symbols->end(); ++q) { if ((*q)->shndx() != from_sym->shndx() || (*q)->value() != from_sym->value()) break; this->weak_aliases_[from_sym] = *q; from_sym->set_has_alias(); from_sym = *q; } if (from_sym != *p) { this->weak_aliases_[from_sym] = *p; from_sym->set_has_alias(); } p = q - 1; } } // Create and return a specially defined symbol. If ONLY_IF_REF is // true, then only create the symbol if there is a reference to it. // If this does not return NULL, it sets *POLDSYM to the existing // symbol if there is one. This canonicalizes *PNAME and *PVERSION. template Sized_symbol* Symbol_table::define_special_symbol(const Target* target, const char** pname, const char** pversion, bool only_if_ref, Sized_symbol** poldsym ACCEPT_SIZE_ENDIAN) { Symbol* oldsym; Sized_symbol* sym; bool add_to_table = false; typename Symbol_table_type::iterator add_loc = this->table_.end(); if (only_if_ref) { oldsym = this->lookup(*pname, *pversion); if (oldsym == NULL || !oldsym->is_undefined()) return NULL; *pname = oldsym->name(); *pversion = oldsym->version(); } else { // Canonicalize NAME and VERSION. Stringpool::Key name_key; *pname = this->namepool_.add(*pname, true, &name_key); Stringpool::Key version_key = 0; if (*pversion != NULL) *pversion = this->namepool_.add(*pversion, true, &version_key); Symbol* const snull = NULL; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name_key, version_key), snull)); if (!ins.second) { // We already have a symbol table entry for NAME/VERSION. oldsym = ins.first->second; gold_assert(oldsym != NULL); } else { // We haven't seen this symbol before. gold_assert(ins.first->second == NULL); add_to_table = true; add_loc = ins.first; oldsym = NULL; } } if (!target->has_make_symbol()) sym = new Sized_symbol(); else { gold_assert(target->get_size() == size); gold_assert(target->is_big_endian() ? big_endian : !big_endian); typedef Sized_target My_target; const My_target* sized_target = static_cast(target); sym = sized_target->make_symbol(); if (sym == NULL) return NULL; } if (add_to_table) add_loc->second = sym; else gold_assert(oldsym != NULL); *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym SELECT_SIZE(size)); return sym; } // Define a symbol based on an Output_data. Symbol* Symbol_table::define_in_output_data(const Target* target, const char* name, const char* version, Output_data* od, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end, bool only_if_ref) { if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) return this->do_define_in_output_data<32>(target, name, version, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end, only_if_ref); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) return this->do_define_in_output_data<64>(target, name, version, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end, only_if_ref); #else gold_unreachable(); #endif } else gold_unreachable(); } // Define a symbol in an Output_data, sized version. template Sized_symbol* Symbol_table::do_define_in_output_data( const Target* target, const char* name, const char* version, Output_data* od, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end, bool only_if_ref) { Sized_symbol* sym; Sized_symbol* oldsym; if (parameters->is_big_endian()) { #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, true)); #else gold_unreachable(); #endif } else { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, false)); #else gold_unreachable(); #endif } if (sym == NULL) return NULL; gold_assert(version == NULL || oldsym != NULL); sym->init(name, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end); if (oldsym != NULL && Symbol_table::should_override_with_special(oldsym)) this->override_with_special(oldsym, sym); return sym; } // Define a symbol based on an Output_segment. Symbol* Symbol_table::define_in_output_segment(const Target* target, const char* name, const char* version, Output_segment* os, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Symbol::Segment_offset_base offset_base, bool only_if_ref) { if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) return this->do_define_in_output_segment<32>(target, name, version, os, value, symsize, type, binding, visibility, nonvis, offset_base, only_if_ref); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) return this->do_define_in_output_segment<64>(target, name, version, os, value, symsize, type, binding, visibility, nonvis, offset_base, only_if_ref); #else gold_unreachable(); #endif } else gold_unreachable(); } // Define a symbol in an Output_segment, sized version. template Sized_symbol* Symbol_table::do_define_in_output_segment( const Target* target, const char* name, const char* version, Output_segment* os, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Symbol::Segment_offset_base offset_base, bool only_if_ref) { Sized_symbol* sym; Sized_symbol* oldsym; if (parameters->is_big_endian()) { #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, true)); #else gold_unreachable(); #endif } else { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, false)); #else gold_unreachable(); #endif } if (sym == NULL) return NULL; gold_assert(version == NULL || oldsym != NULL); sym->init(name, os, value, symsize, type, binding, visibility, nonvis, offset_base); if (oldsym != NULL && Symbol_table::should_override_with_special(oldsym)) this->override_with_special(oldsym, sym); return sym; } // Define a special symbol with a constant value. It is a multiple // definition error if this symbol is already defined. Symbol* Symbol_table::define_as_constant(const Target* target, const char* name, const char* version, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool only_if_ref) { if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) return this->do_define_as_constant<32>(target, name, version, value, symsize, type, binding, visibility, nonvis, only_if_ref); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) return this->do_define_as_constant<64>(target, name, version, value, symsize, type, binding, visibility, nonvis, only_if_ref); #else gold_unreachable(); #endif } else gold_unreachable(); } // Define a symbol as a constant, sized version. template Sized_symbol* Symbol_table::do_define_as_constant( const Target* target, const char* name, const char* version, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool only_if_ref) { Sized_symbol* sym; Sized_symbol* oldsym; if (parameters->is_big_endian()) { #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, true)); #else gold_unreachable(); #endif } else { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, &name, &version, only_if_ref, &oldsym SELECT_SIZE_ENDIAN(size, false)); #else gold_unreachable(); #endif } if (sym == NULL) return NULL; gold_assert(version == NULL || oldsym != NULL); sym->init(name, value, symsize, type, binding, visibility, nonvis); if (oldsym != NULL && Symbol_table::should_override_with_special(oldsym)) this->override_with_special(oldsym, sym); return sym; } // Define a set of symbols in output sections. void Symbol_table::define_symbols(const Layout* layout, const Target* target, int count, const Define_symbol_in_section* p) { for (int i = 0; i < count; ++i, ++p) { Output_section* os = layout->find_output_section(p->output_section); if (os != NULL) this->define_in_output_data(target, p->name, NULL, os, p->value, p->size, p->type, p->binding, p->visibility, p->nonvis, p->offset_is_from_end, p->only_if_ref); else this->define_as_constant(target, p->name, NULL, 0, p->size, p->type, p->binding, p->visibility, p->nonvis, p->only_if_ref); } } // Define a set of symbols in output segments. void Symbol_table::define_symbols(const Layout* layout, const Target* target, int count, const Define_symbol_in_segment* p) { for (int i = 0; i < count; ++i, ++p) { Output_segment* os = layout->find_output_segment(p->segment_type, p->segment_flags_set, p->segment_flags_clear); if (os != NULL) this->define_in_output_segment(target, p->name, NULL, os, p->value, p->size, p->type, p->binding, p->visibility, p->nonvis, p->offset_base, p->only_if_ref); else this->define_as_constant(target, p->name, NULL, 0, p->size, p->type, p->binding, p->visibility, p->nonvis, p->only_if_ref); } } // Define CSYM using a COPY reloc. POSD is the Output_data where the // symbol should be defined--typically a .dyn.bss section. VALUE is // the offset within POSD. template void Symbol_table::define_with_copy_reloc(const Target* target, Sized_symbol* csym, Output_data* posd, uint64_t value) { gold_assert(csym->is_from_dynobj()); gold_assert(!csym->is_copied_from_dynobj()); Object* object = csym->object(); gold_assert(object->is_dynamic()); Dynobj* dynobj = static_cast(object); // Our copied variable has to override any variable in a shared // library. elfcpp::STB binding = csym->binding(); if (binding == elfcpp::STB_WEAK) binding = elfcpp::STB_GLOBAL; this->define_in_output_data(target, csym->name(), csym->version(), posd, value, csym->symsize(), csym->type(), binding, csym->visibility(), csym->nonvis(), false, false); csym->set_is_copied_from_dynobj(); csym->set_needs_dynsym_entry(); this->copied_symbol_dynobjs_[csym] = dynobj; // We have now defined all aliases, but we have not entered them all // in the copied_symbol_dynobjs_ map. if (csym->has_alias()) { Symbol* sym = csym; while (true) { sym = this->weak_aliases_[sym]; if (sym == csym) break; gold_assert(sym->output_data() == posd); sym->set_is_copied_from_dynobj(); this->copied_symbol_dynobjs_[sym] = dynobj; } } } // SYM is defined using a COPY reloc. Return the dynamic object where // the original definition was found. Dynobj* Symbol_table::get_copy_source(const Symbol* sym) const { gold_assert(sym->is_copied_from_dynobj()); Copied_symbol_dynobjs::const_iterator p = this->copied_symbol_dynobjs_.find(sym); gold_assert(p != this->copied_symbol_dynobjs_.end()); return p->second; } // Set the dynamic symbol indexes. INDEX is the index of the first // global dynamic symbol. Pointers to the symbols are stored into the // vector SYMS. The names are added to DYNPOOL. This returns an // updated dynamic symbol index. unsigned int Symbol_table::set_dynsym_indexes(const Target* target, unsigned int index, std::vector* syms, Stringpool* dynpool, Versions* versions) { for (Symbol_table_type::iterator p = this->table_.begin(); p != this->table_.end(); ++p) { Symbol* sym = p->second; // Note that SYM may already have a dynamic symbol index, since // some symbols appear more than once in the symbol table, with // and without a version. if (!sym->should_add_dynsym_entry()) sym->set_dynsym_index(-1U); else if (!sym->has_dynsym_index()) { sym->set_dynsym_index(index); ++index; syms->push_back(sym); dynpool->add(sym->name(), false, NULL); // Record any version information. if (sym->version() != NULL) versions->record_version(this, dynpool, sym); } } // Finish up the versions. In some cases this may add new dynamic // symbols. index = versions->finalize(target, this, index, syms); return index; } // Set the final values for all the symbols. The index of the first // global symbol in the output file is INDEX. Record the file offset // OFF. Add their names to POOL. Return the new file offset. off_t Symbol_table::finalize(const Task* task, unsigned int index, off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount, Stringpool* pool) { off_t ret; gold_assert(index != 0); this->first_global_index_ = index; this->dynamic_offset_ = dynoff; this->first_dynamic_global_index_ = dyn_global_index; this->dynamic_count_ = dyncount; if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE) ret = this->sized_finalize<32>(index, off, pool); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE) ret = this->sized_finalize<64>(index, off, pool); #else gold_unreachable(); #endif } else gold_unreachable(); // Now that we have the final symbol table, we can reliably note // which symbols should get warnings. this->warnings_.note_warnings(this, task); return ret; } // Set the final value for all the symbols. This is called after // Layout::finalize, so all the output sections have their final // address. template off_t Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool) { off = align_address(off, size >> 3); this->offset_ = off; size_t orig_index = index; const int sym_size = elfcpp::Elf_sizes::sym_size; for (Symbol_table_type::iterator p = this->table_.begin(); p != this->table_.end(); ++p) { Sized_symbol* sym = static_cast*>(p->second); // FIXME: Here we need to decide which symbols should go into // the output file, based on --strip. // The default version of a symbol may appear twice in the // symbol table. We only need to finalize it once. if (sym->has_symtab_index()) continue; if (!sym->in_reg()) { gold_assert(!sym->has_symtab_index()); sym->set_symtab_index(-1U); gold_assert(sym->dynsym_index() == -1U); continue; } typename Sized_symbol::Value_type value; switch (sym->source()) { case Symbol::FROM_OBJECT: { unsigned int shndx = sym->shndx(); // FIXME: We need some target specific support here. if (shndx >= elfcpp::SHN_LORESERVE && shndx != elfcpp::SHN_ABS) { gold_error(_("%s: unsupported symbol section 0x%x"), sym->demangled_name().c_str(), shndx); shndx = elfcpp::SHN_UNDEF; } Object* symobj = sym->object(); if (symobj->is_dynamic()) { value = 0; shndx = elfcpp::SHN_UNDEF; } else if (shndx == elfcpp::SHN_UNDEF) value = 0; else if (shndx == elfcpp::SHN_ABS) value = sym->value(); else { Relobj* relobj = static_cast(symobj); section_offset_type secoff; Output_section* os = relobj->output_section(shndx, &secoff); if (os == NULL) { sym->set_symtab_index(-1U); gold_assert(sym->dynsym_index() == -1U); continue; } if (sym->type() == elfcpp::STT_TLS) value = sym->value() + os->tls_offset() + secoff; else value = sym->value() + os->address() + secoff; } } break; case Symbol::IN_OUTPUT_DATA: { Output_data* od = sym->output_data(); value = sym->value() + od->address(); if (sym->offset_is_from_end()) value += od->data_size(); } break; case Symbol::IN_OUTPUT_SEGMENT: { Output_segment* os = sym->output_segment(); value = sym->value() + os->vaddr(); switch (sym->offset_base()) { case Symbol::SEGMENT_START: break; case Symbol::SEGMENT_END: value += os->memsz(); break; case Symbol::SEGMENT_BSS: value += os->filesz(); break; default: gold_unreachable(); } } break; case Symbol::CONSTANT: value = sym->value(); break; default: gold_unreachable(); } sym->set_value(value); if (parameters->strip_all()) sym->set_symtab_index(-1U); else { sym->set_symtab_index(index); pool->add(sym->name(), false, NULL); ++index; off += sym_size; } } this->output_count_ = index - orig_index; return off; } // Write out the global symbols. void Symbol_table::write_globals(const Input_objects* input_objects, const Stringpool* sympool, const Stringpool* dynpool, Output_file* of) const { if (parameters->get_size() == 32) { if (parameters->is_big_endian()) { #ifdef HAVE_TARGET_32_BIG this->sized_write_globals<32, true>(input_objects, sympool, dynpool, of); #else gold_unreachable(); #endif } else { #ifdef HAVE_TARGET_32_LITTLE this->sized_write_globals<32, false>(input_objects, sympool, dynpool, of); #else gold_unreachable(); #endif } } else if (parameters->get_size() == 64) { if (parameters->is_big_endian()) { #ifdef HAVE_TARGET_64_BIG this->sized_write_globals<64, true>(input_objects, sympool, dynpool, of); #else gold_unreachable(); #endif } else { #ifdef HAVE_TARGET_64_LITTLE this->sized_write_globals<64, false>(input_objects, sympool, dynpool, of); #else gold_unreachable(); #endif } } else gold_unreachable(); } // Write out the global symbols. template void Symbol_table::sized_write_globals(const Input_objects* input_objects, const Stringpool* sympool, const Stringpool* dynpool, Output_file* of) const { const Target* const target = input_objects->target(); const int sym_size = elfcpp::Elf_sizes::sym_size; unsigned int index = this->first_global_index_; const off_t oview_size = this->output_count_ * sym_size; unsigned char* const psyms = of->get_output_view(this->offset_, oview_size); unsigned int dynamic_count = this->dynamic_count_; off_t dynamic_size = dynamic_count * sym_size; unsigned int first_dynamic_global_index = this->first_dynamic_global_index_; unsigned char* dynamic_view; if (this->dynamic_offset_ == 0) dynamic_view = NULL; else dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size); unsigned char* ps = psyms; for (Symbol_table_type::const_iterator p = this->table_.begin(); p != this->table_.end(); ++p) { Sized_symbol* sym = static_cast*>(p->second); // Possibly warn about unresolved symbols in shared libraries. this->warn_about_undefined_dynobj_symbol(input_objects, sym); unsigned int sym_index = sym->symtab_index(); unsigned int dynsym_index; if (dynamic_view == NULL) dynsym_index = -1U; else dynsym_index = sym->dynsym_index(); if (sym_index == -1U && dynsym_index == -1U) { // This symbol is not included in the output file. continue; } if (sym_index == index) ++index; else if (sym_index != -1U) { // We have already seen this symbol, because it has a // default version. gold_assert(sym_index < index); if (dynsym_index == -1U) continue; sym_index = -1U; } unsigned int shndx; typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value(); switch (sym->source()) { case Symbol::FROM_OBJECT: { unsigned int in_shndx = sym->shndx(); // FIXME: We need some target specific support here. if (in_shndx >= elfcpp::SHN_LORESERVE && in_shndx != elfcpp::SHN_ABS) { gold_error(_("%s: unsupported symbol section 0x%x"), sym->demangled_name().c_str(), in_shndx); shndx = in_shndx; } else { Object* symobj = sym->object(); if (symobj->is_dynamic()) { if (sym->needs_dynsym_value()) value = target->dynsym_value(sym); shndx = elfcpp::SHN_UNDEF; } else if (in_shndx == elfcpp::SHN_UNDEF || in_shndx == elfcpp::SHN_ABS) shndx = in_shndx; else { Relobj* relobj = static_cast(symobj); section_offset_type secoff; Output_section* os = relobj->output_section(in_shndx, &secoff); gold_assert(os != NULL); shndx = os->out_shndx(); } } } break; case Symbol::IN_OUTPUT_DATA: shndx = sym->output_data()->out_shndx(); break; case Symbol::IN_OUTPUT_SEGMENT: shndx = elfcpp::SHN_ABS; break; case Symbol::CONSTANT: shndx = elfcpp::SHN_ABS; break; default: gold_unreachable(); } if (sym_index != -1U) { this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( sym, sym->value(), shndx, sympool, ps SELECT_SIZE_ENDIAN(size, big_endian)); ps += sym_size; } if (dynsym_index != -1U) { dynsym_index -= first_dynamic_global_index; gold_assert(dynsym_index < dynamic_count); unsigned char* pd = dynamic_view + (dynsym_index * sym_size); this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( sym, value, shndx, dynpool, pd SELECT_SIZE_ENDIAN(size, big_endian)); } } gold_assert(ps - psyms == oview_size); of->write_output_view(this->offset_, oview_size, psyms); if (dynamic_view != NULL) of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view); } // Write out the symbol SYM, in section SHNDX, to P. POOL is the // strtab holding the name. template void Symbol_table::sized_write_symbol( Sized_symbol* sym, typename elfcpp::Elf_types::Elf_Addr value, unsigned int shndx, const Stringpool* pool, unsigned char* p ACCEPT_SIZE_ENDIAN) const { elfcpp::Sym_write osym(p); osym.put_st_name(pool->get_offset(sym->name())); osym.put_st_value(value); osym.put_st_size(sym->symsize()); osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type())); osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis())); osym.put_st_shndx(shndx); } // Check for unresolved symbols in shared libraries. This is // controlled by the --allow-shlib-undefined option. // We only warn about libraries for which we have seen all the // DT_NEEDED entries. We don't try to track down DT_NEEDED entries // which were not seen in this link. If we didn't see a DT_NEEDED // entry, we aren't going to be able to reliably report whether the // symbol is undefined. // We also don't warn about libraries found in the system library // directory (the directory were we find libc.so); we assume that // those libraries are OK. This heuristic avoids problems in // GNU/Linux, in which -ldl can have undefined references satisfied by // ld-linux.so. inline void Symbol_table::warn_about_undefined_dynobj_symbol( const Input_objects* input_objects, Symbol* sym) const { if (sym->source() == Symbol::FROM_OBJECT && sym->object()->is_dynamic() && sym->shndx() == elfcpp::SHN_UNDEF && sym->binding() != elfcpp::STB_WEAK && !parameters->allow_shlib_undefined() && !input_objects->target()->is_defined_by_abi(sym) && !input_objects->found_in_system_library_directory(sym->object())) { // A very ugly cast. Dynobj* dynobj = static_cast(sym->object()); if (!dynobj->has_unknown_needed_entries()) gold_error(_("%s: undefined reference to '%s'"), sym->object()->name().c_str(), sym->demangled_name().c_str()); } } // Write out a section symbol. Return the update offset. void Symbol_table::write_section_symbol(const Output_section *os, Output_file* of, off_t offset) const { if (parameters->get_size() == 32) { if (parameters->is_big_endian()) { #ifdef HAVE_TARGET_32_BIG this->sized_write_section_symbol<32, true>(os, of, offset); #else gold_unreachable(); #endif } else { #ifdef HAVE_TARGET_32_LITTLE this->sized_write_section_symbol<32, false>(os, of, offset); #else gold_unreachable(); #endif } } else if (parameters->get_size() == 64) { if (parameters->is_big_endian()) { #ifdef HAVE_TARGET_64_BIG this->sized_write_section_symbol<64, true>(os, of, offset); #else gold_unreachable(); #endif } else { #ifdef HAVE_TARGET_64_LITTLE this->sized_write_section_symbol<64, false>(os, of, offset); #else gold_unreachable(); #endif } } else gold_unreachable(); } // Write out a section symbol, specialized for size and endianness. template void Symbol_table::sized_write_section_symbol(const Output_section* os, Output_file* of, off_t offset) const { const int sym_size = elfcpp::Elf_sizes::sym_size; unsigned char* pov = of->get_output_view(offset, sym_size); elfcpp::Sym_write osym(pov); osym.put_st_name(0); osym.put_st_value(os->address()); osym.put_st_size(0); osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, elfcpp::STT_SECTION)); osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0)); osym.put_st_shndx(os->out_shndx()); of->write_output_view(offset, sym_size, pov); } // Print statistical information to stderr. This is used for --stats. void Symbol_table::print_stats() const { #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP) fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"), program_name, this->table_.size(), this->table_.bucket_count()); #else fprintf(stderr, _("%s: symbol table entries: %zu\n"), program_name, this->table_.size()); #endif this->namepool_.print_stats("symbol table stringpool"); } // We check for ODR violations by looking for symbols with the same // name for which the debugging information reports that they were // defined in different source locations. When comparing the source // location, we consider instances with the same base filename and // line number to be the same. This is because different object // files/shared libraries can include the same header file using // different paths, and we don't want to report an ODR violation in // that case. // This struct is used to compare line information, as returned by // Dwarf_line_info::one_addr2line. It implements a < comparison // operator used with std::set. struct Odr_violation_compare { bool operator()(const std::string& s1, const std::string& s2) const { std::string::size_type pos1 = s1.rfind('/'); std::string::size_type pos2 = s2.rfind('/'); if (pos1 == std::string::npos || pos2 == std::string::npos) return s1 < s2; return s1.compare(pos1, std::string::npos, s2, pos2, std::string::npos) < 0; } }; // Check candidate_odr_violations_ to find symbols with the same name // but apparently different definitions (different source-file/line-no). void Symbol_table::detect_odr_violations(const Task* task, const char* output_file_name) const { for (Odr_map::const_iterator it = candidate_odr_violations_.begin(); it != candidate_odr_violations_.end(); ++it) { const char* symbol_name = it->first; // We use a sorted set so the output is deterministic. std::set line_nums; for (Unordered_set::const_iterator locs = it->second.begin(); locs != it->second.end(); ++locs) { // We need to lock the object in order to read it. This // means that we have to run in a singleton Task. If we // want to run this in a general Task for better // performance, we will need one Task for object, plus // appropriate locking to ensure that we don't conflict with // other uses of the object. Task_lock_obj tl(task, locs->object); std::string lineno = Dwarf_line_info::one_addr2line( locs->object, locs->shndx, locs->offset); if (!lineno.empty()) line_nums.insert(lineno); } if (line_nums.size() > 1) { gold_warning(_("while linking %s: symbol '%s' defined in multiple " "places (possible ODR violation):"), output_file_name, demangle(symbol_name).c_str()); for (std::set::const_iterator it2 = line_nums.begin(); it2 != line_nums.end(); ++it2) fprintf(stderr, " %s\n", it2->c_str()); } } } // Warnings functions. // Add a new warning. void Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj, unsigned int shndx) { name = symtab->canonicalize_name(name); this->warnings_[name].set(obj, shndx); } // Look through the warnings and mark the symbols for which we should // warn. This is called during Layout::finalize when we know the // sources for all the symbols. void Warnings::note_warnings(Symbol_table* symtab, const Task* task) { for (Warning_table::iterator p = this->warnings_.begin(); p != this->warnings_.end(); ++p) { Symbol* sym = symtab->lookup(p->first, NULL); if (sym != NULL && sym->source() == Symbol::FROM_OBJECT && sym->object() == p->second.object) { sym->set_has_warning(); // Read the section contents to get the warning text. It // would be nicer if we only did this if we have to actually // issue a warning. Unfortunately, warnings are issued as // we relocate sections. That means that we can not lock // the object then, as we might try to issue the same // warning multiple times simultaneously. { Task_lock_obj tl(task, p->second.object); const unsigned char* c; section_size_type len; c = p->second.object->section_contents(p->second.shndx, &len, false); p->second.set_text(reinterpret_cast(c), len); } } } } // Issue a warning. This is called when we see a relocation against a // symbol for which has a warning. template void Warnings::issue_warning(const Symbol* sym, const Relocate_info* relinfo, size_t relnum, off_t reloffset) const { gold_assert(sym->has_warning()); Warning_table::const_iterator p = this->warnings_.find(sym->name()); gold_assert(p != this->warnings_.end()); gold_warning_at_location(relinfo, relnum, reloffset, "%s", p->second.text.c_str()); } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones needed for implemented // targets. #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) template void Sized_symbol<32>::allocate_common(Output_data*, Value_type); #endif #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) template void Sized_symbol<64>::allocate_common(Output_data*, Value_type); #endif #ifdef HAVE_TARGET_32_LITTLE template void Symbol_table::add_from_relobj<32, false>( Sized_relobj<32, false>* relobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Sized_relobj<32, true>::Symbols* sympointers); #endif #ifdef HAVE_TARGET_32_BIG template void Symbol_table::add_from_relobj<32, true>( Sized_relobj<32, true>* relobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Sized_relobj<32, false>::Symbols* sympointers); #endif #ifdef HAVE_TARGET_64_LITTLE template void Symbol_table::add_from_relobj<64, false>( Sized_relobj<64, false>* relobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Sized_relobj<64, true>::Symbols* sympointers); #endif #ifdef HAVE_TARGET_64_BIG template void Symbol_table::add_from_relobj<64, true>( Sized_relobj<64, true>* relobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Sized_relobj<64, false>::Symbols* sympointers); #endif #ifdef HAVE_TARGET_32_LITTLE template void Symbol_table::add_from_dynobj<32, false>( Sized_dynobj<32, false>* dynobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, const unsigned char* versym, size_t versym_size, const std::vector* version_map); #endif #ifdef HAVE_TARGET_32_BIG template void Symbol_table::add_from_dynobj<32, true>( Sized_dynobj<32, true>* dynobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, const unsigned char* versym, size_t versym_size, const std::vector* version_map); #endif #ifdef HAVE_TARGET_64_LITTLE template void Symbol_table::add_from_dynobj<64, false>( Sized_dynobj<64, false>* dynobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, const unsigned char* versym, size_t versym_size, const std::vector* version_map); #endif #ifdef HAVE_TARGET_64_BIG template void Symbol_table::add_from_dynobj<64, true>( Sized_dynobj<64, true>* dynobj, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, const unsigned char* versym, size_t versym_size, const std::vector* version_map); #endif #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) template void Symbol_table::define_with_copy_reloc<32>(const Target* target, Sized_symbol<32>* sym, Output_data* posd, uint64_t value); #endif #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) template void Symbol_table::define_with_copy_reloc<64>(const Target* target, Sized_symbol<64>* sym, Output_data* posd, uint64_t value); #endif #ifdef HAVE_TARGET_32_LITTLE template void Warnings::issue_warning<32, false>(const Symbol* sym, const Relocate_info<32, false>* relinfo, size_t relnum, off_t reloffset) const; #endif #ifdef HAVE_TARGET_32_BIG template void Warnings::issue_warning<32, true>(const Symbol* sym, const Relocate_info<32, true>* relinfo, size_t relnum, off_t reloffset) const; #endif #ifdef HAVE_TARGET_64_LITTLE template void Warnings::issue_warning<64, false>(const Symbol* sym, const Relocate_info<64, false>* relinfo, size_t relnum, off_t reloffset) const; #endif #ifdef HAVE_TARGET_64_BIG template void Warnings::issue_warning<64, true>(const Symbol* sym, const Relocate_info<64, true>* relinfo, size_t relnum, off_t reloffset) const; #endif } // End namespace gold.