// OBSOLETE /* Target-dependent code for Renesas D10V, for GDB. // OBSOLETE // OBSOLETE Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software // OBSOLETE Foundation, Inc. // OBSOLETE // OBSOLETE This file is part of GDB. // OBSOLETE // OBSOLETE This program is free software; you can redistribute it and/or modify // OBSOLETE it under the terms of the GNU General Public License as published by // OBSOLETE the Free Software Foundation; either version 2 of the License, or // OBSOLETE (at your option) any later version. // OBSOLETE // OBSOLETE This program is distributed in the hope that it will be useful, // OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of // OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // OBSOLETE GNU General Public License for more details. // OBSOLETE // OBSOLETE You should have received a copy of the GNU General Public License // OBSOLETE along with this program; if not, write to the Free Software // OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, // OBSOLETE Boston, MA 02111-1307, USA. */ // OBSOLETE // OBSOLETE /* Contributed by Martin Hunt, hunt@cygnus.com */ // OBSOLETE // OBSOLETE #include "defs.h" // OBSOLETE #include "frame.h" // OBSOLETE #include "frame-unwind.h" // OBSOLETE #include "frame-base.h" // OBSOLETE #include "symtab.h" // OBSOLETE #include "gdbtypes.h" // OBSOLETE #include "gdbcmd.h" // OBSOLETE #include "gdbcore.h" // OBSOLETE #include "gdb_string.h" // OBSOLETE #include "value.h" // OBSOLETE #include "inferior.h" // OBSOLETE #include "dis-asm.h" // OBSOLETE #include "symfile.h" // OBSOLETE #include "objfiles.h" // OBSOLETE #include "language.h" // OBSOLETE #include "arch-utils.h" // OBSOLETE #include "regcache.h" // OBSOLETE #include "remote.h" // OBSOLETE #include "floatformat.h" // OBSOLETE #include "gdb/sim-d10v.h" // OBSOLETE #include "sim-regno.h" // OBSOLETE #include "disasm.h" // OBSOLETE #include "trad-frame.h" // OBSOLETE // OBSOLETE #include "gdb_assert.h" // OBSOLETE // OBSOLETE struct gdbarch_tdep // OBSOLETE { // OBSOLETE int a0_regnum; // OBSOLETE int nr_dmap_regs; // OBSOLETE unsigned long (*dmap_register) (void *regcache, int nr); // OBSOLETE unsigned long (*imap_register) (void *regcache, int nr); // OBSOLETE }; // OBSOLETE // OBSOLETE /* These are the addresses the D10V-EVA board maps data and // OBSOLETE instruction memory to. */ // OBSOLETE // OBSOLETE enum memspace { // OBSOLETE DMEM_START = 0x2000000, // OBSOLETE IMEM_START = 0x1000000, // OBSOLETE STACK_START = 0x200bffe // OBSOLETE }; // OBSOLETE // OBSOLETE /* d10v register names. */ // OBSOLETE // OBSOLETE enum // OBSOLETE { // OBSOLETE R0_REGNUM = 0, // OBSOLETE R3_REGNUM = 3, // OBSOLETE D10V_FP_REGNUM = 11, // OBSOLETE LR_REGNUM = 13, // OBSOLETE D10V_SP_REGNUM = 15, // OBSOLETE PSW_REGNUM = 16, // OBSOLETE D10V_PC_REGNUM = 18, // OBSOLETE NR_IMAP_REGS = 2, // OBSOLETE NR_A_REGS = 2, // OBSOLETE TS2_NUM_REGS = 37, // OBSOLETE TS3_NUM_REGS = 42, // OBSOLETE /* d10v calling convention. */ // OBSOLETE ARG1_REGNUM = R0_REGNUM, // OBSOLETE ARGN_REGNUM = R3_REGNUM // OBSOLETE }; // OBSOLETE // OBSOLETE static int // OBSOLETE nr_dmap_regs (struct gdbarch *gdbarch) // OBSOLETE { // OBSOLETE return gdbarch_tdep (gdbarch)->nr_dmap_regs; // OBSOLETE } // OBSOLETE // OBSOLETE static int // OBSOLETE a0_regnum (struct gdbarch *gdbarch) // OBSOLETE { // OBSOLETE return gdbarch_tdep (gdbarch)->a0_regnum; // OBSOLETE } // OBSOLETE // OBSOLETE /* Local functions */ // OBSOLETE // OBSOLETE extern void _initialize_d10v_tdep (void); // OBSOLETE // OBSOLETE static void d10v_eva_prepare_to_trace (void); // OBSOLETE // OBSOLETE static void d10v_eva_get_trace_data (void); // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) // OBSOLETE { // OBSOLETE /* Align to the size of an instruction (so that they can safely be // OBSOLETE pushed onto the stack. */ // OBSOLETE return sp & ~3; // OBSOLETE } // OBSOLETE // OBSOLETE static const unsigned char * // OBSOLETE d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) // OBSOLETE { // OBSOLETE static unsigned char breakpoint[] = // OBSOLETE {0x2f, 0x90, 0x5e, 0x00}; // OBSOLETE *lenptr = sizeof (breakpoint); // OBSOLETE return breakpoint; // OBSOLETE } // OBSOLETE // OBSOLETE /* Map the REG_NR onto an ascii name. Return NULL or an empty string // OBSOLETE when the reg_nr isn't valid. */ // OBSOLETE // OBSOLETE enum ts2_regnums // OBSOLETE { // OBSOLETE TS2_IMAP0_REGNUM = 32, // OBSOLETE TS2_DMAP_REGNUM = 34, // OBSOLETE TS2_NR_DMAP_REGS = 1, // OBSOLETE TS2_A0_REGNUM = 35 // OBSOLETE }; // OBSOLETE // OBSOLETE static const char * // OBSOLETE d10v_ts2_register_name (int reg_nr) // OBSOLETE { // OBSOLETE static char *register_names[] = // OBSOLETE { // OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", // OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", // OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", // OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", // OBSOLETE "imap0", "imap1", "dmap", "a0", "a1" // OBSOLETE }; // OBSOLETE if (reg_nr < 0) // OBSOLETE return NULL; // OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) // OBSOLETE return NULL; // OBSOLETE return register_names[reg_nr]; // OBSOLETE } // OBSOLETE // OBSOLETE enum ts3_regnums // OBSOLETE { // OBSOLETE TS3_IMAP0_REGNUM = 36, // OBSOLETE TS3_DMAP0_REGNUM = 38, // OBSOLETE TS3_NR_DMAP_REGS = 4, // OBSOLETE TS3_A0_REGNUM = 32 // OBSOLETE }; // OBSOLETE // OBSOLETE static const char * // OBSOLETE d10v_ts3_register_name (int reg_nr) // OBSOLETE { // OBSOLETE static char *register_names[] = // OBSOLETE { // OBSOLETE "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", // OBSOLETE "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", // OBSOLETE "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c", // OBSOLETE "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15", // OBSOLETE "a0", "a1", // OBSOLETE "spi", "spu", // OBSOLETE "imap0", "imap1", // OBSOLETE "dmap0", "dmap1", "dmap2", "dmap3" // OBSOLETE }; // OBSOLETE if (reg_nr < 0) // OBSOLETE return NULL; // OBSOLETE if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) // OBSOLETE return NULL; // OBSOLETE return register_names[reg_nr]; // OBSOLETE } // OBSOLETE // OBSOLETE /* Access the DMAP/IMAP registers in a target independent way. // OBSOLETE // OBSOLETE Divide the D10V's 64k data space into four 16k segments: // OBSOLETE 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and // OBSOLETE 0xc000 -- 0xffff. // OBSOLETE // OBSOLETE On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 -- // OBSOLETE 0x7fff) always map to the on-chip data RAM, and the fourth always // OBSOLETE maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into // OBSOLETE unified memory or instruction memory, under the control of the // OBSOLETE single DMAP register. // OBSOLETE // OBSOLETE On the TS3, there are four DMAP registers, each of which controls // OBSOLETE one of the segments. */ // OBSOLETE // OBSOLETE static unsigned long // OBSOLETE d10v_ts2_dmap_register (void *regcache, int reg_nr) // OBSOLETE { // OBSOLETE switch (reg_nr) // OBSOLETE { // OBSOLETE case 0: // OBSOLETE case 1: // OBSOLETE return 0x2000; // OBSOLETE case 2: // OBSOLETE { // OBSOLETE ULONGEST reg; // OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, ®); // OBSOLETE return reg; // OBSOLETE } // OBSOLETE default: // OBSOLETE return 0; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE static unsigned long // OBSOLETE d10v_ts3_dmap_register (void *regcache, int reg_nr) // OBSOLETE { // OBSOLETE ULONGEST reg; // OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, ®); // OBSOLETE return reg; // OBSOLETE } // OBSOLETE // OBSOLETE static unsigned long // OBSOLETE d10v_ts2_imap_register (void *regcache, int reg_nr) // OBSOLETE { // OBSOLETE ULONGEST reg; // OBSOLETE regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, ®); // OBSOLETE return reg; // OBSOLETE } // OBSOLETE // OBSOLETE static unsigned long // OBSOLETE d10v_ts3_imap_register (void *regcache, int reg_nr) // OBSOLETE { // OBSOLETE ULONGEST reg; // OBSOLETE regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, ®); // OBSOLETE return reg; // OBSOLETE } // OBSOLETE // OBSOLETE /* MAP GDB's internal register numbering (determined by the layout // OBSOLETE from the DEPRECATED_REGISTER_BYTE array) onto the simulator's // OBSOLETE register numbering. */ // OBSOLETE // OBSOLETE static int // OBSOLETE d10v_ts2_register_sim_regno (int nr) // OBSOLETE { // OBSOLETE /* Only makes sense to supply raw registers. */ // OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS); // OBSOLETE if (nr >= TS2_IMAP0_REGNUM // OBSOLETE && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS) // OBSOLETE return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; // OBSOLETE if (nr == TS2_DMAP_REGNUM) // OBSOLETE return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM; // OBSOLETE if (nr >= TS2_A0_REGNUM // OBSOLETE && nr < TS2_A0_REGNUM + NR_A_REGS) // OBSOLETE return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM; // OBSOLETE return nr; // OBSOLETE } // OBSOLETE // OBSOLETE static int // OBSOLETE d10v_ts3_register_sim_regno (int nr) // OBSOLETE { // OBSOLETE /* Only makes sense to supply raw registers. */ // OBSOLETE gdb_assert (nr >= 0 && nr < NUM_REGS); // OBSOLETE if (nr >= TS3_IMAP0_REGNUM // OBSOLETE && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS) // OBSOLETE return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM; // OBSOLETE if (nr >= TS3_DMAP0_REGNUM // OBSOLETE && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS) // OBSOLETE return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM; // OBSOLETE if (nr >= TS3_A0_REGNUM // OBSOLETE && nr < TS3_A0_REGNUM + NR_A_REGS) // OBSOLETE return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM; // OBSOLETE return nr; // OBSOLETE } // OBSOLETE // OBSOLETE /* Return the GDB type object for the "standard" data type // OBSOLETE of data in register N. */ // OBSOLETE // OBSOLETE static struct type * // OBSOLETE d10v_register_type (struct gdbarch *gdbarch, int reg_nr) // OBSOLETE { // OBSOLETE if (reg_nr == D10V_PC_REGNUM) // OBSOLETE return builtin_type (gdbarch)->builtin_func_ptr; // OBSOLETE if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM) // OBSOLETE return builtin_type (gdbarch)->builtin_data_ptr; // OBSOLETE else if (reg_nr >= a0_regnum (gdbarch) // OBSOLETE && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS)) // OBSOLETE return builtin_type_int64; // OBSOLETE else // OBSOLETE return builtin_type_int16; // OBSOLETE } // OBSOLETE // OBSOLETE static int // OBSOLETE d10v_iaddr_p (CORE_ADDR x) // OBSOLETE { // OBSOLETE return (((x) & 0x3000000) == IMEM_START); // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_make_daddr (CORE_ADDR x) // OBSOLETE { // OBSOLETE return ((x) | DMEM_START); // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_make_iaddr (CORE_ADDR x) // OBSOLETE { // OBSOLETE if (d10v_iaddr_p (x)) // OBSOLETE return x; /* Idempotency -- x is already in the IMEM space. */ // OBSOLETE else // OBSOLETE return (((x) << 2) | IMEM_START); // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_convert_iaddr_to_raw (CORE_ADDR x) // OBSOLETE { // OBSOLETE return (((x) >> 2) & 0xffff); // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_convert_daddr_to_raw (CORE_ADDR x) // OBSOLETE { // OBSOLETE return ((x) & 0xffff); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) // OBSOLETE { // OBSOLETE /* Is it a code address? */ // OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC // OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) // OBSOLETE { // OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type), // OBSOLETE d10v_convert_iaddr_to_raw (addr)); // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* Strip off any upper segment bits. */ // OBSOLETE store_unsigned_integer (buf, TYPE_LENGTH (type), // OBSOLETE d10v_convert_daddr_to_raw (addr)); // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_pointer_to_address (struct type *type, const void *buf) // OBSOLETE { // OBSOLETE CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); // OBSOLETE /* Is it a code address? */ // OBSOLETE if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC // OBSOLETE || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD // OBSOLETE || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) // OBSOLETE return d10v_make_iaddr (addr); // OBSOLETE else // OBSOLETE return d10v_make_daddr (addr); // OBSOLETE } // OBSOLETE // OBSOLETE /* Don't do anything if we have an integer, this way users can type 'x // OBSOLETE ' w/o having gdb outsmart them. The internal gdb conversions // OBSOLETE to the correct space are taken care of in the pointer_to_address // OBSOLETE function. If we don't do this, 'x $fp' wouldn't work. */ // OBSOLETE static CORE_ADDR // OBSOLETE d10v_integer_to_address (struct type *type, void *buf) // OBSOLETE { // OBSOLETE LONGEST val; // OBSOLETE val = unpack_long (type, buf); // OBSOLETE return val; // OBSOLETE } // OBSOLETE // OBSOLETE /* Handle the d10v's return_value convention. */ // OBSOLETE // OBSOLETE static enum return_value_convention // OBSOLETE d10v_return_value (struct gdbarch *gdbarch, struct type *valtype, // OBSOLETE struct regcache *regcache, void *readbuf, // OBSOLETE const void *writebuf) // OBSOLETE { // OBSOLETE if (TYPE_LENGTH (valtype) > 8) // OBSOLETE /* Anything larger than 8 bytes (4 registers) goes on the stack. */ // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; // OBSOLETE if (TYPE_LENGTH (valtype) == 5 // OBSOLETE || TYPE_LENGTH (valtype) == 6) // OBSOLETE /* Anything 5 or 6 bytes in size goes in memory. Contents don't // OBSOLETE appear to matter. Note that 7 and 8 byte objects do end up in // OBSOLETE registers! */ // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; // OBSOLETE if (TYPE_LENGTH (valtype) == 1) // OBSOLETE { // OBSOLETE /* All single byte values go in a register stored right-aligned. // OBSOLETE Note: 2 byte integer values are handled further down. */ // OBSOLETE if (readbuf) // OBSOLETE { // OBSOLETE /* Since TYPE is smaller than the register, there isn't a // OBSOLETE sign extension problem. Let the extraction truncate the // OBSOLETE register value. */ // OBSOLETE ULONGEST regval; // OBSOLETE regcache_cooked_read_unsigned (regcache, R0_REGNUM, // OBSOLETE ®val); // OBSOLETE store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); // OBSOLETE // OBSOLETE } // OBSOLETE if (writebuf) // OBSOLETE { // OBSOLETE ULONGEST regval; // OBSOLETE if (TYPE_CODE (valtype) == TYPE_CODE_INT) // OBSOLETE /* Some sort of integer value stored in R0. Use // OBSOLETE unpack_long since that should handle any required sign // OBSOLETE extension. */ // OBSOLETE regval = unpack_long (valtype, writebuf); // OBSOLETE else // OBSOLETE /* Some other type. Don't sign-extend the value when // OBSOLETE storing it in the register. */ // OBSOLETE regval = extract_unsigned_integer (writebuf, 1); // OBSOLETE regcache_cooked_write_unsigned (regcache, R0_REGNUM, regval); // OBSOLETE } // OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION; // OBSOLETE } // OBSOLETE if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT // OBSOLETE || TYPE_CODE (valtype) == TYPE_CODE_UNION) // OBSOLETE && TYPE_NFIELDS (valtype) > 1 // OBSOLETE && TYPE_FIELD_BITPOS (valtype, 1) == 8) // OBSOLETE /* If a composite is 8 bit aligned (determined by looking at the // OBSOLETE start address of the second field), put it in memory. */ // OBSOLETE return RETURN_VALUE_STRUCT_CONVENTION; // OBSOLETE /* Assume it is in registers. */ // OBSOLETE if (writebuf || readbuf) // OBSOLETE { // OBSOLETE int reg; // OBSOLETE /* Per above, the value is never more than 8 bytes long. */ // OBSOLETE gdb_assert (TYPE_LENGTH (valtype) <= 8); // OBSOLETE /* Xfer 2 bytes at a time. */ // OBSOLETE for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (valtype); reg++) // OBSOLETE { // OBSOLETE if (readbuf) // OBSOLETE regcache_cooked_read (regcache, R0_REGNUM + reg, // OBSOLETE (bfd_byte *) readbuf + reg * 2); // OBSOLETE if (writebuf) // OBSOLETE regcache_cooked_write (regcache, R0_REGNUM + reg, // OBSOLETE (bfd_byte *) writebuf + reg * 2); // OBSOLETE } // OBSOLETE /* Any trailing byte ends up _left_ aligned. */ // OBSOLETE if ((reg * 2) < TYPE_LENGTH (valtype)) // OBSOLETE { // OBSOLETE if (readbuf) // OBSOLETE regcache_cooked_read_part (regcache, R0_REGNUM + reg, // OBSOLETE 0, 1, (bfd_byte *) readbuf + reg * 2); // OBSOLETE if (writebuf) // OBSOLETE regcache_cooked_write_part (regcache, R0_REGNUM + reg, // OBSOLETE 0, 1, (bfd_byte *) writebuf + reg * 2); // OBSOLETE } // OBSOLETE } // OBSOLETE return RETURN_VALUE_REGISTER_CONVENTION; // OBSOLETE } // OBSOLETE // OBSOLETE static int // OBSOLETE check_prologue (unsigned short op) // OBSOLETE { // OBSOLETE /* st rn, @-sp */ // OBSOLETE if ((op & 0x7E1F) == 0x6C1F) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* st2w rn, @-sp */ // OBSOLETE if ((op & 0x7E3F) == 0x6E1F) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* subi sp, n */ // OBSOLETE if ((op & 0x7FE1) == 0x01E1) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* mv r11, sp */ // OBSOLETE if (op == 0x417E) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* nop */ // OBSOLETE if (op == 0x5E00) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* st rn, @sp */ // OBSOLETE if ((op & 0x7E1F) == 0x681E) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* st2w rn, @sp */ // OBSOLETE if ((op & 0x7E3F) == 0x3A1E) // OBSOLETE return 1; // OBSOLETE // OBSOLETE return 0; // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_skip_prologue (CORE_ADDR pc) // OBSOLETE { // OBSOLETE unsigned long op; // OBSOLETE unsigned short op1, op2; // OBSOLETE CORE_ADDR func_addr, func_end; // OBSOLETE struct symtab_and_line sal; // OBSOLETE // OBSOLETE /* If we have line debugging information, then the end of the prologue // OBSOLETE should be the first assembly instruction of the first source line. */ // OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) // OBSOLETE { // OBSOLETE sal = find_pc_line (func_addr, 0); // OBSOLETE if (sal.end && sal.end < func_end) // OBSOLETE return sal.end; // OBSOLETE } // OBSOLETE // OBSOLETE if (target_read_memory (pc, (char *) &op, 4)) // OBSOLETE return pc; /* Can't access it -- assume no prologue. */ // OBSOLETE // OBSOLETE while (1) // OBSOLETE { // OBSOLETE op = (unsigned long) read_memory_integer (pc, 4); // OBSOLETE if ((op & 0xC0000000) == 0xC0000000) // OBSOLETE { // OBSOLETE /* long instruction */ // OBSOLETE if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */ // OBSOLETE ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */ // OBSOLETE ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */ // OBSOLETE break; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* short instructions */ // OBSOLETE if ((op & 0xC0000000) == 0x80000000) // OBSOLETE { // OBSOLETE op2 = (op & 0x3FFF8000) >> 15; // OBSOLETE op1 = op & 0x7FFF; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE op1 = (op & 0x3FFF8000) >> 15; // OBSOLETE op2 = op & 0x7FFF; // OBSOLETE } // OBSOLETE if (check_prologue (op1)) // OBSOLETE { // OBSOLETE if (!check_prologue (op2)) // OBSOLETE { // OBSOLETE /* If the previous opcode was really part of the // OBSOLETE prologue and not just a NOP, then we want to // OBSOLETE break after both instructions. */ // OBSOLETE if (op1 != 0x5E00) // OBSOLETE pc += 4; // OBSOLETE break; // OBSOLETE } // OBSOLETE } // OBSOLETE else // OBSOLETE break; // OBSOLETE } // OBSOLETE pc += 4; // OBSOLETE } // OBSOLETE return pc; // OBSOLETE } // OBSOLETE // OBSOLETE struct d10v_unwind_cache // OBSOLETE { // OBSOLETE /* The previous frame's inner most stack address. Used as this // OBSOLETE frame ID's stack_addr. */ // OBSOLETE CORE_ADDR prev_sp; // OBSOLETE /* The frame's base, optionally used by the high-level debug info. */ // OBSOLETE CORE_ADDR base; // OBSOLETE int size; // OBSOLETE /* How far the SP and r11 (FP) have been offset from the start of // OBSOLETE the stack frame (as defined by the previous frame's stack // OBSOLETE pointer). */ // OBSOLETE LONGEST sp_offset; // OBSOLETE LONGEST r11_offset; // OBSOLETE int uses_frame; // OBSOLETE /* Table indicating the location of each and every register. */ // OBSOLETE struct trad_frame_saved_reg *saved_regs; // OBSOLETE }; // OBSOLETE // OBSOLETE static int // OBSOLETE prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op, // OBSOLETE CORE_ADDR addr) // OBSOLETE { // OBSOLETE int n; // OBSOLETE // OBSOLETE /* st rn, @-sp */ // OBSOLETE if ((op & 0x7E1F) == 0x6C1F) // OBSOLETE { // OBSOLETE n = (op & 0x1E0) >> 5; // OBSOLETE info->sp_offset -= 2; // OBSOLETE info->saved_regs[n].addr = info->sp_offset; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* st2w rn, @-sp */ // OBSOLETE else if ((op & 0x7E3F) == 0x6E1F) // OBSOLETE { // OBSOLETE n = (op & 0x1E0) >> 5; // OBSOLETE info->sp_offset -= 4; // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0; // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* subi sp, n */ // OBSOLETE if ((op & 0x7FE1) == 0x01E1) // OBSOLETE { // OBSOLETE n = (op & 0x1E) >> 1; // OBSOLETE if (n == 0) // OBSOLETE n = 16; // OBSOLETE info->sp_offset -= n; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* mv r11, sp */ // OBSOLETE if (op == 0x417E) // OBSOLETE { // OBSOLETE info->uses_frame = 1; // OBSOLETE info->r11_offset = info->sp_offset; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* st rn, @r11 */ // OBSOLETE if ((op & 0x7E1F) == 0x6816) // OBSOLETE { // OBSOLETE n = (op & 0x1E0) >> 5; // OBSOLETE info->saved_regs[n].addr = info->r11_offset; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* nop */ // OBSOLETE if (op == 0x5E00) // OBSOLETE return 1; // OBSOLETE // OBSOLETE /* st rn, @sp */ // OBSOLETE if ((op & 0x7E1F) == 0x681E) // OBSOLETE { // OBSOLETE n = (op & 0x1E0) >> 5; // OBSOLETE info->saved_regs[n].addr = info->sp_offset; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE /* st2w rn, @sp */ // OBSOLETE if ((op & 0x7E3F) == 0x3A1E) // OBSOLETE { // OBSOLETE n = (op & 0x1E0) >> 5; // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + 0; // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + 2; // OBSOLETE return 1; // OBSOLETE } // OBSOLETE // OBSOLETE return 0; // OBSOLETE } // OBSOLETE // OBSOLETE /* Put here the code to store, into fi->saved_regs, the addresses of // OBSOLETE the saved registers of frame described by FRAME_INFO. This // OBSOLETE includes special registers such as pc and fp saved in special ways // OBSOLETE in the stack frame. sp is even more special: the address we return // OBSOLETE for it IS the sp for the next frame. */ // OBSOLETE // OBSOLETE static struct d10v_unwind_cache * // OBSOLETE d10v_frame_unwind_cache (struct frame_info *next_frame, // OBSOLETE void **this_prologue_cache) // OBSOLETE { // OBSOLETE struct gdbarch *gdbarch = get_frame_arch (next_frame); // OBSOLETE CORE_ADDR pc; // OBSOLETE ULONGEST prev_sp; // OBSOLETE ULONGEST this_base; // OBSOLETE unsigned long op; // OBSOLETE unsigned short op1, op2; // OBSOLETE int i; // OBSOLETE struct d10v_unwind_cache *info; // OBSOLETE // OBSOLETE if ((*this_prologue_cache)) // OBSOLETE return (*this_prologue_cache); // OBSOLETE // OBSOLETE info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache); // OBSOLETE (*this_prologue_cache) = info; // OBSOLETE info->saved_regs = trad_frame_alloc_saved_regs (next_frame); // OBSOLETE // OBSOLETE info->size = 0; // OBSOLETE info->sp_offset = 0; // OBSOLETE // OBSOLETE info->uses_frame = 0; // OBSOLETE for (pc = frame_func_unwind (next_frame); // OBSOLETE pc > 0 && pc < frame_pc_unwind (next_frame); // OBSOLETE pc += 4) // OBSOLETE { // OBSOLETE op = get_frame_memory_unsigned (next_frame, pc, 4); // OBSOLETE if ((op & 0xC0000000) == 0xC0000000) // OBSOLETE { // OBSOLETE /* long instruction */ // OBSOLETE if ((op & 0x3FFF0000) == 0x01FF0000) // OBSOLETE { // OBSOLETE /* add3 sp,sp,n */ // OBSOLETE short n = op & 0xFFFF; // OBSOLETE info->sp_offset += n; // OBSOLETE } // OBSOLETE else if ((op & 0x3F0F0000) == 0x340F0000) // OBSOLETE { // OBSOLETE /* st rn, @(offset,sp) */ // OBSOLETE short offset = op & 0xFFFF; // OBSOLETE short n = (op >> 20) & 0xF; // OBSOLETE info->saved_regs[n].addr = info->sp_offset + offset; // OBSOLETE } // OBSOLETE else if ((op & 0x3F1F0000) == 0x350F0000) // OBSOLETE { // OBSOLETE /* st2w rn, @(offset,sp) */ // OBSOLETE short offset = op & 0xFFFF; // OBSOLETE short n = (op >> 20) & 0xF; // OBSOLETE info->saved_regs[n + 0].addr = info->sp_offset + offset + 0; // OBSOLETE info->saved_regs[n + 1].addr = info->sp_offset + offset + 2; // OBSOLETE } // OBSOLETE else // OBSOLETE break; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* short instructions */ // OBSOLETE if ((op & 0xC0000000) == 0x80000000) // OBSOLETE { // OBSOLETE op2 = (op & 0x3FFF8000) >> 15; // OBSOLETE op1 = op & 0x7FFF; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE op1 = (op & 0x3FFF8000) >> 15; // OBSOLETE op2 = op & 0x7FFF; // OBSOLETE } // OBSOLETE if (!prologue_find_regs (info, op1, pc) // OBSOLETE || !prologue_find_regs (info, op2, pc)) // OBSOLETE break; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE info->size = -info->sp_offset; // OBSOLETE // OBSOLETE /* Compute the previous frame's stack pointer (which is also the // OBSOLETE frame's ID's stack address), and this frame's base pointer. */ // OBSOLETE if (info->uses_frame) // OBSOLETE { // OBSOLETE /* The SP was moved to the FP. This indicates that a new frame // OBSOLETE was created. Get THIS frame's FP value by unwinding it from // OBSOLETE the next frame. */ // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base); // OBSOLETE /* The FP points at the last saved register. Adjust the FP back // OBSOLETE to before the first saved register giving the SP. */ // OBSOLETE prev_sp = this_base + info->size; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* Assume that the FP is this frame's SP but with that pushed // OBSOLETE stack space added back. */ // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base); // OBSOLETE prev_sp = this_base + info->size; // OBSOLETE } // OBSOLETE // OBSOLETE /* Convert that SP/BASE into real addresses. */ // OBSOLETE info->prev_sp = d10v_make_daddr (prev_sp); // OBSOLETE info->base = d10v_make_daddr (this_base); // OBSOLETE // OBSOLETE /* Adjust all the saved registers so that they contain addresses and // OBSOLETE not offsets. */ // OBSOLETE for (i = 0; i < NUM_REGS - 1; i++) // OBSOLETE if (trad_frame_addr_p (info->saved_regs, i)) // OBSOLETE { // OBSOLETE info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); // OBSOLETE } // OBSOLETE // OBSOLETE /* The call instruction moves the caller's PC in the callee's LR. // OBSOLETE Since this is an unwind, do the reverse. Copy the location of LR // OBSOLETE into PC (the address / regnum) so that a request for PC will be // OBSOLETE converted into a request for the LR. */ // OBSOLETE info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM]; // OBSOLETE // OBSOLETE /* The previous frame's SP needed to be computed. Save the computed // OBSOLETE value. */ // OBSOLETE trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM, // OBSOLETE d10v_make_daddr (prev_sp)); // OBSOLETE // OBSOLETE return info; // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, // OBSOLETE struct frame_info *frame, int regnum, int all) // OBSOLETE { // OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); // OBSOLETE if (regnum >= 0) // OBSOLETE { // OBSOLETE default_print_registers_info (gdbarch, file, frame, regnum, all); // OBSOLETE return; // OBSOLETE } // OBSOLETE // OBSOLETE { // OBSOLETE ULONGEST pc, psw, rpt_s, rpt_e, rpt_c; // OBSOLETE pc = get_frame_register_unsigned (frame, D10V_PC_REGNUM); // OBSOLETE psw = get_frame_register_unsigned (frame, PSW_REGNUM); // OBSOLETE rpt_s = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_s", -1)); // OBSOLETE rpt_e = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_e", -1)); // OBSOLETE rpt_c = get_frame_register_unsigned (frame, frame_map_name_to_regnum (frame, "rpt_c", -1)); // OBSOLETE fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n", // OBSOLETE (long) pc, (long) d10v_make_iaddr (pc), (long) psw, // OBSOLETE (long) rpt_s, (long) rpt_e, (long) rpt_c); // OBSOLETE } // OBSOLETE // OBSOLETE { // OBSOLETE int group; // OBSOLETE for (group = 0; group < 16; group += 8) // OBSOLETE { // OBSOLETE int r; // OBSOLETE fprintf_filtered (file, "R%d-R%-2d", group, group + 7); // OBSOLETE for (r = group; r < group + 8; r++) // OBSOLETE { // OBSOLETE ULONGEST tmp; // OBSOLETE tmp = get_frame_register_unsigned (frame, r); // OBSOLETE fprintf_filtered (file, " %04lx", (long) tmp); // OBSOLETE } // OBSOLETE fprintf_filtered (file, "\n"); // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE /* Note: The IMAP/DMAP registers don't participate in function // OBSOLETE calls. Don't bother trying to unwind them. */ // OBSOLETE // OBSOLETE { // OBSOLETE int a; // OBSOLETE for (a = 0; a < NR_IMAP_REGS; a++) // OBSOLETE { // OBSOLETE if (a > 0) // OBSOLETE fprintf_filtered (file, " "); // OBSOLETE fprintf_filtered (file, "IMAP%d %04lx", a, // OBSOLETE tdep->imap_register (current_regcache, a)); // OBSOLETE } // OBSOLETE if (nr_dmap_regs (gdbarch) == 1) // OBSOLETE /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */ // OBSOLETE fprintf_filtered (file, " DMAP %04lx\n", // OBSOLETE tdep->dmap_register (current_regcache, 2)); // OBSOLETE else // OBSOLETE { // OBSOLETE for (a = 0; a < nr_dmap_regs (gdbarch); a++) // OBSOLETE { // OBSOLETE fprintf_filtered (file, " DMAP%d %04lx", a, // OBSOLETE tdep->dmap_register (current_regcache, a)); // OBSOLETE } // OBSOLETE fprintf_filtered (file, "\n"); // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE { // OBSOLETE char num[MAX_REGISTER_SIZE]; // OBSOLETE int a; // OBSOLETE fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1); // OBSOLETE for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++) // OBSOLETE { // OBSOLETE int i; // OBSOLETE fprintf_filtered (file, " "); // OBSOLETE get_frame_register (frame, a, num); // OBSOLETE for (i = 0; i < register_size (gdbarch, a); i++) // OBSOLETE { // OBSOLETE fprintf_filtered (file, "%02x", (num[i] & 0xff)); // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE fprintf_filtered (file, "\n"); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE show_regs (char *args, int from_tty) // OBSOLETE { // OBSOLETE d10v_print_registers_info (current_gdbarch, gdb_stdout, // OBSOLETE get_current_frame (), -1, 1); // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_read_pc (ptid_t ptid) // OBSOLETE { // OBSOLETE ptid_t save_ptid; // OBSOLETE CORE_ADDR pc; // OBSOLETE CORE_ADDR retval; // OBSOLETE // OBSOLETE save_ptid = inferior_ptid; // OBSOLETE inferior_ptid = ptid; // OBSOLETE pc = (int) read_register (D10V_PC_REGNUM); // OBSOLETE inferior_ptid = save_ptid; // OBSOLETE retval = d10v_make_iaddr (pc); // OBSOLETE return retval; // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_write_pc (CORE_ADDR val, ptid_t ptid) // OBSOLETE { // OBSOLETE ptid_t save_ptid; // OBSOLETE // OBSOLETE save_ptid = inferior_ptid; // OBSOLETE inferior_ptid = ptid; // OBSOLETE write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val)); // OBSOLETE inferior_ptid = save_ptid; // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) // OBSOLETE { // OBSOLETE ULONGEST sp; // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp); // OBSOLETE return d10v_make_daddr (sp); // OBSOLETE } // OBSOLETE // OBSOLETE /* When arguments must be pushed onto the stack, they go on in reverse // OBSOLETE order. The below implements a FILO (stack) to do this. */ // OBSOLETE // OBSOLETE struct stack_item // OBSOLETE { // OBSOLETE int len; // OBSOLETE struct stack_item *prev; // OBSOLETE void *data; // OBSOLETE }; // OBSOLETE // OBSOLETE static struct stack_item *push_stack_item (struct stack_item *prev, // OBSOLETE void *contents, int len); // OBSOLETE static struct stack_item * // OBSOLETE push_stack_item (struct stack_item *prev, void *contents, int len) // OBSOLETE { // OBSOLETE struct stack_item *si; // OBSOLETE si = xmalloc (sizeof (struct stack_item)); // OBSOLETE si->data = xmalloc (len); // OBSOLETE si->len = len; // OBSOLETE si->prev = prev; // OBSOLETE memcpy (si->data, contents, len); // OBSOLETE return si; // OBSOLETE } // OBSOLETE // OBSOLETE static struct stack_item *pop_stack_item (struct stack_item *si); // OBSOLETE static struct stack_item * // OBSOLETE pop_stack_item (struct stack_item *si) // OBSOLETE { // OBSOLETE struct stack_item *dead = si; // OBSOLETE si = si->prev; // OBSOLETE xfree (dead->data); // OBSOLETE xfree (dead); // OBSOLETE return si; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_push_dummy_code (struct gdbarch *gdbarch, // OBSOLETE CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, // OBSOLETE struct value **args, int nargs, // OBSOLETE struct type *value_type, // OBSOLETE CORE_ADDR *real_pc, CORE_ADDR *bp_addr) // OBSOLETE { // OBSOLETE /* Allocate space sufficient for a breakpoint. */ // OBSOLETE sp = (sp - 4) & ~3; // OBSOLETE /* Store the address of that breakpoint taking care to first convert // OBSOLETE it into a code (IADDR) address from a stack (DADDR) address. // OBSOLETE This of course assumes that the two virtual addresses map onto // OBSOLETE the same real address. */ // OBSOLETE (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp)); // OBSOLETE /* d10v always starts the call at the callee's entry point. */ // OBSOLETE (*real_pc) = funaddr; // OBSOLETE return sp; // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_push_dummy_call (struct gdbarch *gdbarch, struct value *function, // OBSOLETE struct regcache *regcache, CORE_ADDR bp_addr, // OBSOLETE int nargs, struct value **args, CORE_ADDR sp, // OBSOLETE int struct_return, CORE_ADDR struct_addr) // OBSOLETE { // OBSOLETE int i; // OBSOLETE int regnum = ARG1_REGNUM; // OBSOLETE struct stack_item *si = NULL; // OBSOLETE long val; // OBSOLETE // OBSOLETE /* Set the return address. For the d10v, the return breakpoint is // OBSOLETE always at BP_ADDR. */ // OBSOLETE regcache_cooked_write_unsigned (regcache, LR_REGNUM, // OBSOLETE d10v_convert_iaddr_to_raw (bp_addr)); // OBSOLETE // OBSOLETE /* If STRUCT_RETURN is true, then the struct return address (in // OBSOLETE STRUCT_ADDR) will consume the first argument-passing register. // OBSOLETE Both adjust the register count and store that value. */ // OBSOLETE if (struct_return) // OBSOLETE { // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum, struct_addr); // OBSOLETE regnum++; // OBSOLETE } // OBSOLETE // OBSOLETE /* Fill in registers and arg lists */ // OBSOLETE for (i = 0; i < nargs; i++) // OBSOLETE { // OBSOLETE struct value *arg = args[i]; // OBSOLETE struct type *type = check_typedef (VALUE_TYPE (arg)); // OBSOLETE char *contents = VALUE_CONTENTS (arg); // OBSOLETE int len = TYPE_LENGTH (type); // OBSOLETE int aligned_regnum = (regnum + 1) & ~1; // OBSOLETE // OBSOLETE /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */ // OBSOLETE if (len <= 2 && regnum <= ARGN_REGNUM) // OBSOLETE /* fits in a single register, do not align */ // OBSOLETE { // OBSOLETE val = extract_unsigned_integer (contents, len); // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val); // OBSOLETE } // OBSOLETE else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2) // OBSOLETE /* value fits in remaining registers, store keeping left // OBSOLETE aligned */ // OBSOLETE { // OBSOLETE int b; // OBSOLETE regnum = aligned_regnum; // OBSOLETE for (b = 0; b < (len & ~1); b += 2) // OBSOLETE { // OBSOLETE val = extract_unsigned_integer (&contents[b], 2); // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, val); // OBSOLETE } // OBSOLETE if (b < len) // OBSOLETE { // OBSOLETE val = extract_unsigned_integer (&contents[b], 1); // OBSOLETE regcache_cooked_write_unsigned (regcache, regnum++, (val << 8)); // OBSOLETE } // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* arg will go onto stack */ // OBSOLETE regnum = ARGN_REGNUM + 1; // OBSOLETE si = push_stack_item (si, contents, len); // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE while (si) // OBSOLETE { // OBSOLETE sp = (sp - si->len) & ~1; // OBSOLETE write_memory (sp, si->data, si->len); // OBSOLETE si = pop_stack_item (si); // OBSOLETE } // OBSOLETE // OBSOLETE /* Finally, update the SP register. */ // OBSOLETE regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM, // OBSOLETE d10v_convert_daddr_to_raw (sp)); // OBSOLETE // OBSOLETE return sp; // OBSOLETE } // OBSOLETE // OBSOLETE /* Translate a GDB virtual ADDR/LEN into a format the remote target // OBSOLETE understands. Returns number of bytes that can be transfered // OBSOLETE starting at TARG_ADDR. Return ZERO if no bytes can be transfered // OBSOLETE (segmentation fault). Since the simulator knows all about how the // OBSOLETE VM system works, we just call that to do the translation. */ // OBSOLETE // OBSOLETE static void // OBSOLETE remote_d10v_translate_xfer_address (struct gdbarch *gdbarch, // OBSOLETE struct regcache *regcache, // OBSOLETE CORE_ADDR memaddr, int nr_bytes, // OBSOLETE CORE_ADDR *targ_addr, int *targ_len) // OBSOLETE { // OBSOLETE struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); // OBSOLETE long out_addr; // OBSOLETE long out_len; // OBSOLETE out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache, // OBSOLETE tdep->dmap_register, tdep->imap_register); // OBSOLETE *targ_addr = out_addr; // OBSOLETE *targ_len = out_len; // OBSOLETE } // OBSOLETE // OBSOLETE // OBSOLETE /* The following code implements access to, and display of, the D10V's // OBSOLETE instruction trace buffer. The buffer consists of 64K or more // OBSOLETE 4-byte words of data, of which each words includes an 8-bit count, // OBSOLETE an 8-bit segment number, and a 16-bit instruction address. // OBSOLETE // OBSOLETE In theory, the trace buffer is continuously capturing instruction // OBSOLETE data that the CPU presents on its "debug bus", but in practice, the // OBSOLETE ROMified GDB stub only enables tracing when it continues or steps // OBSOLETE the program, and stops tracing when the program stops; so it // OBSOLETE actually works for GDB to read the buffer counter out of memory and // OBSOLETE then read each trace word. The counter records where the tracing // OBSOLETE stops, but there is no record of where it started, so we remember // OBSOLETE the PC when we resumed and then search backwards in the trace // OBSOLETE buffer for a word that includes that address. This is not perfect, // OBSOLETE because you will miss trace data if the resumption PC is the target // OBSOLETE of a branch. (The value of the buffer counter is semi-random, any // OBSOLETE trace data from a previous program stop is gone.) */ // OBSOLETE // OBSOLETE /* The address of the last word recorded in the trace buffer. */ // OBSOLETE // OBSOLETE #define DBBC_ADDR (0xd80000) // OBSOLETE // OBSOLETE /* The base of the trace buffer, at least for the "Board_0". */ // OBSOLETE // OBSOLETE #define TRACE_BUFFER_BASE (0xf40000) // OBSOLETE // OBSOLETE static void trace_command (char *, int); // OBSOLETE // OBSOLETE static void untrace_command (char *, int); // OBSOLETE // OBSOLETE static void trace_info (char *, int); // OBSOLETE // OBSOLETE static void tdisassemble_command (char *, int); // OBSOLETE // OBSOLETE static void display_trace (int, int); // OBSOLETE // OBSOLETE /* True when instruction traces are being collected. */ // OBSOLETE // OBSOLETE static int tracing; // OBSOLETE // OBSOLETE /* Remembered PC. */ // OBSOLETE // OBSOLETE static CORE_ADDR last_pc; // OBSOLETE // OBSOLETE /* True when trace output should be displayed whenever program stops. */ // OBSOLETE // OBSOLETE static int trace_display; // OBSOLETE // OBSOLETE /* True when trace listing should include source lines. */ // OBSOLETE // OBSOLETE static int default_trace_show_source = 1; // OBSOLETE // OBSOLETE struct trace_buffer // OBSOLETE { // OBSOLETE int size; // OBSOLETE short *counts; // OBSOLETE CORE_ADDR *addrs; // OBSOLETE } // OBSOLETE trace_data; // OBSOLETE // OBSOLETE static void // OBSOLETE trace_command (char *args, int from_tty) // OBSOLETE { // OBSOLETE /* Clear the host-side trace buffer, allocating space if needed. */ // OBSOLETE trace_data.size = 0; // OBSOLETE if (trace_data.counts == NULL) // OBSOLETE trace_data.counts = XCALLOC (65536, short); // OBSOLETE if (trace_data.addrs == NULL) // OBSOLETE trace_data.addrs = XCALLOC (65536, CORE_ADDR); // OBSOLETE // OBSOLETE tracing = 1; // OBSOLETE // OBSOLETE printf_filtered ("Tracing is now on.\n"); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE untrace_command (char *args, int from_tty) // OBSOLETE { // OBSOLETE tracing = 0; // OBSOLETE // OBSOLETE printf_filtered ("Tracing is now off.\n"); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE trace_info (char *args, int from_tty) // OBSOLETE { // OBSOLETE int i; // OBSOLETE // OBSOLETE if (trace_data.size) // OBSOLETE { // OBSOLETE printf_filtered ("%d entries in trace buffer:\n", trace_data.size); // OBSOLETE // OBSOLETE for (i = 0; i < trace_data.size; ++i) // OBSOLETE { // OBSOLETE printf_filtered ("%d: %d instruction%s at 0x%s\n", // OBSOLETE i, // OBSOLETE trace_data.counts[i], // OBSOLETE (trace_data.counts[i] == 1 ? "" : "s"), // OBSOLETE paddr_nz (trace_data.addrs[i])); // OBSOLETE } // OBSOLETE } // OBSOLETE else // OBSOLETE printf_filtered ("No entries in trace buffer.\n"); // OBSOLETE // OBSOLETE printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off")); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_eva_prepare_to_trace (void) // OBSOLETE { // OBSOLETE if (!tracing) // OBSOLETE return; // OBSOLETE // OBSOLETE last_pc = read_register (D10V_PC_REGNUM); // OBSOLETE } // OBSOLETE // OBSOLETE /* Collect trace data from the target board and format it into a form // OBSOLETE more useful for display. */ // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_eva_get_trace_data (void) // OBSOLETE { // OBSOLETE int count, i, j, oldsize; // OBSOLETE int trace_addr, trace_seg, trace_cnt, next_cnt; // OBSOLETE unsigned int last_trace, trace_word, next_word; // OBSOLETE unsigned int *tmpspace; // OBSOLETE // OBSOLETE if (!tracing) // OBSOLETE return; // OBSOLETE // OBSOLETE tmpspace = xmalloc (65536 * sizeof (unsigned int)); // OBSOLETE // OBSOLETE last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2; // OBSOLETE // OBSOLETE /* Collect buffer contents from the target, stopping when we reach // OBSOLETE the word recorded when execution resumed. */ // OBSOLETE // OBSOLETE count = 0; // OBSOLETE while (last_trace > 0) // OBSOLETE { // OBSOLETE QUIT; // OBSOLETE trace_word = // OBSOLETE read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4); // OBSOLETE trace_addr = trace_word & 0xffff; // OBSOLETE last_trace -= 4; // OBSOLETE /* Ignore an apparently nonsensical entry. */ // OBSOLETE if (trace_addr == 0xffd5) // OBSOLETE continue; // OBSOLETE tmpspace[count++] = trace_word; // OBSOLETE if (trace_addr == last_pc) // OBSOLETE break; // OBSOLETE if (count > 65535) // OBSOLETE break; // OBSOLETE } // OBSOLETE // OBSOLETE /* Move the data to the host-side trace buffer, adjusting counts to // OBSOLETE include the last instruction executed and transforming the address // OBSOLETE into something that GDB likes. */ // OBSOLETE // OBSOLETE for (i = 0; i < count; ++i) // OBSOLETE { // OBSOLETE trace_word = tmpspace[i]; // OBSOLETE next_word = ((i == 0) ? 0 : tmpspace[i - 1]); // OBSOLETE trace_addr = trace_word & 0xffff; // OBSOLETE next_cnt = (next_word >> 24) & 0xff; // OBSOLETE j = trace_data.size + count - i - 1; // OBSOLETE trace_data.addrs[j] = (trace_addr << 2) + 0x1000000; // OBSOLETE trace_data.counts[j] = next_cnt + 1; // OBSOLETE } // OBSOLETE // OBSOLETE oldsize = trace_data.size; // OBSOLETE trace_data.size += count; // OBSOLETE // OBSOLETE xfree (tmpspace); // OBSOLETE // OBSOLETE if (trace_display) // OBSOLETE display_trace (oldsize, trace_data.size); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE tdisassemble_command (char *arg, int from_tty) // OBSOLETE { // OBSOLETE int i, count; // OBSOLETE CORE_ADDR low, high; // OBSOLETE // OBSOLETE if (!arg) // OBSOLETE { // OBSOLETE low = 0; // OBSOLETE high = trace_data.size; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE char *space_index = strchr (arg, ' '); // OBSOLETE if (space_index == NULL) // OBSOLETE { // OBSOLETE low = parse_and_eval_address (arg); // OBSOLETE high = low + 5; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE /* Two arguments. */ // OBSOLETE *space_index = '\0'; // OBSOLETE low = parse_and_eval_address (arg); // OBSOLETE high = parse_and_eval_address (space_index + 1); // OBSOLETE if (high < low) // OBSOLETE high = low; // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE printf_filtered ("Dump of trace from %s to %s:\n", // OBSOLETE paddr_u (low), paddr_u (high)); // OBSOLETE // OBSOLETE display_trace (low, high); // OBSOLETE // OBSOLETE printf_filtered ("End of trace dump.\n"); // OBSOLETE gdb_flush (gdb_stdout); // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE display_trace (int low, int high) // OBSOLETE { // OBSOLETE int i, count, trace_show_source, first, suppress; // OBSOLETE CORE_ADDR next_address; // OBSOLETE // OBSOLETE trace_show_source = default_trace_show_source; // OBSOLETE if (!have_full_symbols () && !have_partial_symbols ()) // OBSOLETE { // OBSOLETE trace_show_source = 0; // OBSOLETE printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n"); // OBSOLETE printf_filtered ("Trace will not display any source.\n"); // OBSOLETE } // OBSOLETE // OBSOLETE first = 1; // OBSOLETE suppress = 0; // OBSOLETE for (i = low; i < high; ++i) // OBSOLETE { // OBSOLETE next_address = trace_data.addrs[i]; // OBSOLETE count = trace_data.counts[i]; // OBSOLETE while (count-- > 0) // OBSOLETE { // OBSOLETE QUIT; // OBSOLETE if (trace_show_source) // OBSOLETE { // OBSOLETE struct symtab_and_line sal, sal_prev; // OBSOLETE // OBSOLETE sal_prev = find_pc_line (next_address - 4, 0); // OBSOLETE sal = find_pc_line (next_address, 0); // OBSOLETE // OBSOLETE if (sal.symtab) // OBSOLETE { // OBSOLETE if (first || sal.line != sal_prev.line) // OBSOLETE print_source_lines (sal.symtab, sal.line, sal.line + 1, 0); // OBSOLETE suppress = 0; // OBSOLETE } // OBSOLETE else // OBSOLETE { // OBSOLETE if (!suppress) // OBSOLETE /* FIXME-32x64--assumes sal.pc fits in long. */ // OBSOLETE printf_filtered ("No source file for address %s.\n", // OBSOLETE hex_string ((unsigned long) sal.pc)); // OBSOLETE suppress = 1; // OBSOLETE } // OBSOLETE } // OBSOLETE first = 0; // OBSOLETE print_address (next_address, gdb_stdout); // OBSOLETE printf_filtered (":"); // OBSOLETE printf_filtered ("\t"); // OBSOLETE wrap_here (" "); // OBSOLETE next_address += gdb_print_insn (next_address, gdb_stdout); // OBSOLETE printf_filtered ("\n"); // OBSOLETE gdb_flush (gdb_stdout); // OBSOLETE } // OBSOLETE } // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) // OBSOLETE { // OBSOLETE ULONGEST pc; // OBSOLETE frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc); // OBSOLETE return d10v_make_iaddr (pc); // OBSOLETE } // OBSOLETE // OBSOLETE /* Given a GDB frame, determine the address of the calling function's // OBSOLETE frame. This will be used to create a new GDB frame struct. */ // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_frame_this_id (struct frame_info *next_frame, // OBSOLETE void **this_prologue_cache, // OBSOLETE struct frame_id *this_id) // OBSOLETE { // OBSOLETE struct d10v_unwind_cache *info // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache); // OBSOLETE CORE_ADDR base; // OBSOLETE CORE_ADDR func; // OBSOLETE struct frame_id id; // OBSOLETE // OBSOLETE /* The FUNC is easy. */ // OBSOLETE func = frame_func_unwind (next_frame); // OBSOLETE // OBSOLETE /* Hopefully the prologue analysis either correctly determined the // OBSOLETE frame's base (which is the SP from the previous frame), or set // OBSOLETE that base to "NULL". */ // OBSOLETE base = info->prev_sp; // OBSOLETE if (base == STACK_START || base == 0) // OBSOLETE return; // OBSOLETE // OBSOLETE id = frame_id_build (base, func); // OBSOLETE // OBSOLETE (*this_id) = id; // OBSOLETE } // OBSOLETE // OBSOLETE static void // OBSOLETE d10v_frame_prev_register (struct frame_info *next_frame, // OBSOLETE void **this_prologue_cache, // OBSOLETE int regnum, int *optimizedp, // OBSOLETE enum lval_type *lvalp, CORE_ADDR *addrp, // OBSOLETE int *realnump, void *bufferp) // OBSOLETE { // OBSOLETE struct d10v_unwind_cache *info // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_prologue_cache); // OBSOLETE trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, // OBSOLETE optimizedp, lvalp, addrp, realnump, bufferp); // OBSOLETE } // OBSOLETE // OBSOLETE static const struct frame_unwind d10v_frame_unwind = { // OBSOLETE NORMAL_FRAME, // OBSOLETE d10v_frame_this_id, // OBSOLETE d10v_frame_prev_register // OBSOLETE }; // OBSOLETE // OBSOLETE static const struct frame_unwind * // OBSOLETE d10v_frame_sniffer (struct frame_info *next_frame) // OBSOLETE { // OBSOLETE return &d10v_frame_unwind; // OBSOLETE } // OBSOLETE // OBSOLETE static CORE_ADDR // OBSOLETE d10v_frame_base_address (struct frame_info *next_frame, void **this_cache) // OBSOLETE { // OBSOLETE struct d10v_unwind_cache *info // OBSOLETE = d10v_frame_unwind_cache (next_frame, this_cache); // OBSOLETE return info->base; // OBSOLETE } // OBSOLETE // OBSOLETE static const struct frame_base d10v_frame_base = { // OBSOLETE &d10v_frame_unwind, // OBSOLETE d10v_frame_base_address, // OBSOLETE d10v_frame_base_address, // OBSOLETE d10v_frame_base_address // OBSOLETE }; // OBSOLETE // OBSOLETE /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that // OBSOLETE dummy frame. The frame ID's base needs to match the TOS value // OBSOLETE saved by save_dummy_frame_tos(), and the PC match the dummy frame's // OBSOLETE breakpoint. */ // OBSOLETE // OBSOLETE static struct frame_id // OBSOLETE d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) // OBSOLETE { // OBSOLETE return frame_id_build (d10v_unwind_sp (gdbarch, next_frame), // OBSOLETE frame_pc_unwind (next_frame)); // OBSOLETE } // OBSOLETE // OBSOLETE static gdbarch_init_ftype d10v_gdbarch_init; // OBSOLETE // OBSOLETE static struct gdbarch * // OBSOLETE d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) // OBSOLETE { // OBSOLETE struct gdbarch *gdbarch; // OBSOLETE int d10v_num_regs; // OBSOLETE struct gdbarch_tdep *tdep; // OBSOLETE gdbarch_register_name_ftype *d10v_register_name; // OBSOLETE gdbarch_register_sim_regno_ftype *d10v_register_sim_regno; // OBSOLETE // OBSOLETE /* Find a candidate among the list of pre-declared architectures. */ // OBSOLETE arches = gdbarch_list_lookup_by_info (arches, &info); // OBSOLETE if (arches != NULL) // OBSOLETE return arches->gdbarch; // OBSOLETE // OBSOLETE /* None found, create a new architecture from the information // OBSOLETE provided. */ // OBSOLETE tdep = XMALLOC (struct gdbarch_tdep); // OBSOLETE gdbarch = gdbarch_alloc (&info, tdep); // OBSOLETE // OBSOLETE switch (info.bfd_arch_info->mach) // OBSOLETE { // OBSOLETE case bfd_mach_d10v_ts2: // OBSOLETE d10v_num_regs = 37; // OBSOLETE d10v_register_name = d10v_ts2_register_name; // OBSOLETE d10v_register_sim_regno = d10v_ts2_register_sim_regno; // OBSOLETE tdep->a0_regnum = TS2_A0_REGNUM; // OBSOLETE tdep->nr_dmap_regs = TS2_NR_DMAP_REGS; // OBSOLETE tdep->dmap_register = d10v_ts2_dmap_register; // OBSOLETE tdep->imap_register = d10v_ts2_imap_register; // OBSOLETE break; // OBSOLETE default: // OBSOLETE case bfd_mach_d10v_ts3: // OBSOLETE d10v_num_regs = 42; // OBSOLETE d10v_register_name = d10v_ts3_register_name; // OBSOLETE d10v_register_sim_regno = d10v_ts3_register_sim_regno; // OBSOLETE tdep->a0_regnum = TS3_A0_REGNUM; // OBSOLETE tdep->nr_dmap_regs = TS3_NR_DMAP_REGS; // OBSOLETE tdep->dmap_register = d10v_ts3_dmap_register; // OBSOLETE tdep->imap_register = d10v_ts3_imap_register; // OBSOLETE break; // OBSOLETE } // OBSOLETE // OBSOLETE set_gdbarch_read_pc (gdbarch, d10v_read_pc); // OBSOLETE set_gdbarch_write_pc (gdbarch, d10v_write_pc); // OBSOLETE set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp); // OBSOLETE // OBSOLETE set_gdbarch_num_regs (gdbarch, d10v_num_regs); // OBSOLETE set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM); // OBSOLETE set_gdbarch_register_name (gdbarch, d10v_register_name); // OBSOLETE set_gdbarch_register_type (gdbarch, d10v_register_type); // OBSOLETE // OBSOLETE set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_addr_bit (gdbarch, 32); // OBSOLETE set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer); // OBSOLETE set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address); // OBSOLETE set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address); // OBSOLETE set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); // OBSOLETE /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long // OBSOLETE double'' is 64 bits. */ // OBSOLETE set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); // OBSOLETE set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); // OBSOLETE switch (info.byte_order) // OBSOLETE { // OBSOLETE case BFD_ENDIAN_BIG: // OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big); // OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big); // OBSOLETE set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big); // OBSOLETE break; // OBSOLETE case BFD_ENDIAN_LITTLE: // OBSOLETE set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); // OBSOLETE set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); // OBSOLETE set_gdbarch_long_double_format (gdbarch, // OBSOLETE &floatformat_ieee_double_little); // OBSOLETE break; // OBSOLETE default: // OBSOLETE internal_error (__FILE__, __LINE__, // OBSOLETE "d10v_gdbarch_init: bad byte order for float format"); // OBSOLETE } // OBSOLETE // OBSOLETE set_gdbarch_return_value (gdbarch, d10v_return_value); // OBSOLETE set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code); // OBSOLETE set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call); // OBSOLETE // OBSOLETE set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue); // OBSOLETE set_gdbarch_inner_than (gdbarch, core_addr_lessthan); // OBSOLETE set_gdbarch_decr_pc_after_break (gdbarch, 4); // OBSOLETE set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc); // OBSOLETE // OBSOLETE set_gdbarch_remote_translate_xfer_address (gdbarch, // OBSOLETE remote_d10v_translate_xfer_address); // OBSOLETE // OBSOLETE set_gdbarch_frame_align (gdbarch, d10v_frame_align); // OBSOLETE // OBSOLETE set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno); // OBSOLETE // OBSOLETE set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info); // OBSOLETE // OBSOLETE frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer); // OBSOLETE frame_base_set_default (gdbarch, &d10v_frame_base); // OBSOLETE // OBSOLETE /* Methods for saving / extracting a dummy frame's ID. The ID's // OBSOLETE stack address must match the SP value returned by // OBSOLETE PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ // OBSOLETE set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id); // OBSOLETE // OBSOLETE /* Return the unwound PC value. */ // OBSOLETE set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc); // OBSOLETE // OBSOLETE set_gdbarch_print_insn (gdbarch, print_insn_d10v); // OBSOLETE // OBSOLETE return gdbarch; // OBSOLETE } // OBSOLETE // OBSOLETE void // OBSOLETE _initialize_d10v_tdep (void) // OBSOLETE { // OBSOLETE register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init); // OBSOLETE // OBSOLETE deprecated_target_resume_hook = d10v_eva_prepare_to_trace; // OBSOLETE deprecated_target_wait_loop_hook = d10v_eva_get_trace_data; // OBSOLETE // OBSOLETE deprecate_cmd (add_com ("regs", class_vars, show_regs, // OBSOLETE "Print all registers"), // OBSOLETE "info registers"); // OBSOLETE // OBSOLETE add_com ("itrace", class_support, trace_command, // OBSOLETE "Enable tracing of instruction execution."); // OBSOLETE // OBSOLETE add_com ("iuntrace", class_support, untrace_command, // OBSOLETE "Disable tracing of instruction execution."); // OBSOLETE // OBSOLETE add_com ("itdisassemble", class_vars, tdisassemble_command, // OBSOLETE "Disassemble the trace buffer.\n\ // OBSOLETE Two optional arguments specify a range of trace buffer entries\n\ // OBSOLETE as reported by info trace (NOT addresses!)."); // OBSOLETE // OBSOLETE add_info ("itrace", trace_info, // OBSOLETE "Display info about the trace data buffer."); // OBSOLETE // OBSOLETE add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display, "\ // OBSOLETE Set automatic display of trace.", "\ // OBSOLETE Show automatic display of trace.", "\ // OBSOLETE Controls the display of d10v specific instruction trace information.", "\ // OBSOLETE Automatic display of trace is %s.", // OBSOLETE NULL, NULL, &setlist, &showlist); // OBSOLETE add_setshow_boolean_cmd ("itracesource", no_class, // OBSOLETE &default_trace_show_source, "\ // OBSOLETE Set display of source code with trace.", "\ // OBSOLETE Show display of source code with trace.", "\ // OBSOLETE When on source code is included in the d10v instruction trace display.", "\ // OBSOLETE Display of source code with trace is %s.", // OBSOLETE NULL, NULL, &setlist, &showlist); // OBSOLETE }