/* ARC-specific support for 32-bit ELF Copyright (C) 1994-2016 Free Software Foundation, Inc. Contributed by Cupertino Miranda (cmiranda@synopsys.com). This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/arc.h" #include "libiberty.h" #include "opcode/arc-func.h" #define ARC_DEBUG(...) #define DEBUG(...) printf (__ARGV__) #define DEBUG_ARC_RELOC(A) struct arc_local_data { bfd_vma sdata_begin_symbol_vma; asection * sdata_output_section; bfd_vma got_symbol_vma; }; struct arc_local_data global_arc_data = { .sdata_begin_symbol_vma = 0, .sdata_output_section = NULL, .got_symbol_vma = 0, }; struct dynamic_sections { bfd_boolean initialized; asection * sgot; asection * srelgot; asection * sgotplt; asection * sdyn; asection * splt; asection * srelplt; }; static struct dynamic_sections arc_create_dynamic_sections (bfd * abfd, struct bfd_link_info *info); enum dyn_section_types { got = 0, relgot, gotplt, dyn, plt, relplt, DYN_SECTION_TYPES_END }; const char * dyn_section_names[DYN_SECTION_TYPES_END] = { ".got", ".rela.got", ".got.plt", ".dynamic", ".plt", ".rela.plt" }; /* The default symbols representing the init and fini dyn values. TODO: Check what is the relation of those strings with arclinux.em and DT_INIT. */ #define INIT_SYM_STRING "_init" #define FINI_SYM_STRING "_fini" char * init_str = INIT_SYM_STRING; char * fini_str = FINI_SYM_STRING; #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ case VALUE: \ return #TYPE; \ break; static ATTRIBUTE_UNUSED const char * reloc_type_to_name (unsigned int type) { switch (type) { #include "elf/arc-reloc.def" default: return "UNKNOWN"; break; } } #undef ARC_RELOC_HOWTO /* Try to minimize the amount of space occupied by relocation tables on the ROM (not that the ROM won't be swamped by other ELF overhead). */ #define USE_REL 1 static ATTRIBUTE_UNUSED bfd_boolean is_reloc_PC_relative (reloc_howto_type *howto) { return (strstr (howto->name, "PC") != NULL) ? TRUE : FALSE; } static bfd_boolean is_reloc_SDA_relative (reloc_howto_type *howto) { return (strstr (howto->name, "SDA") != NULL) ? TRUE : FALSE; } static bfd_boolean is_reloc_for_GOT (reloc_howto_type * howto) { return (strstr (howto->name, "GOT") != NULL) ? TRUE : FALSE; } static bfd_boolean is_reloc_for_PLT (reloc_howto_type * howto) { return (strstr (howto->name, "PLT") != NULL) ? TRUE : FALSE; } #define arc_bfd_get_8(A,B,C) bfd_get_8(A,B) #define arc_bfd_get_16(A,B,C) bfd_get_16(A,B) #define arc_bfd_put_8(A,B,C,D) bfd_put_8(A,B,C) #define arc_bfd_put_16(A,B,C,D) bfd_put_16(A,B,C) static long arc_bfd_get_32 (bfd * abfd, void *loc, asection * input_section) { long insn = bfd_get_32 (abfd, loc); if (!bfd_big_endian (abfd) && input_section && (input_section->flags & SEC_CODE)) insn = ((0x0000fffff & insn) << 16) | ((0xffff0000 & insn) >> 16); return insn; } static void arc_bfd_put_32 (bfd * abfd, long insn, void *loc, asection * input_section) { if (!bfd_big_endian (abfd) && input_section && (input_section->flags & SEC_CODE)) insn = ((0x0000fffff & insn) << 16) | ((0xffff0000 & insn) >> 16); bfd_put_32 (abfd, insn, loc); } static bfd_reloc_status_type arc_elf_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol_in, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char ** error_message ATTRIBUTE_UNUSED) { if (output_bfd != NULL) { reloc_entry->address += input_section->output_offset; /* In case of relocateable link and if the reloc is against a section symbol, the addend needs to be adjusted according to where the section symbol winds up in the output section. */ if ((symbol_in->flags & BSF_SECTION_SYM) && symbol_in->section) reloc_entry->addend += symbol_in->section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ TYPE = VALUE, enum howto_list { #include "elf/arc-reloc.def" HOWTO_LIST_LAST }; #undef ARC_RELOC_HOWTO #define ARC_RELOC_HOWTO(TYPE, VALUE, RSIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ [TYPE] = HOWTO (R_##TYPE, 0, RSIZE, BITSIZE, FALSE, 0, complain_overflow_##OVERFLOW, arc_elf_reloc, #TYPE, FALSE, 0, 0, FALSE), static struct reloc_howto_struct elf_arc_howto_table[] = { #include "elf/arc-reloc.def" /* Example of what is generated by the preprocessor. Currently kept as an example. HOWTO (R_ARC_NONE, // Type. 0, // Rightshift. 2, // Size (0 = byte, 1 = short, 2 = long). 32, // Bitsize. FALSE, // PC_relative. 0, // Bitpos. complain_overflow_bitfield, // Complain_on_overflow. bfd_elf_generic_reloc, // Special_function. "R_ARC_NONE", // Name. TRUE, // Partial_inplace. 0, // Src_mask. 0, // Dst_mask. FALSE), // PCrel_offset. */ }; #undef ARC_RELOC_HOWTO static void arc_elf_howto_init (void) { #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ elf_arc_howto_table[TYPE].pc_relative = \ (strstr (#FORMULA, " P ") != NULL || strstr (#FORMULA, " PDATA ") != NULL); \ elf_arc_howto_table[TYPE].dst_mask = RELOC_FUNCTION(0, ~0); #include "elf/arc-reloc.def" } #undef ARC_RELOC_HOWTO #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ [TYPE] = VALUE, const int howto_table_lookup[] = { #include "elf/arc-reloc.def" }; #undef ARC_RELOC_HOWTO static reloc_howto_type * arc_elf_howto (unsigned int r_type) { if (elf_arc_howto_table[R_ARC_32].dst_mask == 0) arc_elf_howto_init (); return &elf_arc_howto_table[r_type]; } /* Map BFD reloc types to ARC ELF reloc types. */ struct arc_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; unsigned char elf_reloc_val; }; #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ { BFD_RELOC_##TYPE, R_##TYPE }, static const struct arc_reloc_map arc_reloc_map[] = { #include "elf/arc-reloc.def" {BFD_RELOC_NONE, R_ARC_NONE}, {BFD_RELOC_8, R_ARC_8}, {BFD_RELOC_16, R_ARC_16}, {BFD_RELOC_24, R_ARC_24}, {BFD_RELOC_32, R_ARC_32}, }; #undef ARC_RELOC_HOWTO static reloc_howto_type * bfd_elf32_bfd_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, bfd_reloc_code_real_type code) { unsigned int i; for (i = ARRAY_SIZE (arc_reloc_map); i--;) { if (arc_reloc_map[i].bfd_reloc_val == code) return arc_elf_howto (arc_reloc_map[i].elf_reloc_val); } return NULL; } static reloc_howto_type * bfd_elf32_bfd_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char *r_name) { unsigned int i; for (i = 0; i < ARRAY_SIZE (elf_arc_howto_table); i++) if (elf_arc_howto_table[i].name != NULL && strcasecmp (elf_arc_howto_table[i].name, r_name) == 0) return arc_elf_howto (i); return NULL; } /* Set the howto pointer for an ARC ELF reloc. */ static void arc_info_to_howto_rel (bfd * abfd ATTRIBUTE_UNUSED, arelent * cache_ptr, Elf_Internal_Rela * dst) { unsigned int r_type; r_type = ELF32_R_TYPE (dst->r_info); BFD_ASSERT (r_type < (unsigned int) R_ARC_max); cache_ptr->howto = arc_elf_howto (r_type); } /* Set the right machine number for an ARC ELF file. */ static bfd_boolean arc_elf_object_p (bfd * abfd) { /* Make sure this is initialised, or you'll have the potential of passing garbage---or misleading values---into the call to bfd_default_set_arch_mach (). */ int mach = bfd_mach_arc_arc700; unsigned long arch = elf_elfheader (abfd)->e_flags & EF_ARC_MACH_MSK; unsigned e_machine = elf_elfheader (abfd)->e_machine; if (e_machine == EM_ARC_COMPACT || e_machine == EM_ARC_COMPACT2) { switch (arch) { case E_ARC_MACH_ARC600: mach = bfd_mach_arc_arc600; break; case E_ARC_MACH_ARC601: mach = bfd_mach_arc_arc601; break; case E_ARC_MACH_ARC700: mach = bfd_mach_arc_arc700; break; case EF_ARC_CPU_ARCV2HS: case EF_ARC_CPU_ARCV2EM: mach = bfd_mach_arc_arcv2; break; default: mach = (e_machine == EM_ARC_COMPACT) ? bfd_mach_arc_arc700 : bfd_mach_arc_arcv2; break; } } else { if (e_machine == EM_ARC) { (*_bfd_error_handler) (_("Error: The ARC4 architecture is no longer supported.\n")); return FALSE; } else { (*_bfd_error_handler) (_("Warning: unset or old architecture flags. \n" " Use default machine.\n")); } } return bfd_default_set_arch_mach (abfd, bfd_arch_arc, mach); } /* The final processing done just before writing out an ARC ELF object file. This gets the ARC architecture right based on the machine number. */ static void arc_elf_final_write_processing (bfd * abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { unsigned long val; unsigned long emf; switch (bfd_get_mach (abfd)) { case bfd_mach_arc_arc600: val = E_ARC_MACH_ARC600; emf = EM_ARC_COMPACT; break; case bfd_mach_arc_arc601: val = E_ARC_MACH_ARC601; emf = EM_ARC_COMPACT; break; case bfd_mach_arc_arc700: val = E_ARC_MACH_ARC700; emf = EM_ARC_COMPACT; break; case bfd_mach_arc_arcv2: val = EF_ARC_CPU_GENERIC; emf = EM_ARC_COMPACT2; /* TODO: Check validity of this. It can also be ARCV2EM here. Previous version sets the e_machine here. */ break; default: abort (); } elf_elfheader (abfd)->e_flags &= ~EF_ARC_MACH; elf_elfheader (abfd)->e_flags |= val; elf_elfheader (abfd)->e_machine = emf; /* Record whatever is the current syscall ABI version. */ elf_elfheader (abfd)->e_flags |= E_ARC_OSABI_CURRENT; } #define BFD_DEBUG_PIC(...) struct arc_relocation_data { bfd_vma reloc_offset; bfd_vma reloc_addend; bfd_vma got_offset_value; bfd_vma sym_value; asection * sym_section; reloc_howto_type *howto; asection * input_section; bfd_vma sdata_begin_symbol_vma; bfd_boolean sdata_begin_symbol_vma_set; bfd_vma got_symbol_vma; bfd_boolean should_relocate; }; static void debug_arc_reloc (struct arc_relocation_data reloc_data) { fprintf (stderr, "Reloc type=%s, should_relocate = %s\n", reloc_data.howto->name, reloc_data.should_relocate ? "true" : "false"); fprintf (stderr, " offset = 0x%x, addend = 0x%x\n", (unsigned int) reloc_data.reloc_offset, (unsigned int) reloc_data.reloc_addend); fprintf (stderr, " Symbol:\n"); fprintf (stderr, " value = 0x%08x\n", (unsigned int) reloc_data.sym_value); if (reloc_data.sym_section != NULL) { fprintf (stderr, "IN IF\n"); fprintf (stderr, " section name = %s, output_offset 0x%08x, output_section->vma = 0x%08x\n", reloc_data.sym_section->name, (unsigned int) reloc_data.sym_section->output_offset, (unsigned int) reloc_data.sym_section->output_section->vma); } else fprintf (stderr, " symbol section is NULL\n"); fprintf (stderr, " Input_section:\n"); if (reloc_data.input_section != NULL) { fprintf (stderr, " section name = %s, output_offset 0x%08x, output_section->vma = 0x%08x\n", reloc_data.input_section->name, (unsigned int) reloc_data.input_section->output_offset, (unsigned int) reloc_data.input_section->output_section->vma); fprintf (stderr, " changed_address = 0x%08x\n", (unsigned int) (reloc_data.input_section->output_section->vma + reloc_data.input_section->output_offset + reloc_data.reloc_offset)); } else fprintf (stderr, " input section is NULL\n"); } static ATTRIBUTE_UNUSED bfd_vma get_middle_endian_relocation (bfd_vma reloc) { bfd_vma ret = ((reloc & 0xffff0000) >> 16) | ((reloc & 0xffff) << 16); return ret; } #define ME(RELOC) (get_middle_endian_reloction(RELOC)) #define S (reloc_data.sym_value \ + reloc_data.sym_section->output_offset \ + reloc_data.sym_section->output_section->vma) #define A (reloc_data.reloc_addend) #define B (0) #define G (reloc_data.got_offset_value) #define GOT (reloc_data.got_symbol_vma + 12) #define L (reloc_data.sym_value \ + reloc_data.sym_section->output_section->vma \ + reloc_data.sym_section->output_offset) #define MES (0) /* P: relative offset to PCL The offset should be to the current location aligned to 32 bits. */ #define P ( \ (reloc_data.input_section->output_section->vma \ + reloc_data.input_section->output_offset \ + (reloc_data.reloc_offset - (bitsize >= 32 ? 4 : 0)) \ ) & ~0x3) #define PDATA ( \ (reloc_data.input_section->output_section->vma \ + reloc_data.input_section->output_offset \ + (reloc_data.reloc_offset) \ ) & ~0x3) #define SECTSTAR (reloc_data.input_section->output_offset) #define SECTSTART (reloc_data.input_section->output_offset) #define _SDA_BASE_ (reloc_data.sdata_begin_symbol_vma) #define none (0) #define ARC_RELOC_HOWTO(TYPE, VALUE, SIZE, BITSIZE, RELOC_FUNCTION, OVERFLOW, FORMULA) \ case R_##TYPE: \ { \ bfd_vma bitsize ATTRIBUTE_UNUSED = BITSIZE; \ relocation = FORMULA ; \ insn = RELOC_FUNCTION (insn, relocation); \ } \ break; static bfd_reloc_status_type arc_do_relocation (bfd_byte * contents, struct arc_relocation_data reloc_data) { bfd_vma relocation = 0; bfd_vma insn; bfd_vma orig_insn ATTRIBUTE_UNUSED; if (reloc_data.should_relocate == FALSE) return bfd_reloc_notsupported; switch (reloc_data.howto->size) { case 2: insn = arc_bfd_get_32 (reloc_data.input_section->owner, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 1: case 0: insn = arc_bfd_get_16 (reloc_data.input_section->owner, contents + reloc_data.reloc_offset, reloc_data.input_section); break; default: insn = 0; BFD_ASSERT (0); break; } orig_insn = insn; switch (reloc_data.howto->type) { #include "elf/arc-reloc.def" default: BFD_ASSERT (0); break; } /* Check for relocation overflow. */ if (reloc_data.howto->complain_on_overflow != complain_overflow_dont) { bfd_reloc_status_type flag; flag = bfd_check_overflow (reloc_data.howto->complain_on_overflow, reloc_data.howto->bitsize, reloc_data.howto->rightshift, bfd_arch_bits_per_address (reloc_data.input_section->owner), relocation); #undef DEBUG_ARC_RELOC #define DEBUG_ARC_RELOC(A) debug_arc_reloc (A) if (flag != bfd_reloc_ok) { fprintf (stderr, "Relocation overflows !!!!\n"); DEBUG_ARC_RELOC (reloc_data); fprintf (stderr, "Relocation value = signed -> %d, unsigned -> %u, hex -> (0x%08x)\n", (int) relocation, (unsigned int) relocation, (unsigned int) relocation); return flag; } } #undef DEBUG_ARC_RELOC #define DEBUG_ARC_RELOC(A) switch (reloc_data.howto->size) { case 2: arc_bfd_put_32 (reloc_data.input_section->owner, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; case 1: case 0: arc_bfd_put_16 (reloc_data.input_section->owner, insn, contents + reloc_data.reloc_offset, reloc_data.input_section); break; default: ARC_DEBUG ("size = %d\n", reloc_data.howto->size); BFD_ASSERT (0); break; } return bfd_reloc_ok; } #undef S #undef A #undef B #undef G #undef GOT #undef L #undef MES #undef P #undef SECTSTAR #undef SECTSTART #undef _SDA_BASE_ #undef none #undef ARC_RELOC_HOWTO static bfd_vma * arc_get_local_got_offsets (bfd * abfd) { static bfd_vma *local_got_offsets = NULL; if (local_got_offsets == NULL) { size_t size; unsigned int i; Elf_Internal_Shdr *symtab_hdr = &((elf_tdata (abfd))->symtab_hdr); size = symtab_hdr->sh_info * sizeof (bfd_vma); local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size); if (local_got_offsets == NULL) return FALSE; elf_local_got_offsets (abfd) = local_got_offsets; for (i = 0; i < symtab_hdr->sh_info; i++) local_got_offsets[i] = (bfd_vma) - 1; } return local_got_offsets; } /* Relocate an arc ELF section. Function : elf_arc_relocate_section Brief : Relocate an arc section, by handling all the relocations appearing in that section. Args : output_bfd : The bfd being written to. info : Link information. input_bfd : The input bfd. input_section : The section being relocated. contents : contents of the section being relocated. relocs : List of relocations in the section. local_syms : is a pointer to the swapped in local symbols. local_section : is an array giving the section in the input file corresponding to the st_shndx field of each local symbol. */ static bfd_boolean elf_arc_relocate_section (bfd * output_bfd, struct bfd_link_info * info, bfd * input_bfd, asection * input_section, bfd_byte * contents, Elf_Internal_Rela * relocs, Elf_Internal_Sym * local_syms, asection ** local_sections) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; bfd_vma * local_got_offsets; Elf_Internal_Rela * rel; Elf_Internal_Rela * relend; symtab_hdr = &((elf_tdata (input_bfd))->symtab_hdr); sym_hashes = elf_sym_hashes (input_bfd); rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { enum elf_arc_reloc_type r_type; reloc_howto_type * howto; unsigned long r_symndx; struct elf_link_hash_entry * h; Elf_Internal_Sym * sym; asection * sec; struct arc_relocation_data reloc_data = { .reloc_offset = 0, /* bfd_vma reloc_offset; */ .reloc_addend = 0, /* bfd_vma reloc_addend; */ .got_offset_value = 0, /* bfd_vma got_offset_value; */ .sym_value = 0, /* bfd_vma sym_value; */ .sym_section = NULL, /* asection *sym_section; */ .howto = NULL, /* reloc_howto_type *howto; */ .input_section = NULL, /* asection *input_section; */ .sdata_begin_symbol_vma = 0, /* bfd_vma sdata_begin_symbol_vma; */ .sdata_begin_symbol_vma_set = FALSE, /* bfd_vma sdata_begin_symbol_vma_set; */ .got_symbol_vma = 0, /* bfd_vma got_symbol_vma; */ .should_relocate = FALSE /* bfd_boolean should_relocate; */ }; struct elf_link_hash_entry *h2; h2 = elf_link_hash_lookup (elf_hash_table (info), "__SDATA_BEGIN__", FALSE, FALSE, TRUE); if (reloc_data.sdata_begin_symbol_vma_set == FALSE && h2 != NULL && h2->root.type != bfd_link_hash_undefined) { reloc_data.sdata_begin_symbol_vma = (h2->root.u.def.value + h2->root.u.def.section->output_section->vma); reloc_data.sdata_begin_symbol_vma_set = TRUE; } h2 = elf_link_hash_lookup (elf_hash_table (info), "_GLOBAL_OFFSET_TABLE_", FALSE, FALSE, TRUE); if (h2 != NULL && h2->root.type != bfd_link_hash_undefined) { reloc_data.got_symbol_vma = (h2->root.u.def.value + h2->root.u.def.section->output_section->vma); } r_type = ELF32_R_TYPE (rel->r_info); if (r_type >= (int) R_ARC_max) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = arc_elf_howto (r_type); reloc_data.input_section = input_section; reloc_data.howto = howto; reloc_data.reloc_offset = rel->r_offset; reloc_data.reloc_addend = rel->r_addend; r_symndx = ELF32_R_SYM (rel->r_info); /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */ { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; reloc_data.sym_value = sym->st_value; reloc_data.sym_section = sec; if (is_reloc_for_GOT (reloc_data.howto)) { local_got_offsets = arc_get_local_got_offsets (output_bfd); reloc_data.got_offset_value = local_got_offsets[r_symndx]; } reloc_data.should_relocate = TRUE; } else /* Global symbol. */ { /* Get the symbol's entry in the symtab. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; BFD_ASSERT ((h->dynindx == -1) >= (h->forced_local != 0)); /* If we have encountered a definition for this symbol. */ if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) { reloc_data.sym_value = h->root.u.def.value; reloc_data.sym_section = h->root.u.def.section; reloc_data.should_relocate = TRUE; if (is_reloc_for_GOT (howto)) { struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); /* TODO: Change it to use arc_do_relocation with ARC_32 reloc. */ bfd_vma relocation = reloc_data.sym_value + reloc_data.reloc_addend + reloc_data.sym_section->output_offset + reloc_data.sym_section->output_section->vma; bfd_put_32 (output_bfd, relocation, ds.sgot->contents + h->got.offset); } } else if (h->root.type == bfd_link_hash_undefweak) { /* Is weak symbol and has no definition. */ continue; } else { if (is_reloc_for_GOT (howto)) { struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); reloc_data.sym_value = h->root.u.def.value; reloc_data.sym_section = ds.sgot; reloc_data.should_relocate = TRUE; } else if (is_reloc_for_PLT (howto)) { struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); reloc_data.sym_value = h->plt.offset; reloc_data.sym_section = ds.splt; reloc_data.should_relocate = TRUE; } else if (!(*info->callbacks->undefined_symbol) (info, h->root.root.string, input_bfd, input_section, rel->r_offset,!bfd_link_pic (info))) { return FALSE; } } reloc_data.got_offset_value = h->got.offset; } if (is_reloc_SDA_relative (howto) && reloc_data.sdata_begin_symbol_vma_set == FALSE) { (*_bfd_error_handler) ("Error: Linker symbol __SDATA_BEGIN__ not found"); bfd_set_error (bfd_error_bad_value); return FALSE; } DEBUG_ARC_RELOC (reloc_data); if (arc_do_relocation (contents, reloc_data) != bfd_reloc_ok) return FALSE; } return TRUE; } static struct dynamic_sections arc_create_dynamic_sections (bfd * abfd, struct bfd_link_info *info) { static bfd * dynobj = NULL; struct dynamic_sections ds = { .initialized = FALSE, .sgot = NULL, .srelgot = NULL, .sgotplt = NULL, .sdyn = NULL, .splt = NULL, .srelplt = NULL }; if (dynobj == NULL) { elf_hash_table (info)->dynobj = dynobj = abfd; if (!_bfd_elf_create_got_section (dynobj, info)) return ds; } else dynobj = (elf_hash_table (info))->dynobj; ds.sgot = bfd_get_section_by_name (dynobj, ".got"); ds.srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); if (ds.srelgot == NULL) { ds.srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); if (ds.srelgot == NULL || !bfd_set_section_alignment (dynobj, ds.srelgot, 2)) return ds; } ds.sgotplt = bfd_get_section_by_name (dynobj, ".got.plt"); ds.sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); ds.splt = bfd_get_section_by_name (dynobj, ".plt"); ds.srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); ds.initialized = TRUE; return ds; } #define ADD_SYMBOL_REF_SEC_AND_RELOC(SECNAME, COND_FOR_RELOC, H) \ ds.s##SECNAME->size; \ { \ if (COND_FOR_RELOC) ds.srel##SECNAME->size += sizeof (Elf32_External_Rela); \ if (H) \ if (h->dynindx == -1 && !h->forced_local) \ if (! bfd_elf_link_record_dynamic_symbol (info, H)) \ return FALSE; \ ds.s##SECNAME->size += 4; \ } static bfd_boolean elf_arc_check_relocs (bfd * abfd, struct bfd_link_info * info, asection * sec, const Elf_Internal_Rela * relocs) { Elf_Internal_Shdr * symtab_hdr; struct elf_link_hash_entry ** sym_hashes; bfd_vma * local_got_offsets; const Elf_Internal_Rela * rel; const Elf_Internal_Rela * rel_end; bfd * dynobj ATTRIBUTE_UNUSED; dynobj = (elf_hash_table (info))->dynobj; symtab_hdr = &((elf_tdata (abfd))->symtab_hdr); sym_hashes = elf_sym_hashes (abfd); local_got_offsets = arc_get_local_got_offsets (abfd); struct dynamic_sections ds = arc_create_dynamic_sections (abfd, info); rel_end = relocs + sec->reloc_count; for (rel = relocs; rel < rel_end; rel++) { enum elf_arc_reloc_type r_type; reloc_howto_type *howto; unsigned long r_symndx; struct elf_link_hash_entry *h; r_type = ELF32_R_TYPE (rel->r_info); if (r_type >= (int) R_ARC_max) { bfd_set_error (bfd_error_bad_value); return FALSE; } howto = arc_elf_howto (r_type); /* Load symbol information. */ r_symndx = ELF32_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) /* Is a local symbol. */ h = NULL; else /* Global one. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; if (is_reloc_for_PLT (howto) == TRUE) { if (h == NULL) continue; else h->needs_plt = 1; } if (is_reloc_for_GOT (howto) == TRUE) { if (h == NULL) { /* Local symbol. */ local_got_offsets[r_symndx] = ADD_SYMBOL_REF_SEC_AND_RELOC (got, bfd_link_pic (info), NULL); } else { /* Global symbol. */ h = sym_hashes[r_symndx - symtab_hdr->sh_info]; h->got.offset = ADD_SYMBOL_REF_SEC_AND_RELOC (got, TRUE, h); } } } return TRUE; } #define ELF_DYNAMIC_INTERPRETER "/sbin/ld-uClibc.so" /* Size of one plt entry in bytes. */ #define PLT_ENTRY_SIZE 12 #define PLT_ENTRY_SIZE_V2 16 /* Instructions appear in memory as a sequence of half-words (16 bit); individual half-words are represented on the target in target byte order. We use 'unsigned short' on the host to represent the PLT templates, and translate to target byte order as we copy to the target. */ typedef unsigned short insn_hword; /* TODO: Make this PLT entry code be in a separate object file. */ /* TODO: This is a linker BTW, we should be able to link. :) */ /* The zeroth entry in the absolute plt entry. */ static const insn_hword elf_arc_abs_plt0_entry[2 * PLT_ENTRY_SIZE / 2] = { 0x1600, /* ld %r11, [0] */ 0x700b, 0x0000, 0x0000, 0x1600, /* ld %r10, [0] */ 0x700a, /* */ 0, 0, 0x2020, /* j [%r10] */ 0x0280, /* ---"---- */ 0x0000, /* pad */ 0x0000 /* pad */ }; /* Contents of the subsequent entries in the absolute plt. */ static const insn_hword elf_arc_abs_pltn_entry[PLT_ENTRY_SIZE / 2] = { 0x2730, /* ld %r12, [%pc,func@gotpc] */ 0x7f8c, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x7c20, /* j_s.d [%r12] */ 0x74ef /* mov_s %r12, %pcl */ }; /* The zeroth entry in the absolute plt entry for ARCv2. */ static const insn_hword elf_arcV2_abs_plt0_entry[2 * PLT_ENTRY_SIZE_V2 / 2] = { 0x1600, 0x700b, 0, 0, /* ld %r11, [0] */ 0x1600, 0x700a, 0, 0, /* ld %r10, [0] */ 0x2020, 0x0280, /* j [%r10] */ 0x0000, 0x0000, /* -> RELOCATED TO ABS ADDRESS OF GOT <- */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000 /* pad */ }; /* Contents of the subsequent entries in the absolute plt for ARCv2. */ static const insn_hword elf_arcV2_abs_pltn_entry[PLT_ENTRY_SIZE_V2 / 2] = { 0x2730, /* ld %r12, [%pcl,func@gotpc] */ 0x7f8c, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x2021, /* j.d [%r12] */ 0x0300, /* ------ " " -------------- */ 0x240a, /* mov %r12, %pcl */ 0x1fc0 /* ------ " " -------------- */ }; /* The zeroth entry in the pic plt entry. */ static const insn_hword elf_arc_pic_plt0_entry[2 * PLT_ENTRY_SIZE / 2] = { 0x2730, /* ld %r11, [pcl,0] : 0 to be replaced by _DYNAMIC@GOTPC+4 */ 0x7f8b, 0x0000, 0x0000, 0x2730, /* ld %r10, [pcl,0] : 0 to be replaced by -DYNAMIC@GOTPC+8 */ 0x7f8a, /* */ 0, 0, 0x2020, /* j [%r10] */ 0x0280, /* ---"---- */ 0x0000, /* pad */ 0x0000 /* pad */ }; /* Contents of the subsequent entries in the pic plt. */ static const insn_hword elf_arc_pic_pltn_entry[PLT_ENTRY_SIZE / 2] = { 0x2730, /* ld %r12, [%pc,func@got] */ 0x7f8c, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x7c20, /* j_s.d [%r12] */ 0x74ef, /* mov_s %r12, %pcl */ }; /* The zeroth entry in the pic plt entry for ARCv2. */ static const insn_hword elf_arcV2_pic_plt0_entry[2 * PLT_ENTRY_SIZE_V2 / 2] = { 0x2730, /* ld %r11, [pcl,0] : 0 to be replaced by _DYNAMIC@GOTPC+4 */ 0x7f8b, 0x0000, 0x0000, 0x2730, /* ld %r10, [pcl,0] : 0 to be replaced by -DYNAMIC@GOTPC+8 */ 0x7f8a, /* */ 0, 0, 0x2020, /* j [%r10] */ 0x0280, /* ---"---- */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000, /* pad */ 0x0000 /* pad */ }; #define elf_arcV2_pic_PLT0_ENTRY_SIZE (2 * PLT_ENTRY_SIZE_V2/2) /* Contents of the subsequent entries in the pic plt for ARCv2. */ static const insn_hword elf_arcV2_pic_pltn_entry[PLT_ENTRY_SIZE_V2 / 2] = { 0x2730, /* ld %r12, [%pc,func@got] */ 0x7f8c, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x0000, /* ------ " " -------------- */ 0x2021, /* j.d [%r12] */ 0x0300, /* ------ " " -------------- */ 0x240a, /* mov %r12, %pcl */ 0x1fc0 /* ------ " " -------------- */ }; #define elf_arcV2_pic_PLTN_ENTRY_SIZE (PLT_ENTRY_SIZE_V2/2) enum plt_reloc_symbol { LAST_RELOC = 0, SGOT = 1, RELATIVE = (1 << 8), MIDDLE_ENDIAN = (1 << 9) }; #define IS_RELATIVE(S) ((S & RELATIVE) != 0) #define IS_MIDDLE_ENDIAN(S) ((S & MIDDLE_ENDIAN) != 0) #define SYM_ONLY(S) (S & 0xFF) struct plt_reloc { bfd_vma offset; bfd_vma size; bfd_vma mask; enum plt_reloc_symbol symbol; bfd_vma addend; }; struct plt_version_t { const insn_hword * entry; const bfd_vma entry_size; const insn_hword * elem; const bfd_vma elem_size; struct plt_reloc entry_relocs[5]; struct plt_reloc elem_relocs[5]; }; #define PLT_DATA(NAME, ...) \ .entry = NAME##_plt0_entry, \ .entry_size = NAME##_PLT0_ENTRY_SIZE, \ .elem = NAME##_pltn_entry, \ .elem_size = NAME##_PLTN_ENTRY_SIZE struct plt_version_t plt_versions[] = { { PLT_DATA (elf_arcV2_pic), .entry_relocs = { {4, 32, 0xFFFFFFFF, SGOT | RELATIVE | MIDDLE_ENDIAN, 4}, {12, 32, 0xFFFFFFFF, SGOT | RELATIVE | MIDDLE_ENDIAN, 8}, {20, 32, 0xFFFFFFFF, SGOT, 0}, {0, 0, 0, LAST_RELOC, 0} }, .elem_relocs = { {4, 32, 0xFFFFFFFF, SGOT, 0}, {0, 0, 0, LAST_RELOC, 0} } } }; #undef PLT_DATA static struct plt_version_t * arc_get_plt_version (void) { return &(plt_versions[0]); } static bfd_vma add_symbol_to_plt (struct bfd_link_info *info) { bfd *dynobj = (elf_hash_table (info))->dynobj; struct dynamic_sections ds = arc_create_dynamic_sections (dynobj, info); bfd_vma ret; /* If this is the first .plt entry, make room for the special first entry. */ if (ds.splt->size == 0) ds.splt->size += 2 * (bfd_get_mach (dynobj) == bfd_mach_arc_arcv2 ? PLT_ENTRY_SIZE_V2 : PLT_ENTRY_SIZE); ret = ds.splt->size; ds.splt->size += (bfd_get_mach (dynobj) == bfd_mach_arc_arcv2 ? PLT_ENTRY_SIZE_V2 : PLT_ENTRY_SIZE ); ds.sgotplt->size += 4; ds.srelplt->size += sizeof (Elf32_External_Rela); return ret; } #define PLT_DO_RELOCS_FOR_ENTRY(DS, RELOCS) \ plt_do_relocs_for_symbol (DS, RELOCS, 0, 0) static void plt_do_relocs_for_symbol (struct dynamic_sections *ds, struct plt_reloc *reloc, bfd_vma plt_offset, bfd_vma symbol_got_offset) { while (SYM_ONLY (reloc->symbol) != LAST_RELOC) { bfd_vma relocation = 0; switch (SYM_ONLY (reloc->symbol)) { case SGOT: relocation = ds->sgotplt->output_section->vma + ds->sgotplt->output_offset + symbol_got_offset; break; } relocation += reloc->addend; relocation -= (IS_RELATIVE (reloc->symbol)) ? ds->splt->output_section->vma + ds->splt->output_offset + plt_offset + reloc->offset : 0; if (IS_MIDDLE_ENDIAN (reloc->symbol)) { relocation = ((relocation & 0xffff0000) >> 16) | ((relocation & 0xffff) << 16); } switch (reloc->size) { case 32: bfd_put_32 (ds->splt->output_section->owner, relocation, ds->splt->contents + plt_offset + reloc->offset); break; } reloc = &(reloc[1]); /* Jump to next relocation. */ } } static void relocate_plt_for_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { bfd * dynobj = elf_hash_table (info)->dynobj; struct plt_version_t *plt_data = arc_get_plt_version (); struct dynamic_sections ds = arc_create_dynamic_sections (dynobj, info); bfd_vma plt_index = h->plt.offset / plt_data->elem_size; bfd_vma got_offset = (plt_index + 3) * 4; memcpy (ds.splt->contents + h->plt.offset, plt_data->elem, plt_data->elem_size * sizeof (insn_hword)); plt_do_relocs_for_symbol (&ds, plt_data->elem_relocs, h->plt.offset, got_offset); } static void relocate_plt_for_entry (struct bfd_link_info *info) { bfd * dynobj = (elf_hash_table (info))->dynobj; struct plt_version_t *plt_data = arc_get_plt_version (); struct dynamic_sections ds = arc_create_dynamic_sections (dynobj, info); memcpy (ds.splt->contents, plt_data->entry, plt_data->entry_size * sizeof (insn_hword)); PLT_DO_RELOCS_FOR_ENTRY (&ds, plt_data->entry_relocs); } /* Desc : Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static bfd_boolean elf_arc_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { bfd *dynobj = (elf_hash_table (info))->dynobj; struct dynamic_sections ds = arc_create_dynamic_sections (dynobj, info); if (h->needs_plt == 1) { if (!bfd_link_pic (info) && !h->def_dynamic && !h->ref_dynamic) { /* This case can occur if we saw a PLT32 reloc in an input file, but the symbol was never referred to by a dynamic object. In such a case, we don't actually need to build a procedure linkage table, and we can just do a PC32 reloc instead. */ BFD_ASSERT (h->needs_plt); return TRUE; } /* Make sure this symbol is output as a dynamic symbol. */ if (h->dynindx == -1 && !h->forced_local && !bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) { bfd_vma loc = add_symbol_to_plt (info); if (!bfd_link_pic (info) && !h->def_regular) { h->root.u.def.section = ds.splt; h->root.u.def.value = loc; } h->plt.offset = loc; } } else { h->plt.offset = (bfd_vma) - 1; h->needs_plt = 0; } return TRUE; } #define ADD_RELA(BFD, SECTION, OFFSET, SYM_IDX, TYPE, ADDEND) \ {\ struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); \ bfd_byte * rloc = ds.srel##SECTION->contents + \ ((ds.srel##SECTION->reloc_count++) * sizeof (Elf32_External_Rela)); \ Elf_Internal_Rela rel; \ bfd_put_32 (output_bfd, (bfd_vma) 0, ds.s##SECTION->contents + OFFSET); \ rel.r_addend = ADDEND; \ rel.r_offset = (ds.s##SECTION)->output_section->vma + (ds.s##SECTION)->output_offset + OFFSET; \ rel.r_info = ELF32_R_INFO (SYM_IDX, TYPE); \ bfd_elf32_swap_reloca_out (BFD, &rel, rloc); \ } /* Function : elf_arc_finish_dynamic_symbol Brief : Finish up dynamic symbol handling. We set the contents of various dynamic sections here. Args : output_bfd : info : h : sym : Returns : True/False as the return status. */ static bfd_boolean elf_arc_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym * sym) { if (h->plt.offset != (bfd_vma) - 1) relocate_plt_for_symbol (info, h); if (h->got.offset != (bfd_vma) - 1) { if (bfd_link_pic (info) && (info->symbolic || h->dynindx == -1) && h->def_regular) { ADD_RELA (output_bfd, got, h->got.offset, 0, R_ARC_RELATIVE, 0); } else { ADD_RELA (output_bfd, got, h->got.offset, h->dynindx, R_ARC_GLOB_DAT, 0); } } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "__DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) sym->st_shndx = SHN_ABS; return TRUE; } #define GET_SYMBOL_OR_SECTION(TAG, SYMBOL, SECTION) \ case TAG: \ if (SYMBOL != NULL) \ { \ h = elf_link_hash_lookup (elf_hash_table (info), SYMBOL, FALSE, FALSE, TRUE); \ } \ else if (SECTION != NULL) \ { \ s = bfd_get_section_by_name (output_bfd, SECTION); \ BFD_ASSERT (s != NULL); \ do_it = TRUE; \ } \ break; /* Function : elf_arc_finish_dynamic_sections Brief : Finish up the dynamic sections handling. Args : output_bfd : info : h : sym : Returns : True/False as the return status. */ static bfd_boolean elf_arc_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info *info) { struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); bfd *dynobj = (elf_hash_table (info))->dynobj; if (ds.sdyn) { Elf32_External_Dyn *dyncon, *dynconend; dyncon = (Elf32_External_Dyn *) ds.sdyn->contents; dynconend = (Elf32_External_Dyn *) (ds.sdyn->contents + ds.sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn internal_dyn; bfd_boolean do_it = FALSE; struct elf_link_hash_entry *h = NULL; asection *s = NULL; bfd_elf32_swap_dyn_in (dynobj, dyncon, &internal_dyn); switch (internal_dyn.d_tag) { GET_SYMBOL_OR_SECTION (DT_INIT, "_init", NULL) GET_SYMBOL_OR_SECTION (DT_FINI, "_fini", NULL) GET_SYMBOL_OR_SECTION (DT_PLTGOT, NULL, ".plt") GET_SYMBOL_OR_SECTION (DT_JMPREL, NULL, ".rela.plt") GET_SYMBOL_OR_SECTION (DT_PLTRELSZ, NULL, ".rela.plt") GET_SYMBOL_OR_SECTION (DT_RELASZ, NULL, ".rela.plt") default: break; } /* In case the dynamic symbols should be updated with a symbol. */ if (h != NULL && (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) ) { asection *asec_ptr; internal_dyn.d_un.d_val = h->root.u.def.value; asec_ptr = h->root.u.def.section; if (asec_ptr->output_section != NULL) { internal_dyn.d_un.d_val += (asec_ptr->output_section->vma + asec_ptr->output_offset); } else { /* The symbol is imported from another shared library and does not apply to this one. */ internal_dyn.d_un.d_val = 0; } do_it = TRUE; } else if (s != NULL) /* With a section information. */ { switch (internal_dyn.d_tag) { case DT_PLTGOT: case DT_JMPREL: internal_dyn.d_un.d_ptr = s->vma; do_it = TRUE; break; case DT_PLTRELSZ: internal_dyn.d_un.d_val = s->size; do_it = TRUE; break; case DT_RELASZ: internal_dyn.d_un.d_val -= s->size; do_it = TRUE; break; default: break; } } if (do_it == TRUE) bfd_elf32_swap_dyn_out (output_bfd, &internal_dyn, dyncon); } if (ds.splt->size > 0) { relocate_plt_for_entry (info); } elf_section_data (ds.srelplt->output_section)->this_hdr.sh_entsize = 0xc; } /* Fill in the first three entries in the global offset table. */ if (ds.sgot) { if (ds.sgot->size > 0) { if (ds.sdyn == NULL) bfd_put_32 (output_bfd, (bfd_vma) 0, ds.sgotplt->contents); else bfd_put_32 (output_bfd, ds.sdyn->output_section->vma + ds.sdyn->output_offset, ds.sgotplt->contents); bfd_put_32 (output_bfd, (bfd_vma) 0, ds.sgotplt->contents + 4); bfd_put_32 (output_bfd, (bfd_vma) 0, ds.sgotplt->contents + 8); elf_section_data (ds.sgot->output_section)->this_hdr.sh_entsize = 4; } } if (ds.srelgot /* Check that the linker script has not dumped the .srelgot section. */ && ds.srelgot->output_section && elf_section_data (ds.srelgot->output_section)) { /* TODO: Make it work even if I remove this. */ elf_section_data (ds.srelgot->output_section)->this_hdr.sh_entsize = 0xc; } return TRUE; } #define ADD_DYNAMIC_SYMBOL(NAME, TAG) \ h = elf_link_hash_lookup (elf_hash_table (info), NAME, FALSE, FALSE, FALSE); \ if ((h != NULL && (h->ref_regular || h->def_regular))) \ if (! _bfd_elf_add_dynamic_entry (info, TAG, 0)) \ return FALSE; /* Set the sizes of the dynamic sections. */ static bfd_boolean elf_arc_size_dynamic_sections (bfd * output_bfd, struct bfd_link_info *info) { bfd * dynobj; asection * s; bfd_boolean relocs_exist; bfd_boolean reltext_exist; struct dynamic_sections ds = arc_create_dynamic_sections (output_bfd, info); dynobj = (elf_hash_table (info))->dynobj; BFD_ASSERT (dynobj != NULL); if ((elf_hash_table (info))->dynamic_sections_created) { struct elf_link_hash_entry *h; /* Set the contents of the .interp section to the interpreter. */ if (!bfd_link_pic (info)) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } /* Add some entries to the .dynamic section. We fill in some of the values later, in elf_bfd_final_link, but we must add the entries now so that we know the final size of the .dynamic section. Checking if the .init section is present. We also create DT_INIT and DT_FINI entries if the init_str has been changed by the user. */ ADD_DYNAMIC_SYMBOL ("init", DT_INIT); ADD_DYNAMIC_SYMBOL ("fini", DT_FINI); } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.got, which will cause it to get stripped from the output file below. */ ds.srelgot->size = 0; } for (s = dynobj->sections; s != NULL; s = s->next) { bfd_boolean is_dynamic_section = FALSE; /* Skip any non dynamic section. */ if (strstr (s->name, ".plt") != NULL || strstr (s->name, ".got") != NULL || strstr (s->name, ".rel") != NULL) is_dynamic_section = TRUE; /* Allocate memory for the section contents. */ if (!is_dynamic_section) continue; s->contents = (bfd_byte *) bfd_alloc (dynobj, s->size); if (s->contents == NULL && s->size != 0) return FALSE; if (s->size == 0) { s->flags |= SEC_EXCLUDE; continue; } if (strcmp (s->name, ".rela.plt") != 0) { const char *outname = bfd_get_section_name (output_bfd, s->output_section); asection *target = bfd_get_section_by_name (output_bfd, outname + 4); relocs_exist = TRUE; if (target != NULL && target->size != 0 && (target->flags & SEC_READONLY) != 0 && (target->flags & SEC_ALLOC) != 0) reltext_exist = TRUE; } } if (ds.sdyn) { if (ds.splt && ds.splt->size != 0) if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0) || !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0) || !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA) || !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0) ) return FALSE; if (relocs_exist == TRUE) if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0) || !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0) || !_bfd_elf_add_dynamic_entry (info, DT_RELENT, sizeof (Elf32_External_Rela)) ) return FALSE; if (reltext_exist == TRUE) if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0)) return FALSE; } return TRUE; } #define TARGET_LITTLE_SYM arc_elf32_le_vec #define TARGET_LITTLE_NAME "elf32-littlearc" #define TARGET_BIG_SYM arc_elf32_be_vec #define TARGET_BIG_NAME "elf32-bigarc" #define ELF_ARCH bfd_arch_arc #define ELF_MACHINE_CODE EM_ARC_COMPACT #define ELF_MACHINE_ALT1 EM_ARC_COMPACT2 #define ELF_MAXPAGESIZE 0x2000 #define elf_info_to_howto_rel arc_info_to_howto_rel #define elf_backend_object_p arc_elf_object_p #define elf_backend_final_write_processing arc_elf_final_write_processing #define elf_backend_relocate_section elf_arc_relocate_section #define elf_backend_check_relocs elf_arc_check_relocs #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections #define elf_backend_adjust_dynamic_symbol elf_arc_adjust_dynamic_symbol #define elf_backend_finish_dynamic_symbol elf_arc_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections elf_arc_finish_dynamic_sections #define elf_backend_size_dynamic_sections elf_arc_size_dynamic_sections #define elf_backend_can_gc_sections 1 #define elf_backend_want_got_plt 1 #define elf_backend_plt_readonly 1 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 12 #define elf_backend_may_use_rel_p 0 #define elf_backend_may_use_rela_p 1 #define elf_backend_default_use_rela_p 1 #include "elf32-target.h"