/* Support for the generic parts of PE/PEI; the common executable parts. Copyright (C) 1995-2014 Free Software Foundation, Inc. Written by Cygnus Solutions. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* Most of this hacked by Steve Chamberlain . PE/PEI rearrangement (and code added): Donn Terry Softway Systems, Inc. */ /* Hey look, some documentation [and in a place you expect to find it]! The main reference for the pei format is "Microsoft Portable Executable and Common Object File Format Specification 4.1". Get it if you need to do some serious hacking on this code. Another reference: "Peering Inside the PE: A Tour of the Win32 Portable Executable File Format", MSJ 1994, Volume 9. The *sole* difference between the pe format and the pei format is that the latter has an MSDOS 2.0 .exe header on the front that prints the message "This app must be run under Windows." (or some such). (FIXME: Whether that statement is *really* true or not is unknown. Are there more subtle differences between pe and pei formats? For now assume there aren't. If you find one, then for God sakes document it here!) The Microsoft docs use the word "image" instead of "executable" because the former can also refer to a DLL (shared library). Confusion can arise because the `i' in `pei' also refers to "image". The `pe' format can also create images (i.e. executables), it's just that to run on a win32 system you need to use the pei format. FIXME: Please add more docs here so the next poor fool that has to hack on this code has a chance of getting something accomplished without wasting too much time. */ /* This expands into COFF_WITH_pe, COFF_WITH_pep, or COFF_WITH_pex64 depending on whether we're compiling for straight PE or PE+. */ #define COFF_WITH_XX #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "coff/internal.h" #include "bfdver.h" #ifdef HAVE_WCHAR_H #include #endif /* NOTE: it's strange to be including an architecture specific header in what's supposed to be general (to PE/PEI) code. However, that's where the definitions are, and they don't vary per architecture within PE/PEI, so we get them from there. FIXME: The lack of variance is an assumption which may prove to be incorrect if new PE/PEI targets are created. */ #if defined COFF_WITH_pex64 # include "coff/x86_64.h" #elif defined COFF_WITH_pep # include "coff/ia64.h" #else # include "coff/i386.h" #endif #include "coff/pe.h" #include "libcoff.h" #include "libpei.h" #include "safe-ctype.h" #if defined COFF_WITH_pep || defined COFF_WITH_pex64 # undef AOUTSZ # define AOUTSZ PEPAOUTSZ # define PEAOUTHDR PEPAOUTHDR #endif #define HighBitSet(val) ((val) & 0x80000000) #define SetHighBit(val) ((val) | 0x80000000) #define WithoutHighBit(val) ((val) & 0x7fffffff) /* FIXME: This file has various tests of POWERPC_LE_PE. Those tests worked when the code was in peicode.h, but no longer work now that the code is in peigen.c. PowerPC NT is said to be dead. If anybody wants to revive the code, you will have to figure out how to handle those issues. */ void _bfd_XXi_swap_sym_in (bfd * abfd, void * ext1, void * in1) { SYMENT *ext = (SYMENT *) ext1; struct internal_syment *in = (struct internal_syment *) in1; if (ext->e.e_name[0] == 0) { in->_n._n_n._n_zeroes = 0; in->_n._n_n._n_offset = H_GET_32 (abfd, ext->e.e.e_offset); } else memcpy (in->_n._n_name, ext->e.e_name, SYMNMLEN); in->n_value = H_GET_32 (abfd, ext->e_value); in->n_scnum = H_GET_16 (abfd, ext->e_scnum); if (sizeof (ext->e_type) == 2) in->n_type = H_GET_16 (abfd, ext->e_type); else in->n_type = H_GET_32 (abfd, ext->e_type); in->n_sclass = H_GET_8 (abfd, ext->e_sclass); in->n_numaux = H_GET_8 (abfd, ext->e_numaux); #ifndef STRICT_PE_FORMAT /* This is for Gnu-created DLLs. */ /* The section symbols for the .idata$ sections have class 0x68 (C_SECTION), which MS documentation indicates is a section symbol. Unfortunately, the value field in the symbol is simply a copy of the .idata section's flags rather than something useful. When these symbols are encountered, change the value to 0 so that they will be handled somewhat correctly in the bfd code. */ if (in->n_sclass == C_SECTION) { char namebuf[SYMNMLEN + 1]; const char *name = NULL; in->n_value = 0x0; /* Create synthetic empty sections as needed. DJ */ if (in->n_scnum == 0) { asection *sec; name = _bfd_coff_internal_syment_name (abfd, in, namebuf); if (name == NULL) /* FIXME: Return error. */ abort (); sec = bfd_get_section_by_name (abfd, name); if (sec != NULL) in->n_scnum = sec->target_index; } if (in->n_scnum == 0) { int unused_section_number = 0; asection *sec; flagword flags; for (sec = abfd->sections; sec; sec = sec->next) if (unused_section_number <= sec->target_index) unused_section_number = sec->target_index + 1; if (name == namebuf) { name = (const char *) bfd_alloc (abfd, strlen (namebuf) + 1); if (name == NULL) /* FIXME: Return error. */ abort (); strcpy ((char *) name, namebuf); } flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_DATA | SEC_LOAD; sec = bfd_make_section_anyway_with_flags (abfd, name, flags); if (sec == NULL) /* FIXME: Return error. */ abort (); sec->vma = 0; sec->lma = 0; sec->size = 0; sec->filepos = 0; sec->rel_filepos = 0; sec->reloc_count = 0; sec->line_filepos = 0; sec->lineno_count = 0; sec->userdata = NULL; sec->next = NULL; sec->alignment_power = 2; sec->target_index = unused_section_number; in->n_scnum = unused_section_number; } in->n_sclass = C_STAT; } #endif #ifdef coff_swap_sym_in_hook /* This won't work in peigen.c, but since it's for PPC PE, it's not worth fixing. */ coff_swap_sym_in_hook (abfd, ext1, in1); #endif } unsigned int _bfd_XXi_swap_sym_out (bfd * abfd, void * inp, void * extp) { struct internal_syment *in = (struct internal_syment *) inp; SYMENT *ext = (SYMENT *) extp; if (in->_n._n_name[0] == 0) { H_PUT_32 (abfd, 0, ext->e.e.e_zeroes); H_PUT_32 (abfd, in->_n._n_n._n_offset, ext->e.e.e_offset); } else memcpy (ext->e.e_name, in->_n._n_name, SYMNMLEN); H_PUT_32 (abfd, in->n_value, ext->e_value); H_PUT_16 (abfd, in->n_scnum, ext->e_scnum); if (sizeof (ext->e_type) == 2) H_PUT_16 (abfd, in->n_type, ext->e_type); else H_PUT_32 (abfd, in->n_type, ext->e_type); H_PUT_8 (abfd, in->n_sclass, ext->e_sclass); H_PUT_8 (abfd, in->n_numaux, ext->e_numaux); return SYMESZ; } void _bfd_XXi_swap_aux_in (bfd * abfd, void * ext1, int type, int in_class, int indx ATTRIBUTE_UNUSED, int numaux ATTRIBUTE_UNUSED, void * in1) { AUXENT *ext = (AUXENT *) ext1; union internal_auxent *in = (union internal_auxent *) in1; switch (in_class) { case C_FILE: if (ext->x_file.x_fname[0] == 0) { in->x_file.x_n.x_zeroes = 0; in->x_file.x_n.x_offset = H_GET_32 (abfd, ext->x_file.x_n.x_offset); } else memcpy (in->x_file.x_fname, ext->x_file.x_fname, FILNMLEN); return; case C_STAT: case C_LEAFSTAT: case C_HIDDEN: if (type == T_NULL) { in->x_scn.x_scnlen = GET_SCN_SCNLEN (abfd, ext); in->x_scn.x_nreloc = GET_SCN_NRELOC (abfd, ext); in->x_scn.x_nlinno = GET_SCN_NLINNO (abfd, ext); in->x_scn.x_checksum = H_GET_32 (abfd, ext->x_scn.x_checksum); in->x_scn.x_associated = H_GET_16 (abfd, ext->x_scn.x_associated); in->x_scn.x_comdat = H_GET_8 (abfd, ext->x_scn.x_comdat); return; } break; } in->x_sym.x_tagndx.l = H_GET_32 (abfd, ext->x_sym.x_tagndx); in->x_sym.x_tvndx = H_GET_16 (abfd, ext->x_sym.x_tvndx); if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type) || ISTAG (in_class)) { in->x_sym.x_fcnary.x_fcn.x_lnnoptr = GET_FCN_LNNOPTR (abfd, ext); in->x_sym.x_fcnary.x_fcn.x_endndx.l = GET_FCN_ENDNDX (abfd, ext); } else { in->x_sym.x_fcnary.x_ary.x_dimen[0] = H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[0]); in->x_sym.x_fcnary.x_ary.x_dimen[1] = H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[1]); in->x_sym.x_fcnary.x_ary.x_dimen[2] = H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[2]); in->x_sym.x_fcnary.x_ary.x_dimen[3] = H_GET_16 (abfd, ext->x_sym.x_fcnary.x_ary.x_dimen[3]); } if (ISFCN (type)) { in->x_sym.x_misc.x_fsize = H_GET_32 (abfd, ext->x_sym.x_misc.x_fsize); } else { in->x_sym.x_misc.x_lnsz.x_lnno = GET_LNSZ_LNNO (abfd, ext); in->x_sym.x_misc.x_lnsz.x_size = GET_LNSZ_SIZE (abfd, ext); } } unsigned int _bfd_XXi_swap_aux_out (bfd * abfd, void * inp, int type, int in_class, int indx ATTRIBUTE_UNUSED, int numaux ATTRIBUTE_UNUSED, void * extp) { union internal_auxent *in = (union internal_auxent *) inp; AUXENT *ext = (AUXENT *) extp; memset (ext, 0, AUXESZ); switch (in_class) { case C_FILE: if (in->x_file.x_fname[0] == 0) { H_PUT_32 (abfd, 0, ext->x_file.x_n.x_zeroes); H_PUT_32 (abfd, in->x_file.x_n.x_offset, ext->x_file.x_n.x_offset); } else memcpy (ext->x_file.x_fname, in->x_file.x_fname, FILNMLEN); return AUXESZ; case C_STAT: case C_LEAFSTAT: case C_HIDDEN: if (type == T_NULL) { PUT_SCN_SCNLEN (abfd, in->x_scn.x_scnlen, ext); PUT_SCN_NRELOC (abfd, in->x_scn.x_nreloc, ext); PUT_SCN_NLINNO (abfd, in->x_scn.x_nlinno, ext); H_PUT_32 (abfd, in->x_scn.x_checksum, ext->x_scn.x_checksum); H_PUT_16 (abfd, in->x_scn.x_associated, ext->x_scn.x_associated); H_PUT_8 (abfd, in->x_scn.x_comdat, ext->x_scn.x_comdat); return AUXESZ; } break; } H_PUT_32 (abfd, in->x_sym.x_tagndx.l, ext->x_sym.x_tagndx); H_PUT_16 (abfd, in->x_sym.x_tvndx, ext->x_sym.x_tvndx); if (in_class == C_BLOCK || in_class == C_FCN || ISFCN (type) || ISTAG (in_class)) { PUT_FCN_LNNOPTR (abfd, in->x_sym.x_fcnary.x_fcn.x_lnnoptr, ext); PUT_FCN_ENDNDX (abfd, in->x_sym.x_fcnary.x_fcn.x_endndx.l, ext); } else { H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[0], ext->x_sym.x_fcnary.x_ary.x_dimen[0]); H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[1], ext->x_sym.x_fcnary.x_ary.x_dimen[1]); H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[2], ext->x_sym.x_fcnary.x_ary.x_dimen[2]); H_PUT_16 (abfd, in->x_sym.x_fcnary.x_ary.x_dimen[3], ext->x_sym.x_fcnary.x_ary.x_dimen[3]); } if (ISFCN (type)) H_PUT_32 (abfd, in->x_sym.x_misc.x_fsize, ext->x_sym.x_misc.x_fsize); else { PUT_LNSZ_LNNO (abfd, in->x_sym.x_misc.x_lnsz.x_lnno, ext); PUT_LNSZ_SIZE (abfd, in->x_sym.x_misc.x_lnsz.x_size, ext); } return AUXESZ; } void _bfd_XXi_swap_lineno_in (bfd * abfd, void * ext1, void * in1) { LINENO *ext = (LINENO *) ext1; struct internal_lineno *in = (struct internal_lineno *) in1; in->l_addr.l_symndx = H_GET_32 (abfd, ext->l_addr.l_symndx); in->l_lnno = GET_LINENO_LNNO (abfd, ext); } unsigned int _bfd_XXi_swap_lineno_out (bfd * abfd, void * inp, void * outp) { struct internal_lineno *in = (struct internal_lineno *) inp; struct external_lineno *ext = (struct external_lineno *) outp; H_PUT_32 (abfd, in->l_addr.l_symndx, ext->l_addr.l_symndx); PUT_LINENO_LNNO (abfd, in->l_lnno, ext); return LINESZ; } void _bfd_XXi_swap_aouthdr_in (bfd * abfd, void * aouthdr_ext1, void * aouthdr_int1) { PEAOUTHDR * src = (PEAOUTHDR *) aouthdr_ext1; AOUTHDR * aouthdr_ext = (AOUTHDR *) aouthdr_ext1; struct internal_aouthdr *aouthdr_int = (struct internal_aouthdr *) aouthdr_int1; struct internal_extra_pe_aouthdr *a = &aouthdr_int->pe; aouthdr_int->magic = H_GET_16 (abfd, aouthdr_ext->magic); aouthdr_int->vstamp = H_GET_16 (abfd, aouthdr_ext->vstamp); aouthdr_int->tsize = GET_AOUTHDR_TSIZE (abfd, aouthdr_ext->tsize); aouthdr_int->dsize = GET_AOUTHDR_DSIZE (abfd, aouthdr_ext->dsize); aouthdr_int->bsize = GET_AOUTHDR_BSIZE (abfd, aouthdr_ext->bsize); aouthdr_int->entry = GET_AOUTHDR_ENTRY (abfd, aouthdr_ext->entry); aouthdr_int->text_start = GET_AOUTHDR_TEXT_START (abfd, aouthdr_ext->text_start); #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) /* PE32+ does not have data_start member! */ aouthdr_int->data_start = GET_AOUTHDR_DATA_START (abfd, aouthdr_ext->data_start); a->BaseOfData = aouthdr_int->data_start; #endif a->Magic = aouthdr_int->magic; a->MajorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp); a->MinorLinkerVersion = H_GET_8 (abfd, aouthdr_ext->vstamp + 1); a->SizeOfCode = aouthdr_int->tsize ; a->SizeOfInitializedData = aouthdr_int->dsize ; a->SizeOfUninitializedData = aouthdr_int->bsize ; a->AddressOfEntryPoint = aouthdr_int->entry; a->BaseOfCode = aouthdr_int->text_start; a->ImageBase = GET_OPTHDR_IMAGE_BASE (abfd, src->ImageBase); a->SectionAlignment = H_GET_32 (abfd, src->SectionAlignment); a->FileAlignment = H_GET_32 (abfd, src->FileAlignment); a->MajorOperatingSystemVersion = H_GET_16 (abfd, src->MajorOperatingSystemVersion); a->MinorOperatingSystemVersion = H_GET_16 (abfd, src->MinorOperatingSystemVersion); a->MajorImageVersion = H_GET_16 (abfd, src->MajorImageVersion); a->MinorImageVersion = H_GET_16 (abfd, src->MinorImageVersion); a->MajorSubsystemVersion = H_GET_16 (abfd, src->MajorSubsystemVersion); a->MinorSubsystemVersion = H_GET_16 (abfd, src->MinorSubsystemVersion); a->Reserved1 = H_GET_32 (abfd, src->Reserved1); a->SizeOfImage = H_GET_32 (abfd, src->SizeOfImage); a->SizeOfHeaders = H_GET_32 (abfd, src->SizeOfHeaders); a->CheckSum = H_GET_32 (abfd, src->CheckSum); a->Subsystem = H_GET_16 (abfd, src->Subsystem); a->DllCharacteristics = H_GET_16 (abfd, src->DllCharacteristics); a->SizeOfStackReserve = GET_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, src->SizeOfStackReserve); a->SizeOfStackCommit = GET_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, src->SizeOfStackCommit); a->SizeOfHeapReserve = GET_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, src->SizeOfHeapReserve); a->SizeOfHeapCommit = GET_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, src->SizeOfHeapCommit); a->LoaderFlags = H_GET_32 (abfd, src->LoaderFlags); a->NumberOfRvaAndSizes = H_GET_32 (abfd, src->NumberOfRvaAndSizes); { int idx; for (idx = 0; idx < a->NumberOfRvaAndSizes; idx++) { /* If data directory is empty, rva also should be 0. */ int size = H_GET_32 (abfd, src->DataDirectory[idx][1]); a->DataDirectory[idx].Size = size; if (size) a->DataDirectory[idx].VirtualAddress = H_GET_32 (abfd, src->DataDirectory[idx][0]); else a->DataDirectory[idx].VirtualAddress = 0; } } if (aouthdr_int->entry) { aouthdr_int->entry += a->ImageBase; #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) aouthdr_int->entry &= 0xffffffff; #endif } if (aouthdr_int->tsize) { aouthdr_int->text_start += a->ImageBase; #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) aouthdr_int->text_start &= 0xffffffff; #endif } #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) /* PE32+ does not have data_start member! */ if (aouthdr_int->dsize) { aouthdr_int->data_start += a->ImageBase; aouthdr_int->data_start &= 0xffffffff; } #endif #ifdef POWERPC_LE_PE /* These three fields are normally set up by ppc_relocate_section. In the case of reading a file in, we can pick them up from the DataDirectory. */ first_thunk_address = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress; thunk_size = a->DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size; import_table_size = a->DataDirectory[PE_IMPORT_TABLE].Size; #endif } /* A support function for below. */ static void add_data_entry (bfd * abfd, struct internal_extra_pe_aouthdr *aout, int idx, char *name, bfd_vma base) { asection *sec = bfd_get_section_by_name (abfd, name); /* Add import directory information if it exists. */ if ((sec != NULL) && (coff_section_data (abfd, sec) != NULL) && (pei_section_data (abfd, sec) != NULL)) { /* If data directory is empty, rva also should be 0. */ int size = pei_section_data (abfd, sec)->virt_size; aout->DataDirectory[idx].Size = size; if (size) { aout->DataDirectory[idx].VirtualAddress = (sec->vma - base) & 0xffffffff; sec->flags |= SEC_DATA; } } } unsigned int _bfd_XXi_swap_aouthdr_out (bfd * abfd, void * in, void * out) { struct internal_aouthdr *aouthdr_in = (struct internal_aouthdr *) in; pe_data_type *pe = pe_data (abfd); struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr; PEAOUTHDR *aouthdr_out = (PEAOUTHDR *) out; bfd_vma sa, fa, ib; IMAGE_DATA_DIRECTORY idata2, idata5, tls; sa = extra->SectionAlignment; fa = extra->FileAlignment; ib = extra->ImageBase; idata2 = pe->pe_opthdr.DataDirectory[PE_IMPORT_TABLE]; idata5 = pe->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE]; tls = pe->pe_opthdr.DataDirectory[PE_TLS_TABLE]; if (aouthdr_in->tsize) { aouthdr_in->text_start -= ib; #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) aouthdr_in->text_start &= 0xffffffff; #endif } if (aouthdr_in->dsize) { aouthdr_in->data_start -= ib; #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) aouthdr_in->data_start &= 0xffffffff; #endif } if (aouthdr_in->entry) { aouthdr_in->entry -= ib; #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) aouthdr_in->entry &= 0xffffffff; #endif } #define FA(x) (((x) + fa -1 ) & (- fa)) #define SA(x) (((x) + sa -1 ) & (- sa)) /* We like to have the sizes aligned. */ aouthdr_in->bsize = FA (aouthdr_in->bsize); extra->NumberOfRvaAndSizes = IMAGE_NUMBEROF_DIRECTORY_ENTRIES; add_data_entry (abfd, extra, 0, ".edata", ib); add_data_entry (abfd, extra, 2, ".rsrc", ib); add_data_entry (abfd, extra, 3, ".pdata", ib); /* In theory we do not need to call add_data_entry for .idata$2 or .idata$5. It will be done in bfd_coff_final_link where all the required information is available. If however, we are not going to perform a final link, eg because we have been invoked by objcopy or strip, then we need to make sure that these Data Directory entries are initialised properly. So - we copy the input values into the output values, and then, if a final link is going to be performed, it can overwrite them. */ extra->DataDirectory[PE_IMPORT_TABLE] = idata2; extra->DataDirectory[PE_IMPORT_ADDRESS_TABLE] = idata5; extra->DataDirectory[PE_TLS_TABLE] = tls; if (extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress == 0) /* Until other .idata fixes are made (pending patch), the entry for .idata is needed for backwards compatibility. FIXME. */ add_data_entry (abfd, extra, 1, ".idata", ib); /* For some reason, the virtual size (which is what's set by add_data_entry) for .reloc is not the same as the size recorded in this slot by MSVC; it doesn't seem to cause problems (so far), but since it's the best we've got, use it. It does do the right thing for .pdata. */ if (pe->has_reloc_section) add_data_entry (abfd, extra, 5, ".reloc", ib); { asection *sec; bfd_vma hsize = 0; bfd_vma dsize = 0; bfd_vma isize = 0; bfd_vma tsize = 0; for (sec = abfd->sections; sec; sec = sec->next) { int rounded = FA (sec->size); /* The first non-zero section filepos is the header size. Sections without contents will have a filepos of 0. */ if (hsize == 0) hsize = sec->filepos; if (sec->flags & SEC_DATA) dsize += rounded; if (sec->flags & SEC_CODE) tsize += rounded; /* The image size is the total VIRTUAL size (which is what is in the virt_size field). Files have been seen (from MSVC 5.0 link.exe) where the file size of the .data segment is quite small compared to the virtual size. Without this fix, strip munges the file. FIXME: We need to handle holes between sections, which may happpen when we covert from another format. We just use the virtual address and virtual size of the last section for the image size. */ if (coff_section_data (abfd, sec) != NULL && pei_section_data (abfd, sec) != NULL) isize = (sec->vma - extra->ImageBase + SA (FA (pei_section_data (abfd, sec)->virt_size))); } aouthdr_in->dsize = dsize; aouthdr_in->tsize = tsize; extra->SizeOfHeaders = hsize; extra->SizeOfImage = isize; } H_PUT_16 (abfd, aouthdr_in->magic, aouthdr_out->standard.magic); /* e.g. 219510000 is linker version 2.19 */ #define LINKER_VERSION ((short) (BFD_VERSION / 1000000)) /* This piece of magic sets the "linker version" field to LINKER_VERSION. */ H_PUT_16 (abfd, (LINKER_VERSION / 100 + (LINKER_VERSION % 100) * 256), aouthdr_out->standard.vstamp); PUT_AOUTHDR_TSIZE (abfd, aouthdr_in->tsize, aouthdr_out->standard.tsize); PUT_AOUTHDR_DSIZE (abfd, aouthdr_in->dsize, aouthdr_out->standard.dsize); PUT_AOUTHDR_BSIZE (abfd, aouthdr_in->bsize, aouthdr_out->standard.bsize); PUT_AOUTHDR_ENTRY (abfd, aouthdr_in->entry, aouthdr_out->standard.entry); PUT_AOUTHDR_TEXT_START (abfd, aouthdr_in->text_start, aouthdr_out->standard.text_start); #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) /* PE32+ does not have data_start member! */ PUT_AOUTHDR_DATA_START (abfd, aouthdr_in->data_start, aouthdr_out->standard.data_start); #endif PUT_OPTHDR_IMAGE_BASE (abfd, extra->ImageBase, aouthdr_out->ImageBase); H_PUT_32 (abfd, extra->SectionAlignment, aouthdr_out->SectionAlignment); H_PUT_32 (abfd, extra->FileAlignment, aouthdr_out->FileAlignment); H_PUT_16 (abfd, extra->MajorOperatingSystemVersion, aouthdr_out->MajorOperatingSystemVersion); H_PUT_16 (abfd, extra->MinorOperatingSystemVersion, aouthdr_out->MinorOperatingSystemVersion); H_PUT_16 (abfd, extra->MajorImageVersion, aouthdr_out->MajorImageVersion); H_PUT_16 (abfd, extra->MinorImageVersion, aouthdr_out->MinorImageVersion); H_PUT_16 (abfd, extra->MajorSubsystemVersion, aouthdr_out->MajorSubsystemVersion); H_PUT_16 (abfd, extra->MinorSubsystemVersion, aouthdr_out->MinorSubsystemVersion); H_PUT_32 (abfd, extra->Reserved1, aouthdr_out->Reserved1); H_PUT_32 (abfd, extra->SizeOfImage, aouthdr_out->SizeOfImage); H_PUT_32 (abfd, extra->SizeOfHeaders, aouthdr_out->SizeOfHeaders); H_PUT_32 (abfd, extra->CheckSum, aouthdr_out->CheckSum); H_PUT_16 (abfd, extra->Subsystem, aouthdr_out->Subsystem); H_PUT_16 (abfd, extra->DllCharacteristics, aouthdr_out->DllCharacteristics); PUT_OPTHDR_SIZE_OF_STACK_RESERVE (abfd, extra->SizeOfStackReserve, aouthdr_out->SizeOfStackReserve); PUT_OPTHDR_SIZE_OF_STACK_COMMIT (abfd, extra->SizeOfStackCommit, aouthdr_out->SizeOfStackCommit); PUT_OPTHDR_SIZE_OF_HEAP_RESERVE (abfd, extra->SizeOfHeapReserve, aouthdr_out->SizeOfHeapReserve); PUT_OPTHDR_SIZE_OF_HEAP_COMMIT (abfd, extra->SizeOfHeapCommit, aouthdr_out->SizeOfHeapCommit); H_PUT_32 (abfd, extra->LoaderFlags, aouthdr_out->LoaderFlags); H_PUT_32 (abfd, extra->NumberOfRvaAndSizes, aouthdr_out->NumberOfRvaAndSizes); { int idx; for (idx = 0; idx < 16; idx++) { H_PUT_32 (abfd, extra->DataDirectory[idx].VirtualAddress, aouthdr_out->DataDirectory[idx][0]); H_PUT_32 (abfd, extra->DataDirectory[idx].Size, aouthdr_out->DataDirectory[idx][1]); } } return AOUTSZ; } unsigned int _bfd_XXi_only_swap_filehdr_out (bfd * abfd, void * in, void * out) { int idx; struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in; struct external_PEI_filehdr *filehdr_out = (struct external_PEI_filehdr *) out; if (pe_data (abfd)->has_reloc_section || pe_data (abfd)->dont_strip_reloc) filehdr_in->f_flags &= ~F_RELFLG; if (pe_data (abfd)->dll) filehdr_in->f_flags |= F_DLL; filehdr_in->pe.e_magic = DOSMAGIC; filehdr_in->pe.e_cblp = 0x90; filehdr_in->pe.e_cp = 0x3; filehdr_in->pe.e_crlc = 0x0; filehdr_in->pe.e_cparhdr = 0x4; filehdr_in->pe.e_minalloc = 0x0; filehdr_in->pe.e_maxalloc = 0xffff; filehdr_in->pe.e_ss = 0x0; filehdr_in->pe.e_sp = 0xb8; filehdr_in->pe.e_csum = 0x0; filehdr_in->pe.e_ip = 0x0; filehdr_in->pe.e_cs = 0x0; filehdr_in->pe.e_lfarlc = 0x40; filehdr_in->pe.e_ovno = 0x0; for (idx = 0; idx < 4; idx++) filehdr_in->pe.e_res[idx] = 0x0; filehdr_in->pe.e_oemid = 0x0; filehdr_in->pe.e_oeminfo = 0x0; for (idx = 0; idx < 10; idx++) filehdr_in->pe.e_res2[idx] = 0x0; filehdr_in->pe.e_lfanew = 0x80; /* This next collection of data are mostly just characters. It appears to be constant within the headers put on NT exes. */ filehdr_in->pe.dos_message[0] = 0x0eba1f0e; filehdr_in->pe.dos_message[1] = 0xcd09b400; filehdr_in->pe.dos_message[2] = 0x4c01b821; filehdr_in->pe.dos_message[3] = 0x685421cd; filehdr_in->pe.dos_message[4] = 0x70207369; filehdr_in->pe.dos_message[5] = 0x72676f72; filehdr_in->pe.dos_message[6] = 0x63206d61; filehdr_in->pe.dos_message[7] = 0x6f6e6e61; filehdr_in->pe.dos_message[8] = 0x65622074; filehdr_in->pe.dos_message[9] = 0x6e757220; filehdr_in->pe.dos_message[10] = 0x206e6920; filehdr_in->pe.dos_message[11] = 0x20534f44; filehdr_in->pe.dos_message[12] = 0x65646f6d; filehdr_in->pe.dos_message[13] = 0x0a0d0d2e; filehdr_in->pe.dos_message[14] = 0x24; filehdr_in->pe.dos_message[15] = 0x0; filehdr_in->pe.nt_signature = NT_SIGNATURE; H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic); H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns); /* Only use a real timestamp if the option was chosen. */ if ((pe_data (abfd)->insert_timestamp)) H_PUT_32 (abfd, time(0), filehdr_out->f_timdat); PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr, filehdr_out->f_symptr); H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms); H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr); H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags); /* Put in extra dos header stuff. This data remains essentially constant, it just has to be tacked on to the beginning of all exes for NT. */ H_PUT_16 (abfd, filehdr_in->pe.e_magic, filehdr_out->e_magic); H_PUT_16 (abfd, filehdr_in->pe.e_cblp, filehdr_out->e_cblp); H_PUT_16 (abfd, filehdr_in->pe.e_cp, filehdr_out->e_cp); H_PUT_16 (abfd, filehdr_in->pe.e_crlc, filehdr_out->e_crlc); H_PUT_16 (abfd, filehdr_in->pe.e_cparhdr, filehdr_out->e_cparhdr); H_PUT_16 (abfd, filehdr_in->pe.e_minalloc, filehdr_out->e_minalloc); H_PUT_16 (abfd, filehdr_in->pe.e_maxalloc, filehdr_out->e_maxalloc); H_PUT_16 (abfd, filehdr_in->pe.e_ss, filehdr_out->e_ss); H_PUT_16 (abfd, filehdr_in->pe.e_sp, filehdr_out->e_sp); H_PUT_16 (abfd, filehdr_in->pe.e_csum, filehdr_out->e_csum); H_PUT_16 (abfd, filehdr_in->pe.e_ip, filehdr_out->e_ip); H_PUT_16 (abfd, filehdr_in->pe.e_cs, filehdr_out->e_cs); H_PUT_16 (abfd, filehdr_in->pe.e_lfarlc, filehdr_out->e_lfarlc); H_PUT_16 (abfd, filehdr_in->pe.e_ovno, filehdr_out->e_ovno); for (idx = 0; idx < 4; idx++) H_PUT_16 (abfd, filehdr_in->pe.e_res[idx], filehdr_out->e_res[idx]); H_PUT_16 (abfd, filehdr_in->pe.e_oemid, filehdr_out->e_oemid); H_PUT_16 (abfd, filehdr_in->pe.e_oeminfo, filehdr_out->e_oeminfo); for (idx = 0; idx < 10; idx++) H_PUT_16 (abfd, filehdr_in->pe.e_res2[idx], filehdr_out->e_res2[idx]); H_PUT_32 (abfd, filehdr_in->pe.e_lfanew, filehdr_out->e_lfanew); for (idx = 0; idx < 16; idx++) H_PUT_32 (abfd, filehdr_in->pe.dos_message[idx], filehdr_out->dos_message[idx]); /* Also put in the NT signature. */ H_PUT_32 (abfd, filehdr_in->pe.nt_signature, filehdr_out->nt_signature); return FILHSZ; } unsigned int _bfd_XX_only_swap_filehdr_out (bfd * abfd, void * in, void * out) { struct internal_filehdr *filehdr_in = (struct internal_filehdr *) in; FILHDR *filehdr_out = (FILHDR *) out; H_PUT_16 (abfd, filehdr_in->f_magic, filehdr_out->f_magic); H_PUT_16 (abfd, filehdr_in->f_nscns, filehdr_out->f_nscns); H_PUT_32 (abfd, filehdr_in->f_timdat, filehdr_out->f_timdat); PUT_FILEHDR_SYMPTR (abfd, filehdr_in->f_symptr, filehdr_out->f_symptr); H_PUT_32 (abfd, filehdr_in->f_nsyms, filehdr_out->f_nsyms); H_PUT_16 (abfd, filehdr_in->f_opthdr, filehdr_out->f_opthdr); H_PUT_16 (abfd, filehdr_in->f_flags, filehdr_out->f_flags); return FILHSZ; } unsigned int _bfd_XXi_swap_scnhdr_out (bfd * abfd, void * in, void * out) { struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in; SCNHDR *scnhdr_ext = (SCNHDR *) out; unsigned int ret = SCNHSZ; bfd_vma ps; bfd_vma ss; memcpy (scnhdr_ext->s_name, scnhdr_int->s_name, sizeof (scnhdr_int->s_name)); PUT_SCNHDR_VADDR (abfd, ((scnhdr_int->s_vaddr - pe_data (abfd)->pe_opthdr.ImageBase) & 0xffffffff), scnhdr_ext->s_vaddr); /* NT wants the size data to be rounded up to the next NT_FILE_ALIGNMENT, but zero if it has no content (as in .bss, sometimes). */ if ((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0) { if (bfd_pei_p (abfd)) { ps = scnhdr_int->s_size; ss = 0; } else { ps = 0; ss = scnhdr_int->s_size; } } else { if (bfd_pei_p (abfd)) ps = scnhdr_int->s_paddr; else ps = 0; ss = scnhdr_int->s_size; } PUT_SCNHDR_SIZE (abfd, ss, scnhdr_ext->s_size); /* s_paddr in PE is really the virtual size. */ PUT_SCNHDR_PADDR (abfd, ps, scnhdr_ext->s_paddr); PUT_SCNHDR_SCNPTR (abfd, scnhdr_int->s_scnptr, scnhdr_ext->s_scnptr); PUT_SCNHDR_RELPTR (abfd, scnhdr_int->s_relptr, scnhdr_ext->s_relptr); PUT_SCNHDR_LNNOPTR (abfd, scnhdr_int->s_lnnoptr, scnhdr_ext->s_lnnoptr); { /* Extra flags must be set when dealing with PE. All sections should also have the IMAGE_SCN_MEM_READ (0x40000000) flag set. In addition, the .text section must have IMAGE_SCN_MEM_EXECUTE (0x20000000) and the data sections (.idata, .data, .bss, .CRT) must have IMAGE_SCN_MEM_WRITE set (this is especially important when dealing with the .idata section since the addresses for routines from .dlls must be overwritten). If .reloc section data is ever generated, we must add IMAGE_SCN_MEM_DISCARDABLE (0x02000000). Also, the resource data should also be read and writable. */ /* FIXME: Alignment is also encoded in this field, at least on PPC and ARM-WINCE. Although - how do we get the original alignment field back ? */ typedef struct { const char * section_name; unsigned long must_have; } pe_required_section_flags; pe_required_section_flags known_sections [] = { { ".arch", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE | IMAGE_SCN_ALIGN_8BYTES }, { ".bss", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_WRITE }, { ".data", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE }, { ".edata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA }, { ".idata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE }, { ".pdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA }, { ".rdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA }, { ".reloc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_DISCARDABLE }, { ".rsrc", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE }, { ".text" , IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_CODE | IMAGE_SCN_MEM_EXECUTE }, { ".tls", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_WRITE }, { ".xdata", IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA }, { NULL, 0} }; pe_required_section_flags * p; /* We have defaulted to adding the IMAGE_SCN_MEM_WRITE flag, but now we know exactly what this specific section wants so we remove it and then allow the must_have field to add it back in if necessary. However, we don't remove IMAGE_SCN_MEM_WRITE flag from .text if the default WP_TEXT file flag has been cleared. WP_TEXT may be cleared by ld --enable-auto-import (if auto-import is actually needed), by ld --omagic, or by obcopy --writable-text. */ for (p = known_sections; p->section_name; p++) if (strcmp (scnhdr_int->s_name, p->section_name) == 0) { if (strcmp (scnhdr_int->s_name, ".text") || (bfd_get_file_flags (abfd) & WP_TEXT)) scnhdr_int->s_flags &= ~IMAGE_SCN_MEM_WRITE; scnhdr_int->s_flags |= p->must_have; break; } H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags); } if (coff_data (abfd)->link_info && ! coff_data (abfd)->link_info->relocatable && ! coff_data (abfd)->link_info->shared && strcmp (scnhdr_int->s_name, ".text") == 0) { /* By inference from looking at MS output, the 32 bit field which is the combination of the number_of_relocs and number_of_linenos is used for the line number count in executables. A 16-bit field won't do for cc1. The MS document says that the number of relocs is zero for executables, but the 17-th bit has been observed to be there. Overflow is not an issue: a 4G-line program will overflow a bunch of other fields long before this! */ H_PUT_16 (abfd, (scnhdr_int->s_nlnno & 0xffff), scnhdr_ext->s_nlnno); H_PUT_16 (abfd, (scnhdr_int->s_nlnno >> 16), scnhdr_ext->s_nreloc); } else { if (scnhdr_int->s_nlnno <= 0xffff) H_PUT_16 (abfd, scnhdr_int->s_nlnno, scnhdr_ext->s_nlnno); else { (*_bfd_error_handler) (_("%s: line number overflow: 0x%lx > 0xffff"), bfd_get_filename (abfd), scnhdr_int->s_nlnno); bfd_set_error (bfd_error_file_truncated); H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nlnno); ret = 0; } /* Although we could encode 0xffff relocs here, we do not, to be consistent with other parts of bfd. Also it lets us warn, as we should never see 0xffff here w/o having the overflow flag set. */ if (scnhdr_int->s_nreloc < 0xffff) H_PUT_16 (abfd, scnhdr_int->s_nreloc, scnhdr_ext->s_nreloc); else { /* PE can deal with large #s of relocs, but not here. */ H_PUT_16 (abfd, 0xffff, scnhdr_ext->s_nreloc); scnhdr_int->s_flags |= IMAGE_SCN_LNK_NRELOC_OVFL; H_PUT_32 (abfd, scnhdr_int->s_flags, scnhdr_ext->s_flags); } } return ret; } static char * dir_names[IMAGE_NUMBEROF_DIRECTORY_ENTRIES] = { N_("Export Directory [.edata (or where ever we found it)]"), N_("Import Directory [parts of .idata]"), N_("Resource Directory [.rsrc]"), N_("Exception Directory [.pdata]"), N_("Security Directory"), N_("Base Relocation Directory [.reloc]"), N_("Debug Directory"), N_("Description Directory"), N_("Special Directory"), N_("Thread Storage Directory [.tls]"), N_("Load Configuration Directory"), N_("Bound Import Directory"), N_("Import Address Table Directory"), N_("Delay Import Directory"), N_("CLR Runtime Header"), N_("Reserved") }; #ifdef POWERPC_LE_PE /* The code for the PPC really falls in the "architecture dependent" category. However, it's not clear that anyone will ever care, so we're ignoring the issue for now; if/when PPC matters, some of this may need to go into peicode.h, or arguments passed to enable the PPC- specific code. */ #endif static bfd_boolean pe_print_idata (bfd * abfd, void * vfile) { FILE *file = (FILE *) vfile; bfd_byte *data; asection *section; bfd_signed_vma adj; #ifdef POWERPC_LE_PE asection *rel_section = bfd_get_section_by_name (abfd, ".reldata"); #endif bfd_size_type datasize = 0; bfd_size_type dataoff; bfd_size_type i; int onaline = 20; pe_data_type *pe = pe_data (abfd); struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr; bfd_vma addr; addr = extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress; if (addr == 0 && extra->DataDirectory[PE_IMPORT_TABLE].Size == 0) { /* Maybe the extra header isn't there. Look for the section. */ section = bfd_get_section_by_name (abfd, ".idata"); if (section == NULL) return TRUE; addr = section->vma; datasize = section->size; if (datasize == 0) return TRUE; } else { addr += extra->ImageBase; for (section = abfd->sections; section != NULL; section = section->next) { datasize = section->size; if (addr >= section->vma && addr < section->vma + datasize) break; } if (section == NULL) { fprintf (file, _("\nThere is an import table, but the section containing it could not be found\n")); return TRUE; } } fprintf (file, _("\nThere is an import table in %s at 0x%lx\n"), section->name, (unsigned long) addr); dataoff = addr - section->vma; #ifdef POWERPC_LE_PE if (rel_section != 0 && rel_section->size != 0) { /* The toc address can be found by taking the starting address, which on the PPC locates a function descriptor. The descriptor consists of the function code starting address followed by the address of the toc. The starting address we get from the bfd, and the descriptor is supposed to be in the .reldata section. */ bfd_vma loadable_toc_address; bfd_vma toc_address; bfd_vma start_address; bfd_byte *data; bfd_vma offset; if (!bfd_malloc_and_get_section (abfd, rel_section, &data)) { if (data != NULL) free (data); return FALSE; } offset = abfd->start_address - rel_section->vma; if (offset >= rel_section->size || offset + 8 > rel_section->size) { if (data != NULL) free (data); return FALSE; } start_address = bfd_get_32 (abfd, data + offset); loadable_toc_address = bfd_get_32 (abfd, data + offset + 4); toc_address = loadable_toc_address - 32768; fprintf (file, _("\nFunction descriptor located at the start address: %04lx\n"), (unsigned long int) (abfd->start_address)); fprintf (file, _("\tcode-base %08lx toc (loadable/actual) %08lx/%08lx\n"), start_address, loadable_toc_address, toc_address); if (data != NULL) free (data); } else { fprintf (file, _("\nNo reldata section! Function descriptor not decoded.\n")); } #endif fprintf (file, _("\nThe Import Tables (interpreted %s section contents)\n"), section->name); fprintf (file, _("\ vma: Hint Time Forward DLL First\n\ Table Stamp Chain Name Thunk\n")); /* Read the whole section. Some of the fields might be before dataoff. */ if (!bfd_malloc_and_get_section (abfd, section, &data)) { if (data != NULL) free (data); return FALSE; } adj = section->vma - extra->ImageBase; /* Print all image import descriptors. */ for (i = dataoff; i + onaline <= datasize; i += onaline) { bfd_vma hint_addr; bfd_vma time_stamp; bfd_vma forward_chain; bfd_vma dll_name; bfd_vma first_thunk; int idx = 0; bfd_size_type j; char *dll; /* Print (i + extra->DataDirectory[PE_IMPORT_TABLE].VirtualAddress). */ fprintf (file, " %08lx\t", (unsigned long) (i + adj)); hint_addr = bfd_get_32 (abfd, data + i); time_stamp = bfd_get_32 (abfd, data + i + 4); forward_chain = bfd_get_32 (abfd, data + i + 8); dll_name = bfd_get_32 (abfd, data + i + 12); first_thunk = bfd_get_32 (abfd, data + i + 16); fprintf (file, "%08lx %08lx %08lx %08lx %08lx\n", (unsigned long) hint_addr, (unsigned long) time_stamp, (unsigned long) forward_chain, (unsigned long) dll_name, (unsigned long) first_thunk); if (hint_addr == 0 && first_thunk == 0) break; if (dll_name - adj >= section->size) break; dll = (char *) data + dll_name - adj; fprintf (file, _("\n\tDLL Name: %s\n"), dll); if (hint_addr != 0) { bfd_byte *ft_data; asection *ft_section; bfd_vma ft_addr; bfd_size_type ft_datasize; int ft_idx; int ft_allocated; fprintf (file, _("\tvma: Hint/Ord Member-Name Bound-To\n")); idx = hint_addr - adj; ft_addr = first_thunk + extra->ImageBase; ft_idx = first_thunk - adj; ft_data = data + ft_idx; ft_datasize = datasize - ft_idx; ft_allocated = 0; if (first_thunk != hint_addr) { /* Find the section which contains the first thunk. */ for (ft_section = abfd->sections; ft_section != NULL; ft_section = ft_section->next) { if (ft_addr >= ft_section->vma && ft_addr < ft_section->vma + ft_section->size) break; } if (ft_section == NULL) { fprintf (file, _("\nThere is a first thunk, but the section containing it could not be found\n")); continue; } /* Now check to see if this section is the same as our current section. If it is not then we will have to load its data in. */ if (ft_section != section) { ft_idx = first_thunk - (ft_section->vma - extra->ImageBase); ft_datasize = ft_section->size - ft_idx; ft_data = (bfd_byte *) bfd_malloc (ft_datasize); if (ft_data == NULL) continue; /* Read ft_datasize bytes starting at offset ft_idx. */ if (!bfd_get_section_contents (abfd, ft_section, ft_data, (bfd_vma) ft_idx, ft_datasize)) { free (ft_data); continue; } ft_allocated = 1; } } /* Print HintName vector entries. */ #ifdef COFF_WITH_pex64 for (j = 0; idx + j + 8 <= datasize; j += 8) { unsigned long member = bfd_get_32 (abfd, data + idx + j); unsigned long member_high = bfd_get_32 (abfd, data + idx + j + 4); if (!member && !member_high) break; if (HighBitSet (member_high)) fprintf (file, "\t%lx%08lx\t %4lx%08lx ", member_high, member, WithoutHighBit (member_high), member); else { int ordinal; char *member_name; ordinal = bfd_get_16 (abfd, data + member - adj); member_name = (char *) data + member - adj + 2; fprintf (file, "\t%04lx\t %4d %s",member, ordinal, member_name); } /* If the time stamp is not zero, the import address table holds actual addresses. */ if (time_stamp != 0 && first_thunk != 0 && first_thunk != hint_addr && j + 4 <= ft_datasize) fprintf (file, "\t%04lx", (unsigned long) bfd_get_32 (abfd, ft_data + j)); fprintf (file, "\n"); } #else for (j = 0; idx + j + 4 <= datasize; j += 4) { unsigned long member = bfd_get_32 (abfd, data + idx + j); /* Print single IMAGE_IMPORT_BY_NAME vector. */ if (member == 0) break; if (HighBitSet (member)) fprintf (file, "\t%04lx\t %4lu ", member, WithoutHighBit (member)); else { int ordinal; char *member_name; ordinal = bfd_get_16 (abfd, data + member - adj); member_name = (char *) data + member - adj + 2; fprintf (file, "\t%04lx\t %4d %s", member, ordinal, member_name); } /* If the time stamp is not zero, the import address table holds actual addresses. */ if (time_stamp != 0 && first_thunk != 0 && first_thunk != hint_addr && j + 4 <= ft_datasize) fprintf (file, "\t%04lx", (unsigned long) bfd_get_32 (abfd, ft_data + j)); fprintf (file, "\n"); } #endif if (ft_allocated) free (ft_data); } fprintf (file, "\n"); } free (data); return TRUE; } static bfd_boolean pe_print_edata (bfd * abfd, void * vfile) { FILE *file = (FILE *) vfile; bfd_byte *data; asection *section; bfd_size_type datasize = 0; bfd_size_type dataoff; bfd_size_type i; bfd_signed_vma adj; struct EDT_type { long export_flags; /* Reserved - should be zero. */ long time_stamp; short major_ver; short minor_ver; bfd_vma name; /* RVA - relative to image base. */ long base; /* Ordinal base. */ unsigned long num_functions;/* Number in the export address table. */ unsigned long num_names; /* Number in the name pointer table. */ bfd_vma eat_addr; /* RVA to the export address table. */ bfd_vma npt_addr; /* RVA to the Export Name Pointer Table. */ bfd_vma ot_addr; /* RVA to the Ordinal Table. */ } edt; pe_data_type *pe = pe_data (abfd); struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr; bfd_vma addr; addr = extra->DataDirectory[PE_EXPORT_TABLE].VirtualAddress; if (addr == 0 && extra->DataDirectory[PE_EXPORT_TABLE].Size == 0) { /* Maybe the extra header isn't there. Look for the section. */ section = bfd_get_section_by_name (abfd, ".edata"); if (section == NULL) return TRUE; addr = section->vma; dataoff = 0; datasize = section->size; if (datasize == 0) return TRUE; } else { addr += extra->ImageBase; for (section = abfd->sections; section != NULL; section = section->next) if (addr >= section->vma && addr < section->vma + section->size) break; if (section == NULL) { fprintf (file, _("\nThere is an export table, but the section containing it could not be found\n")); return TRUE; } dataoff = addr - section->vma; datasize = extra->DataDirectory[PE_EXPORT_TABLE].Size; if (datasize > section->size - dataoff) { fprintf (file, _("\nThere is an export table in %s, but it does not fit into that section\n"), section->name); return TRUE; } } fprintf (file, _("\nThere is an export table in %s at 0x%lx\n"), section->name, (unsigned long) addr); data = (bfd_byte *) bfd_malloc (datasize); if (data == NULL) return FALSE; if (! bfd_get_section_contents (abfd, section, data, (file_ptr) dataoff, datasize)) return FALSE; /* Go get Export Directory Table. */ edt.export_flags = bfd_get_32 (abfd, data + 0); edt.time_stamp = bfd_get_32 (abfd, data + 4); edt.major_ver = bfd_get_16 (abfd, data + 8); edt.minor_ver = bfd_get_16 (abfd, data + 10); edt.name = bfd_get_32 (abfd, data + 12); edt.base = bfd_get_32 (abfd, data + 16); edt.num_functions = bfd_get_32 (abfd, data + 20); edt.num_names = bfd_get_32 (abfd, data + 24); edt.eat_addr = bfd_get_32 (abfd, data + 28); edt.npt_addr = bfd_get_32 (abfd, data + 32); edt.ot_addr = bfd_get_32 (abfd, data + 36); adj = section->vma - extra->ImageBase + dataoff; /* Dump the EDT first. */ fprintf (file, _("\nThe Export Tables (interpreted %s section contents)\n\n"), section->name); fprintf (file, _("Export Flags \t\t\t%lx\n"), (unsigned long) edt.export_flags); fprintf (file, _("Time/Date stamp \t\t%lx\n"), (unsigned long) edt.time_stamp); fprintf (file, _("Major/Minor \t\t\t%d/%d\n"), edt.major_ver, edt.minor_ver); fprintf (file, _("Name \t\t\t\t")); bfd_fprintf_vma (abfd, file, edt.name); fprintf (file, " %s\n", data + edt.name - adj); fprintf (file, _("Ordinal Base \t\t\t%ld\n"), edt.base); fprintf (file, _("Number in:\n")); fprintf (file, _("\tExport Address Table \t\t%08lx\n"), edt.num_functions); fprintf (file, _("\t[Name Pointer/Ordinal] Table\t%08lx\n"), edt.num_names); fprintf (file, _("Table Addresses\n")); fprintf (file, _("\tExport Address Table \t\t")); bfd_fprintf_vma (abfd, file, edt.eat_addr); fprintf (file, "\n"); fprintf (file, _("\tName Pointer Table \t\t")); bfd_fprintf_vma (abfd, file, edt.npt_addr); fprintf (file, "\n"); fprintf (file, _("\tOrdinal Table \t\t\t")); bfd_fprintf_vma (abfd, file, edt.ot_addr); fprintf (file, "\n"); /* The next table to find is the Export Address Table. It's basically a list of pointers that either locate a function in this dll, or forward the call to another dll. Something like: typedef union { long export_rva; long forwarder_rva; } export_address_table_entry; */ fprintf (file, _("\nExport Address Table -- Ordinal Base %ld\n"), edt.base); for (i = 0; i < edt.num_functions; ++i) { bfd_vma eat_member = bfd_get_32 (abfd, data + edt.eat_addr + (i * 4) - adj); if (eat_member == 0) continue; if (eat_member - adj <= datasize) { /* This rva is to a name (forwarding function) in our section. */ /* Should locate a function descriptor. */ fprintf (file, "\t[%4ld] +base[%4ld] %04lx %s -- %s\n", (long) i, (long) (i + edt.base), (unsigned long) eat_member, _("Forwarder RVA"), data + eat_member - adj); } else { /* Should locate a function descriptor in the reldata section. */ fprintf (file, "\t[%4ld] +base[%4ld] %04lx %s\n", (long) i, (long) (i + edt.base), (unsigned long) eat_member, _("Export RVA")); } } /* The Export Name Pointer Table is paired with the Export Ordinal Table. */ /* Dump them in parallel for clarity. */ fprintf (file, _("\n[Ordinal/Name Pointer] Table\n")); for (i = 0; i < edt.num_names; ++i) { bfd_vma name_ptr = bfd_get_32 (abfd, data + edt.npt_addr + (i*4) - adj); char *name = (char *) data + name_ptr - adj; bfd_vma ord = bfd_get_16 (abfd, data + edt.ot_addr + (i*2) - adj); fprintf (file, "\t[%4ld] %s\n", (long) ord, name); } free (data); return TRUE; } /* This really is architecture dependent. On IA-64, a .pdata entry consists of three dwords containing relative virtual addresses that specify the start and end address of the code range the entry covers and the address of the corresponding unwind info data. On ARM and SH-4, a compressed PDATA structure is used : _IMAGE_CE_RUNTIME_FUNCTION_ENTRY, whereas MIPS is documented to use _IMAGE_ALPHA_RUNTIME_FUNCTION_ENTRY. See http://msdn2.microsoft.com/en-us/library/ms253988(VS.80).aspx . This is the version for uncompressed data. */ static bfd_boolean pe_print_pdata (bfd * abfd, void * vfile) { #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) # define PDATA_ROW_SIZE (3 * 8) #else # define PDATA_ROW_SIZE (5 * 4) #endif FILE *file = (FILE *) vfile; bfd_byte *data = 0; asection *section = bfd_get_section_by_name (abfd, ".pdata"); bfd_size_type datasize = 0; bfd_size_type i; bfd_size_type start, stop; int onaline = PDATA_ROW_SIZE; if (section == NULL || coff_section_data (abfd, section) == NULL || pei_section_data (abfd, section) == NULL) return TRUE; stop = pei_section_data (abfd, section)->virt_size; if ((stop % onaline) != 0) fprintf (file, _("Warning, .pdata section size (%ld) is not a multiple of %d\n"), (long) stop, onaline); fprintf (file, _("\nThe Function Table (interpreted .pdata section contents)\n")); #if defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) fprintf (file, _(" vma:\t\t\tBegin Address End Address Unwind Info\n")); #else fprintf (file, _("\ vma:\t\tBegin End EH EH PrologEnd Exception\n\ \t\tAddress Address Handler Data Address Mask\n")); #endif datasize = section->size; if (datasize == 0) return TRUE; if (! bfd_malloc_and_get_section (abfd, section, &data)) { if (data != NULL) free (data); return FALSE; } start = 0; for (i = start; i < stop; i += onaline) { bfd_vma begin_addr; bfd_vma end_addr; bfd_vma eh_handler; bfd_vma eh_data; bfd_vma prolog_end_addr; #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64) int em_data; #endif if (i + PDATA_ROW_SIZE > stop) break; begin_addr = GET_PDATA_ENTRY (abfd, data + i ); end_addr = GET_PDATA_ENTRY (abfd, data + i + 4); eh_handler = GET_PDATA_ENTRY (abfd, data + i + 8); eh_data = GET_PDATA_ENTRY (abfd, data + i + 12); prolog_end_addr = GET_PDATA_ENTRY (abfd, data + i + 16); if (begin_addr == 0 && end_addr == 0 && eh_handler == 0 && eh_data == 0 && prolog_end_addr == 0) /* We are probably into the padding of the section now. */ break; #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64) em_data = ((eh_handler & 0x1) << 2) | (prolog_end_addr & 0x3); #endif eh_handler &= ~(bfd_vma) 0x3; prolog_end_addr &= ~(bfd_vma) 0x3; fputc (' ', file); bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file); bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file); bfd_fprintf_vma (abfd, file, end_addr); fputc (' ', file); bfd_fprintf_vma (abfd, file, eh_handler); #if !defined(COFF_WITH_pep) || defined(COFF_WITH_pex64) fputc (' ', file); bfd_fprintf_vma (abfd, file, eh_data); fputc (' ', file); bfd_fprintf_vma (abfd, file, prolog_end_addr); fprintf (file, " %x", em_data); #endif #ifdef POWERPC_LE_PE if (eh_handler == 0 && eh_data != 0) { /* Special bits here, although the meaning may be a little mysterious. The only one I know for sure is 0x03 Code Significance 0x00 None 0x01 Register Save Millicode 0x02 Register Restore Millicode 0x03 Glue Code Sequence. */ switch (eh_data) { case 0x01: fprintf (file, _(" Register save millicode")); break; case 0x02: fprintf (file, _(" Register restore millicode")); break; case 0x03: fprintf (file, _(" Glue code sequence")); break; default: break; } } #endif fprintf (file, "\n"); } free (data); return TRUE; #undef PDATA_ROW_SIZE } typedef struct sym_cache { int symcount; asymbol ** syms; } sym_cache; static asymbol ** slurp_symtab (bfd *abfd, sym_cache *psc) { asymbol ** sy = NULL; long storage; if (!(bfd_get_file_flags (abfd) & HAS_SYMS)) { psc->symcount = 0; return NULL; } storage = bfd_get_symtab_upper_bound (abfd); if (storage < 0) return NULL; if (storage) sy = (asymbol **) bfd_malloc (storage); psc->symcount = bfd_canonicalize_symtab (abfd, sy); if (psc->symcount < 0) return NULL; return sy; } static const char * my_symbol_for_address (bfd *abfd, bfd_vma func, sym_cache *psc) { int i; if (psc->syms == 0) psc->syms = slurp_symtab (abfd, psc); for (i = 0; i < psc->symcount; i++) { if (psc->syms[i]->section->vma + psc->syms[i]->value == func) return psc->syms[i]->name; } return NULL; } static void cleanup_syms (sym_cache *psc) { psc->symcount = 0; free (psc->syms); psc->syms = NULL; } /* This is the version for "compressed" pdata. */ bfd_boolean _bfd_XX_print_ce_compressed_pdata (bfd * abfd, void * vfile) { # define PDATA_ROW_SIZE (2 * 4) FILE *file = (FILE *) vfile; bfd_byte *data = NULL; asection *section = bfd_get_section_by_name (abfd, ".pdata"); bfd_size_type datasize = 0; bfd_size_type i; bfd_size_type start, stop; int onaline = PDATA_ROW_SIZE; struct sym_cache cache = {0, 0} ; if (section == NULL || coff_section_data (abfd, section) == NULL || pei_section_data (abfd, section) == NULL) return TRUE; stop = pei_section_data (abfd, section)->virt_size; if ((stop % onaline) != 0) fprintf (file, _("Warning, .pdata section size (%ld) is not a multiple of %d\n"), (long) stop, onaline); fprintf (file, _("\nThe Function Table (interpreted .pdata section contents)\n")); fprintf (file, _("\ vma:\t\tBegin Prolog Function Flags Exception EH\n\ \t\tAddress Length Length 32b exc Handler Data\n")); datasize = section->size; if (datasize == 0) return TRUE; if (! bfd_malloc_and_get_section (abfd, section, &data)) { if (data != NULL) free (data); return FALSE; } start = 0; for (i = start; i < stop; i += onaline) { bfd_vma begin_addr; bfd_vma other_data; bfd_vma prolog_length, function_length; int flag32bit, exception_flag; asection *tsection; if (i + PDATA_ROW_SIZE > stop) break; begin_addr = GET_PDATA_ENTRY (abfd, data + i ); other_data = GET_PDATA_ENTRY (abfd, data + i + 4); if (begin_addr == 0 && other_data == 0) /* We are probably into the padding of the section now. */ break; prolog_length = (other_data & 0x000000FF); function_length = (other_data & 0x3FFFFF00) >> 8; flag32bit = (int)((other_data & 0x40000000) >> 30); exception_flag = (int)((other_data & 0x80000000) >> 31); fputc (' ', file); bfd_fprintf_vma (abfd, file, i + section->vma); fputc ('\t', file); bfd_fprintf_vma (abfd, file, begin_addr); fputc (' ', file); bfd_fprintf_vma (abfd, file, prolog_length); fputc (' ', file); bfd_fprintf_vma (abfd, file, function_length); fputc (' ', file); fprintf (file, "%2d %2d ", flag32bit, exception_flag); /* Get the exception handler's address and the data passed from the .text section. This is really the data that belongs with the .pdata but got "compressed" out for the ARM and SH4 architectures. */ tsection = bfd_get_section_by_name (abfd, ".text"); if (tsection && coff_section_data (abfd, tsection) && pei_section_data (abfd, tsection)) { bfd_vma eh_off = (begin_addr - 8) - tsection->vma; bfd_byte *tdata; tdata = (bfd_byte *) bfd_malloc (8); if (tdata) { if (bfd_get_section_contents (abfd, tsection, tdata, eh_off, 8)) { bfd_vma eh, eh_data; eh = bfd_get_32 (abfd, tdata); eh_data = bfd_get_32 (abfd, tdata + 4); fprintf (file, "%08x ", (unsigned int) eh); fprintf (file, "%08x", (unsigned int) eh_data); if (eh != 0) { const char *s = my_symbol_for_address (abfd, eh, &cache); if (s) fprintf (file, " (%s) ", s); } } free (tdata); } } fprintf (file, "\n"); } free (data); cleanup_syms (& cache); return TRUE; #undef PDATA_ROW_SIZE } #define IMAGE_REL_BASED_HIGHADJ 4 static const char * const tbl[] = { "ABSOLUTE", "HIGH", "LOW", "HIGHLOW", "HIGHADJ", "MIPS_JMPADDR", "SECTION", "REL32", "RESERVED1", "MIPS_JMPADDR16", "DIR64", "HIGH3ADJ", "UNKNOWN", /* MUST be last. */ }; static bfd_boolean pe_print_reloc (bfd * abfd, void * vfile) { FILE *file = (FILE *) vfile; bfd_byte *data = 0; asection *section = bfd_get_section_by_name (abfd, ".reloc"); bfd_size_type i; bfd_size_type start, stop; if (section == NULL) return TRUE; if (section->size == 0) return TRUE; fprintf (file, _("\n\nPE File Base Relocations (interpreted .reloc section contents)\n")); if (! bfd_malloc_and_get_section (abfd, section, &data)) { if (data != NULL) free (data); return FALSE; } start = 0; stop = section->size; for (i = start; i < stop;) { int j; bfd_vma virtual_address; long number, size; /* The .reloc section is a sequence of blocks, with a header consisting of two 32 bit quantities, followed by a number of 16 bit entries. */ virtual_address = bfd_get_32 (abfd, data+i); size = bfd_get_32 (abfd, data+i+4); number = (size - 8) / 2; if (size == 0) break; fprintf (file, _("\nVirtual Address: %08lx Chunk size %ld (0x%lx) Number of fixups %ld\n"), (unsigned long) virtual_address, size, (unsigned long) size, number); for (j = 0; j < number; ++j) { unsigned short e = bfd_get_16 (abfd, data + i + 8 + j * 2); unsigned int t = (e & 0xF000) >> 12; int off = e & 0x0FFF; if (t >= sizeof (tbl) / sizeof (tbl[0])) t = (sizeof (tbl) / sizeof (tbl[0])) - 1; fprintf (file, _("\treloc %4d offset %4x [%4lx] %s"), j, off, (unsigned long) (off + virtual_address), tbl[t]); /* HIGHADJ takes an argument, - the next record *is* the low 16 bits of addend. */ if (t == IMAGE_REL_BASED_HIGHADJ) { fprintf (file, " (%4x)", ((unsigned int) bfd_get_16 (abfd, data + i + 8 + j * 2 + 2))); j++; } fprintf (file, "\n"); } i += size; } free (data); return TRUE; } static bfd_byte * rsrc_print_resource_directory (FILE * , bfd *, unsigned int, bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma); static bfd_byte * rsrc_print_resource_entries (FILE * file, bfd * abfd, unsigned int indent, bfd_boolean is_name, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias) { unsigned long entry, addr, size; if (data + 8 >= dataend) return dataend + 1; fprintf (file, _("%*.s Entry: "), indent, " "); entry = (long) bfd_get_32 (abfd, data); if (is_name) { bfd_byte * name; /* Note - the documenation says that this field is an RVA value but windres appears to produce a section relative offset with the top bit set. Support both styles for now. */ if (HighBitSet (entry)) name = datastart + WithoutHighBit (entry); else name = datastart + entry - rva_bias; if (name + 2 < dataend) { unsigned int len; len = bfd_get_16 (abfd, name); fprintf (file, _("name: [val: %08lx len %d]: "), entry, len); if (name + 2 + len * 2 < dataend) { /* This strange loop is to cope with multibyte characters. */ while (len --) { name += 2; fprintf (file, "%.1s", name); } } else fprintf (file, _(""), len); } else fprintf (file, _(""), entry); } else fprintf (file, _("ID: %#08lx"), entry); entry = (long) bfd_get_32 (abfd, data + 4); fprintf (file, _(", Value: %#08lx\n"), entry); if (HighBitSet (entry)) return rsrc_print_resource_directory (file, abfd, indent + 1, datastart, datastart + WithoutHighBit (entry), dataend, rva_bias); if (datastart + entry + 16 >= dataend) return dataend + 1; fprintf (file, _("%*.s Leaf: Addr: %#08lx, Size: %#08lx, Codepage: %d\n"), indent, " ", addr = (long) bfd_get_32 (abfd, datastart + entry), size = (long) bfd_get_32 (abfd, datastart + entry + 4), (int) bfd_get_32 (abfd, datastart + entry + 8)); /* Check that the reserved entry is 0. */ if (bfd_get_32 (abfd, datastart + entry + 12) != 0 /* And that the data address/size is valid too. */ || (datastart + (addr - rva_bias) + size > dataend)) return dataend + 1; return datastart + (addr - rva_bias) + size; } #define max(a,b) ((a) > (b) ? (a) : (b)) #define min(a,b) ((a) < (b) ? (a) : (b)) static bfd_byte * rsrc_print_resource_directory (FILE * file, bfd * abfd, unsigned int indent, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias) { unsigned int num_names, num_ids; bfd_byte * highest_data = data; if (data + 16 >= dataend) return dataend + 1; fprintf (file, "%*.s ", indent, " "); switch (indent) { case 0: fprintf (file, "Type"); break; case 2: fprintf (file, "Name"); break; case 4: fprintf (file, "Language"); break; default: fprintf (file, ""); break; } fprintf (file, _(" Table: Char: %d, Time: %08lx, Ver: %d/%d, Num Names: %d, IDs: %d\n"), (int) bfd_get_32 (abfd, data), (long) bfd_get_32 (abfd, data + 4), (int) bfd_get_16 (abfd, data + 8), (int) bfd_get_16 (abfd, data + 10), num_names = (int) bfd_get_16 (abfd, data + 12), num_ids = (int) bfd_get_16 (abfd, data + 14)); data += 16; while (num_names --) { bfd_byte * entry_end; entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, TRUE, datastart, data, dataend, rva_bias); data += 8; highest_data = max (highest_data, entry_end); if (entry_end >= dataend) return entry_end; } while (num_ids --) { bfd_byte * entry_end; entry_end = rsrc_print_resource_entries (file, abfd, indent + 1, FALSE, datastart, data, dataend, rva_bias); data += 8; highest_data = max (highest_data, entry_end); if (entry_end >= dataend) return entry_end; } return max (highest_data, data); } /* Display the contents of a .rsrc section. We do not try to reproduce the resources, windres does that. Instead we dump the tables in a human readable format. */ static bfd_boolean rsrc_print_section (bfd * abfd, void * vfile) { bfd_vma rva_bias; pe_data_type * pe; FILE * file = (FILE *) vfile; bfd_size_type datasize; asection * section; bfd_byte * data; bfd_byte * dataend; bfd_byte * datastart; pe = pe_data (abfd); if (pe == NULL) return TRUE; section = bfd_get_section_by_name (abfd, ".rsrc"); if (section == NULL) return TRUE; rva_bias = section->vma - pe->pe_opthdr.ImageBase; datasize = section->size; if (datasize == 0) return TRUE; if (! bfd_malloc_and_get_section (abfd, section, & data)) { if (data != NULL) free (data); return FALSE; } datastart = data; dataend = data + datasize; fflush (file); fprintf (file, "\nThe .rsrc Resource Directory section:\n"); while (data < dataend) { bfd_byte * p = data; data = rsrc_print_resource_directory (file, abfd, 0, data, data, dataend, rva_bias); if (data == dataend + 1) fprintf (file, _("Corrupt .rsrc section detected!\n")); else { /* Align data before continuing. */ int align = (1 << section->alignment_power) - 1; data = (bfd_byte *) (((ptrdiff_t) (data + align)) & ~ align); rva_bias += data - p; /* For reasons that are unclear .rsrc sections are sometimes created aligned to a 1^3 boundary even when their alignment is set at 1^2. Catch that case here before we issue a spurious warning message. */ if (data == (dataend - 4)) data = dataend; else if (data < dataend) fprintf (file, _("\nWARNING: Extra data in .rsrc section - it will be ignored by Windows:\n")); } } free (datastart); return TRUE; } /* Print out the program headers. */ bfd_boolean _bfd_XX_print_private_bfd_data_common (bfd * abfd, void * vfile) { FILE *file = (FILE *) vfile; int j; pe_data_type *pe = pe_data (abfd); struct internal_extra_pe_aouthdr *i = &pe->pe_opthdr; const char *subsystem_name = NULL; const char *name; /* The MS dumpbin program reportedly ands with 0xff0f before printing the characteristics field. Not sure why. No reason to emulate it here. */ fprintf (file, _("\nCharacteristics 0x%x\n"), pe->real_flags); #undef PF #define PF(x, y) if (pe->real_flags & x) { fprintf (file, "\t%s\n", y); } PF (IMAGE_FILE_RELOCS_STRIPPED, "relocations stripped"); PF (IMAGE_FILE_EXECUTABLE_IMAGE, "executable"); PF (IMAGE_FILE_LINE_NUMS_STRIPPED, "line numbers stripped"); PF (IMAGE_FILE_LOCAL_SYMS_STRIPPED, "symbols stripped"); PF (IMAGE_FILE_LARGE_ADDRESS_AWARE, "large address aware"); PF (IMAGE_FILE_BYTES_REVERSED_LO, "little endian"); PF (IMAGE_FILE_32BIT_MACHINE, "32 bit words"); PF (IMAGE_FILE_DEBUG_STRIPPED, "debugging information removed"); PF (IMAGE_FILE_SYSTEM, "system file"); PF (IMAGE_FILE_DLL, "DLL"); PF (IMAGE_FILE_BYTES_REVERSED_HI, "big endian"); #undef PF /* ctime implies '\n'. */ { time_t t = pe->coff.timestamp; fprintf (file, "\nTime/Date\t\t%s", ctime (&t)); } #ifndef IMAGE_NT_OPTIONAL_HDR_MAGIC # define IMAGE_NT_OPTIONAL_HDR_MAGIC 0x10b #endif #ifndef IMAGE_NT_OPTIONAL_HDR64_MAGIC # define IMAGE_NT_OPTIONAL_HDR64_MAGIC 0x20b #endif #ifndef IMAGE_NT_OPTIONAL_HDRROM_MAGIC # define IMAGE_NT_OPTIONAL_HDRROM_MAGIC 0x107 #endif switch (i->Magic) { case IMAGE_NT_OPTIONAL_HDR_MAGIC: name = "PE32"; break; case IMAGE_NT_OPTIONAL_HDR64_MAGIC: name = "PE32+"; break; case IMAGE_NT_OPTIONAL_HDRROM_MAGIC: name = "ROM"; break; default: name = NULL; break; } fprintf (file, "Magic\t\t\t%04x", i->Magic); if (name) fprintf (file, "\t(%s)",name); fprintf (file, "\nMajorLinkerVersion\t%d\n", i->MajorLinkerVersion); fprintf (file, "MinorLinkerVersion\t%d\n", i->MinorLinkerVersion); fprintf (file, "SizeOfCode\t\t%08lx\n", (unsigned long) i->SizeOfCode); fprintf (file, "SizeOfInitializedData\t%08lx\n", (unsigned long) i->SizeOfInitializedData); fprintf (file, "SizeOfUninitializedData\t%08lx\n", (unsigned long) i->SizeOfUninitializedData); fprintf (file, "AddressOfEntryPoint\t"); bfd_fprintf_vma (abfd, file, i->AddressOfEntryPoint); fprintf (file, "\nBaseOfCode\t\t"); bfd_fprintf_vma (abfd, file, i->BaseOfCode); #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) /* PE32+ does not have BaseOfData member! */ fprintf (file, "\nBaseOfData\t\t"); bfd_fprintf_vma (abfd, file, i->BaseOfData); #endif fprintf (file, "\nImageBase\t\t"); bfd_fprintf_vma (abfd, file, i->ImageBase); fprintf (file, "\nSectionAlignment\t"); bfd_fprintf_vma (abfd, file, i->SectionAlignment); fprintf (file, "\nFileAlignment\t\t"); bfd_fprintf_vma (abfd, file, i->FileAlignment); fprintf (file, "\nMajorOSystemVersion\t%d\n", i->MajorOperatingSystemVersion); fprintf (file, "MinorOSystemVersion\t%d\n", i->MinorOperatingSystemVersion); fprintf (file, "MajorImageVersion\t%d\n", i->MajorImageVersion); fprintf (file, "MinorImageVersion\t%d\n", i->MinorImageVersion); fprintf (file, "MajorSubsystemVersion\t%d\n", i->MajorSubsystemVersion); fprintf (file, "MinorSubsystemVersion\t%d\n", i->MinorSubsystemVersion); fprintf (file, "Win32Version\t\t%08lx\n", (unsigned long) i->Reserved1); fprintf (file, "SizeOfImage\t\t%08lx\n", (unsigned long) i->SizeOfImage); fprintf (file, "SizeOfHeaders\t\t%08lx\n", (unsigned long) i->SizeOfHeaders); fprintf (file, "CheckSum\t\t%08lx\n", (unsigned long) i->CheckSum); switch (i->Subsystem) { case IMAGE_SUBSYSTEM_UNKNOWN: subsystem_name = "unspecified"; break; case IMAGE_SUBSYSTEM_NATIVE: subsystem_name = "NT native"; break; case IMAGE_SUBSYSTEM_WINDOWS_GUI: subsystem_name = "Windows GUI"; break; case IMAGE_SUBSYSTEM_WINDOWS_CUI: subsystem_name = "Windows CUI"; break; case IMAGE_SUBSYSTEM_POSIX_CUI: subsystem_name = "POSIX CUI"; break; case IMAGE_SUBSYSTEM_WINDOWS_CE_GUI: subsystem_name = "Wince CUI"; break; // These are from UEFI Platform Initialization Specification 1.1. case IMAGE_SUBSYSTEM_EFI_APPLICATION: subsystem_name = "EFI application"; break; case IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER: subsystem_name = "EFI boot service driver"; break; case IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER: subsystem_name = "EFI runtime driver"; break; case IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER: subsystem_name = "SAL runtime driver"; break; // This is from revision 8.0 of the MS PE/COFF spec case IMAGE_SUBSYSTEM_XBOX: subsystem_name = "XBOX"; break; // Added default case for clarity - subsystem_name is NULL anyway. default: subsystem_name = NULL; } fprintf (file, "Subsystem\t\t%08x", i->Subsystem); if (subsystem_name) fprintf (file, "\t(%s)", subsystem_name); fprintf (file, "\nDllCharacteristics\t%08x\n", i->DllCharacteristics); fprintf (file, "SizeOfStackReserve\t"); bfd_fprintf_vma (abfd, file, i->SizeOfStackReserve); fprintf (file, "\nSizeOfStackCommit\t"); bfd_fprintf_vma (abfd, file, i->SizeOfStackCommit); fprintf (file, "\nSizeOfHeapReserve\t"); bfd_fprintf_vma (abfd, file, i->SizeOfHeapReserve); fprintf (file, "\nSizeOfHeapCommit\t"); bfd_fprintf_vma (abfd, file, i->SizeOfHeapCommit); fprintf (file, "\nLoaderFlags\t\t%08lx\n", (unsigned long) i->LoaderFlags); fprintf (file, "NumberOfRvaAndSizes\t%08lx\n", (unsigned long) i->NumberOfRvaAndSizes); fprintf (file, "\nThe Data Directory\n"); for (j = 0; j < IMAGE_NUMBEROF_DIRECTORY_ENTRIES; j++) { fprintf (file, "Entry %1x ", j); bfd_fprintf_vma (abfd, file, i->DataDirectory[j].VirtualAddress); fprintf (file, " %08lx ", (unsigned long) i->DataDirectory[j].Size); fprintf (file, "%s\n", dir_names[j]); } pe_print_idata (abfd, vfile); pe_print_edata (abfd, vfile); if (bfd_coff_have_print_pdata (abfd)) bfd_coff_print_pdata (abfd, vfile); else pe_print_pdata (abfd, vfile); pe_print_reloc (abfd, vfile); rsrc_print_section (abfd, vfile); return TRUE; } /* Copy any private info we understand from the input bfd to the output bfd. */ bfd_boolean _bfd_XX_bfd_copy_private_bfd_data_common (bfd * ibfd, bfd * obfd) { pe_data_type *ipe, *ope; /* One day we may try to grok other private data. */ if (ibfd->xvec->flavour != bfd_target_coff_flavour || obfd->xvec->flavour != bfd_target_coff_flavour) return TRUE; ipe = pe_data (ibfd); ope = pe_data (obfd); /* pe_opthdr is copied in copy_object. */ ope->dll = ipe->dll; /* Don't copy input subsystem if output is different from input. */ if (obfd->xvec != ibfd->xvec) ope->pe_opthdr.Subsystem = IMAGE_SUBSYSTEM_UNKNOWN; /* For strip: if we removed .reloc, we'll make a real mess of things if we don't remove this entry as well. */ if (! pe_data (obfd)->has_reloc_section) { pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].VirtualAddress = 0; pe_data (obfd)->pe_opthdr.DataDirectory[PE_BASE_RELOCATION_TABLE].Size = 0; } /* For PIE, if there is .reloc, we won't add IMAGE_FILE_RELOCS_STRIPPED. But there is no .reloc, we make sure that IMAGE_FILE_RELOCS_STRIPPED won't be added. */ if (! pe_data (ibfd)->has_reloc_section && ! (pe_data (ibfd)->real_flags & IMAGE_FILE_RELOCS_STRIPPED)) pe_data (obfd)->dont_strip_reloc = 1; return TRUE; } /* Copy private section data. */ bfd_boolean _bfd_XX_bfd_copy_private_section_data (bfd *ibfd, asection *isec, bfd *obfd, asection *osec) { if (bfd_get_flavour (ibfd) != bfd_target_coff_flavour || bfd_get_flavour (obfd) != bfd_target_coff_flavour) return TRUE; if (coff_section_data (ibfd, isec) != NULL && pei_section_data (ibfd, isec) != NULL) { if (coff_section_data (obfd, osec) == NULL) { bfd_size_type amt = sizeof (struct coff_section_tdata); osec->used_by_bfd = bfd_zalloc (obfd, amt); if (osec->used_by_bfd == NULL) return FALSE; } if (pei_section_data (obfd, osec) == NULL) { bfd_size_type amt = sizeof (struct pei_section_tdata); coff_section_data (obfd, osec)->tdata = bfd_zalloc (obfd, amt); if (coff_section_data (obfd, osec)->tdata == NULL) return FALSE; } pei_section_data (obfd, osec)->virt_size = pei_section_data (ibfd, isec)->virt_size; pei_section_data (obfd, osec)->pe_flags = pei_section_data (ibfd, isec)->pe_flags; } return TRUE; } void _bfd_XX_get_symbol_info (bfd * abfd, asymbol *symbol, symbol_info *ret) { coff_get_symbol_info (abfd, symbol, ret); } #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64) static int sort_x64_pdata (const void *l, const void *r) { const char *lp = (const char *) l; const char *rp = (const char *) r; bfd_vma vl, vr; vl = bfd_getl32 (lp); vr = bfd_getl32 (rp); if (vl != vr) return (vl < vr ? -1 : 1); /* We compare just begin address. */ return 0; } #endif /* Functions to process a .rsrc section. */ static unsigned int sizeof_leaves; static unsigned int sizeof_strings; static unsigned int sizeof_tables_and_entries; static bfd_byte * rsrc_count_directory (bfd *, bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma); static bfd_byte * rsrc_count_entries (bfd * abfd, bfd_boolean is_name, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias) { unsigned long entry, addr, size; if (data + 8 >= dataend) return dataend + 1; if (is_name) { bfd_byte * name; entry = (long) bfd_get_32 (abfd, data); if (HighBitSet (entry)) name = datastart + WithoutHighBit (entry); else name = datastart + entry - rva_bias; if (name + 2 >= dataend) return dataend + 1; unsigned int len = bfd_get_16 (abfd, name); if (len == 0 || len > 256) return dataend + 1; sizeof_strings += (len + 1) * 2; } entry = (long) bfd_get_32 (abfd, data + 4); if (HighBitSet (entry)) return rsrc_count_directory (abfd, datastart, datastart + WithoutHighBit (entry), dataend, rva_bias); if (datastart + entry + 16 >= dataend) return dataend + 1; addr = (long) bfd_get_32 (abfd, datastart + entry); size = (long) bfd_get_32 (abfd, datastart + entry + 4); sizeof_leaves += 16; return datastart + addr - rva_bias + size; } static bfd_byte * rsrc_count_directory (bfd * abfd, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias) { unsigned int num_entries, num_ids; bfd_byte * highest_data = data; if (data + 16 >= dataend) return dataend + 1; num_entries = (int) bfd_get_16 (abfd, data + 12); num_ids = (int) bfd_get_16 (abfd, data + 14); num_entries += num_ids; data += 16; sizeof_tables_and_entries += 16; while (num_entries --) { bfd_byte * entry_end; entry_end = rsrc_count_entries (abfd, num_entries >= num_ids, datastart, data, dataend, rva_bias); data += 8; sizeof_tables_and_entries += 8; highest_data = max (highest_data, entry_end); if (entry_end >= dataend) break; } return max (highest_data, data); } typedef struct rsrc_dir_chain { unsigned int num_entries; struct rsrc_entry * first_entry; struct rsrc_entry * last_entry; } rsrc_dir_chain; typedef struct rsrc_directory { unsigned int characteristics; unsigned int time; unsigned int major; unsigned int minor; rsrc_dir_chain names; rsrc_dir_chain ids; struct rsrc_entry * entry; } rsrc_directory; typedef struct rsrc_string { unsigned int len; bfd_byte * string; } rsrc_string; typedef struct rsrc_leaf { unsigned int size; unsigned int codepage; bfd_byte * data; } rsrc_leaf; typedef struct rsrc_entry { bfd_boolean is_name; union { unsigned int id; struct rsrc_string name; } name_id; bfd_boolean is_dir; union { struct rsrc_directory * directory; struct rsrc_leaf * leaf; } value; struct rsrc_entry * next_entry; struct rsrc_directory * parent; } rsrc_entry; static bfd_byte * rsrc_parse_directory (bfd *, rsrc_directory *, bfd_byte *, bfd_byte *, bfd_byte *, bfd_vma, rsrc_entry *); static bfd_byte * rsrc_parse_entry (bfd * abfd, bfd_boolean is_name, rsrc_entry * entry, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias, rsrc_directory * parent) { unsigned long val, addr, size; val = bfd_get_32 (abfd, data); entry->parent = parent; entry->is_name = is_name; if (is_name) { /* FIXME: Add range checking ? */ if (HighBitSet (val)) { val = WithoutHighBit (val); entry->name_id.name.len = bfd_get_16 (abfd, datastart + val); entry->name_id.name.string = datastart + val + 2; } else { entry->name_id.name.len = bfd_get_16 (abfd, datastart + val - rva_bias); entry->name_id.name.string = datastart + val - rva_bias + 2; } } else entry->name_id.id = val; val = bfd_get_32 (abfd, data + 4); if (HighBitSet (val)) { entry->is_dir = TRUE; entry->value.directory = bfd_malloc (sizeof * entry->value.directory); if (entry->value.directory == NULL) return dataend; return rsrc_parse_directory (abfd, entry->value.directory, datastart, datastart + WithoutHighBit (val), dataend, rva_bias, entry); } entry->is_dir = FALSE; entry->value.leaf = bfd_malloc (sizeof * entry->value.leaf); if (entry->value.leaf == NULL) return dataend; addr = bfd_get_32 (abfd, datastart + val); size = entry->value.leaf->size = bfd_get_32 (abfd, datastart + val + 4); entry->value.leaf->codepage = bfd_get_32 (abfd, datastart + val + 8); entry->value.leaf->data = bfd_malloc (size); if (entry->value.leaf->data == NULL) return dataend; memcpy (entry->value.leaf->data, datastart + addr - rva_bias, size); return datastart + (addr - rva_bias) + size; } static bfd_byte * rsrc_parse_entries (bfd * abfd, rsrc_dir_chain * chain, bfd_boolean is_name, bfd_byte * highest_data, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias, rsrc_directory * parent) { unsigned int i; rsrc_entry * entry; if (chain->num_entries == 0) { chain->first_entry = chain->last_entry = NULL; return highest_data; } entry = bfd_malloc (sizeof * entry); if (entry == NULL) return dataend; chain->first_entry = entry; for (i = chain->num_entries; i--;) { bfd_byte * entry_end; entry_end = rsrc_parse_entry (abfd, is_name, entry, datastart, data, dataend, rva_bias, parent); data += 8; highest_data = max (entry_end, highest_data); if (entry_end > dataend) return dataend; if (i) { entry->next_entry = bfd_malloc (sizeof * entry); entry = entry->next_entry; if (entry == NULL) return dataend; } else entry->next_entry = NULL; } chain->last_entry = entry; return highest_data; } static bfd_byte * rsrc_parse_directory (bfd * abfd, rsrc_directory * table, bfd_byte * datastart, bfd_byte * data, bfd_byte * dataend, bfd_vma rva_bias, rsrc_entry * entry) { bfd_byte * highest_data = data; if (table == NULL) return dataend; table->characteristics = bfd_get_32 (abfd, data); table->time = bfd_get_32 (abfd, data + 4); table->major = bfd_get_16 (abfd, data + 8); table->minor = bfd_get_16 (abfd, data + 10); table->names.num_entries = bfd_get_16 (abfd, data + 12); table->ids.num_entries = bfd_get_16 (abfd, data + 14); table->entry = entry; data += 16; highest_data = rsrc_parse_entries (abfd, & table->names, TRUE, data, datastart, data, dataend, rva_bias, table); data += table->names.num_entries * 8; highest_data = rsrc_parse_entries (abfd, & table->ids, FALSE, highest_data, datastart, data, dataend, rva_bias, table); data += table->ids.num_entries * 8; return max (highest_data, data); } typedef struct rsrc_write_data { bfd * abfd; bfd_byte * datastart; bfd_byte * next_table; bfd_byte * next_leaf; bfd_byte * next_string; bfd_byte * next_data; bfd_vma rva_bias; } rsrc_write_data; static void rsrc_write_string (rsrc_write_data * data, rsrc_string * string) { bfd_put_16 (data->abfd, string->len, data->next_string); memcpy (data->next_string + 2, string->string, string->len * 2); data->next_string += (string->len + 1) * 2; } static inline unsigned int rsrc_compute_rva (rsrc_write_data * data, bfd_byte * addr) { return (addr - data->datastart) + data->rva_bias; } static void rsrc_write_leaf (rsrc_write_data * data, rsrc_leaf * leaf) { bfd_put_32 (data->abfd, rsrc_compute_rva (data, data->next_data), data->next_leaf); bfd_put_32 (data->abfd, leaf->size, data->next_leaf + 4); bfd_put_32 (data->abfd, leaf->codepage, data->next_leaf + 8); bfd_put_32 (data->abfd, 0 /*reserved*/, data->next_leaf + 12); data->next_leaf += 16; memcpy (data->next_data, leaf->data, leaf->size); data->next_data += leaf->size; } static void rsrc_write_directory (rsrc_write_data *, rsrc_directory *); static void rsrc_write_entry (rsrc_write_data * data, bfd_byte * where, rsrc_entry * entry) { if (entry->is_name) { bfd_put_32 (data->abfd, SetHighBit (data->next_string - data->datastart), where); rsrc_write_string (data, & entry->name_id.name); } else bfd_put_32 (data->abfd, entry->name_id.id, where); if (entry->is_dir) { bfd_put_32 (data->abfd, SetHighBit (data->next_table - data->datastart), where + 4); rsrc_write_directory (data, entry->value.directory); } else { bfd_put_32 (data->abfd, data->next_leaf - data->datastart, where + 4); rsrc_write_leaf (data, entry->value.leaf); } } static void rsrc_write_directory (rsrc_write_data * data, rsrc_directory * dir) { rsrc_entry * entry; unsigned int i; bfd_byte * next_entry; bfd_byte * nt; bfd_put_32 (data->abfd, dir->characteristics, data->next_table); bfd_put_32 (data->abfd, 0 /*dir->time*/, data->next_table + 4); bfd_put_16 (data->abfd, dir->major, data->next_table + 8); bfd_put_16 (data->abfd, dir->minor, data->next_table + 10); bfd_put_16 (data->abfd, dir->names.num_entries, data->next_table + 12); bfd_put_16 (data->abfd, dir->ids.num_entries, data->next_table + 14); /* Compute where the entries and the next table will be placed. */ next_entry = data->next_table + 16; data->next_table = next_entry + (dir->names.num_entries * 8) + (dir->ids.num_entries * 8); nt = data->next_table; /* Write the entries. */ for (i = dir->names.num_entries, entry = dir->names.first_entry; i > 0 && entry != NULL; i--, entry = entry->next_entry) { rsrc_write_entry (data, next_entry, entry); next_entry += 8; } BFD_ASSERT (i == 0); BFD_ASSERT (entry == NULL); for (i = dir->ids.num_entries, entry = dir->ids.first_entry; i > 0 && entry != NULL; i--, entry = entry->next_entry) { rsrc_write_entry (data, next_entry, entry); next_entry += 8; } BFD_ASSERT (i == 0); BFD_ASSERT (entry == NULL); BFD_ASSERT (nt == next_entry); } #if defined HAVE_WCHAR_H && ! defined __CYGWIN__ && ! defined __MINGW32__ /* Return the length (number of units) of the first character in S, putting its 'ucs4_t' representation in *PUC. */ static unsigned int u16_mbtouc (wchar_t * puc, const unsigned short * s, unsigned int n) { unsigned short c = * s; if (c < 0xd800 || c >= 0xe000) { *puc = c; return 1; } if (c < 0xdc00) { if (n >= 2) { if (s[1] >= 0xdc00 && s[1] < 0xe000) { *puc = 0x10000 + ((c - 0xd800) << 10) + (s[1] - 0xdc00); return 2; } } else { /* Incomplete multibyte character. */ *puc = 0xfffd; return n; } } /* Invalid multibyte character. */ *puc = 0xfffd; return 1; } #endif /* HAVE_WCHAR_H and not Cygwin/Mingw */ /* Perform a comparison of two entries. */ static signed int rsrc_cmp (bfd_boolean is_name, rsrc_entry * a, rsrc_entry * b) { signed int res; bfd_byte * astring; unsigned int alen; bfd_byte * bstring; unsigned int blen; if (! is_name) return a->name_id.id - b->name_id.id; /* We have to perform a case insenstive, unicode string comparison... */ astring = a->name_id.name.string; alen = a->name_id.name.len; bstring = b->name_id.name.string; blen = b->name_id.name.len; #if defined __CYGWIN__ || defined __MINGW32__ /* Under Windows hosts (both Cygwin and Mingw types), unicode == UTF-16 == wchar_t. The case insensitive string comparison function however goes by different names in the two environments... */ #undef rscpcmp #ifdef __CYGWIN__ #define rscpcmp wcsncasecmp #endif #ifdef __MINGW32__ #define rscpcmp wcsnicmp #endif res = rscpcmp ((const wchar_t *) astring, (const wchar_t *) bstring, min (alen, blen)); #elif defined HAVE_WCHAR_H { unsigned int i; res = 0; for (i = min (alen, blen); i--; astring += 2, bstring += 2) { wchar_t awc; wchar_t bwc; /* Convert UTF-16 unicode characters into wchar_t characters so that we can then perform a case insensitive comparison. */ int Alen = u16_mbtouc (& awc, (const unsigned short *) astring, 2); int Blen = u16_mbtouc (& bwc, (const unsigned short *) bstring, 2); if (Alen != Blen) return Alen - Blen; res = wcsncasecmp (& awc, & bwc, 1); if (res) break; } } #else /* Do the best we can - a case sensitive, untranslated comparison. */ res = memcmp (astring, bstring, min (alen, blen) * 2); #endif if (res == 0) res = alen - blen; return res; } static void rsrc_print_name (char * buffer, rsrc_string string) { unsigned int i; bfd_byte * name = string.string; for (i = string.len; i--; name += 2) sprintf (buffer + strlen (buffer), "%.1s", name); } static const char * rsrc_resource_name (rsrc_entry * entry, rsrc_directory * dir) { static char buffer [256]; bfd_boolean is_string = FALSE; buffer[0] = 0; if (dir != NULL && dir->entry != NULL && dir->entry->parent != NULL && dir->entry->parent->entry != NULL) { strcpy (buffer, "type: "); if (dir->entry->parent->entry->is_name) rsrc_print_name (buffer + strlen (buffer), dir->entry->parent->entry->name_id.name); else { unsigned int id = dir->entry->parent->entry->name_id.id; sprintf (buffer + strlen (buffer), "%x", id); switch (id) { case 1: strcat (buffer, " (CURSOR)"); break; case 2: strcat (buffer, " (BITMAP)"); break; case 3: strcat (buffer, " (ICON)"); break; case 4: strcat (buffer, " (MENU)"); break; case 5: strcat (buffer, " (DIALOG)"); break; case 6: strcat (buffer, " (STRING)"); is_string = TRUE; break; case 7: strcat (buffer, " (FONTDIR)"); break; case 8: strcat (buffer, " (FONT)"); break; case 9: strcat (buffer, " (ACCELERATOR)"); break; case 10: strcat (buffer, " (RCDATA)"); break; case 11: strcat (buffer, " (MESSAGETABLE)"); break; case 12: strcat (buffer, " (GROUP_CURSOR)"); break; case 14: strcat (buffer, " (GROUP_ICON)"); break; case 16: strcat (buffer, " (VERSION)"); break; case 17: strcat (buffer, " (DLGINCLUDE)"); break; case 19: strcat (buffer, " (PLUGPLAY)"); break; case 20: strcat (buffer, " (VXD)"); break; case 21: strcat (buffer, " (ANICURSOR)"); break; case 22: strcat (buffer, " (ANIICON)"); break; case 23: strcat (buffer, " (HTML)"); break; case 24: strcat (buffer, " (MANIFEST)"); break; case 240: strcat (buffer, " (DLGINIT)"); break; case 241: strcat (buffer, " (TOOLBAR)"); break; } } } if (dir != NULL && dir->entry != NULL) { strcat (buffer, " name: "); if (dir->entry->is_name) rsrc_print_name (buffer + strlen (buffer), dir->entry->name_id.name); else { unsigned int id = dir->entry->name_id.id; sprintf (buffer + strlen (buffer), "%x", id); if (is_string) sprintf (buffer + strlen (buffer), " (resource id range: %d - %d)", (id - 1) << 4, (id << 4) - 1); } } if (entry != NULL) { strcat (buffer, " lang: "); if (entry->is_name) rsrc_print_name (buffer + strlen (buffer), entry->name_id.name); else sprintf (buffer + strlen (buffer), "%x", entry->name_id.id); } return buffer; } /* *sigh* Windows resource strings are special. Only the top 28-bits of their ID is stored in the NAME entry. The bottom four bits are used as an index into unicode string table that makes up the data of the leaf. So identical type-name-lang string resources may not actually be identical at all. This function is called when we have detected two string resources with match top-28-bit IDs. We have to scan the string tables inside the leaves and discover if there are any real collisions. If there are then we report them and return FALSE. Otherwise we copy any strings from B into A and then return TRUE. */ static bfd_boolean rsrc_merge_string_entries (rsrc_entry * a ATTRIBUTE_UNUSED, rsrc_entry * b ATTRIBUTE_UNUSED) { unsigned int copy_needed = 0; unsigned int i; bfd_byte * astring; bfd_byte * bstring; bfd_byte * new_data; bfd_byte * nstring; /* Step one: Find out what we have to do. */ BFD_ASSERT (! a->is_dir); astring = a->value.leaf->data; BFD_ASSERT (! b->is_dir); bstring = b->value.leaf->data; for (i = 0; i < 16; i++) { unsigned int alen = astring[0] + (astring[1] << 8); unsigned int blen = bstring[0] + (bstring[1] << 8); if (alen == 0) { copy_needed += blen * 2; } else if (blen == 0) ; else if (alen != blen) /* FIXME: Should we continue the loop in order to report other duplicates ? */ break; /* alen == blen != 0. We might have two identical strings. If so we can ignore the second one. There is no need for wchar_t vs UTF-16 theatrics here - we are only interested in (case sensitive) equality. */ else if (memcmp (astring + 2, bstring + 2, alen * 2) != 0) break; astring += (alen + 1) * 2; bstring += (blen + 1) * 2; } if (i != 16) { if (a->parent != NULL && a->parent->entry != NULL && a->parent->entry->is_name == FALSE) _bfd_error_handler (_(".rsrc merge failure: duplicate string resource: %d"), ((a->parent->entry->name_id.id - 1) << 4) + i); return FALSE; } if (copy_needed == 0) return TRUE; /* If we reach here then A and B must both have non-colliding strings. (We never get string resources with fully empty string tables). We need to allocate an extra COPY_NEEDED bytes in A and then bring in B's strings. */ new_data = bfd_malloc (a->value.leaf->size + copy_needed); if (new_data == NULL) return FALSE; nstring = new_data; astring = a->value.leaf->data; bstring = b->value.leaf->data; for (i = 0; i < 16; i++) { unsigned int alen = astring[0] + (astring[1] << 8); unsigned int blen = bstring[0] + (bstring[1] << 8); if (alen != 0) { memcpy (nstring, astring, (alen + 1) * 2); nstring += (alen + 1) * 2; } else if (blen != 0) { memcpy (nstring, bstring, (blen + 1) * 2); nstring += (blen + 1) * 2; } else { * nstring++ = 0; * nstring++ = 0; } astring += (alen + 1) * 2; bstring += (blen + 1) * 2; } BFD_ASSERT (nstring - new_data == (signed) (a->value.leaf->size + copy_needed)); free (a->value.leaf->data); a->value.leaf->data = new_data; a->value.leaf->size += copy_needed; return TRUE; } static void rsrc_merge (rsrc_entry *, rsrc_entry *); /* Sort the entries in given part of the directory. We use an old fashioned bubble sort because we are dealing with lists and we want to handle matches specially. */ static void rsrc_sort_entries (rsrc_dir_chain * chain, bfd_boolean is_name, rsrc_directory * dir) { rsrc_entry * entry; rsrc_entry * next; rsrc_entry ** points_to_entry; bfd_boolean swapped; if (chain->num_entries < 2) return; do { swapped = FALSE; points_to_entry = & chain->first_entry; entry = * points_to_entry; next = entry->next_entry; do { signed int cmp = rsrc_cmp (is_name, entry, next); if (cmp > 0) { entry->next_entry = next->next_entry; next->next_entry = entry; * points_to_entry = next; points_to_entry = & next->next_entry; next = entry->next_entry; swapped = TRUE; } else if (cmp == 0) { if (entry->is_dir && next->is_dir) { /* When we encounter identical directory entries we have to merge them together. The exception to this rule is for resource manifests - there can only be one of these, even if they differ in language. Zero-language manifests are assumed to be default manifests (provided by the cygwin build system) and these can be silently dropped, unless that would reduce the number of manifests to zero. There should only ever be one non-zero lang manifest - if there are more it is an error. A non-zero lang manifest takes precedence over a default manifest. */ if (entry->is_name == FALSE && entry->name_id.id == 1 && dir != NULL && dir->entry != NULL && dir->entry->is_name == FALSE && dir->entry->name_id.id == 0x18) { if (next->value.directory->names.num_entries == 0 && next->value.directory->ids.num_entries == 1 && next->value.directory->ids.first_entry->is_name == FALSE && next->value.directory->ids.first_entry->name_id.id == 0) /* Fall through so that NEXT is dropped. */ ; else if (entry->value.directory->names.num_entries == 0 && entry->value.directory->ids.num_entries == 1 && entry->value.directory->ids.first_entry->is_name == FALSE && entry->value.directory->ids.first_entry->name_id.id == 0) { /* Swap ENTRY and NEXT. Then fall through so that the old ENTRY is dropped. */ entry->next_entry = next->next_entry; next->next_entry = entry; * points_to_entry = next; points_to_entry = & next->next_entry; next = entry->next_entry; swapped = TRUE; } else { _bfd_error_handler (_(".rsrc merge failure: multiple non-default manifests")); bfd_set_error (bfd_error_file_truncated); return; } /* Unhook NEXT from the chain. */ /* FIXME: memory loss here. */ entry->next_entry = next->next_entry; chain->num_entries --; if (chain->num_entries < 2) return; next = next->next_entry; } else rsrc_merge (entry, next); } else if (entry->is_dir != next->is_dir) { _bfd_error_handler (_(".rsrc merge failure: a directory matches a leaf")); bfd_set_error (bfd_error_file_truncated); return; } else { /* Otherwise with identical leaves we issue an error message - because there should never be duplicates. The exception is Type 18/Name 1/Lang 0 which is the defaul manifest - this can just be dropped. */ if (entry->is_name == FALSE && entry->name_id.id == 0 && dir != NULL && dir->entry != NULL && dir->entry->is_name == FALSE && dir->entry->name_id.id == 1 && dir->entry->parent != NULL && dir->entry->parent->entry != NULL && dir->entry->parent->entry->is_name == FALSE && dir->entry->parent->entry->name_id.id == 0x18 /* RT_MANIFEST */) ; else if (dir != NULL && dir->entry != NULL && dir->entry->parent != NULL && dir->entry->parent->entry != NULL && dir->entry->parent->entry->is_name == FALSE && dir->entry->parent->entry->name_id.id == 0x6 /* RT_STRING */) { /* Strings need special handling. */ if (! rsrc_merge_string_entries (entry, next)) { /* _bfd_error_handler should have been called inside merge_strings. */ bfd_set_error (bfd_error_file_truncated); return; } } else { if (dir == NULL || dir->entry == NULL || dir->entry->parent == NULL || dir->entry->parent->entry == NULL) _bfd_error_handler (_(".rsrc merge failure: duplicate leaf")); else _bfd_error_handler (_(".rsrc merge failure: duplicate leaf: %s"), rsrc_resource_name (entry, dir)); bfd_set_error (bfd_error_file_truncated); return; } } /* Unhook NEXT from the chain. */ entry->next_entry = next->next_entry; chain->num_entries --; if (chain->num_entries < 2) return; next = next->next_entry; } else { points_to_entry = & entry->next_entry; entry = next; next = next->next_entry; } } while (next); chain->last_entry = entry; } while (swapped); } /* Attach B's chain onto A. */ static void rsrc_attach_chain (rsrc_dir_chain * achain, rsrc_dir_chain * bchain) { if (bchain->num_entries == 0) return; achain->num_entries += bchain->num_entries; if (achain->first_entry == NULL) { achain->first_entry = bchain->first_entry; achain->last_entry = bchain->last_entry; } else { achain->last_entry->next_entry = bchain->first_entry; achain->last_entry = bchain->last_entry; } bchain->num_entries = 0; bchain->first_entry = bchain->last_entry = NULL; } static void rsrc_merge (struct rsrc_entry * a, struct rsrc_entry * b) { rsrc_directory * adir; rsrc_directory * bdir; BFD_ASSERT (a->is_dir); BFD_ASSERT (b->is_dir); adir = a->value.directory; bdir = b->value.directory; if (adir->characteristics != bdir->characteristics) { _bfd_error_handler (_(".rsrc merge failure: dirs with differing characteristics\n")); bfd_set_error (bfd_error_file_truncated); return; } if (adir->major != bdir->major || adir->minor != bdir->minor) { _bfd_error_handler (_(".rsrc merge failure: differing directory versions\n")); bfd_set_error (bfd_error_file_truncated); return; } /* Attach B's name chain to A. */ rsrc_attach_chain (& adir->names, & bdir->names); /* Attach B's ID chain to A. */ rsrc_attach_chain (& adir->ids, & bdir->ids); /* Now sort A's entries. */ rsrc_sort_entries (& adir->names, TRUE, adir); rsrc_sort_entries (& adir->ids, FALSE, adir); } /* Check the .rsrc section. If it contains multiple concatenated resources then we must merge them properly. Otherwise Windows will ignore all but the first set. */ static void rsrc_process_section (bfd * abfd, struct coff_final_link_info * pfinfo) { rsrc_directory new_table; bfd_size_type size; asection * sec; pe_data_type * pe; bfd_vma rva_bias; bfd_byte * data; bfd_byte * datastart; bfd_byte * dataend; bfd_byte * new_data; unsigned int num_resource_sets; rsrc_directory * type_tables; rsrc_write_data write_data; unsigned int indx; bfd * input; unsigned int num_input_rsrc = 0; unsigned int max_num_input_rsrc = 4; ptrdiff_t * rsrc_sizes = NULL; new_table.names.num_entries = 0; new_table.ids.num_entries = 0; sec = bfd_get_section_by_name (abfd, ".rsrc"); if (sec == NULL || (size = sec->rawsize) == 0) return; pe = pe_data (abfd); if (pe == NULL) return; rva_bias = sec->vma - pe->pe_opthdr.ImageBase; data = bfd_malloc (size); if (data == NULL) return; datastart = data; if (! bfd_get_section_contents (abfd, sec, data, 0, size)) goto end; /* Step zero: Scan the input bfds looking for .rsrc sections and record their lengths. Note - we rely upon the fact that the linker script does *not* sort the input .rsrc sections, so that the order in the linkinfo list matches the order in the output .rsrc section. We need to know the lengths because each input .rsrc section has padding at the end of a variable amount. (It does not appear to be based upon the section alignment or the file alignment). We need to skip any padding bytes when parsing the input .rsrc sections. */ rsrc_sizes = bfd_malloc (max_num_input_rsrc * sizeof * rsrc_sizes); if (rsrc_sizes == NULL) goto end; for (input = pfinfo->info->input_bfds; input != NULL; input = input->link_next) { asection * rsrc_sec = bfd_get_section_by_name (input, ".rsrc"); if (rsrc_sec != NULL) { if (num_input_rsrc == max_num_input_rsrc) { max_num_input_rsrc += 10; rsrc_sizes = bfd_realloc (rsrc_sizes, max_num_input_rsrc * sizeof * rsrc_sizes); if (rsrc_sizes == NULL) goto end; } BFD_ASSERT (rsrc_sec->size > 0); rsrc_sizes [num_input_rsrc ++] = rsrc_sec->size; } } if (num_input_rsrc < 2) goto end; /* Step one: Walk the section, computing the size of the tables, leaves and data and decide if we need to do anything. */ dataend = data + size; num_resource_sets = 0; sizeof_leaves = sizeof_strings = sizeof_tables_and_entries = 0; while (data < dataend) { bfd_byte * p = data; data = rsrc_count_directory (abfd, data, data, dataend, rva_bias); if (data > dataend) { /* Corrupted .rsrc section - cannot merge. */ _bfd_error_handler (_("%s: .rsrc merge failure: corrupt .rsrc section"), bfd_get_filename (abfd)); bfd_set_error (bfd_error_file_truncated); goto end; } if ((data - p) > rsrc_sizes [num_resource_sets]) { _bfd_error_handler (_("%s: .rsrc merge failure: unexpected .rsrc size"), bfd_get_filename (abfd)); bfd_set_error (bfd_error_file_truncated); goto end; } /* FIXME: Should we add a check for "data - p" being much smaller than rsrc_sizes[num_resource_sets] ? */ data = p + rsrc_sizes[num_resource_sets]; rva_bias += data - p; ++ num_resource_sets; } BFD_ASSERT (num_resource_sets == num_input_rsrc); /* Step two: Walk the data again, building trees of the resources. */ data = datastart; rva_bias = sec->vma - pe->pe_opthdr.ImageBase; type_tables = bfd_malloc (num_resource_sets * sizeof * type_tables); if (type_tables == NULL) goto end; indx = 0; while (data < dataend) { bfd_byte * p = data; (void) rsrc_parse_directory (abfd, type_tables + indx, data, data, dataend, rva_bias, NULL); data = p + rsrc_sizes[indx]; rva_bias += data - p; ++ indx; } BFD_ASSERT (indx == num_resource_sets); /* Step three: Merge the top level tables (there can be only one). We must ensure that the merged entries are in ascending order. We also thread the top level table entries from the old tree onto the new table, so that they can be pulled off later. */ /* FIXME: Should we verify that all type tables are the same ? */ new_table.characteristics = type_tables[0].characteristics; new_table.time = type_tables[0].time; new_table.major = type_tables[0].major; new_table.minor = type_tables[0].minor; /* Chain the NAME entries onto the table. */ new_table.names.first_entry = NULL; new_table.names.last_entry = NULL; for (indx = 0; indx < num_resource_sets; indx++) rsrc_attach_chain (& new_table.names, & type_tables[indx].names); rsrc_sort_entries (& new_table.names, TRUE, & new_table); /* Chain the ID entries onto the table. */ new_table.ids.first_entry = NULL; new_table.ids.last_entry = NULL; for (indx = 0; indx < num_resource_sets; indx++) rsrc_attach_chain (& new_table.ids, & type_tables[indx].ids); rsrc_sort_entries (& new_table.ids, FALSE, & new_table); /* Step four: Create new contents for the .rsrc section. */ new_data = bfd_malloc (size); if (new_data == NULL) goto end; write_data.abfd = abfd; write_data.datastart = new_data; write_data.next_table = new_data; write_data.next_leaf = new_data + sizeof_tables_and_entries; write_data.next_string = write_data.next_leaf + sizeof_leaves; write_data.next_data = write_data.next_string + sizeof_strings; write_data.rva_bias = sec->vma - pe->pe_opthdr.ImageBase; rsrc_write_directory (& write_data, & new_table); /* Step five: Replace the old contents with the new. We recompute the size as we may have lost entries due to mergeing. */ size = ((write_data.next_data - new_data) + 3) & ~ 3; bfd_set_section_contents (pfinfo->output_bfd, sec, new_data, 0, size); sec->size = sec->rawsize = size; end: /* Step size: Free all the memory that we have used. */ /* FIXME: Free the resource tree, if we have one. */ free (datastart); free (rsrc_sizes); } /* Handle the .idata section and other things that need symbol table access. */ bfd_boolean _bfd_XXi_final_link_postscript (bfd * abfd, struct coff_final_link_info *pfinfo) { struct coff_link_hash_entry *h1; struct bfd_link_info *info = pfinfo->info; bfd_boolean result = TRUE; /* There are a few fields that need to be filled in now while we have symbol table access. The .idata subsections aren't directly available as sections, but they are in the symbol table, so get them from there. */ /* The import directory. This is the address of .idata$2, with size of .idata$2 + .idata$3. */ h1 = coff_link_hash_lookup (coff_hash_table (info), ".idata$2", FALSE, FALSE, TRUE); if (h1 != NULL) { /* PR ld/2729: We cannot rely upon all the output sections having been created properly, so check before referencing them. Issue a warning message for any sections tht could not be found. */ if ((h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress = (h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset); else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[1] because .idata$2 is missing"), abfd); result = FALSE; } h1 = coff_link_hash_lookup (coff_hash_table (info), ".idata$4", FALSE, FALSE, TRUE); if (h1 != NULL && (h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].Size = ((h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset) - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_TABLE].VirtualAddress); else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[1] because .idata$4 is missing"), abfd); result = FALSE; } /* The import address table. This is the size/address of .idata$5. */ h1 = coff_link_hash_lookup (coff_hash_table (info), ".idata$5", FALSE, FALSE, TRUE); if (h1 != NULL && (h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress = (h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset); else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[12] because .idata$5 is missing"), abfd); result = FALSE; } h1 = coff_link_hash_lookup (coff_hash_table (info), ".idata$6", FALSE, FALSE, TRUE); if (h1 != NULL && (h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size = ((h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset) - pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress); else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE (12)] because .idata$6 is missing"), abfd); result = FALSE; } } else { h1 = coff_link_hash_lookup (coff_hash_table (info), "__IAT_start__", FALSE, FALSE, TRUE); if (h1 != NULL && (h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) { bfd_vma iat_va; iat_va = (h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset); h1 = coff_link_hash_lookup (coff_hash_table (info), "__IAT_end__", FALSE, FALSE, TRUE); if (h1 != NULL && (h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) { pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size = ((h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset) - iat_va); if (pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].Size != 0) pe_data (abfd)->pe_opthdr.DataDirectory[PE_IMPORT_ADDRESS_TABLE].VirtualAddress = iat_va - pe_data (abfd)->pe_opthdr.ImageBase; } else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[PE_IMPORT_ADDRESS_TABLE(12)]" " because .idata$6 is missing"), abfd); result = FALSE; } } } h1 = coff_link_hash_lookup (coff_hash_table (info), (bfd_get_symbol_leading_char(abfd) != 0 ? "__tls_used" : "_tls_used"), FALSE, FALSE, TRUE); if (h1 != NULL) { if ((h1->root.type == bfd_link_hash_defined || h1->root.type == bfd_link_hash_defweak) && h1->root.u.def.section != NULL && h1->root.u.def.section->output_section != NULL) pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].VirtualAddress = (h1->root.u.def.value + h1->root.u.def.section->output_section->vma + h1->root.u.def.section->output_offset - pe_data (abfd)->pe_opthdr.ImageBase); else { _bfd_error_handler (_("%B: unable to fill in DataDictionary[9] because __tls_used is missing"), abfd); result = FALSE; } /* According to PECOFF sepcifications by Microsoft version 8.2 the TLS data directory consists of 4 pointers, followed by two 4-byte integer. This implies that the total size is different for 32-bit and 64-bit executables. */ #if !defined(COFF_WITH_pep) && !defined(COFF_WITH_pex64) pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x18; #else pe_data (abfd)->pe_opthdr.DataDirectory[PE_TLS_TABLE].Size = 0x28; #endif } /* If there is a .pdata section and we have linked pdata finally, we need to sort the entries ascending. */ #if !defined(COFF_WITH_pep) && defined(COFF_WITH_pex64) { asection *sec = bfd_get_section_by_name (abfd, ".pdata"); if (sec) { bfd_size_type x = sec->rawsize; bfd_byte *tmp_data = NULL; if (x) tmp_data = bfd_malloc (x); if (tmp_data != NULL) { if (bfd_get_section_contents (abfd, sec, tmp_data, 0, x)) { qsort (tmp_data, (size_t) (x / 12), 12, sort_x64_pdata); bfd_set_section_contents (pfinfo->output_bfd, sec, tmp_data, 0, x); } free (tmp_data); } } } #endif rsrc_process_section (abfd, pfinfo); /* If we couldn't find idata$2, we either have an excessively trivial program or are in DEEP trouble; we have to assume trivial program.... */ return result; }