/* Target-dependent code for GNU/Linux m32r. Copyright (C) 2004-2021 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "defs.h" #include "gdbcore.h" #include "frame.h" #include "value.h" #include "regcache.h" #include "inferior.h" #include "osabi.h" #include "reggroups.h" #include "regset.h" #include "glibc-tdep.h" #include "solib-svr4.h" #include "symtab.h" #include "trad-frame.h" #include "frame-unwind.h" #include "m32r-tdep.h" #include "linux-tdep.h" #include "gdbarch.h" /* Recognizing signal handler frames. */ /* GNU/Linux has two flavors of signals. Normal signal handlers, and "realtime" (RT) signals. The RT signals can provide additional information to the signal handler if the SA_SIGINFO flag is set when establishing a signal handler using `sigaction'. It is not unlikely that future versions of GNU/Linux will support SA_SIGINFO for normal signals too. */ /* When the m32r Linux kernel calls a signal handler and the SA_RESTORER flag isn't set, the return address points to a bit of code on the stack. This function returns whether the PC appears to be within this bit of code. The instruction sequence for normal signals is ldi r7, #__NR_sigreturn trap #2 or 0x67 0x77 0x10 0xf2. Checking for the code sequence should be somewhat reliable, because the effect is to call the system call sigreturn. This is unlikely to occur anywhere other than in a signal trampoline. It kind of sucks that we have to read memory from the process in order to identify a signal trampoline, but there doesn't seem to be any other way. Therefore we only do the memory reads if no function name could be identified, which should be the case since the code is on the stack. Detection of signal trampolines for handlers that set the SA_RESTORER flag is in general not possible. Unfortunately this is what the GNU C Library has been doing for quite some time now. However, as of version 2.1.2, the GNU C Library uses signal trampolines (named __restore and __restore_rt) that are identical to the ones used by the kernel. Therefore, these trampolines are supported too. */ static const gdb_byte linux_sigtramp_code[] = { 0x67, 0x77, 0x10, 0xf2, }; /* If PC is in a sigtramp routine, return the address of the start of the routine. Otherwise, return 0. */ static CORE_ADDR m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame) { gdb_byte buf[4]; /* We only recognize a signal trampoline if PC is at the start of one of the instructions. We optimize for finding the PC at the start of the instruction sequence, as will be the case when the trampoline is not the first frame on the stack. We assume that in the case where the PC is not at the start of the instruction sequence, there will be a few trailing readable bytes on the stack. */ if (pc % 2 != 0) { if (!safe_frame_unwind_memory (this_frame, pc, buf, 2)) return 0; if (memcmp (buf, linux_sigtramp_code, 2) == 0) pc -= 2; else return 0; } if (!safe_frame_unwind_memory (this_frame, pc, buf, 4)) return 0; if (memcmp (buf, linux_sigtramp_code, 4) != 0) return 0; return pc; } /* This function does the same for RT signals. Here the instruction sequence is ldi r7, #__NR_rt_sigreturn trap #2 or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00. The effect is to call the system call rt_sigreturn. */ static const gdb_byte linux_rt_sigtramp_code[] = { 0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00, }; /* If PC is in a RT sigtramp routine, return the address of the start of the routine. Otherwise, return 0. */ static CORE_ADDR m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame) { gdb_byte buf[4]; /* We only recognize a signal trampoline if PC is at the start of one of the instructions. We optimize for finding the PC at the start of the instruction sequence, as will be the case when the trampoline is not the first frame on the stack. We assume that in the case where the PC is not at the start of the instruction sequence, there will be a few trailing readable bytes on the stack. */ if (pc % 2 != 0) return 0; if (!safe_frame_unwind_memory (this_frame, pc, buf, 4)) return 0; if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0) { if (!safe_frame_unwind_memory (this_frame, pc + 4, buf, 4)) return 0; if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0) return pc; } else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0) { if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, 4)) return 0; if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0) return pc - 4; } return 0; } static int m32r_linux_pc_in_sigtramp (CORE_ADDR pc, const char *name, struct frame_info *this_frame) { /* If we have NAME, we can optimize the search. The trampolines are named __restore and __restore_rt. However, they aren't dynamically exported from the shared C library, so the trampoline may appear to be part of the preceding function. This should always be sigaction, __sigaction, or __libc_sigaction (all aliases to the same function). */ if (name == NULL || strstr (name, "sigaction") != NULL) return (m32r_linux_sigtramp_start (pc, this_frame) != 0 || m32r_linux_rt_sigtramp_start (pc, this_frame) != 0); return (strcmp ("__restore", name) == 0 || strcmp ("__restore_rt", name) == 0); } /* From . */ static int m32r_linux_sc_reg_offset[] = { 4 * 4, /* r0 */ 5 * 4, /* r1 */ 6 * 4, /* r2 */ 7 * 4, /* r3 */ 0 * 4, /* r4 */ 1 * 4, /* r5 */ 2 * 4, /* r6 */ 8 * 4, /* r7 */ 9 * 4, /* r8 */ 10 * 4, /* r9 */ 11 * 4, /* r10 */ 12 * 4, /* r11 */ 13 * 4, /* r12 */ 21 * 4, /* fp */ 22 * 4, /* lr */ -1 * 4, /* sp */ 16 * 4, /* psw */ -1 * 4, /* cbr */ 23 * 4, /* spi */ 20 * 4, /* spu */ 19 * 4, /* bpc */ 17 * 4, /* pc */ 15 * 4, /* accl */ 14 * 4 /* acch */ }; struct m32r_frame_cache { CORE_ADDR base, pc; trad_frame_saved_reg *saved_regs; }; static struct m32r_frame_cache * m32r_linux_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) { struct m32r_frame_cache *cache; CORE_ADDR sigcontext_addr, addr; int regnum; if ((*this_cache) != NULL) return (struct m32r_frame_cache *) (*this_cache); cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache); (*this_cache) = cache; cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); cache->base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); sigcontext_addr = cache->base + 4; cache->pc = get_frame_pc (this_frame); addr = m32r_linux_sigtramp_start (cache->pc, this_frame); if (addr == 0) { /* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR accordingly. */ addr = m32r_linux_rt_sigtramp_start (cache->pc, this_frame); if (addr) sigcontext_addr += 128; else addr = get_frame_func (this_frame); } cache->pc = addr; cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++) { if (m32r_linux_sc_reg_offset[regnum] >= 0) cache->saved_regs[regnum].set_addr (sigcontext_addr + m32r_linux_sc_reg_offset[regnum]); } return cache; } static void m32r_linux_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) { struct m32r_frame_cache *cache = m32r_linux_sigtramp_frame_cache (this_frame, this_cache); (*this_id) = frame_id_build (cache->base, cache->pc); } static struct value * m32r_linux_sigtramp_frame_prev_register (struct frame_info *this_frame, void **this_cache, int regnum) { struct m32r_frame_cache *cache = m32r_linux_sigtramp_frame_cache (this_frame, this_cache); return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); } static int m32r_linux_sigtramp_frame_sniffer (const struct frame_unwind *self, struct frame_info *this_frame, void **this_cache) { CORE_ADDR pc = get_frame_pc (this_frame); const char *name; find_pc_partial_function (pc, &name, NULL, NULL); if (m32r_linux_pc_in_sigtramp (pc, name, this_frame)) return 1; return 0; } static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = { SIGTRAMP_FRAME, default_frame_unwind_stop_reason, m32r_linux_sigtramp_frame_this_id, m32r_linux_sigtramp_frame_prev_register, NULL, m32r_linux_sigtramp_frame_sniffer }; /* Mapping between the registers in `struct pt_regs' format and GDB's register array layout. */ static int m32r_pt_regs_offset[] = { 4 * 4, /* r0 */ 4 * 5, /* r1 */ 4 * 6, /* r2 */ 4 * 7, /* r3 */ 4 * 0, /* r4 */ 4 * 1, /* r5 */ 4 * 2, /* r6 */ 4 * 8, /* r7 */ 4 * 9, /* r8 */ 4 * 10, /* r9 */ 4 * 11, /* r10 */ 4 * 12, /* r11 */ 4 * 13, /* r12 */ 4 * 24, /* fp */ 4 * 25, /* lr */ 4 * 23, /* sp */ 4 * 19, /* psw */ 4 * 19, /* cbr */ 4 * 26, /* spi */ 4 * 23, /* spu */ 4 * 22, /* bpc */ 4 * 20, /* pc */ 4 * 16, /* accl */ 4 * 15 /* acch */ }; #define PSW_OFFSET (4 * 19) #define BBPSW_OFFSET (4 * 21) #define SPU_OFFSET (4 * 23) #define SPI_OFFSET (4 * 26) #define M32R_LINUX_GREGS_SIZE (4 * 28) static void m32r_linux_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t size) { const gdb_byte *regs = (const gdb_byte *) gregs; enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ()); ULONGEST psw, bbpsw; gdb_byte buf[4]; const gdb_byte *p; int i; psw = extract_unsigned_integer (regs + PSW_OFFSET, 4, byte_order); bbpsw = extract_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order); psw = ((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8); for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++) { if (regnum != -1 && regnum != i) continue; switch (i) { case PSW_REGNUM: store_unsigned_integer (buf, 4, byte_order, psw); p = buf; break; case CBR_REGNUM: store_unsigned_integer (buf, 4, byte_order, psw & 1); p = buf; break; case M32R_SP_REGNUM: p = regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET); break; default: p = regs + m32r_pt_regs_offset[i]; } regcache->raw_supply (i, p); } } static void m32r_linux_collect_gregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *gregs, size_t size) { gdb_byte *regs = (gdb_byte *) gregs; int i; enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ()); ULONGEST psw; gdb_byte buf[4]; regcache->raw_collect (PSW_REGNUM, buf); psw = extract_unsigned_integer (buf, 4, byte_order); for (i = 0; i < ARRAY_SIZE (m32r_pt_regs_offset); i++) { if (regnum != -1 && regnum != i) continue; switch (i) { case PSW_REGNUM: store_unsigned_integer (regs + PSW_OFFSET, 4, byte_order, (psw & 0xc1) << 8); store_unsigned_integer (regs + BBPSW_OFFSET, 4, byte_order, (psw >> 8) & 0xc1); break; case CBR_REGNUM: break; case M32R_SP_REGNUM: regcache->raw_collect (i, regs + ((psw & 0x80) ? SPU_OFFSET : SPI_OFFSET)); break; default: regcache->raw_collect (i, regs + m32r_pt_regs_offset[i]); } } } static const struct regset m32r_linux_gregset = { NULL, m32r_linux_supply_gregset, m32r_linux_collect_gregset }; static void m32r_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache) { cb (".reg", M32R_LINUX_GREGS_SIZE, M32R_LINUX_GREGS_SIZE, &m32r_linux_gregset, NULL, cb_data); } static void m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { linux_init_abi (info, gdbarch, 0); /* Since EVB register is not available for native debug, we reduce the number of registers. */ set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1); frame_unwind_append_unwinder (gdbarch, &m32r_linux_sigtramp_frame_unwind); /* GNU/Linux uses SVR4-style shared libraries. */ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* Core file support. */ set_gdbarch_iterate_over_regset_sections (gdbarch, m32r_linux_iterate_over_regset_sections); /* Enable TLS support. */ set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map); } void _initialize_m32r_linux_tdep (); void _initialize_m32r_linux_tdep () { gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX, m32r_linux_init_abi); }