/* ARC-specific support for 32-bit ELF Copyright (C) 1994-2023 Free Software Foundation, Inc. Contributed by Cupertino Miranda (cmiranda@synopsys.com). This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/arc.h" #include "libiberty.h" #include "opcode/arc-func.h" #include "opcode/arc.h" #define RELA_SIZE sizeof(ElfNN_External_Rela) #include "arc-plt.h" #define FEATURE_LIST_NAME bfdNN_feature_list #define CONFLICT_LIST bfdNN_conflict_list #include "opcode/arc-attrs.h" /* Possible ARC architectures. */ #define ARC 0 #define ARC32 1 #define ARC64 2 /* Arc's architecture size. */ #define ARCH_SIZE NN /* Arc's architecture type. */ #define ARCH_TYPE ARCAA /* Arc's BFD backend. There are two different backends, one for ARCv1/v2 and the second for the ARCv3/64/32. They are incompatible. */ #define ARC_BFD_ARCH bfd_arch_arcAA /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" #define ELF32_DYNAMIC_INTERPRETER "/sbin/ld-uClibc.so" #define LOG_FILE_ALIGN (ARCH_SIZE == 32 ? 2 : 3) /* Do not enable this unless you know what you are doing. Code under this macro is not safe for production. #define ARC_ENABLE_DEBUG 1 */ #ifdef ARC_ENABLE_DEBUG static const char * name_for_global_symbol (struct elf_link_hash_entry *h) { static char *local_str = "(local)"; if (h == NULL) return local_str; return h->root.root.string; } #define ARC_DEBUG(fmt, args...) fprintf (stderr, fmt, ##args) #else #define ARC_DEBUG(...) #endif #define ADD_RELA(BFD, SECTION, OFFSET, SYM_IDX, TYPE, ADDEND) \ { \ struct elf_link_hash_table *_htab = elf_hash_table (info); \ Elf_Internal_Rela _rel; \ bfd_byte * _loc; \ const struct elf_backend_data *bed; \ bed = get_elf_backend_data (BFD); \ \ if (_htab->dynamic_sections_created) \ { \ BFD_ASSERT (_htab->srel##SECTION &&_htab->srel##SECTION->contents); \ _loc = _htab->srel##SECTION->contents \ + ((_htab->srel##SECTION->reloc_count) \ * sizeof (ElfNN_External_Rela)); \ _htab->srel##SECTION->reloc_count++; \ _rel.r_addend = ADDEND; \ _rel.r_offset = (_htab->s##SECTION)->output_section->vma \ + (_htab->s##SECTION)->output_offset + OFFSET; \ BFD_ASSERT ((long) SYM_IDX != -1); \ _rel.r_info = ELFNN_R_INFO (SYM_IDX, TYPE); \ bed->s->swap_reloca_out (BFD, &_rel, _loc); \ } \ } #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ case VALUE: \ return "R_" #TYPE; \ break; static ATTRIBUTE_UNUSED const char * reloc_type_to_name (unsigned int type) { switch (type) { #include "elf/arc-reloc.def" default: return "UNKNOWN"; break; } } #undef ARC_RELOC_HOWTO /* Try to minimize the amount of space occupied by relocation tables on the ROM (not that the ROM won't be swamped by other ELF overhead). */ #define USE_REL 1 /* Similar with bfd_get_32 but taking into account the middle-endianess of the ARC CPUs. Only to be used in code sections. */ static bfd_vma bfd_get_32_me (bfd * abfd,const unsigned char * data) { bfd_vma value = 0; if (bfd_big_endian (abfd)) value = bfd_get_32 (abfd, data); else { value = ((bfd_get_8 (abfd, data) & 255) << 16); value |= ((bfd_get_8 (abfd, data + 1) & 255) << 24); value |= (bfd_get_8 (abfd, data + 2) & 255); value |= ((bfd_get_8 (abfd, data + 3) & 255) << 8); } return value; } static void bfd_put_32_me (bfd *abfd, bfd_vma value,unsigned char *data) { bfd_put_16 (abfd, (value & 0xffff0000) >> 16, data); bfd_put_16 (abfd, value & 0xffff, data + 2); } static ATTRIBUTE_UNUSED bool is_reloc_PC_relative (reloc_howto_type *howto) { return strstr (howto->name, "PC") != NULL; } static bool is_reloc_SDA_relative (reloc_howto_type *howto) { return strstr (howto->name, "SDA") != NULL; } static bool is_reloc_for_GOT (reloc_howto_type * howto) { if (strstr (howto->name, "TLS") != NULL) return false; return strstr (howto->name, "GOT") != NULL; } static bool is_reloc_for_PLT (reloc_howto_type * howto) { return strstr (howto->name, "PLT") != NULL; } static bool is_reloc_for_TLS (reloc_howto_type *howto) { return strstr (howto->name, "TLS") != NULL; } struct arc_relocation_data { bfd_signed_vma reloc_offset; bfd_signed_vma reloc_addend; bfd_signed_vma got_offset_value; bfd_signed_vma sym_value; asection *sym_section; reloc_howto_type *howto; asection *input_section; bfd_signed_vma sdata_begin_symbol_vma; bool sdata_begin_symbol_vma_set; bfd_signed_vma got_symbol_vma; bool should_relocate; const char *symbol_name; }; /* ARC ELF linker hash entry. */ struct elf_arc_link_hash_entry { struct elf_link_hash_entry root; struct got_entry *got_ents; }; /* Should be included at this location due to static declarations defined before this point. */ #include "arc-got.h" #define arc_bfd_get_8(A,B,C) bfd_get_8(A,B) #define arc_bfd_get_16(A,B,C) bfd_get_16(A,B) #define arc_bfd_get_32(A,B,C) bfd_get_32(A,B) #define arc_bfd_get_64(A,B,C) bfd_get_64(A,B) #define arc_bfd_put_8(A,B,C,D) bfd_put_8(A,B,C) #define arc_bfd_put_16(A,B,C,D) bfd_put_16(A,B,C) #define arc_bfd_put_32(A,B,C,D) bfd_put_32(A,B,C) #define arc_bfd_put_64(A,B,C,D) bfd_put_64(A,B,C) static bfd_reloc_status_type arc_elf_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol_in, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char ** error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) { reloc_entry->address += input_section->output_offset; /* In case of relocateable link and if the reloc is against a section symbol, the addend needs to be adjusted according to where the section symbol winds up in the output section. */ if ((symbol_in->flags & BSF_SECTION_SYM) && symbol_in->section) reloc_entry->addend += symbol_in->section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ TYPE = VALUE, enum howto_list { #include "elf/arc-reloc.def" HOWTO_LIST_LAST }; #undef ARC_RELOC_HOWTO #define ARC_RELOC_HOWTO(TYPE, VALUE, RSIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ [TYPE] = HOWTO (R_##TYPE, 0, RSIZE, BITSIZE, false, 0, \ complain_overflow_##OVERFLOW, arc_elf_reloc, \ "R_" #TYPE, false, 0, 0, false), static struct reloc_howto_struct elf_arc_howto_table[] = { #include "elf/arc-reloc.def" /* Example of what is generated by the preprocessor. Currently kept as an example. HOWTO (R_ARC_NONE, // Type. 0, // Rightshift. 4, // Size. 32, // Bitsize. false, // PC_relative. 0, // Bitpos. complain_overflow_bitfield, // Complain_on_overflow. bfd_elf_generic_reloc, // Special_function. "R_ARC_NONE", // Name. true, // Partial_inplace. 0, // Src_mask. 0, // Dst_mask. false), // PCrel_offset. */ }; #undef ARC_RELOC_HOWTO static void arc_elf_howto_init (void) { #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ elf_arc_howto_table[TYPE].pc_relative = \ (strstr (#FORMULA, " P ") != NULL || strstr (#FORMULA, " PDATA ") != NULL); \ elf_arc_howto_table[TYPE].dst_mask = RELOC_FUNCTION(0, ~0); \ /* Only 32 bit data relocations should be marked as ME. */ \ if (strstr (#FORMULA, " ME ") != NULL) \ { \ BFD_ASSERT (SIZE == 4); \ } #include "elf/arc-reloc.def" } #undef ARC_RELOC_HOWTO static reloc_howto_type * arc_elf_howto (unsigned int r_type) { if (elf_arc_howto_table[R_ARC_32].dst_mask == 0) arc_elf_howto_init (); return &elf_arc_howto_table[r_type]; } /* Map BFD reloc types to ARC ELF reloc types. */ struct arc_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; /* ARC ELF linker hash table. */ struct elf_arc_link_hash_table { struct elf_link_hash_table elf; }; static struct bfd_hash_entry * elf_arc_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct elf_arc_link_hash_entry * ret = (struct elf_arc_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = (struct elf_arc_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf_arc_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf_arc_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { ret->got_ents = NULL; } return (struct bfd_hash_entry *) ret; } /* Destroy an ARC ELF linker hash table. */ static void elf_arc_link_hash_table_free (bfd *obfd) { _bfd_elf_link_hash_table_free (obfd); } /* Create an ARC ELF linker hash table. */ static struct bfd_link_hash_table * arc_elf_link_hash_table_create (bfd *abfd) { struct elf_arc_link_hash_table *ret; bfd_size_type amt = sizeof (struct elf_arc_link_hash_table); ret = (struct elf_arc_link_hash_table *) bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, elf_arc_link_hash_newfunc, sizeof (struct elf_arc_link_hash_entry), ARC_ELF_DATA)) { free (ret); return NULL; } ret->elf.root.hash_table_free = elf_arc_link_hash_table_free; return &ret->elf.root; } #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ { BFD_RELOC_##TYPE, R_##TYPE }, static const struct arc_reloc_map arc_reloc_map[] = { #include "elf/arc-reloc.def" {BFD_RELOC_NONE, R_ARC_NONE}, {BFD_RELOC_8, R_ARC_8}, {BFD_RELOC_16, R_ARC_16}, {BFD_RELOC_24, R_ARC_24}, {BFD_RELOC_32, R_ARC_32}, {BFD_RELOC_64, R_ARC_64}, }; #undef ARC_RELOC_HOWTO typedef ATTRIBUTE_UNUSED bfd_vma (*replace_func) (bfd_vma, bfd_vma ATTRIBUTE_UNUSED); #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, \ RELOC_FUNCTION, OVERFLOW, FORMULA) \ case TYPE: \ func = (void *) RELOC_FUNCTION; \ break; static replace_func get_replace_function (bfd *abfd, unsigned int r_type) { replace_func func = NULL; switch (r_type) { #include "elf/arc-reloc.def" } if (func == replace_bits24 && bfd_big_endian (abfd)) func = replace_bits24_be; return func; } #undef ARC_RELOC_HOWTO static reloc_howto_type * arc_elfNN_bfd_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = ARRAY_SIZE (arc_reloc_map); i--;) { if (arc_reloc_map[i].bfd_reloc_val == code) return arc_elf_howto (arc_reloc_map[i].elf_reloc_val); } return NULL; } /* Function to set the ELF flag bits. */ static bool arc_elf_set_private_flags (bfd *abfd, flagword flags) { elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = true; return true; } /* Print private flags. */ static bool arc_elf_print_private_bfd_data (bfd *abfd, void * ptr) { FILE *file = (FILE *) ptr; flagword flags; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); flags = elf_elfheader (abfd)->e_flags; fprintf (file, _("private flags = 0x%lx:"), (unsigned long) flags); switch (flags & EF_ARC_MACH_MSK) { case EF_ARC_CPU_ARCV2HS : fprintf (file, " -mcpu=ARCv2HS"); break; case EF_ARC_CPU_ARCV2EM : fprintf (file, " -mcpu=ARCv2EM"); break; case E_ARC_MACH_ARC600 : fprintf (file, " -mcpu=ARC600"); break; case E_ARC_MACH_ARC601 : fprintf (file, " -mcpu=ARC601"); break; case E_ARC_MACH_ARC700 : fprintf (file, " -mcpu=ARC700"); break; default: fprintf (file, "-mcpu=unknown"); break; } switch (flags & EF_ARC_OSABI_MSK) { case E_ARC_OSABI_ORIG : fprintf (file, " (ABI:legacy)"); break; case E_ARC_OSABI_V2 : fprintf (file, " (ABI:v2)"); break; case E_ARC_OSABI_V3 : fprintf (file, " (ABI:v3)"); break; case E_ARC_OSABI_V4 : fprintf (file, " (ABI:v4)"); break; default: fprintf (file, " (ABI:unknown)"); break; } fputc ('\n', file); return true; } /* Copy backend specific data from one object module to another. */ static bool arc_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) { if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; BFD_ASSERT (!elf_flags_init (obfd) || elf_elfheader (obfd)->e_flags == elf_elfheader (ibfd)->e_flags); elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; elf_flags_init (obfd) = true; /* Copy object attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); return _bfd_elf_copy_private_bfd_data (ibfd, obfd); } static reloc_howto_type * bfd_elfNN_bfd_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf_arc_howto_table); i++) if (elf_arc_howto_table[i].name != NULL && strcasecmp (elf_arc_howto_table[i].name, r_name) == 0) return arc_elf_howto (i); return NULL; } /* Set the howto pointer for an ARC ELF reloc. */ static bool arc_info_to_howto_rel (bfd * abfd, arelent * cache_ptr, Elf_Internal_Rela * dst) { unsigned int r_type; r_type = ELFNN_R_TYPE (dst->r_info); if (r_type >= (unsigned int) R_ARC_max) { /* xgettext:c-format */ _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type); bfd_set_error (bfd_error_bad_value); return false; } cache_ptr->howto = arc_elf_howto (r_type); return cache_ptr->howto != NULL; } /* Extract CPU features from an NTBS. */ static unsigned arc_extract_features (const char *p) { unsigned i, r = 0; if (!p) return 0; for (i = 0; i < ARRAY_SIZE (FEATURE_LIST_NAME); i++) { char *t = strstr (p, FEATURE_LIST_NAME[i].attr); unsigned l = strlen (FEATURE_LIST_NAME[i].attr); if ((t != NULL) && (t[l] == ',' || t[l] == '\0')) r |= FEATURE_LIST_NAME[i].feature; } return r; } /* Concatenate two strings. s1 can be NULL but not s2. */ static char * arc_stralloc (char * s1, const char * s2) { char *p; /* Only s1 can be null. */ BFD_ASSERT (s2); p = s1 ? concat (s1, ",", s2, NULL) : (char *)s2; return p; } /* Merge ARC object attributes from IBFD into OBFD. Raise an error if there are conflicting attributes. */ static bool arc_elf_merge_attributes (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; obj_attribute *in_attr; obj_attribute *out_attr; int i; bool result = true; const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; char *tagname = NULL; /* Skip the linker stubs file. This preserves previous behavior of accepting unknown attributes in the first input file - but is that a bug? */ if (ibfd->flags & BFD_LINKER_CREATED) return true; /* Skip any input that hasn't attribute section. This enables to link object files without attribute section with any others. */ if (bfd_get_section_by_name (ibfd, sec_name) == NULL) return true; if (!elf_known_obj_attributes_proc (obfd)[0].i) { /* This is the first object. Copy the attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); out_attr = elf_known_obj_attributes_proc (obfd); /* Use the Tag_null value to indicate the attributes have been initialized. */ out_attr[0].i = 1; return true; } in_attr = elf_known_obj_attributes_proc (ibfd); out_attr = elf_known_obj_attributes_proc (obfd); for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) { /* Merge this attribute with existing attributes. */ switch (i) { case Tag_ARC_PCS_config: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if ((in_attr[i].i & 0xff) != 0 && ((out_attr[i].i & 0xff) != (in_attr[i].i & 0xff))) { const char *tagval[] = { "Absent", "Bare-metal/mwdt", "Bare-metal/newlib", "Linux/uclibc", "Linux/glibc" }; BFD_ASSERT ((in_attr[i].i & 0xff) < 5); BFD_ASSERT ((out_attr[i].i & 0xff) < 5); /* It's sometimes ok to mix different configs, so this is only a warning. */ _bfd_error_handler (_("warning: %pB: conflicting platform configuration " "%s with %s"), ibfd, tagval[in_attr[i].i & 0xff], tagval[out_attr[i].i & 0xff]); } break; case Tag_ARC_CPU_base: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i && ((out_attr[i].i + in_attr[i].i) < 6)) { const char *tagval[] = { "Absent", "ARC6xx", "ARC7xx", "ARCEM", "ARCHS" }; BFD_ASSERT (in_attr[i].i < 5); BFD_ASSERT (out_attr[i].i < 5); /* We cannot mix code for different CPUs. */ _bfd_error_handler (_("error: %pB: unable to merge CPU base attributes " "%s with %s"), obfd, tagval[in_attr[i].i], tagval[out_attr[i].i]); result = false; break; } else { /* The CPUs may be different, check if we can still mix the objects against the output choosen CPU. */ unsigned in_feature = 0; unsigned out_feature = 0; char *p1 = in_attr[Tag_ARC_ISA_config].s; char *p2 = out_attr[Tag_ARC_ISA_config].s; unsigned j; unsigned cpu_out; unsigned opcode_map[] = {0, ARC_OPCODE_ARC600, ARC_OPCODE_ARC700, ARC_OPCODE_ARCv2EM, ARC_OPCODE_ARCv2HS}; BFD_ASSERT (in_attr[i].i < (sizeof (opcode_map) / sizeof (unsigned))); BFD_ASSERT (out_attr[i].i < (sizeof (opcode_map) / sizeof (unsigned))); cpu_out = opcode_map[out_attr[i].i]; in_feature = arc_extract_features (p1); out_feature = arc_extract_features (p2); /* First, check if a feature is compatible with the output object chosen CPU. */ for (j = 0; j < ARRAY_SIZE (FEATURE_LIST_NAME); j++) if (((in_feature | out_feature) & FEATURE_LIST_NAME[j].feature) && (!(cpu_out & FEATURE_LIST_NAME[j].cpus))) { _bfd_error_handler (_("error: %pB: unable to merge ISA extension attributes " "%s"), obfd, FEATURE_LIST_NAME[j].name); result = false; break; } /* Second, if we have compatible features with the chosen CPU, check if they are compatible among them. */ for (j = 0; j < ARRAY_SIZE (CONFLICT_LIST); j++) if (((in_feature | out_feature) & CONFLICT_LIST[j]) == CONFLICT_LIST[j]) { unsigned k; for (k = 0; k < ARRAY_SIZE (FEATURE_LIST_NAME); k++) { if (in_feature & FEATURE_LIST_NAME[k].feature & CONFLICT_LIST[j]) p1 = (char *) FEATURE_LIST_NAME[k].name; if (out_feature & FEATURE_LIST_NAME[k].feature & CONFLICT_LIST[j]) p2 = (char *) FEATURE_LIST_NAME[k].name; } _bfd_error_handler (_("error: %pB: conflicting ISA extension attributes " "%s with %s"), obfd, p1, p2); result = false; break; } /* Everithing is alright. */ out_feature |= in_feature; p1 = NULL; for (j = 0; j < ARRAY_SIZE (FEATURE_LIST_NAME); j++) if (out_feature & FEATURE_LIST_NAME[j].feature) p1 = arc_stralloc (p1, FEATURE_LIST_NAME[j].attr); if (p1) out_attr[Tag_ARC_ISA_config].s = _bfd_elf_attr_strdup (obfd, p1); } /* Fall through. */ case Tag_ARC_CPU_variation: case Tag_ARC_ISA_mpy_option: case Tag_ARC_ABI_osver: /* Use the largest value specified. */ if (in_attr[i].i > out_attr[i].i) out_attr[i].i = in_attr[i].i; break; /* The CPU name is given by the vendor, just choose an existing one if missing or different. There are no fail criteria if they different or both missing. */ case Tag_ARC_CPU_name: if (!out_attr[i].s && in_attr[i].s) out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s); break; case Tag_ARC_ABI_rf16: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (out_attr[i].i != in_attr[i].i) { /* We cannot mix code with rf16 and without. */ _bfd_error_handler (_("error: %pB: cannot mix rf16 with full register set %pB"), obfd, ibfd); result = false; } break; case Tag_ARC_ABI_pic: tagname = "PIC"; /* fall through */ case Tag_ARC_ABI_sda: if (!tagname) tagname = "SDA"; /* fall through */ case Tag_ARC_ABI_tls: { const char *tagval[] = { "Absent", "MWDT", "GNU" }; if (!tagname) tagname = "TLS"; BFD_ASSERT (in_attr[i].i < 3); BFD_ASSERT (out_attr[i].i < 3); if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (out_attr[i].i != 0 && in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) { _bfd_error_handler (_("error: %pB: conflicting attributes %s: %s with %s"), obfd, tagname, tagval[in_attr[i].i], tagval[out_attr[i].i]); result = false; } tagname = NULL; break; } case Tag_ARC_ABI_double_size: tagname = "Double size"; /* fall through */ case Tag_ARC_ABI_enumsize: if (!tagname) tagname = "Enum size"; /* fall through */ case Tag_ARC_ABI_exceptions: if (!tagname) tagname = "ABI exceptions"; if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; else if (out_attr[i].i != 0 && in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) { _bfd_error_handler (_("error: %pB: conflicting attributes %s"), obfd, tagname); result = false; } break; case Tag_ARC_ISA_apex: break; /* Do nothing for APEX attributes. */ case Tag_ARC_ISA_config: /* It is handled in Tag_ARC_CPU_base. */ break; case Tag_ARC_ATR_version: if (out_attr[i].i == 0) out_attr[i].i = in_attr[i].i; break; default: result = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); } /* If out_attr was copied from in_attr then it won't have a type yet. */ if (in_attr[i].type && !out_attr[i].type) out_attr[i].type = in_attr[i].type; } /* Merge Tag_compatibility attributes and any common GNU ones. */ if (!_bfd_elf_merge_object_attributes (ibfd, info)) return false; /* Check for any attributes not known on ARC. */ result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); return result; } /* Merge backend specific data from an object file to the output object file when linking. */ static bool arc_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) { bfd *obfd = info->output_bfd; unsigned short mach_ibfd; static unsigned short mach_obfd = EM_NONE; flagword out_flags; flagword in_flags; asection *sec; /* Check if we have the same endianess. */ if (! _bfd_generic_verify_endian_match (ibfd, info)) return false; if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) { _bfd_error_handler (_("%pB: ABI is incompatible with the selected emulation:\n" " target emulation '%s' does not match '%s'"), ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); return false; } if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; /* Collect ELF flags. */ in_flags = elf_elfheader (ibfd)->e_flags & EF_ARC_MACH_MSK; out_flags = elf_elfheader (obfd)->e_flags & EF_ARC_MACH_MSK; if (!elf_flags_init (obfd)) /* First call, no flags set. */ { elf_flags_init (obfd) = true; out_flags = in_flags; } if (!arc_elf_merge_attributes (ibfd, info)) return false; /* Check to see if the input BFD actually contains any sections. Do not short-circuit dynamic objects; their section list may be emptied by elf_link_add_object_symbols. */ if (!(ibfd->flags & DYNAMIC)) { bool null_input_bfd = true; bool only_data_sections = true; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { if ((bfd_section_flags (sec) & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) only_data_sections = false; null_input_bfd = false; } if (null_input_bfd || only_data_sections) return true; } /* Complain about various flag/architecture mismatches. */ mach_ibfd = elf_elfheader (ibfd)->e_machine; if (mach_obfd == EM_NONE) { mach_obfd = mach_ibfd; } else { if (mach_ibfd != mach_obfd) { /* xgettext:c-format */ _bfd_error_handler (_("error: attempting to link %pB " "with a binary %pB of different architecture"), ibfd, obfd); return false; } else if ((in_flags != out_flags) /* If we have object attributes, then we already checked the objects compatibility, skip it. */ && !bfd_elf_get_obj_attr_int (ibfd, OBJ_ATTR_PROC, Tag_ARC_CPU_base)) { if (in_flags && out_flags) { /* Warn if different flags. */ _bfd_error_handler /* xgettext:c-format */ (_("%pB: uses different e_flags (%#x) fields than " "previous modules (%#x)"), ibfd, in_flags, out_flags); return false; } /* MWDT doesnt set the eflags hence make sure we choose the eflags set by gcc. */ in_flags = in_flags > out_flags ? in_flags : out_flags; } else { /* Everything is correct; don't change the output flags. */ in_flags = out_flags; } } /* Update the flags. */ elf_elfheader (obfd)->e_flags = in_flags; if (bfd_get_mach (obfd) < bfd_get_mach (ibfd)) { return bfd_set_arch_mach (obfd, ARC_BFD_ARCH, bfd_get_mach (ibfd)); } return true; } /* Return a best guess for the machine number based on the attributes. */ static ATTRIBUTE_UNUSED unsigned int bfd_arc_get_mach_from_attributes (bfd * abfd) { int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ARC_CPU_base); unsigned e_machine = elf_elfheader (abfd)->e_machine; switch (arch) { case TAG_CPU_ARC6xx: return bfd_mach_arc_arc600; case TAG_CPU_ARC7xx: return bfd_mach_arc_arc700; case TAG_CPU_ARCEM: case TAG_CPU_ARCHS: return bfd_mach_arc_arcv2; default: break; } return (e_machine == EM_ARC_COMPACT) ? bfd_mach_arc_arc700 : bfd_mach_arc_arcv2; } /* Set the right machine number for an ARC ELF file. Make sure this is initialised, or you'll have the potential of passing garbage---or misleading values---into the call to bfd_default_set_arch_mach (). */ static bool arc_elf_object_p (bfd * abfd) { unsigned int mach; unsigned long ATTRIBUTE_UNUSED arch = elf_elfheader (abfd)->e_flags & EF_ARC_MACH_MSK; unsigned e_machine = elf_elfheader (abfd)->e_machine; switch (e_machine) { #if (ARCH_TYPE == ARC) && (ARCH_SIZE == 32) case EM_ARC_COMPACT: case EM_ARC_COMPACT2: switch (arch) { case E_ARC_MACH_ARC600: mach = bfd_mach_arc_arc600; break; case E_ARC_MACH_ARC601: mach = bfd_mach_arc_arc601; break; case E_ARC_MACH_ARC700: mach = bfd_mach_arc_arc700; break; case EF_ARC_CPU_ARCV2HS: case EF_ARC_CPU_ARCV2EM: mach = bfd_mach_arc_arcv2; break; default: mach = bfd_arc_get_mach_from_attributes (abfd); break; } break; case EM_ARC: _bfd_error_handler (_("error: the ARC4 architecture is no longer supported")); return false; #else /* New ARCv3 arches. */ case EM_ARC_COMPACT3_64: mach = bfd_mach_arcv3_64; break; case EM_ARC_COMPACT3: mach = bfd_mach_arcv3_32; break; #endif default: _bfd_error_handler (_("error: unset or old architecture flags.")); return false; } return bfd_default_set_arch_mach (abfd, ARC_BFD_ARCH, mach); } /* The final processing done just before writing out an ARC ELF object file. This gets the ARC architecture right based on the machine number. */ static bool arc_elf_final_write_processing (bfd *abfd) { unsigned long emf; int osver = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ARC_ABI_osver); flagword e_flags = elf_elfheader (abfd)->e_flags & ~EF_ARC_OSABI_MSK; #if (ARCH_TYPE == ARC) && (ARCH_SIZE == 32) switch (bfd_get_mach (abfd)) { case bfd_mach_arc_arcv2: emf = EM_ARC_COMPACT2; break; default: emf = EM_ARC_COMPACT; break; } #else switch (bfd_get_mach (abfd)) { case bfd_mach_arcv3_64: emf = EM_ARC_COMPACT3_64; break; case bfd_mach_arcv3_32: emf = EM_ARC_COMPACT3; break; default: _bfd_error_handler (_("Unknown ARC architecture")); bfd_set_error (bfd_error_sorry); return false; } #endif elf_elfheader (abfd)->e_machine = emf; /* Record whatever is the current syscall ABI version. */ if (osver) e_flags |= ((osver & 0x0f) << 8); else e_flags |= E_ARC_OSABI_V3; elf_elfheader (abfd)->e_flags |= e_flags; return _bfd_elf_final_write_processing (abfd); } #ifdef ARC_ENABLE_DEBUG #define DEBUG_ARC_RELOC(A) debug_arc_reloc (A) static void debug_arc_reloc (struct arc_relocation_data reloc_data) { ARC_DEBUG ("Reloc type=%s, should_relocate = %s\n", reloc_data.howto->name, reloc_data.should_relocate ? "true" : "false"); ARC_DEBUG (" offset = 0x%x, addend = 0x%x\n", (unsigned int) reloc_data.reloc_offset, (unsigned int) reloc_data.reloc_addend); ARC_DEBUG (" Symbol:\n"); ARC_DEBUG (" value = 0x%08x\n", (unsigned int) reloc_data.sym_value); if (reloc_data.sym_section != NULL) { ARC_DEBUG (" Symbol Section:\n"); ARC_DEBUG (" section name = %s, output_offset 0x%08x", reloc_data.sym_section->name, (unsigned int) reloc_data.sym_section->output_offset); if (reloc_data.sym_section->output_section != NULL) ARC_DEBUG (", output_section->vma = 0x%08x", ((unsigned int) reloc_data.sym_section->output_section->vma)); ARC_DEBUG ("\n"); if (reloc_data.sym_section->owner && reloc_data.sym_section->owner->filename) ARC_DEBUG (" file: %s\n", reloc_data.sym_section->owner->filename); } else { ARC_DEBUG (" symbol section is NULL\n"); } ARC_DEBUG (" Input_section:\n"); if (reloc_data.input_section != NULL) { ARC_DEBUG (" section name = %s, output_offset 0x%08x, " \ "output_section->vma = 0x%08x\n", reloc_data.input_section->name, (unsigned int) reloc_data.input_section->output_offset, (unsigned int) reloc_data.input_section->output_section->vma); ARC_DEBUG (" changed_address = 0x%08x\n", (unsigned int) (reloc_data.input_section->output_section->vma + reloc_data.input_section->output_offset + reloc_data.reloc_offset)); ARC_DEBUG (" file: %s\n", reloc_data.input_section->owner->filename); } else { ARC_DEBUG ("\tinput section is NULL\n"); } } #else #define DEBUG_ARC_RELOC(A) #endif /* ARC_ENABLE_DEBUG */ static bfd_vma middle_endian_convert (bfd_vma insn, bool do_it) { if (do_it) { insn = ((insn & 0xffff0000) >> 16) | ((insn & 0xffff) << 16); } return insn; } /* This function is called for relocations that are otherwise marked as NOT requiring overflow checks. In here we perform non-standard checks of the relocation value. */ static inline bfd_reloc_status_type arc_special_overflow_checks (const struct arc_relocation_data reloc_data, bfd_signed_vma relocation, struct bfd_link_info *info ATTRIBUTE_UNUSED) { switch (reloc_data.howto->type) { case R_ARC_NPS_CMEM16: if (((relocation >> 16) & 0xffff) != NPS_CMEM_HIGH_VALUE) { if (reloc_data.reloc_addend == 0) _bfd_error_handler /* xgettext:c-format */ (_("%pB(%pA+%#" PRIx64 "): CMEM relocation to `%s' is invalid, " "16 MSB should be %#x (value is %#" PRIx64 ")"), reloc_data.input_section->owner, reloc_data.input_section, (uint64_t) reloc_data.reloc_offset, reloc_data.symbol_name, NPS_CMEM_HIGH_VALUE, (uint64_t) relocation); else _bfd_error_handler /* xgettext:c-format */ (_("%pB(%pA+%#" PRIx64 "): CMEM relocation to `%s+%#" PRIx64 "' is invalid, 16 MSB should be %#x (value is %#" PRIx64 ")"), reloc_data.input_section->owner, reloc_data.input_section, (uint64_t) reloc_data.reloc_offset, reloc_data.symbol_name, (uint64_t) reloc_data.reloc_addend, NPS_CMEM_HIGH_VALUE, (uint64_t) relocation); return bfd_reloc_overflow; } break; default: break; } return bfd_reloc_ok; } #define ME(reloc) (reloc) #define IS_ME(FORMULA,BFD) ((strstr (FORMULA, "ME") != NULL) \ && (!bfd_big_endian (BFD))) #define S \ ((bfd_signed_vma) (reloc_data.sym_value \ + (reloc_data.sym_section->output_section != NULL ? \ (reloc_data.sym_section->output_offset \ + reloc_data.sym_section->output_section->vma) : 0))) #define L \ ((bfd_signed_vma) (reloc_data.sym_value \ + (reloc_data.sym_section->output_section != NULL ? \ (reloc_data.sym_section->output_offset \ + reloc_data.sym_section->output_section->vma) : 0))) #define A (reloc_data.reloc_addend) #define B (0) #define G (reloc_data.got_offset_value) #define GOT (reloc_data.got_symbol_vma) #define GOT_BEGIN (htab->sgot->output_section->vma) #define MES (0) /* P: relative offset to PCL The offset should be to the current location aligned to 32 bits. */ #define P ((bfd_signed_vma) \ (((reloc_data.input_section->output_section != NULL ? \ reloc_data.input_section->output_section->vma : 0) \ + reloc_data.input_section->output_offset \ + (reloc_data.reloc_offset - (bitsize == 32 ? 4 : \ (bitsize == 34 ? 2 : 0)))) \ & ~0x3)) #define PDATA \ ((bfd_signed_vma) ((reloc_data.input_section->output_section->vma \ + reloc_data.input_section->output_offset \ + (reloc_data.reloc_offset)))) #define SECTSTART \ (bfd_signed_vma) (reloc_data.sym_section->output_section->vma \ + reloc_data.sym_section->output_offset) #define FINAL_SECTSTART \ (bfd_signed_vma) (reloc_data.sym_section->output_section->vma) #define JLI (bfd_signed_vma) (reloc_data.sym_section->output_section->vma) #define _SDA_BASE_ (bfd_signed_vma) (reloc_data.sdata_begin_symbol_vma) #define TLS_REL (bfd_signed_vma)(tls_sec->output_section->vma) #define TLS_TBSS (align_power (TCB_SIZE, tls_sec->alignment_power)) #define ICARRY insn #define DEREFP (insn) #define none (0) #ifdef ARC_ENABLE_DEBUG #define PRINT_DEBUG_RELOC_INFO_BEFORE(FORMULA, TYPE) \ do \ { \ asection *sym_section = reloc_data.sym_section; \ asection *input_section = reloc_data.input_section; \ ARC_DEBUG ("RELOC_TYPE = " TYPE "\n"); \ ARC_DEBUG ("FORMULA = " FORMULA "\n"); \ ARC_DEBUG ("S = %#lx\n", S); \ ARC_DEBUG ("A = %#lx\n", A); \ ARC_DEBUG ("L = %lx\n", L); \ if (sym_section->output_section != NULL) \ ARC_DEBUG ("symbol_section->vma = %#lx\n", \ sym_section->output_section->vma \ + sym_section->output_offset); \ else \ ARC_DEBUG ("symbol_section->vma = NULL\n"); \ if (input_section->output_section != NULL) \ ARC_DEBUG ("input_section->vma = %#lx\n", \ input_section->output_section->vma \ + input_section->output_offset); \ else \ ARC_DEBUG ("input_section->vma = NULL\n"); \ ARC_DEBUG ("PCL = %#lx\n", P); \ ARC_DEBUG ("P = %#lx\n", P); \ ARC_DEBUG ("G = %#lx\n", G); \ ARC_DEBUG ("SDA_OFFSET = %#lx\n", _SDA_BASE_); \ ARC_DEBUG ("SDA_SET = %d\n", reloc_data.sdata_begin_symbol_vma_set); \ ARC_DEBUG ("GOT_OFFSET = %#lx\n", GOT); \ ARC_DEBUG ("relocation = %#08lx\n", relocation); \ ARC_DEBUG ("before = %#08x\n", (unsigned) insn); \ ARC_DEBUG ("data = %08x (%u) (%d)\n", (unsigned) relocation, \ (unsigned) relocation, (int) relocation); \ } \ while (0) #define PRINT_DEBUG_RELOC_INFO_AFTER \ do \ { \ ARC_DEBUG ("after = 0x%08x\n", (unsigned int) insn); \ } \ while (0) #else #define PRINT_DEBUG_RELOC_INFO_BEFORE(...) #define PRINT_DEBUG_RELOC_INFO_AFTER #endif /* ARC_ENABLE_DEBUG. */ #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, \ RELOC_FUNCTION, OVERFLOW, FORMULA) \ case R_##TYPE: \ { \ bfd_signed_vma bitsize ATTRIBUTE_UNUSED = BITSIZE; \ relocation = FORMULA ; \ PRINT_DEBUG_RELOC_INFO_BEFORE (#FORMULA, #TYPE); \ insn = middle_endian_convert (insn, IS_ME (#FORMULA, abfd)); \ insn = (* get_replace_function (abfd, TYPE)) (insn, relocation); \ insn = middle_endian_convert (insn, IS_ME (#FORMULA, abfd)); \ PRINT_DEBUG_RELOC_INFO_AFTER; \ } \ break; static bfd_reloc_status_type arc_do_relocation (bfd_byte * contents, struct arc_relocation_data reloc_data, struct bfd_link_info *info) { bfd_signed_vma relocation = 0; bfd_vma insn; bfd_vma orig_insn ATTRIBUTE_UNUSED; bfd * abfd = reloc_data.input_section->owner; struct elf_link_hash_table *htab ATTRIBUTE_UNUSED = elf_hash_table (info); bfd_reloc_status_type flag; asection *tls_sec = htab->tls_sec; if (!reloc_data.should_relocate) return bfd_reloc_ok; switch (bfd_get_reloc_size (reloc_data.howto)) { case 8: insn = arc_bfd_get_64 (abfd, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 4: insn = arc_bfd_get_32 (abfd, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 2: insn = arc_bfd_get_16 (abfd, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 1: insn = arc_bfd_get_8 (abfd, contents + reloc_data.reloc_offset, reloc_data.input_section); break; default: insn = 0; BFD_ASSERT (0); break; } orig_insn = insn; /* If we resolve a TLS relocation, make sure we do have a valid TLS section. */ switch (reloc_data.howto->type) { case R_ARC_TLS_LE_32: if (tls_sec == NULL) return bfd_reloc_notsupported; break; default: break; } switch (reloc_data.howto->type) { #include "elf/arc-reloc.def" default: BFD_ASSERT (0); break; } /* Check for relocation overflow. */ if (reloc_data.howto->complain_on_overflow != complain_overflow_dont) flag = bfd_check_overflow (reloc_data.howto->complain_on_overflow, reloc_data.howto->bitsize, reloc_data.howto->rightshift, bfd_arch_bits_per_address (abfd), relocation); else flag = arc_special_overflow_checks (reloc_data, relocation, info); if (flag != bfd_reloc_ok) { ARC_DEBUG ("Relocation overflows !\n"); DEBUG_ARC_RELOC (reloc_data); ARC_DEBUG ("Relocation value = signed -> %d, unsigned -> %u" ", hex -> (0x%08x)\n", (int) relocation, (unsigned) relocation, (int) relocation); return flag; } /* Write updated instruction back to memory. */ switch (bfd_get_reloc_size (reloc_data.howto)) { case 8: arc_bfd_put_64 (abfd, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 4: arc_bfd_put_32 (abfd, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 2: arc_bfd_put_16 (abfd, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 1: arc_bfd_put_8 (abfd, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; default: ARC_DEBUG ("size = %d\n", reloc_data.howto->size); BFD_ASSERT (0); break; } return bfd_reloc_ok; } #undef S #undef A #undef B #undef G #undef GOT #undef L #undef MES #undef P #undef SECTSTAR #undef SECTSTART #undef JLI #undef _SDA_BASE_ #undef ICARRY #undef none #undef ARC_RELOC_HOWTO /* Relocate an arc ELF section. Function : elf_arc_relocate_section Brief : Relocate an arc section, by handling all the relocations appearing in that section. Args : output_bfd : The bfd being written to. info : Link information. input_bfd : The input bfd. input_section : The section being relocated. contents : contents of the section being relocated. relocs : List of relocations in the section. local_syms : is a pointer to the swapped in local symbols. local_section : is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. */ static int elf_arc_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; Elf_Internal_Rela * rel; Elf_Internal_Rela * wrel; Elf_Internal_Rela * relend; struct elf_link_hash_table * htab = elf_hash_table (info); const struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); symtab_hdr = &((elf_tdata (input_bfd))->symtab_hdr); sym_hashes = elf_sym_hashes (input_bfd); rel = wrel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; wrel++, rel++) { enum elf_arc_reloc_type r_type; reloc_howto_type * howto; unsigned long r_symndx; struct elf_link_hash_entry * h; Elf_Internal_Sym * sym; asection * sec; struct elf_link_hash_entry * h2; const char * msg; bool unresolved_reloc = false; bool resolved_to_zero; struct arc_relocation_data reloc_data = { .reloc_offset = 0, .reloc_addend = 0, .got_offset_value = 0, .sym_value = 0, .sym_section = NULL, .howto = NULL, .input_section = NULL, .sdata_begin_symbol_vma = 0, .sdata_begin_symbol_vma_set = false, .got_symbol_vma = 0, .should_relocate = false }; r_type = ELFNN_R_TYPE (rel->r_info); if (r_type >= (int) R_ARC_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = arc_elf_howto (r_type); r_symndx = ELFNN_R_SYM (rel->r_info); /* If we are generating another .o file and the symbol in not local, skip this relocation. */ if (bfd_link_relocatable (info)) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ /* Checks if this is a local symbol and thus the reloc might (will??) be against a section symbol. */ if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) { sec = local_sections[r_symndx]; /* For RELA relocs. Just adjust the addend value in the relocation entry. */ rel->r_addend += sec->output_offset + sym->st_value; ARC_DEBUG ("local symbols reloc (section=%d %s) seen in %s\n", (int) r_symndx, local_sections[r_symndx]->name, __PRETTY_FUNCTION__); } } } h2 = elf_link_hash_lookup (elf_hash_table (info), "__SDATA_BEGIN__", false, false, true); if (!reloc_data.sdata_begin_symbol_vma_set && h2 != NULL && h2->root.type != bfd_link_hash_undefined && h2->root.u.def.section->output_section != NULL) /* TODO: Verify this condition. */ { reloc_data.sdata_begin_symbol_vma = (h2->root.u.def.value + h2->root.u.def.section->output_section->vma); reloc_data.sdata_begin_symbol_vma_set = true; } reloc_data.input_section = input_section; reloc_data.howto = howto; reloc_data.reloc_offset = rel->r_offset; reloc_data.reloc_addend = rel->r_addend; /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */ { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; } else { bool warned, ignored; bfd_vma relocation ATTRIBUTE_UNUSED; RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, r_symndx, symtab_hdr, sym_hashes, h, sec, relocation, unresolved_reloc, warned, ignored); /* TODO: This code is repeated from below. We should clean it and remove duplications. Sec is used check for discarded sections. Need to redesign code below. */ /* Get the symbol's entry in the symtab. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* If we have encountered a definition for this symbol. */ if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { reloc_data.sym_value = h->root.u.def.value; sec = h->root.u.def.section; } } /* Clean relocs for symbols in discarded sections. */ if (sec != NULL && discarded_section (sec)) { _bfd_clear_contents (howto, input_bfd, input_section, contents, rel->r_offset); rel->r_info = 0; rel->r_addend = 0; /* For ld -r, remove relocations in debug sections against sections defined in discarded sections. Not done for eh_frame editing code expects to be present. */ if (bfd_link_relocatable (info) && (input_section->flags & SEC_DEBUGGING)) wrel--; continue; } if (bfd_link_relocatable (info)) { if (wrel != rel) *wrel = *rel; continue; } resolved_to_zero = (h != NULL && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */ { reloc_data.sym_value = sym->st_value; reloc_data.sym_section = sec; reloc_data.symbol_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); /* Mergeable section handling. */ if ((sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { asection *msec; msec = sec; rel->r_addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, rel->r_addend); rel->r_addend -= (sec->output_section->vma + sec->output_offset + sym->st_value); rel->r_addend += msec->output_section->vma + msec->output_offset; reloc_data.reloc_addend = rel->r_addend; } BFD_ASSERT (htab->sgot != NULL || !is_reloc_for_GOT (howto)); if (htab->sgot != NULL) reloc_data.got_symbol_vma = htab->sgot->output_section->vma + htab->sgot->output_offset; reloc_data.should_relocate = true; } else /* Global symbol. */ { /* FIXME: We should use the RELOC_FOR_GLOBAL_SYMBOL macro (defined in elf-bfd.h) here. */ /* Get the symbol's entry in the symtab. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) { struct elf_arc_link_hash_entry *ah_old = (struct elf_arc_link_hash_entry *) h; h = (struct elf_link_hash_entry *) h->root.u.i.link; struct elf_arc_link_hash_entry *ah = (struct elf_arc_link_hash_entry *) h; if (ah->got_ents == 0 && ah_old->got_ents != ah->got_ents) ah->got_ents = ah_old->got_ents; } /* TODO: Need to validate what was the intention. */ reloc_data.symbol_name = h->root.root.string; /* If we have encountered a definition for this symbol. */ if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { reloc_data.sym_value = h->root.u.def.value; reloc_data.sym_section = h->root.u.def.section; reloc_data.should_relocate = true; if (is_reloc_for_GOT (howto) && !bfd_link_pic (info)) { struct elf_arc_link_hash_entry *ah = (struct elf_arc_link_hash_entry *) h; /* TODO: Change it to use arc_do_relocation with ARC_32 reloc. Try to use ADD_RELA macro. */ bfd_vma relocation = reloc_data.sym_value + reloc_data.reloc_addend + (reloc_data.sym_section->output_section != NULL ? (reloc_data.sym_section->output_offset + reloc_data.sym_section->output_section->vma) : 0); BFD_ASSERT (ah->got_ents); bfd_vma got_offset = ah->got_ents->offset; bfd_put_32 (output_bfd, relocation, htab->sgot->contents + got_offset); } if (is_reloc_for_PLT (howto) && h->plt.offset != (bfd_vma) -1) { /* TODO: This is repeated up here. */ reloc_data.sym_value = h->plt.offset; reloc_data.sym_section = htab->splt; } } else if (h->root.type == bfd_link_hash_undefweak) { /* Is weak symbol and has no definition. */ if (is_reloc_for_GOT (howto)) { reloc_data.sym_value = h->root.u.def.value; reloc_data.sym_section = htab->sgot; reloc_data.should_relocate = true; } else if (is_reloc_for_PLT (howto) && h->plt.offset != (bfd_vma) -1) { /* TODO: This is repeated up here. */ reloc_data.sym_value = h->plt.offset; reloc_data.sym_section = htab->splt; reloc_data.should_relocate = true; } /* See pr22269. */ else if (!resolved_to_zero) continue; } else { if (is_reloc_for_GOT (howto)) { reloc_data.sym_value = h->root.u.def.value; reloc_data.sym_section = htab->sgot; reloc_data.should_relocate = true; } else if (is_reloc_for_PLT (howto)) { /* Fail if it is linking for PIE and the symbol is undefined. */ if (bfd_link_executable (info)) (*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, true); reloc_data.sym_value = h->plt.offset; reloc_data.sym_section = htab->splt; reloc_data.should_relocate = true; } else if (!bfd_link_pic (info) || bfd_link_executable (info)) (*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset, true); } BFD_ASSERT (htab->sgot != NULL || !is_reloc_for_GOT (howto)); if (htab->sgot != NULL) reloc_data.got_symbol_vma = htab->sgot->output_section->vma + htab->sgot->output_offset; } if (is_reloc_for_GOT (howto) || (is_reloc_for_TLS (howto) && !resolved_to_zero)) { reloc_data.should_relocate = true; struct got_entry **list = get_got_entry_list_for_symbol (input_bfd, r_symndx, h); reloc_data.got_offset_value = relocate_fix_got_relocs_for_got_info (list, tls_type_for_reloc (howto), info, output_bfd, r_symndx, local_syms, local_sections, h, &reloc_data); if (h == NULL) { create_got_dynrelocs_for_single_entry (got_entry_for_type (list, arc_got_entry_type_for_reloc (howto)), output_bfd, info, NULL); } } #define IS_ARC_PCREL_TYPE(TYPE) \ ((TYPE == R_ARC_PC32) \ || (TYPE == R_ARC_32_PCREL)) switch (r_type) { case R_ARC_64: case R_ARC_32: case R_ARC_32_ME: case R_ARC_PC32: case R_ARC_32_PCREL: case R_ARC_HI32_ME: case R_ARC_LO32_ME: if (bfd_link_pic (info) && !resolved_to_zero && (input_section->flags & SEC_ALLOC) != 0 && (!IS_ARC_PCREL_TYPE (r_type) || (h != NULL && h->dynindx != -1 && (!SYMBOL_REFERENCES_LOCAL (info, h))))) { Elf_Internal_Rela outrel; bfd_byte *loc; bool skip = false; bool relocate = false; asection *sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, /*RELA*/ true); BFD_ASSERT (sreloc != NULL); outrel.r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel->r_offset); if (outrel.r_offset == (bfd_vma) -1) skip = true; outrel.r_addend = rel->r_addend; outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); if (skip) { memset (&outrel, 0, sizeof outrel); relocate = false; } else if (h != NULL && h->dynindx != -1 && (IS_ARC_PCREL_TYPE (r_type) || !(bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) || ! h->def_regular)) { BFD_ASSERT (h != NULL); if ((input_section->flags & SEC_ALLOC) != 0) relocate = false; else relocate = true; BFD_ASSERT (h->dynindx != -1); outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); } else { /* Handle local symbols, they either do not have a global hash table entry (h == NULL), or are forced local due to a version script (h->forced_local), or the third condition is legacy, it appears to say something like, for links where we are pre-binding the symbols, or there's not an entry for this symbol in the dynamic symbol table, and it's a regular symbol not defined in a shared object, then treat the symbol as local, resolve it now. */ relocate = true; /* outrel.r_addend = 0; */ outrel.r_info = ELFNN_R_INFO (0, R_ARC_RELATIVE); } BFD_ASSERT (sreloc->contents != 0); loc = sreloc->contents; loc += sreloc->reloc_count * sizeof (ElfNN_External_Rela); sreloc->reloc_count += 1; bed->s->swap_reloca_out (output_bfd, &outrel, loc); if (!relocate) continue; } break; default: break; } if (is_reloc_SDA_relative (howto) && !reloc_data.sdata_begin_symbol_vma_set) { _bfd_error_handler ("error: linker symbol __SDATA_BEGIN__ not found"); bfd_set_error (bfd_error_bad_value); return false; } DEBUG_ARC_RELOC (reloc_data); /* Make sure we have with a dynamic linker. In case of GOT and PLT the sym_section should point to .got or .plt respectively. */ if ((is_reloc_for_GOT (howto) || is_reloc_for_PLT (howto)) && reloc_data.sym_section == NULL && !resolved_to_zero) { _bfd_error_handler (_("GOT and PLT relocations cannot be fixed with a non dynamic" \ " linker")); bfd_set_error (bfd_error_bad_value); return false; } msg = NULL; switch (arc_do_relocation (contents, reloc_data, info)) { case bfd_reloc_ok: continue; /* The reloc processing loop. */ case bfd_reloc_overflow: (*info->callbacks->reloc_overflow) (info, (h ? &h->root : NULL), reloc_data.symbol_name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset); break; case bfd_reloc_undefined: (*info->callbacks->undefined_symbol) (info, reloc_data.symbol_name, input_bfd, input_section, rel->r_offset, true); break; case bfd_reloc_other: /* xgettext:c-format */ msg = _("%pB(%pA): warning: unaligned access to symbol '%s' in the" \ " small data area"); break; case bfd_reloc_outofrange: /* xgettext:c-format */ msg = _("%pB(%pA): internal error: out of range error"); break; case bfd_reloc_notsupported: /* xgettext:c-format */ msg = _("%pB(%pA): internal error: unsupported relocation error"); break; case bfd_reloc_dangerous: /* xgettext:c-format */ msg = _("%pB(%pA): internal error: dangerous relocation"); break; default: /* xgettext:c-format */ msg = _("%pB(%pA): internal error: unknown error"); break; } if (msg) _bfd_error_handler (msg, input_bfd, input_section, reloc_data.symbol_name); return false; } return true; } #define elf_arc_hash_table(p) \ ((is_elf_hash_table ((p)->hash) \ && elf_hash_table_id (elf_hash_table (p)) == ARC_ELF_DATA) \ ? (struct elf_arc_link_hash_table *) (p)->hash : NULL) static bool elf_arc_check_relocs (bfd * abfd, struct bfd_link_info * info, asection * sec, const Elf_Internal_Rela * relocs) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; const Elf_Internal_Rela * rel; const Elf_Internal_Rela * rel_end; bfd * dynobj; asection * sreloc = NULL; struct elf_link_hash_table * htab = elf_hash_table (info); if (bfd_link_relocatable (info)) return true; if (htab->dynobj == NULL) htab->dynobj = abfd; dynobj = (elf_hash_table (info))->dynobj; symtab_hdr = &((elf_tdata (abfd))->symtab_hdr); sym_hashes = elf_sym_hashes (abfd); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { enum elf_arc_reloc_type r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; r_type = ELFNN_R_TYPE (rel->r_info); if (r_type >= (int) R_ARC_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = arc_elf_howto (r_type); /* Load symbol information. */ r_symndx = ELFNN_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) /* Is a local symbol. */ h = NULL; else /* Global one. */ { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; } switch (r_type) { case R_ARC_8: case R_ARC_16: case R_ARC_32: case R_ARC_64: case R_ARC_32_ME: case R_ARC_HI32_ME: case R_ARC_LO32_ME: /* During shared library creation, these relocs should not appear in a shared library (as memory will be read only and the dynamic linker can not resolve these. However the error should not occur for e.g. debugging or non-readonly sections. */ if (h != NULL && (bfd_link_dll (info) && !bfd_link_pie (info)) && (sec->flags & SEC_ALLOC) != 0 && (sec->flags & SEC_READONLY) != 0 && ((sec->flags & SEC_CODE) != 0 || (sec->flags & SEC_DEBUGGING) != 0)) { const char *name; if (h) name = h->root.root.string; else name = "UNKNOWN"; _bfd_error_handler /* xgettext:c-format */ (_("%pB: relocation %s against `%s' can not be used" " when making a shared object; recompile with -fPIC"), abfd, arc_elf_howto (r_type)->name, name); bfd_set_error (bfd_error_bad_value); return false; } /* In some cases we are not setting the 'non_got_ref' flag, even though the relocations don't require a GOT access. We should extend the testing in this area to ensure that no significant cases are being missed. */ if (h) h->non_got_ref = 1; /* We don't need to handle relocs into sections not going into the "real" output. */ if ((sec->flags & SEC_ALLOC) == 0) break; /* No need to do anything if we're not creating a shared object. */ if (!bfd_link_pic (info) || (h != NULL && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))) break; /* fall through */ case R_ARC_PC32: case R_ARC_32_PCREL: if (!bfd_link_pic (info)) break; if (((r_type != R_ARC_PC32 && r_type != R_ARC_32_PCREL) || (!SYMBOL_REFERENCES_LOCAL (info, h)))) { if (sreloc == NULL) { if (info->dynamic && ! htab->dynamic_sections_created && ! _bfd_elf_link_create_dynamic_sections (abfd, info)) return false; sreloc = _bfd_elf_make_dynamic_reloc_section (sec, dynobj, 2, abfd, /* rela */ true); if (sreloc == NULL) return false; } sreloc->size += sizeof (ElfNN_External_Rela); } default: break; } if (is_reloc_for_PLT (howto)) { if (h == NULL) continue; else if (h->forced_local == 0) h->needs_plt = 1; } /* Add info to the symbol got_entry_list. */ if (is_reloc_for_GOT (howto) || is_reloc_for_TLS (howto)) { if (bfd_link_dll (info) && !bfd_link_pie (info) && (r_type == R_ARC_TLS_LE_32 || r_type == R_ARC_TLS_LE_S9)) { const char *name; if (h) name = h->root.root.string; else /* bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); */ name = "UNKNOWN"; _bfd_error_handler /* xgettext:c-format */ (_("%pB: relocation %s against `%s' can not be used" " when making a shared object; recompile with -fPIC"), abfd, arc_elf_howto (r_type)->name, name); bfd_set_error (bfd_error_bad_value); return false; } if (! _bfd_elf_create_got_section (dynobj, info)) return false; arc_fill_got_info_for_reloc (arc_got_entry_type_for_reloc (howto), get_got_entry_list_for_symbol (abfd, r_symndx, h), info, h); } } return true; } static struct plt_version_t * arc_get_plt_version (struct bfd_link_info *info) { int i; for (i = 0; i < 1; i++) { ARC_DEBUG ("%d: size1 = %d, size2 = %d\n", i, (int) plt_versions[i].entry_size, (int) plt_versions[i].elem_size); } if (bfd_get_mach (info->output_bfd) == bfd_mach_arcv3_64) { return &(plt_versions[ELF_ARCV3_PIC]); } else if (bfd_get_mach (info->output_bfd) == bfd_mach_arc_arcv2 || bfd_get_mach (info->output_bfd) == bfd_mach_arcv3_32) { if (bfd_link_pic (info)) return &(plt_versions[ELF_ARCV2_PIC]); else return &(plt_versions[ELF_ARCV2_ABS]); } else { if (bfd_link_pic (info)) return &(plt_versions[ELF_ARC_PIC]); else return &(plt_versions[ELF_ARC_ABS]); } BFD_ASSERT (0); return NULL; } static bfd_vma add_symbol_to_plt (struct bfd_link_info *info) { struct elf_link_hash_table *htab = elf_hash_table (info); bfd_vma ret; const struct plt_version_t *plt_data = arc_get_plt_version (info); /* If this is the first .plt entry, make room for the special first entry. */ if (htab->splt->size == 0) htab->splt->size += plt_data->entry_size; ret = htab->splt->size; htab->splt->size += plt_data->elem_size; ARC_DEBUG ("PLT_SIZE = %d\n", (int) htab->splt->size); htab->sgotplt->size += GOT_ENTRY_SIZE; htab->srelplt->size += sizeof (ElfNN_External_Rela); return ret; } #define PLT_DO_RELOCS_FOR_ENTRY(ABFD, DS, RELOCS) \ plt_do_relocs_for_symbol (ABFD, DS, RELOCS, 0, 0) static void plt_do_relocs_for_symbol (bfd *abfd, struct elf_link_hash_table *htab, const struct plt_reloc *reloc, bfd_vma plt_offset, bfd_vma symbol_got_offset) { while (SYM_ONLY (reloc->symbol) != LAST_RELOC) { bfd_vma relocation = 0; switch (SYM_ONLY (reloc->symbol)) { case SGOT: relocation = htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + symbol_got_offset; break; } relocation += reloc->addend; if (IS_RELATIVE (reloc->symbol)) { bfd_vma reloc_offset = reloc->offset; reloc_offset -= (IS_INSN_32 (reloc->symbol)) ? 4 : 0; reloc_offset -= (IS_INSN_24 (reloc->symbol)) ? 2 : 0; relocation -= htab->splt->output_section->vma + htab->splt->output_offset + plt_offset + reloc_offset; } /* TODO: being ME is not a property of the relocation but of the section of which is applying the relocation. */ if (IS_MIDDLE_ENDIAN (reloc->symbol) && !bfd_big_endian (abfd)) { relocation = ((relocation & 0xffff0000) >> 16) | ((relocation & 0xffff) << 16); } switch (reloc->size) { case 32: bfd_put_32 (htab->splt->output_section->owner, relocation, htab->splt->contents + plt_offset + reloc->offset); break; } reloc = &(reloc[1]); /* Jump to next relocation. */ } } static void relocate_plt_for_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h) { const struct plt_version_t *plt_data = arc_get_plt_version (info); struct elf_link_hash_table *htab = elf_hash_table (info); const struct elf_backend_data *bed; bfd_vma plt_index = (h->plt.offset - plt_data->entry_size) / plt_data->elem_size; bfd_vma got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; bed = get_elf_backend_data (output_bfd); ARC_DEBUG ("arc_info: PLT_OFFSET = %#lx, PLT_ENTRY_VMA = %#lx, \ GOT_ENTRY_OFFSET = %#lx, GOT_ENTRY_VMA = %#lx, for symbol %s\n", (long) h->plt.offset, (long) (htab->splt->output_section->vma + htab->splt->output_offset + h->plt.offset), (long) got_offset, (long) (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset), h->root.root.string); { bfd_vma i = 0; uint16_t *ptr = (uint16_t *) plt_data->elem; for (i = 0; i < plt_data->elem_size/2; i++) { uint16_t data = ptr[i]; bfd_put_16 (output_bfd, (bfd_vma) data, htab->splt->contents + h->plt.offset + (i*2)); } } plt_do_relocs_for_symbol (output_bfd, htab, plt_data->elem_relocs, h->plt.offset, got_offset); /* Fill in the entry in the global offset table. */ bfd_put_32 (output_bfd, (bfd_vma) (htab->splt->output_section->vma + htab->splt->output_offset), htab->sgotplt->contents + got_offset); /* TODO: Fill in the entry in the .rela.plt section. */ { Elf_Internal_Rela rel; bfd_byte *loc; rel.r_offset = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_offset); rel.r_addend = 0; BFD_ASSERT (h->dynindx != -1); rel.r_info = ELFNN_R_INFO (h->dynindx, R_ARC_JMP_SLOT); loc = htab->srelplt->contents; loc += plt_index * sizeof (ElfNN_External_Rela); /* relA */ bed->s->swap_reloca_out (output_bfd, &rel, loc); } } /* Initialize the PLT with ARC specific PLT header. See arc-plt.def. Use middle-endian to fill in the data as it is executable code. */ static void relocate_plt_for_entry (bfd *abfd, struct bfd_link_info *info) { const struct plt_version_t *plt_data = arc_get_plt_version (info); struct elf_link_hash_table *htab = elf_hash_table (info); bfd_vma i = 0; uint16_t *ptr = (uint16_t *) plt_data->entry; for (i = 0; i < plt_data->entry_size/2; i++) { bfd_put_16 (abfd, (bfd_vma) ptr[i], htab->splt->contents + (i*2)); } PLT_DO_RELOCS_FOR_ENTRY (abfd, htab, plt_data->entry_relocs); } /* Desc : Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bool elf_arc_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { asection *s; bfd *dynobj = (elf_hash_table (info))->dynobj; struct elf_link_hash_table *htab = elf_hash_table (info); if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt == 1) { if (!bfd_link_pic (info) && !h->def_dynamic && !h->ref_dynamic) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC32 reloc instead. */ BFD_ASSERT (h->needs_plt); return true; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return false; if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { bfd_vma loc = add_symbol_to_plt (info); if (bfd_link_executable (info) && !h->def_regular) { h->root.u.def.section = htab->splt; h->root.u.def.value = loc; } h->plt.offset = loc; } else { h->plt.offset = (bfd_vma) -1; h->needs_plt = 0; } return true; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->is_weakalias) { struct elf_link_hash_entry *def = weakdef (h); BFD_ASSERT (def->root.type == bfd_link_hash_defined); h->root.u.def.section = def->root.u.def.section; h->root.u.def.value = def->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. */ /* If we are creating a shared library, we must presume that the only references to the symbol are via the global offset table. For such cases we need not do anything here; the relocations will be handled correctly by relocate_section. */ if (!bfd_link_executable (info)) return true; /* If there are no non-GOT references, we do not need a copy relocation. */ if (!h->non_got_ref) return true; /* If -z nocopyreloc was given, we won't generate them either. */ if (info->nocopyreloc) { h->non_got_ref = 0; return true; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ if (htab == NULL) return false; /* We must generate a R_ARC_COPY reloc to tell the dynamic linker to copy the initial value out of the dynamic object and into the runtime process image. We need to remember the offset into the .rela.bss section we are going to use. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { struct elf_arc_link_hash_table *arc_htab = elf_arc_hash_table (info); BFD_ASSERT (arc_htab->elf.srelbss != NULL); arc_htab->elf.srelbss->size += sizeof (ElfNN_External_Rela); h->needs_copy = 1; } /* TODO: Move this also to arc_hash_table. */ s = bfd_get_section_by_name (dynobj, ".dynbss"); BFD_ASSERT (s != NULL); return _bfd_elf_adjust_dynamic_copy (info, h, s); } /* Function : elf_arc_finish_dynamic_symbol Brief : Finish up dynamic symbol handling. We set the contents of various dynamic sections here. Args : output_bfd : info : h : sym : Returns : True/False as the return status. */ static bool elf_arc_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym * sym) { const struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); if (h->plt.offset != (bfd_vma) -1) { relocate_plt_for_symbol (output_bfd, info, h); if (!h->def_regular) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } } /* This function traverses list of GOT entries and create respective dynamic relocs. */ /* TODO: Make function to get list and not access the list directly. */ /* TODO: Move function to relocate_section create this relocs eagerly. */ struct elf_arc_link_hash_entry *ah = (struct elf_arc_link_hash_entry *) h; create_got_dynrelocs_for_got_info (&ah->got_ents, output_bfd, info, h); if (h->needs_copy) { struct elf_arc_link_hash_table *arc_htab = elf_arc_hash_table (info); if (arc_htab == NULL) return false; if (h->dynindx == -1 || (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) || arc_htab->elf.srelbss == NULL) abort (); bfd_vma rel_offset = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); bfd_byte * loc = arc_htab->elf.srelbss->contents + (arc_htab->elf.srelbss->reloc_count * sizeof (ElfNN_External_Rela)); arc_htab->elf.srelbss->reloc_count++; Elf_Internal_Rela rel; rel.r_addend = 0; rel.r_offset = rel_offset; BFD_ASSERT (h->dynindx != -1); rel.r_info = ELFNN_R_INFO (h->dynindx, R_ARC_COPY); bed->s->swap_reloca_out (output_bfd, &rel, loc); } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "__DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } #define GET_SYMBOL_OR_SECTION(TAG, SYMBOL, SECTION) \ case TAG: \ if (SYMBOL != NULL) \ h = elf_link_hash_lookup (elf_hash_table (info), \ SYMBOL, false, false, true); \ else if (SECTION != NULL) \ s = bfd_get_linker_section (dynobj, SECTION); \ break; struct obfd_info_group { bfd *output_bfd; struct bfd_link_info *info; }; static bool arc_create_forced_local_got_entries_for_tls (struct bfd_hash_entry *bh, void *data) { struct elf_arc_link_hash_entry * h = (struct elf_arc_link_hash_entry *) bh; struct obfd_info_group *tmp = (struct obfd_info_group *) data; if (h->got_ents != NULL) { BFD_ASSERT (h); struct got_entry *list = h->got_ents; while (list != NULL) { create_got_dynrelocs_for_single_entry (list, tmp->output_bfd, tmp->info, (struct elf_link_hash_entry *) h); list = list->next; } } return true; } /* Function : elf_arc_finish_dynamic_sections Brief : Finish up the dynamic sections handling. Args : output_bfd : info : h : sym : Returns : True/False as the return status. */ static bool elf_arc_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info *info) { struct elf_link_hash_table *htab = elf_hash_table (info); bfd *dynobj = (elf_hash_table (info))->dynobj; asection *sdyn = bfd_get_linker_section (dynobj, ".dynamic"); const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); /* TODO: instead of checking for sdyn, we can use elf_hash_table (info)->dynamic_sections_created to see if we have dynamic sections creared. */ if (sdyn) { ElfNN_External_Dyn *dyncon, *dynconend; dyncon = (ElfNN_External_Dyn *) sdyn->contents; dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn internal_dyn; bool do_it = false; struct elf_link_hash_entry *h = NULL; asection *s = NULL; bed->s->swap_dyn_in (dynobj, dyncon, &internal_dyn); switch (internal_dyn.d_tag) { GET_SYMBOL_OR_SECTION (DT_INIT, info->init_function, NULL) GET_SYMBOL_OR_SECTION (DT_FINI, info->fini_function, NULL) GET_SYMBOL_OR_SECTION (DT_PLTGOT, NULL, ".plt") GET_SYMBOL_OR_SECTION (DT_JMPREL, NULL, ".rela.plt") GET_SYMBOL_OR_SECTION (DT_PLTRELSZ, NULL, ".rela.plt") GET_SYMBOL_OR_SECTION (DT_VERSYM, NULL, ".gnu.version") GET_SYMBOL_OR_SECTION (DT_VERDEF, NULL, ".gnu.version_d") GET_SYMBOL_OR_SECTION (DT_VERNEED, NULL, ".gnu.version_r") default: break; } /* In case the dynamic symbols should be updated with a symbol. */ if (h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak)) { asection *asec_ptr; internal_dyn.d_un.d_val = h->root.u.def.value; asec_ptr = h->root.u.def.section; if (asec_ptr->output_section != NULL) { internal_dyn.d_un.d_val += (asec_ptr->output_section->vma + asec_ptr->output_offset); } else { /* The symbol is imported from another shared library and does not apply to this one. */ internal_dyn.d_un.d_val = 0; } do_it = true; } else if (s != NULL) /* With a section information. */ { switch (internal_dyn.d_tag) { case DT_PLTGOT: case DT_JMPREL: case DT_VERSYM: case DT_VERDEF: case DT_VERNEED: internal_dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset); do_it = true; break; case DT_PLTRELSZ: internal_dyn.d_un.d_val = s->size; do_it = true; break; default: break; } } if (do_it) bed->s->swap_dyn_out (output_bfd, &internal_dyn, dyncon); } /* Fill in the first entry in the procedure linkage table. */ if (htab->splt->size > 0) { relocate_plt_for_entry (output_bfd, info); } /* TODO: Validate this. */ if (htab->srelplt->output_section != bfd_abs_section_ptr) elf_section_data (htab->srelplt->output_section) ->this_hdr.sh_entsize = GOT_ENTRY_SIZE * 3; } /* Fill in the first three entries in the global offset table. */ if (htab->sgot) { struct elf_link_hash_entry *got; /* Get the hash entry of the first GOT entry. */ got = elf_link_hash_lookup (elf_hash_table (info), "_GLOBAL_OFFSET_TABLE_", false, false, true); if (got != NULL && got->root.type != bfd_link_hash_undefined && got->root.u.def.section != NULL) { asection *sec = got->root.u.def.section; bfd_vma dyn_vma = 0; /* Check if we participate in a dynamic linking. */ if (sdyn) { /* Get the unrelocated address of the _DYNAMIC, which is the start of the start of the dynamic sction. */ dyn_vma = sdyn->output_section->vma + sdyn->output_offset; } /* _GLOBAL_OFFSET_TABLE_[0] = VMA (.dynamic) */ write_in_got (output_bfd, dyn_vma, sec->contents); /* _GLOBAL_OFFSET_TABLE_[1] = 0. Reserved for dynamic linker. */ write_in_got (output_bfd, (bfd_vma) 0, sec->contents + (GOT_ENTRY_SIZE)); /* _GLOBAL_OFFSET_TABLE_[2] = 0. Reserved for dynamic linker. */ write_in_got (output_bfd, (bfd_vma) 0, sec->contents + (GOT_ENTRY_SIZE * 2)); } } struct obfd_info_group group; group.output_bfd = output_bfd; group.info = info; bfd_hash_traverse (&info->hash->table, arc_create_forced_local_got_entries_for_tls, &group); return true; } #define ADD_DYNAMIC_SYMBOL(NAME, TAG) \ h = elf_link_hash_lookup (elf_hash_table (info), \ NAME, false, false, false); \ if ((h != NULL && (h->ref_regular || h->def_regular))) \ if (! _bfd_elf_add_dynamic_entry (info, TAG, 0)) \ return false; /* Set the sizes of the dynamic sections. */ static bool elf_arc_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info) { bfd *dynobj; asection *s; bool relocs_exist = false; bool reltext_exist = false; struct elf_link_hash_table *htab = elf_hash_table (info); dynobj = htab->dynobj; BFD_ASSERT (dynobj != NULL); if (htab->dynamic_sections_created) { struct elf_link_hash_entry *h; /* Set the contents of the .interp section to the interpreter. */ if (bfd_link_executable (info) && !info->nointerp) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof (ELFNN_DYNAMIC_INTERPRETER); s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; } /* Add some entries to the .dynamic section. We fill in some of the values later, in elf_bfd_final_link, but we must add the entries now so that we know the final size of the .dynamic section. Checking if the .init section is present. We also create DT_INIT and DT_FINI entries if the init_str has been changed by the user. */ ADD_DYNAMIC_SYMBOL (info->init_function, DT_INIT); ADD_DYNAMIC_SYMBOL (info->fini_function, DT_FINI); } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ if (htab->srelgot != NULL) htab->srelgot->size = 0; } for (s = dynobj->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (s == htab->splt || s == htab->sgot || s == htab->sgotplt || s == htab->sdynbss) { /* Strip this section if we don't need it. */ } else if (startswith (s->name, ".rela")) { if (s->size != 0 && s != htab->srelplt) { if (!reltext_exist) { const char *name = s->name + 5; bfd *ibfd; for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour && ibfd->flags & DYNAMIC) { asection *target = bfd_get_section_by_name (ibfd, name); if (target != NULL && elf_section_data (target)->sreloc == s && ((target->output_section->flags & (SEC_READONLY | SEC_ALLOC)) == (SEC_READONLY | SEC_ALLOC))) { reltext_exist = true; break; } } } relocs_exist = true; } /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ s->contents = bfd_zalloc (dynobj, s->size); if (s->contents == NULL) return false; } if (htab->dynamic_sections_created) { /* TODO: Check if this is needed. */ if (!bfd_link_pic (info)) if (!_bfd_elf_add_dynamic_entry (info, DT_DEBUG, 0)) return false; if (htab->splt && (htab->splt->flags & SEC_EXCLUDE) == 0) if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0) || !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0) || !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA) || !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0)) return false; if (relocs_exist) if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0) || !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0) || !_bfd_elf_add_dynamic_entry (info, DT_RELAENT, sizeof (ElfNN_External_Rela))) return false; if (reltext_exist) if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } return true; } /* Classify dynamic relocs such that -z combreloc can reorder and combine them. */ static enum elf_reloc_type_class arc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, const asection *rel_sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *rela) { switch ((int) ELFNN_R_TYPE (rela->r_info)) { case R_ARC_RELATIVE: return reloc_class_relative; case R_ARC_JMP_SLOT: return reloc_class_plt; case R_ARC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* We use this so we can override certain functions (though currently we don't). */ const struct elf_size_info arc_elfNN_size_info = { sizeof (ElfNN_External_Ehdr), sizeof (ElfNN_External_Phdr), sizeof (ElfNN_External_Shdr), sizeof (ElfNN_External_Rel), sizeof (ElfNN_External_Rela), sizeof (ElfNN_External_Sym), sizeof (ElfNN_External_Dyn), sizeof (Elf_External_Note), 4, 1, ARCH_SIZE, LOG_FILE_ALIGN, ELFCLASSNN, EV_CURRENT, bfd_elfNN_write_out_phdrs, bfd_elfNN_write_shdrs_and_ehdr, bfd_elfNN_checksum_contents, bfd_elfNN_write_relocs, bfd_elfNN_swap_symbol_in, bfd_elfNN_swap_symbol_out, bfd_elfNN_slurp_reloc_table, bfd_elfNN_slurp_symbol_table, bfd_elfNN_swap_dyn_in, bfd_elfNN_swap_dyn_out, bfd_elfNN_swap_reloc_in, bfd_elfNN_swap_reloc_out, bfd_elfNN_swap_reloca_in, bfd_elfNN_swap_reloca_out }; /* GDB expects general purpose registers to be in section .reg. However Linux kernel doesn't create this section and instead writes registers to NOTE section. It is up to the binutils to create a pseudo-section .reg from the contents of NOTE. Also BFD will read pid and signal number from NOTE. This function relies on offsets inside elf_prstatus structure in Linux to be stable. */ static bool elfNN_arc_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return false; case 236: /* sizeof (struct elf_prstatus) on Linux/arc. */ /* pr_cursig. */ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid. */ elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); /* pr_regs. */ offset = 72; size = (40 * 4); /* There are 40 registers in user_regs_struct. */ break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } /* Determine whether an object attribute tag takes an integer, a string or both. */ static int elfNN_arc_obj_attrs_arg_type (int tag) { if (tag == Tag_ARC_CPU_name || tag == Tag_ARC_ISA_config || tag == Tag_ARC_ISA_apex) return ATTR_TYPE_FLAG_STR_VAL; else if (tag < (Tag_ARC_ISA_mpy_option + 1)) return ATTR_TYPE_FLAG_INT_VAL; else return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; } /* Attribute numbers >=14 can be safely ignored. */ static bool elfNN_arc_obj_attrs_handle_unknown (bfd *abfd, int tag) { if ((tag & 127) < (Tag_ARC_ISA_mpy_option + 1)) { _bfd_error_handler (_("%pB: unknown mandatory ARC object attribute %d"), abfd, tag); bfd_set_error (bfd_error_bad_value); return false; } else { _bfd_error_handler (_("warning: %pB: unknown ARC object attribute %d"), abfd, tag); return true; } } /* Handle an ARC specific section when reading an object file. This is called when bfd_section_from_shdr finds a section with an unknown type. */ static bool elfNN_arc_section_from_shdr (bfd *abfd, Elf_Internal_Shdr * hdr, const char *name, int shindex) { switch (hdr->sh_type) { case 0x0c: /* MWDT specific section, don't complain about it. */ case SHT_ARC_ATTRIBUTES: break; default: return false; } if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return false; return true; } /* Delete a number of bytes from a given section while relaxing. */ static bool arc_relax_delete_bytes (struct bfd_link_info *link_info, bfd *abfd, asection *sec, bfd_vma addr, int count) { Elf_Internal_Shdr *symtab_hdr; unsigned int sec_shndx; bfd_byte *contents; Elf_Internal_Rela *irel, *irelend; bfd_vma toaddr; Elf_Internal_Sym *isym; Elf_Internal_Sym *isymend; struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **end_hashes; struct elf_link_hash_entry **start_hashes; unsigned int symcount; sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); contents = elf_section_data (sec)->this_hdr.contents; toaddr = sec->size; irel = elf_section_data (sec)->relocs; irelend = irel + sec->reloc_count; /* Actually delete the bytes. */ memmove (contents + addr, contents + addr + count, (size_t) (toaddr - addr - count)); sec->size -= count; /* Adjust all the relocs. */ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) /* Get the new reloc address. */ if ((irel->r_offset > addr && irel->r_offset < toaddr)) irel->r_offset -= count; /* Adjust the local symbols defined in this section. */ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; isym = (Elf_Internal_Sym *) symtab_hdr->contents; for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) { if (isym->st_shndx == sec_shndx && isym->st_value > addr && isym->st_value <= toaddr) { /* Adjust the addend of SWITCH relocations in this section, which reference this local symbol. */ isym->st_value -= count; } } /* Now adjust the global symbols defined in this section. */ symcount = (symtab_hdr->sh_size / sizeof (ElfNN_External_Sym) - symtab_hdr->sh_info); sym_hashes = start_hashes = elf_sym_hashes (abfd); end_hashes = sym_hashes + symcount; for (; sym_hashes < end_hashes; sym_hashes++) { struct elf_link_hash_entry *sym_hash = *sym_hashes; /* The '--wrap SYMBOL' option is causing a pain when the object file, containing the definition of __wrap_SYMBOL, includes a direct call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference the same symbol (which is __wrap_SYMBOL), but still exist as two different symbols in 'sym_hashes', we don't want to adjust the global symbol __wrap_SYMBOL twice. This check is only relevant when symbols are being wrapped. */ if (link_info->wrap_hash != NULL) { struct elf_link_hash_entry **cur_sym_hashes; /* Loop only over the symbols whom been already checked. */ for (cur_sym_hashes = start_hashes; cur_sym_hashes < sym_hashes; cur_sym_hashes++) /* If the current symbol is identical to 'sym_hash', that means the symbol was already adjusted (or at least checked). */ if (*cur_sym_hashes == sym_hash) break; /* Don't adjust the symbol again. */ if (cur_sym_hashes < sym_hashes) continue; } if ((sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec) { /* As above, adjust the value if needed. */ if (sym_hash->root.u.def.value > addr && sym_hash->root.u.def.value <= toaddr) sym_hash->root.u.def.value -= count; /* As above, adjust the size if needed. */ if (sym_hash->root.u.def.value <= addr && sym_hash->root.u.def.value + sym_hash->size > addr && sym_hash->root.u.def.value + sym_hash->size <= toaddr) sym_hash->size -= count; } } return true; } /* Check Tag_ARC_PCS_config if we can relax. */ static bool arc_can_relax_p (bfd *abfd) { obj_attribute *attr = elf_known_obj_attributes_proc (abfd); if (attr[Tag_ARC_PCS_config].i & 0x100) return true; return false; } /* Relaxation hook. These are the current relaxing opportunities available: * R_ARC_GOTPC32 => R_ARC_PCREL. * R_ARC_S25W_PCREL => R_ARC_S13_PCREL. This is a two step relaxation procedure, in the first round, we relax all the above opportunities. In the second round, we deal with function align by removing unnecessary NOP_S placed by the assembler. Inspired from CRX and RISCV backends. */ static bool arc_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bool *again) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel, *irelend; bfd_byte *contents = NULL; Elf_Internal_Sym *isymbuf = NULL; bool do_relax = false; /* Assume nothing changes. */ *again = false; /* Check if we can do size related relaxation. */ do_relax = arc_can_relax_p (abfd); /* We don't have to do anything for a relocatable link, if this section does not have relocs, or if this is not a code section. */ if (bfd_link_relocatable (link_info) || sec->reloc_count == 0 || (sec->flags & SEC_RELOC) == 0 || (sec->flags & SEC_HAS_CONTENTS) == 0 || sec->sec_flg0 || (sec->flags & SEC_CODE) == 0) return true; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Get a copy of the native relocations. */ internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, link_info->keep_memory); if (internal_relocs == NULL) goto error_return; /* Walk through them looking for relaxing opportunities. */ irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { asection *sym_sec; struct elf_link_hash_entry *htop = NULL; bfd_vma symval; /* If this isn't something that can be relaxed, then ignore this reloc. */ if (ELFNN_R_TYPE (irel->r_info) != (int) R_ARC_GOTPC32 && ELFNN_R_TYPE (irel->r_info) != (int) R_ARC_S25W_PCREL && ELFNN_R_TYPE (irel->r_info) != (int) R_ARC_ALIGN) continue; /* Get the section contents if we haven't done so already. */ if (contents == NULL) { /* Get cached copy if it exists. */ if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; /* Go get them off disk. */ else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } /* Read this BFD's local symbols if we haven't done so already. */ if (isymbuf == NULL && symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } /* Get the value of the symbol referred to by the reloc. */ if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; isym = isymbuf + ELFNN_R_SYM (irel->r_info); sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = isym->st_value; /* If the reloc is absolute, it will not have a symbol or section associated with it. */ if (sym_sec) symval += sym_sec->output_section->vma + sym_sec->output_offset; } else { /* An external symbol. */ unsigned int indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info; htop = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (htop != NULL); if (htop->root.type != bfd_link_hash_defined && htop->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it--it will be caught by the regular reloc processing. */ continue; symval = (htop->root.u.def.value + htop->root.u.def.section->output_section->vma + htop->root.u.def.section->output_offset); sym_sec = htop->root.u.def.section; } if (ELFNN_R_TYPE (irel->r_info) == (int) R_ARC_GOTPC32 && SYMBOL_REFERENCES_LOCAL (link_info, htop) && link_info->relax_pass == 0) { unsigned int code; /* Get the opcode. */ code = bfd_get_32_me (abfd, contents + irel->r_offset - 4); /* Note that we've changed the relocs, section contents, etc. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; /* Fix the relocation's type. */ irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), R_ARC_PC32); /* ld rA,[pcl,symbol@tgot] -> add rA,pcl,symbol@pcl. */ /* 0010 0bbb aa11 0ZZX DBBB 1111 10AA AAAA. 111 00 000 0111 xx xxxx*/ code &= ~0x27307F80; BFD_ASSERT (code <= 62UL); code |= 0x27007F80; /* Write back the new instruction. */ bfd_put_32_me (abfd, code, contents + irel->r_offset - 4); /* The size isn't changed, don't redo. */ *again = false; } /* Any of the next relax rules are changing the size, allow them is assembler was informed. */ if (!do_relax) continue; if (ELFNN_R_TYPE (irel->r_info) == (int) R_ARC_S25W_PCREL && link_info->relax_pass == 0) { unsigned int code; bfd_vma value = symval + irel->r_addend; bfd_vma dot, gap; /* Get the address (PCL) of this instruction. */ dot = (sec->output_section->vma + sec->output_offset + irel->r_offset) & ~0x03; /* Compute the distance from this insn to the branch target. */ gap = value - dot; /* Check if the gap falls in the range that can be accomodated in 13bit signed range (32-bit aligned). */ if ((int) gap < -4094 || (int) gap > 4097 || ((int) gap & 0x3) != 0) continue; /* Get the opcode. */ code = bfd_get_32_me (abfd, contents + irel->r_offset); /* bl @symb@pcl -> bl_s @symb@pcl. */ /* 0000 1sss ssss ss10 SSSS SSSS SSNR tttt. */ BFD_ASSERT ((code & 0xF8030000) == 0x08020000); /* Check for delay slot bit. */ if (code & 0x20) continue; /* Note that we've changed the relocs, section contents, etc. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; /* Fix the relocation's type. */ irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), R_ARC_S13_PCREL); /* Write back bl_s instruction. */ bfd_put_16 (abfd, 0xF800, contents + irel->r_offset); /* Delete two bytes of data. */ if (!arc_relax_delete_bytes (link_info, abfd, sec, irel->r_offset + 2, 2)) goto error_return; *again = true; } if (ELFNN_R_TYPE (irel->r_info) == (int) R_ARC_ALIGN && link_info->relax_pass == 1) { bfd_vma aligned_addr; bfd_vma nop_bytes; bfd_vma alignment = 4; if (irel->r_addend == 2) alignment = 2; aligned_addr = ((irel->r_offset - 1) & ~(alignment - 1)) + alignment; nop_bytes = aligned_addr - irel->r_offset; /* Cannot remove more than we have left. */ BFD_ASSERT (irel->r_addend >= nop_bytes); /* I should be always 16bit multiple quantum. */ BFD_ASSERT (nop_bytes == 0 || nop_bytes == 2); /* Once we aligned we cannot relax anything else. */ sec->sec_flg0 = true; /* Note that we've changed the relocs, section contents, etc. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; /* Delete the relocation's type. */ irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info), R_ARC_NONE); /* Add an NOP_S if needed. */ if (nop_bytes != 0) bfd_put_16 (abfd, 0x78E0, contents + irel->r_offset); /* Delete nop_bytes bytes of data. */ if (!arc_relax_delete_bytes (link_info, abfd, sec, irel->r_offset + nop_bytes, irel->r_addend - nop_bytes)) goto error_return; *again = true; } } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) { if (!link_info->keep_memory) free (isymbuf); else /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) isymbuf; } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) { if (!link_info->keep_memory) free (contents); else /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (sec)->this_hdr.contents = contents; } if (elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return true; error_return: if (symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return false; } #define TARGET_LITTLE_SYM arcAA_elfNN_le_vec #define TARGET_LITTLE_NAME "elfNN-littlearcAA" #define TARGET_BIG_SYM arc_elfNN_be_vec #define TARGET_BIG_NAME "elfNN-bigarc" #define ELF_ARCH ARC_BFD_ARCH #define ELF_TARGET_ID ARC_ELF_DATA #if (ARCH_TYPE == ARC) && (ARCH_SIZE == 32) # define ELF_MACHINE_CODE EM_ARC_COMPACT2 # define ELF_MACHINE_ALT1 EM_ARC_COMPACT #elif (ARCH_TYPE == ARC32) || (ARCH_TYPE == ARC64) # define ELF_MACHINE_CODE EM_ARC_COMPACT3_64 # define ELF_MACHINE_ALT1 EM_ARC_COMPACT3 #else # error "Unsupported ARC architecture" #endif #define ELF_MAXPAGESIZE 0x2000 #define bfd_elfNN_bfd_link_hash_table_create arc_elf_link_hash_table_create #define bfd_elfNN_bfd_merge_private_bfd_data arc_elf_merge_private_bfd_data #define bfd_elfNN_bfd_reloc_type_lookup arc_elfNN_bfd_reloc_type_lookup #define bfd_elfNN_bfd_set_private_flags arc_elf_set_private_flags #define bfd_elfNN_bfd_print_private_bfd_data arc_elf_print_private_bfd_data #define bfd_elfNN_bfd_copy_private_bfd_data arc_elf_copy_private_bfd_data #define bfd_elfNN_bfd_relax_section arc_elf_relax_section #define elf_backend_size_info arc_elfNN_size_info #define elf_info_to_howto_rel arc_info_to_howto_rel #define elf_backend_object_p arc_elf_object_p #define elf_backend_final_write_processing arc_elf_final_write_processing #define elf_backend_relocate_section elf_arc_relocate_section #define elf_backend_check_relocs elf_arc_check_relocs #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections #define elf_backend_reloc_type_class arc_reloc_type_class #define elf_backend_adjust_dynamic_symbol elf_arc_adjust_dynamic_symbol #define elf_backend_finish_dynamic_symbol elf_arc_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf_arc_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf_arc_size_dynamic_sections #define elf_backend_can_gc_sections 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_rela_plts_and_copies_p 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3) #define elf_backend_dtrel_excludes_plt 1 #define elf_backend_may_use_rel_p 0 #define elf_backend_may_use_rela_p 1 #define elf_backend_default_use_rela_p 1 #define elf_backend_grok_prstatus elfNN_arc_grok_prstatus #define elf_backend_default_execstack 0 #undef elf_backend_obj_attrs_vendor #define elf_backend_obj_attrs_vendor "ARC" #undef elf_backend_obj_attrs_section #define elf_backend_obj_attrs_section ".ARC.attributes" #undef elf_backend_obj_attrs_arg_type #define elf_backend_obj_attrs_arg_type elfNN_arc_obj_attrs_arg_type #undef elf_backend_obj_attrs_section_type #define elf_backend_obj_attrs_section_type SHT_ARC_ATTRIBUTES #define elf_backend_obj_attrs_handle_unknown \ elfNN_arc_obj_attrs_handle_unknown #define elf_backend_section_from_shdr elfNN_arc_section_from_shdr #include "elfNN-target.h"