aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/sparc-tdep.c')
-rw-r--r--gdb/sparc-tdep.c2074
1 files changed, 0 insertions, 2074 deletions
diff --git a/gdb/sparc-tdep.c b/gdb/sparc-tdep.c
deleted file mode 100644
index 2ea0c1b..0000000
--- a/gdb/sparc-tdep.c
+++ /dev/null
@@ -1,2074 +0,0 @@
-/* Target-dependent code for the SPARC for GDB, the GNU debugger.
- Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
- Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "obstack.h"
-#include "target.h"
-#include "value.h"
-#include "bfd.h"
-#include "gdb_string.h"
-
-#ifdef USE_PROC_FS
-#include <sys/procfs.h>
-#endif
-
-#include "gdbcore.h"
-
-#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
-#define SPARC_HAS_FPU 0
-#else
-#define SPARC_HAS_FPU 1
-#endif
-
-#ifdef GDB_TARGET_IS_SPARC64
-#define FP_REGISTER_BYTES (64 * 4)
-#else
-#define FP_REGISTER_BYTES (32 * 4)
-#endif
-
-/* If not defined, assume 32 bit sparc. */
-#ifndef FP_MAX_REGNUM
-#define FP_MAX_REGNUM (FP0_REGNUM + 32)
-#endif
-
-#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
-
-/* From infrun.c */
-extern int stop_after_trap;
-
-/* We don't store all registers immediately when requested, since they
- get sent over in large chunks anyway. Instead, we accumulate most
- of the changes and send them over once. "deferred_stores" keeps
- track of which sets of registers we have locally-changed copies of,
- so we only need send the groups that have changed. */
-
-int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
-
-
-/* Fetch a single instruction. Even on bi-endian machines
- such as sparc86x, instructions are always big-endian. */
-
-static unsigned long
-fetch_instruction (pc)
- CORE_ADDR pc;
-{
- unsigned long retval;
- int i;
- unsigned char buf[4];
-
- read_memory (pc, buf, sizeof (buf));
-
- /* Start at the most significant end of the integer, and work towards
- the least significant. */
- retval = 0;
- for (i = 0; i < sizeof (buf); ++i)
- retval = (retval << 8) | buf[i];
- return retval;
-}
-
-
-/* Branches with prediction are treated like their non-predicting cousins. */
-/* FIXME: What about floating point branches? */
-
-/* Macros to extract fields from sparc instructions. */
-#define X_OP(i) (((i) >> 30) & 0x3)
-#define X_RD(i) (((i) >> 25) & 0x1f)
-#define X_A(i) (((i) >> 29) & 1)
-#define X_COND(i) (((i) >> 25) & 0xf)
-#define X_OP2(i) (((i) >> 22) & 0x7)
-#define X_IMM22(i) ((i) & 0x3fffff)
-#define X_OP3(i) (((i) >> 19) & 0x3f)
-#define X_RS1(i) (((i) >> 14) & 0x1f)
-#define X_I(i) (((i) >> 13) & 1)
-#define X_IMM13(i) ((i) & 0x1fff)
-/* Sign extension macros. */
-#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
-#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
-#define X_CC(i) (((i) >> 20) & 3)
-#define X_P(i) (((i) >> 19) & 1)
-#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
-#define X_RCOND(i) (((i) >> 25) & 7)
-#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
-#define X_FCN(i) (((i) >> 25) & 31)
-
-typedef enum
-{
- Error, not_branch, bicc, bicca, ba, baa, ticc, ta,
-#ifdef GDB_TARGET_IS_SPARC64
- done_retry
-#endif
-} branch_type;
-
-/* Simulate single-step ptrace call for sun4. Code written by Gary
- Beihl (beihl@mcc.com). */
-
-/* npc4 and next_pc describe the situation at the time that the
- step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
-static CORE_ADDR next_pc, npc4, target;
-static int brknpc4, brktrg;
-typedef char binsn_quantum[BREAKPOINT_MAX];
-static binsn_quantum break_mem[3];
-
-/* Non-zero if we just simulated a single-step ptrace call. This is
- needed because we cannot remove the breakpoints in the inferior
- process until after the `wait' in `wait_for_inferior'. Used for
- sun4. */
-
-int one_stepped;
-
-static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *));
-
-/* single_step() is called just before we want to resume the inferior,
- if we want to single-step it but there is no hardware or kernel single-step
- support (as on all SPARCs). We find all the possible targets of the
- coming instruction and breakpoint them.
-
- single_step is also called just after the inferior stops. If we had
- set up a simulated single-step, we undo our damage. */
-
-void
-single_step (ignore)
- enum target_signal ignore; /* pid, but we don't need it */
-{
- branch_type br;
- CORE_ADDR pc;
- long pc_instruction;
-
- if (!one_stepped)
- {
- /* Always set breakpoint for NPC. */
- next_pc = read_register (NPC_REGNUM);
- npc4 = next_pc + 4; /* branch not taken */
-
- target_insert_breakpoint (next_pc, break_mem[0]);
- /* printf_unfiltered ("set break at %x\n",next_pc); */
-
- pc = read_register (PC_REGNUM);
- pc_instruction = fetch_instruction (pc);
- br = isbranch (pc_instruction, pc, &target);
- brknpc4 = brktrg = 0;
-
- if (br == bicca)
- {
- /* Conditional annulled branch will either end up at
- npc (if taken) or at npc+4 (if not taken).
- Trap npc+4. */
- brknpc4 = 1;
- target_insert_breakpoint (npc4, break_mem[1]);
- }
- else if (br == baa && target != next_pc)
- {
- /* Unconditional annulled branch will always end up at
- the target. */
- brktrg = 1;
- target_insert_breakpoint (target, break_mem[2]);
- }
-#ifdef GDB_TARGET_IS_SPARC64
- else if (br == done_retry)
- {
- brktrg = 1;
- target_insert_breakpoint (target, break_mem[2]);
- }
-#endif
-
- /* We are ready to let it go */
- one_stepped = 1;
- return;
- }
- else
- {
- /* Remove breakpoints */
- target_remove_breakpoint (next_pc, break_mem[0]);
-
- if (brknpc4)
- target_remove_breakpoint (npc4, break_mem[1]);
-
- if (brktrg)
- target_remove_breakpoint (target, break_mem[2]);
-
- one_stepped = 0;
- }
-}
-
-/* Call this for each newly created frame. For SPARC, we need to calculate
- the bottom of the frame, and do some extra work if the prologue
- has been generated via the -mflat option to GCC. In particular,
- we need to know where the previous fp and the pc have been stashed,
- since their exact position within the frame may vary. */
-
-void
-sparc_init_extra_frame_info (fromleaf, fi)
- int fromleaf;
- struct frame_info *fi;
-{
- char *name;
- CORE_ADDR addr;
- int insn;
-
- fi->bottom =
- (fi->next ?
- (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) :
- read_sp ());
-
- /* If fi->next is NULL, then we already set ->frame by passing read_fp()
- to create_new_frame. */
- if (fi->next)
- {
- char buf[MAX_REGISTER_RAW_SIZE];
-
- /* Compute ->frame as if not flat. If it is flat, we'll change
- it later. */
- if (fi->next->next != NULL
- && (fi->next->next->signal_handler_caller
- || frame_in_dummy (fi->next->next))
- && frameless_look_for_prologue (fi->next))
- {
- /* A frameless function interrupted by a signal did not change
- the frame pointer, fix up frame pointer accordingly. */
- fi->frame = FRAME_FP (fi->next);
- fi->bottom = fi->next->bottom;
- }
- else
- {
- /* Should we adjust for stack bias here? */
- get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
- fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
-#ifdef GDB_TARGET_IS_SPARC64
- if (fi->frame & 1)
- fi->frame += 2047;
-#endif
-
- }
- }
-
- /* Decide whether this is a function with a ``flat register window''
- frame. For such functions, the frame pointer is actually in %i7. */
- fi->flat = 0;
- if (find_pc_partial_function (fi->pc, &name, &addr, NULL))
- {
- /* See if the function starts with an add (which will be of a
- negative number if a flat frame) to the sp. FIXME: Does not
- handle large frames which will need more than one instruction
- to adjust the sp. */
- insn = fetch_instruction (addr);
- if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
- && X_I (insn) && X_SIMM13 (insn) < 0)
- {
- int offset = X_SIMM13 (insn);
-
- /* Then look for a save of %i7 into the frame. */
- insn = fetch_instruction (addr + 4);
- if (X_OP (insn) == 3
- && X_RD (insn) == 31
- && X_OP3 (insn) == 4
- && X_RS1 (insn) == 14)
- {
- char buf[MAX_REGISTER_RAW_SIZE];
-
- /* We definitely have a flat frame now. */
- fi->flat = 1;
-
- fi->sp_offset = offset;
-
- /* Overwrite the frame's address with the value in %i7. */
- get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
- fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
-#ifdef GDB_TARGET_IS_SPARC64
- if (fi->frame & 1)
- fi->frame += 2047;
-#endif
- /* Record where the fp got saved. */
- fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
-
- /* Also try to collect where the pc got saved to. */
- fi->pc_addr = 0;
- insn = fetch_instruction (addr + 12);
- if (X_OP (insn) == 3
- && X_RD (insn) == 15
- && X_OP3 (insn) == 4
- && X_RS1 (insn) == 14)
- fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
- }
- }
- }
- if (fi->next && fi->frame == 0)
- {
- /* Kludge to cause init_prev_frame_info to destroy the new frame. */
- fi->frame = fi->next->frame;
- fi->pc = fi->next->pc;
- }
-}
-
-CORE_ADDR
-sparc_frame_chain (frame)
- struct frame_info *frame;
-{
- /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
- value. If it realy is zero, we detect it later in
- sparc_init_prev_frame. */
- return (CORE_ADDR)1;
-}
-
-CORE_ADDR
-sparc_extract_struct_value_address (regbuf)
- char regbuf[REGISTER_BYTES];
-{
-#ifdef GDB_TARGET_IS_SPARC64
- return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
- REGISTER_RAW_SIZE (O0_REGNUM));
-#else
- CORE_ADDR sp = extract_address (&regbuf [REGISTER_BYTE (SP_REGNUM)],
- REGISTER_RAW_SIZE (SP_REGNUM));
- return read_memory_integer (sp + (16 * SPARC_INTREG_SIZE),
- TARGET_PTR_BIT / TARGET_CHAR_BIT);
-#endif
-}
-
-/* Find the pc saved in frame FRAME. */
-
-CORE_ADDR
-sparc_frame_saved_pc (frame)
- struct frame_info *frame;
-{
- char buf[MAX_REGISTER_RAW_SIZE];
- CORE_ADDR addr;
-
- if (frame->signal_handler_caller)
- {
- /* This is the signal trampoline frame.
- Get the saved PC from the sigcontext structure. */
-
-#ifndef SIGCONTEXT_PC_OFFSET
-#define SIGCONTEXT_PC_OFFSET 12
-#endif
-
- CORE_ADDR sigcontext_addr;
- char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
- int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
- char *name = NULL;
-
- /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
- as the third parameter. The offset to the saved pc is 12. */
- find_pc_partial_function (frame->pc, &name,
- (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
- if (name && STREQ (name, "ucbsigvechandler"))
- saved_pc_offset = 12;
-
- /* The sigcontext address is contained in register O2. */
- get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
- frame, O0_REGNUM + 2, (enum lval_type *)NULL);
- sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
-
- /* Don't cause a memory_error when accessing sigcontext in case the
- stack layout has changed or the stack is corrupt. */
- target_read_memory (sigcontext_addr + saved_pc_offset,
- scbuf, sizeof (scbuf));
- return extract_address (scbuf, sizeof (scbuf));
- }
- else if (frame->next != NULL
- && (frame->next->signal_handler_caller
- || frame_in_dummy (frame->next))
- && frameless_look_for_prologue (frame))
- {
- /* A frameless function interrupted by a signal did not save
- the PC, it is still in %o7. */
- get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL,
- frame, O7_REGNUM, (enum lval_type *)NULL);
- return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
- }
- if (frame->flat)
- addr = frame->pc_addr;
- else
- addr = frame->bottom + FRAME_SAVED_I0 +
- SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
-
- if (addr == 0)
- /* A flat frame leaf function might not save the PC anywhere,
- just leave it in %o7. */
- return PC_ADJUST (read_register (O7_REGNUM));
-
- read_memory (addr, buf, SPARC_INTREG_SIZE);
- return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
-}
-
-/* Since an individual frame in the frame cache is defined by two
- arguments (a frame pointer and a stack pointer), we need two
- arguments to get info for an arbitrary stack frame. This routine
- takes two arguments and makes the cached frames look as if these
- two arguments defined a frame on the cache. This allows the rest
- of info frame to extract the important arguments without
- difficulty. */
-
-struct frame_info *
-setup_arbitrary_frame (argc, argv)
- int argc;
- CORE_ADDR *argv;
-{
- struct frame_info *frame;
-
- if (argc != 2)
- error ("Sparc frame specifications require two arguments: fp and sp");
-
- frame = create_new_frame (argv[0], 0);
-
- if (!frame)
- fatal ("internal: create_new_frame returned invalid frame");
-
- frame->bottom = argv[1];
- frame->pc = FRAME_SAVED_PC (frame);
- return frame;
-}
-
-/* Given a pc value, skip it forward past the function prologue by
- disassembling instructions that appear to be a prologue.
-
- If FRAMELESS_P is set, we are only testing to see if the function
- is frameless. This allows a quicker answer.
-
- This routine should be more specific in its actions; making sure
- that it uses the same register in the initial prologue section. */
-
-static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *,
- struct frame_saved_regs *));
-
-static CORE_ADDR
-examine_prologue (start_pc, frameless_p, fi, saved_regs)
- CORE_ADDR start_pc;
- int frameless_p;
- struct frame_info *fi;
- struct frame_saved_regs *saved_regs;
-{
- int insn;
- int dest = -1;
- CORE_ADDR pc = start_pc;
- int is_flat = 0;
-
- insn = fetch_instruction (pc);
-
- /* Recognize the `sethi' insn and record its destination. */
- if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
- {
- dest = X_RD (insn);
- pc += 4;
- insn = fetch_instruction (pc);
- }
-
- /* Recognize an add immediate value to register to either %g1 or
- the destination register recorded above. Actually, this might
- well recognize several different arithmetic operations.
- It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
- followed by "save %sp, %g1, %sp" is a valid prologue (Not that
- I imagine any compiler really does that, however). */
- if (X_OP (insn) == 2
- && X_I (insn)
- && (X_RD (insn) == 1 || X_RD (insn) == dest))
- {
- pc += 4;
- insn = fetch_instruction (pc);
- }
-
- /* Recognize any SAVE insn. */
- if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
- {
- pc += 4;
- if (frameless_p) /* If the save is all we care about, */
- return pc; /* return before doing more work */
- insn = fetch_instruction (pc);
- }
- /* Recognize add to %sp. */
- else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
- {
- pc += 4;
- if (frameless_p) /* If the add is all we care about, */
- return pc; /* return before doing more work */
- is_flat = 1;
- insn = fetch_instruction (pc);
- /* Recognize store of frame pointer (i7). */
- if (X_OP (insn) == 3
- && X_RD (insn) == 31
- && X_OP3 (insn) == 4
- && X_RS1 (insn) == 14)
- {
- pc += 4;
- insn = fetch_instruction (pc);
-
- /* Recognize sub %sp, <anything>, %i7. */
- if (X_OP (insn) == 2
- && X_OP3 (insn) == 4
- && X_RS1 (insn) == 14
- && X_RD (insn) == 31)
- {
- pc += 4;
- insn = fetch_instruction (pc);
- }
- else
- return pc;
- }
- else
- return pc;
- }
- else
- /* Without a save or add instruction, it's not a prologue. */
- return start_pc;
-
- while (1)
- {
- /* Recognize stores into the frame from the input registers.
- This recognizes all non alternate stores of input register,
- into a location offset from the frame pointer. */
- if ((X_OP (insn) == 3
- && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
- && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
- && X_I (insn) /* Immediate mode. */
- && X_RS1 (insn) == 30 /* Off of frame pointer. */
- /* Into reserved stack space. */
- && X_SIMM13 (insn) >= 0x44
- && X_SIMM13 (insn) < 0x5b))
- ;
- else if (is_flat
- && X_OP (insn) == 3
- && X_OP3 (insn) == 4
- && X_RS1 (insn) == 14
- )
- {
- if (saved_regs && X_I (insn))
- saved_regs->regs[X_RD (insn)] =
- fi->frame + fi->sp_offset + X_SIMM13 (insn);
- }
- else
- break;
- pc += 4;
- insn = fetch_instruction (pc);
- }
-
- return pc;
-}
-
-CORE_ADDR
-skip_prologue (start_pc, frameless_p)
- CORE_ADDR start_pc;
- int frameless_p;
-{
- return examine_prologue (start_pc, frameless_p, NULL, NULL);
-}
-
-/* Check instruction at ADDR to see if it is a branch.
- All non-annulled instructions will go to NPC or will trap.
- Set *TARGET if we find a candidate branch; set to zero if not.
-
- This isn't static as it's used by remote-sa.sparc.c. */
-
-static branch_type
-isbranch (instruction, addr, target)
- long instruction;
- CORE_ADDR addr, *target;
-{
- branch_type val = not_branch;
- long int offset = 0; /* Must be signed for sign-extend. */
-
- *target = 0;
-
- if (X_OP (instruction) == 0
- && (X_OP2 (instruction) == 2
- || X_OP2 (instruction) == 6
- || X_OP2 (instruction) == 1
- || X_OP2 (instruction) == 3
- || X_OP2 (instruction) == 5
-#ifndef GDB_TARGET_IS_SPARC64
- || X_OP2 (instruction) == 7
-#endif
- ))
- {
- if (X_COND (instruction) == 8)
- val = X_A (instruction) ? baa : ba;
- else
- val = X_A (instruction) ? bicca : bicc;
- switch (X_OP2 (instruction))
- {
- case 2:
- case 6:
-#ifndef GDB_TARGET_IS_SPARC64
- case 7:
-#endif
- offset = 4 * X_DISP22 (instruction);
- break;
- case 1:
- case 5:
- offset = 4 * X_DISP19 (instruction);
- break;
- case 3:
- offset = 4 * X_DISP16 (instruction);
- break;
- }
- *target = addr + offset;
- }
-#ifdef GDB_TARGET_IS_SPARC64
- else if (X_OP (instruction) == 2
- && X_OP3 (instruction) == 62)
- {
- if (X_FCN (instruction) == 0)
- {
- /* done */
- *target = read_register (TNPC_REGNUM);
- val = done_retry;
- }
- else if (X_FCN (instruction) == 1)
- {
- /* retry */
- *target = read_register (TPC_REGNUM);
- val = done_retry;
- }
- }
-#endif
-
- return val;
-}
-
-/* Find register number REGNUM relative to FRAME and put its
- (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
- was optimized out (and thus can't be fetched). If the variable
- was fetched from memory, set *ADDRP to where it was fetched from,
- otherwise it was fetched from a register.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lval;
-{
- struct frame_info *frame1;
- CORE_ADDR addr;
-
- if (!target_has_registers)
- error ("No registers.");
-
- if (optimized)
- *optimized = 0;
-
- addr = 0;
-
- /* FIXME This code extracted from infcmd.c; should put elsewhere! */
- if (frame == NULL)
- {
- /* error ("No selected frame."); */
- if (!target_has_registers)
- error ("The program has no registers now.");
- if (selected_frame == NULL)
- error ("No selected frame.");
- /* Try to use selected frame */
- frame = get_prev_frame (selected_frame);
- if (frame == 0)
- error ("Cmd not meaningful in the outermost frame.");
- }
-
-
- frame1 = frame->next;
-
- /* Get saved PC from the frame info if not in innermost frame. */
- if (regnum == PC_REGNUM && frame1 != NULL)
- {
- if (lval != NULL)
- *lval = not_lval;
- if (raw_buffer != NULL)
- {
- /* Put it back in target format. */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
- }
- if (addrp != NULL)
- *addrp = 0;
- return;
- }
-
- while (frame1 != NULL)
- {
- if (frame1->pc >= (frame1->bottom ? frame1->bottom :
- read_sp ())
- && frame1->pc <= FRAME_FP (frame1))
- {
- /* Dummy frame. All but the window regs are in there somewhere.
- The window registers are saved on the stack, just like in a
- normal frame. */
- if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
- addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
- - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
- else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
- addr = (frame1->prev->bottom
- + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_I0);
- else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
- addr = (frame1->prev->bottom
- + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_L0);
- else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
- addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
- - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
-#ifdef FP0_REGNUM
- else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
- addr = frame1->frame + (regnum - FP0_REGNUM) * 4
- - (FP_REGISTER_BYTES);
-#ifdef GDB_TARGET_IS_SPARC64
- else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
- addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
- - (FP_REGISTER_BYTES);
-#endif
-#endif /* FP0_REGNUM */
- else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
- addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
- - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
- }
- else if (frame1->flat)
- {
-
- if (regnum == RP_REGNUM)
- addr = frame1->pc_addr;
- else if (regnum == I7_REGNUM)
- addr = frame1->fp_addr;
- else
- {
- CORE_ADDR func_start;
- struct frame_saved_regs regs;
- memset (&regs, 0, sizeof (regs));
-
- find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
- examine_prologue (func_start, 0, frame1, &regs);
- addr = regs.regs[regnum];
- }
- }
- else
- {
- /* Normal frame. Local and In registers are saved on stack. */
- if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
- addr = (frame1->prev->bottom
- + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_I0);
- else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
- addr = (frame1->prev->bottom
- + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_L0);
- else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
- {
- /* Outs become ins. */
- get_saved_register (raw_buffer, optimized, addrp, frame1,
- (regnum - O0_REGNUM + I0_REGNUM), lval);
- return;
- }
- }
- if (addr != 0)
- break;
- frame1 = frame1->next;
- }
- if (addr != 0)
- {
- if (lval != NULL)
- *lval = lval_memory;
- if (regnum == SP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- /* Put it back in target format. */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
- }
- if (addrp != NULL)
- *addrp = 0;
- return;
- }
- if (raw_buffer != NULL)
- read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
- }
- else
- {
- if (lval != NULL)
- *lval = lval_register;
- addr = REGISTER_BYTE (regnum);
- if (raw_buffer != NULL)
- read_register_gen (regnum, raw_buffer);
- }
- if (addrp != NULL)
- *addrp = addr;
-}
-
-/* Push an empty stack frame, and record in it the current PC, regs, etc.
-
- We save the non-windowed registers and the ins. The locals and outs
- are new; they don't need to be saved. The i's and l's of
- the last frame were already saved on the stack. */
-
-/* Definitely see tm-sparc.h for more doc of the frame format here. */
-
-#ifdef GDB_TARGET_IS_SPARC64
-#define DUMMY_REG_SAVE_OFFSET (128 + 16)
-#else
-#define DUMMY_REG_SAVE_OFFSET 0x60
-#endif
-
-/* See tm-sparc.h for how this is calculated. */
-#ifdef FP0_REGNUM
-#define DUMMY_STACK_REG_BUF_SIZE \
-(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
-#else
-#define DUMMY_STACK_REG_BUF_SIZE \
-(((8+8+8) * SPARC_INTREG_SIZE) )
-#endif /* FP0_REGNUM */
-#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
-
-void
-sparc_push_dummy_frame ()
-{
- CORE_ADDR sp, old_sp;
- char register_temp[DUMMY_STACK_SIZE];
-
- old_sp = sp = read_sp ();
-
-#ifdef GDB_TARGET_IS_SPARC64
- /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
- read_register_bytes (REGISTER_BYTE (PC_REGNUM), &register_temp[0],
- REGISTER_RAW_SIZE (PC_REGNUM) * 7);
- read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), &register_temp[8],
- REGISTER_RAW_SIZE (PSTATE_REGNUM));
- /* FIXME: not sure what needs to be saved here. */
-#else
- /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
- read_register_bytes (REGISTER_BYTE (Y_REGNUM), &register_temp[0],
- REGISTER_RAW_SIZE (Y_REGNUM) * 8);
-#endif
-
- read_register_bytes (REGISTER_BYTE (O0_REGNUM),
- &register_temp[8 * SPARC_INTREG_SIZE],
- SPARC_INTREG_SIZE * 8);
-
- read_register_bytes (REGISTER_BYTE (G0_REGNUM),
- &register_temp[16 * SPARC_INTREG_SIZE],
- SPARC_INTREG_SIZE * 8);
-
-#ifdef FP0_REGNUM
- read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
- &register_temp[24 * SPARC_INTREG_SIZE],
- FP_REGISTER_BYTES);
-#endif /* FP0_REGNUM */
-
- sp -= DUMMY_STACK_SIZE;
-
- write_sp (sp);
-
- write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
- DUMMY_STACK_REG_BUF_SIZE);
-
- if (strcmp (target_shortname, "sim") != 0)
- {
- write_fp (old_sp);
-
- /* Set return address register for the call dummy to the current PC. */
- write_register (I7_REGNUM, read_pc() - 8);
- }
- else
- {
- /* The call dummy will write this value to FP before executing
- the 'save'. This ensures that register window flushes work
- correctly in the simulator. */
- write_register (G0_REGNUM+1, read_register (FP_REGNUM));
-
- /* The call dummy will write this value to FP after executing
- the 'save'. */
- write_register (G0_REGNUM+2, old_sp);
-
- /* The call dummy will write this value to the return address (%i7) after
- executing the 'save'. */
- write_register (G0_REGNUM+3, read_pc() - 8);
-
- /* Set the FP that the call dummy will be using after the 'save'.
- This makes backtraces from an inferior function call work properly. */
- write_register (FP_REGNUM, old_sp);
- }
-}
-
-/* sparc_frame_find_saved_regs (). This function is here only because
- pop_frame uses it. Note there is an interesting corner case which
- I think few ports of GDB get right--if you are popping a frame
- which does not save some register that *is* saved by a more inner
- frame (such a frame will never be a dummy frame because dummy
- frames save all registers). Rewriting pop_frame to use
- get_saved_register would solve this problem and also get rid of the
- ugly duplication between sparc_frame_find_saved_regs and
- get_saved_register.
-
- Stores, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame.
-
- Note that on register window machines, we are currently making the
- assumption that window registers are being saved somewhere in the
- frame in which they are being used. If they are stored in an
- inferior frame, find_saved_register will break.
-
- On the Sun 4, the only time all registers are saved is when
- a dummy frame is involved. Otherwise, the only saved registers
- are the LOCAL and IN registers which are saved as a result
- of the "save/restore" opcodes. This condition is determined
- by address rather than by value.
-
- The "pc" is not stored in a frame on the SPARC. (What is stored
- is a return address minus 8.) sparc_pop_frame knows how to
- deal with that. Other routines might or might not.
-
- See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
- about how this works. */
-
-static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *,
- struct frame_saved_regs *));
-
-static void
-sparc_frame_find_saved_regs (fi, saved_regs_addr)
- struct frame_info *fi;
- struct frame_saved_regs *saved_regs_addr;
-{
- register int regnum;
- CORE_ADDR frame_addr = FRAME_FP (fi);
-
- if (!fi)
- fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
-
- memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
-
- if (fi->pc >= (fi->bottom ? fi->bottom :
- read_sp ())
- && fi->pc <= FRAME_FP(fi))
- {
- /* Dummy frame. All but the window regs are in there somewhere. */
- for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
- saved_regs_addr->regs[regnum] =
- frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
- - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
- for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
- - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
-#ifdef FP0_REGNUM
- for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
- saved_regs_addr->regs[regnum] =
- frame_addr + (regnum - FP0_REGNUM) * 4
- - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
-#ifdef GDB_TARGET_IS_SPARC64
- for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++)
- saved_regs_addr->regs[regnum] =
- frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4
- - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
-#endif
-#endif /* FP0_REGNUM */
-#ifdef GDB_TARGET_IS_SPARC64
- for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
- {
- saved_regs_addr->regs[regnum] =
- frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
- - DUMMY_STACK_REG_BUF_SIZE;
- }
- saved_regs_addr->regs[PSTATE_REGNUM] =
- frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
-#else
- for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
- saved_regs_addr->regs[regnum] =
- frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
- - DUMMY_STACK_REG_BUF_SIZE;
-#endif
- frame_addr = fi->bottom ?
- fi->bottom : read_sp ();
- }
- else if (fi->flat)
- {
- CORE_ADDR func_start;
- find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
- examine_prologue (func_start, 0, fi, saved_regs_addr);
-
- /* Flat register window frame. */
- saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr;
- saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr;
- }
- else
- {
- /* Normal frame. Just Local and In registers */
- frame_addr = fi->bottom ?
- fi->bottom : read_sp ();
- for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_L0);
- for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_I0);
- }
- if (fi->next)
- {
- if (fi->flat)
- {
- saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr;
- }
- else
- {
- /* Pull off either the next frame pointer or the stack pointer */
- CORE_ADDR next_next_frame_addr =
- (fi->next->bottom ?
- fi->next->bottom :
- read_sp ());
- for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
- saved_regs_addr->regs[regnum] =
- (next_next_frame_addr
- + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
- + FRAME_SAVED_I0);
- }
- }
- /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
- /* FIXME -- should this adjust for the sparc64 offset? */
- saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
-}
-
-/* Discard from the stack the innermost frame, restoring all saved registers.
-
- Note that the values stored in fsr by get_frame_saved_regs are *in
- the context of the called frame*. What this means is that the i
- regs of fsr must be restored into the o regs of the (calling) frame that
- we pop into. We don't care about the output regs of the calling frame,
- since unless it's a dummy frame, it won't have any output regs in it.
-
- We never have to bother with %l (local) regs, since the called routine's
- locals get tossed, and the calling routine's locals are already saved
- on its stack. */
-
-/* Definitely see tm-sparc.h for more doc of the frame format here. */
-
-void
-sparc_pop_frame ()
-{
- register struct frame_info *frame = get_current_frame ();
- register CORE_ADDR pc;
- struct frame_saved_regs fsr;
- char raw_buffer[REGISTER_BYTES];
- int regnum;
-
- sparc_frame_find_saved_regs (frame, &fsr);
-#ifdef FP0_REGNUM
- if (fsr.regs[FP0_REGNUM])
- {
- read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
- raw_buffer, FP_REGISTER_BYTES);
- }
-#ifndef GDB_TARGET_IS_SPARC64
- if (fsr.regs[FPS_REGNUM])
- {
- read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
- write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
- }
- if (fsr.regs[CPS_REGNUM])
- {
- read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
- write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
- }
-#endif
-#endif /* FP0_REGNUM */
- if (fsr.regs[G1_REGNUM])
- {
- read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
- write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
- 7 * SPARC_INTREG_SIZE);
- }
-
- if (frame->flat)
- {
- /* Each register might or might not have been saved, need to test
- individually. */
- for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum],
- SPARC_INTREG_SIZE));
- for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum],
- SPARC_INTREG_SIZE));
-
- /* Handle all outs except stack pointer (o0-o5; o7). */
- for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum],
- SPARC_INTREG_SIZE));
- if (fsr.regs[O0_REGNUM + 7])
- write_register (O0_REGNUM + 7,
- read_memory_integer (fsr.regs[O0_REGNUM + 7],
- SPARC_INTREG_SIZE));
-
- write_sp (frame->frame);
- }
- else if (fsr.regs[I0_REGNUM])
- {
- CORE_ADDR sp;
-
- char reg_temp[REGISTER_BYTES];
-
- read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
-
- /* Get the ins and locals which we are about to restore. Just
- moving the stack pointer is all that is really needed, except
- store_inferior_registers is then going to write the ins and
- locals from the registers array, so we need to muck with the
- registers array. */
- sp = fsr.regs[SP_REGNUM];
-#ifdef GDB_TARGET_IS_SPARC64
- if (sp & 1)
- sp += 2047;
-#endif
- read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
-
- /* Restore the out registers.
- Among other things this writes the new stack pointer. */
- write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
- SPARC_INTREG_SIZE * 8);
-
- write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
- SPARC_INTREG_SIZE * 16);
- }
-#ifndef GDB_TARGET_IS_SPARC64
- if (fsr.regs[PS_REGNUM])
- write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
-#endif
- if (fsr.regs[Y_REGNUM])
- write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM)));
- if (fsr.regs[PC_REGNUM])
- {
- /* Explicitly specified PC (and maybe NPC) -- just restore them. */
- write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM],
- REGISTER_RAW_SIZE (PC_REGNUM)));
- if (fsr.regs[NPC_REGNUM])
- write_register (NPC_REGNUM,
- read_memory_integer (fsr.regs[NPC_REGNUM],
- REGISTER_RAW_SIZE (NPC_REGNUM)));
- }
- else if (frame->flat)
- {
- if (frame->pc_addr)
- pc = PC_ADJUST ((CORE_ADDR)
- read_memory_integer (frame->pc_addr,
- REGISTER_RAW_SIZE (PC_REGNUM)));
- else
- {
- /* I think this happens only in the innermost frame, if so then
- it is a complicated way of saying
- "pc = read_register (O7_REGNUM);". */
- char buf[MAX_REGISTER_RAW_SIZE];
- get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
- pc = PC_ADJUST (extract_address
- (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
- }
-
- write_register (PC_REGNUM, pc);
- write_register (NPC_REGNUM, pc + 4);
- }
- else if (fsr.regs[I7_REGNUM])
- {
- /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
- pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM],
- SPARC_INTREG_SIZE));
- write_register (PC_REGNUM, pc);
- write_register (NPC_REGNUM, pc + 4);
- }
- flush_cached_frames ();
-}
-
-/* On the Sun 4 under SunOS, the compile will leave a fake insn which
- encodes the structure size being returned. If we detect such
- a fake insn, step past it. */
-
-CORE_ADDR
-sparc_pc_adjust(pc)
- CORE_ADDR pc;
-{
- unsigned long insn;
- char buf[4];
- int err;
-
- err = target_read_memory (pc + 8, buf, 4);
- insn = extract_unsigned_integer (buf, 4);
- if ((err == 0) && (insn & 0xffc00000) == 0)
- return pc+12;
- else
- return pc+8;
-}
-
-/* If pc is in a shared library trampoline, return its target.
- The SunOs 4.x linker rewrites the jump table entries for PIC
- compiled modules in the main executable to bypass the dynamic linker
- with jumps of the form
- sethi %hi(addr),%g1
- jmp %g1+%lo(addr)
- and removes the corresponding jump table relocation entry in the
- dynamic relocations.
- find_solib_trampoline_target relies on the presence of the jump
- table relocation entry, so we have to detect these jump instructions
- by hand. */
-
-CORE_ADDR
-sunos4_skip_trampoline_code (pc)
- CORE_ADDR pc;
-{
- unsigned long insn1;
- char buf[4];
- int err;
-
- err = target_read_memory (pc, buf, 4);
- insn1 = extract_unsigned_integer (buf, 4);
- if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
- {
- unsigned long insn2;
-
- err = target_read_memory (pc + 4, buf, 4);
- insn2 = extract_unsigned_integer (buf, 4);
- if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
- {
- CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
- int delta = insn2 & 0x1fff;
-
- /* Sign extend the displacement. */
- if (delta & 0x1000)
- delta |= ~0x1fff;
- return target_pc + delta;
- }
- }
- return find_solib_trampoline_target (pc);
-}
-
-#ifdef USE_PROC_FS /* Target dependent support for /proc */
-
-/* The /proc interface divides the target machine's register set up into
- two different sets, the general register set (gregset) and the floating
- point register set (fpregset). For each set, there is an ioctl to get
- the current register set and another ioctl to set the current values.
-
- The actual structure passed through the ioctl interface is, of course,
- naturally machine dependent, and is different for each set of registers.
- For the sparc for example, the general register set is typically defined
- by:
-
- typedef int gregset_t[38];
-
- #define R_G0 0
- ...
- #define R_TBR 37
-
- and the floating point set by:
-
- typedef struct prfpregset {
- union {
- u_long pr_regs[32];
- double pr_dregs[16];
- } pr_fr;
- void * pr_filler;
- u_long pr_fsr;
- u_char pr_qcnt;
- u_char pr_q_entrysize;
- u_char pr_en;
- u_long pr_q[64];
- } prfpregset_t;
-
- These routines provide the packing and unpacking of gregset_t and
- fpregset_t formatted data.
-
- */
-
-/* Given a pointer to a general register set in /proc format (gregset_t *),
- unpack the register contents and supply them as gdb's idea of the current
- register values. */
-
-void
-supply_gregset (gregsetp)
-prgregset_t *gregsetp;
-{
- register int regi;
- register prgreg_t *regp = (prgreg_t *) gregsetp;
- static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
-
- /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
- for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
- {
- supply_register (regi, (char *) (regp + regi));
- }
-
- /* These require a bit more care. */
- supply_register (PS_REGNUM, (char *) (regp + R_PS));
- supply_register (PC_REGNUM, (char *) (regp + R_PC));
- supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
- supply_register (Y_REGNUM, (char *) (regp + R_Y));
-
- /* Fill inaccessible registers with zero. */
- supply_register (WIM_REGNUM, zerobuf);
- supply_register (TBR_REGNUM, zerobuf);
- supply_register (CPS_REGNUM, zerobuf);
-}
-
-void
-fill_gregset (gregsetp, regno)
-prgregset_t *gregsetp;
-int regno;
-{
- int regi;
- register prgreg_t *regp = (prgreg_t *) gregsetp;
-
- for (regi = 0 ; regi <= R_I7 ; regi++)
- {
- if ((regno == -1) || (regno == regi))
- {
- *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
- }
- }
- if ((regno == -1) || (regno == PS_REGNUM))
- {
- *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
- }
- if ((regno == -1) || (regno == PC_REGNUM))
- {
- *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
- }
- if ((regno == -1) || (regno == NPC_REGNUM))
- {
- *(regp + R_nPC) = *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
- }
- if ((regno == -1) || (regno == Y_REGNUM))
- {
- *(regp + R_Y) = *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
- }
-}
-
-#if defined (FP0_REGNUM)
-
-/* Given a pointer to a floating point register set in /proc format
- (fpregset_t *), unpack the register contents and supply them as gdb's
- idea of the current floating point register values. */
-
-void
-supply_fpregset (fpregsetp)
-prfpregset_t *fpregsetp;
-{
- register int regi;
- char *from;
-
- for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
- {
- from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
- supply_register (regi, from);
- }
- supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
-}
-
-/* Given a pointer to a floating point register set in /proc format
- (fpregset_t *), update the register specified by REGNO from gdb's idea
- of the current floating point register set. If REGNO is -1, update
- them all. */
-/* ??? This will probably need some changes for sparc64. */
-
-void
-fill_fpregset (fpregsetp, regno)
-prfpregset_t *fpregsetp;
-int regno;
-{
- int regi;
- char *to;
- char *from;
-
- for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++)
- {
- if ((regno == -1) || (regno == regi))
- {
- from = (char *) &registers[REGISTER_BYTE (regi)];
- to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
- memcpy (to, from, REGISTER_RAW_SIZE (regi));
- }
- }
- if ((regno == -1) || (regno == FPS_REGNUM))
- {
- fpregsetp->pr_fsr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
- }
-}
-
-#endif /* defined (FP0_REGNUM) */
-
-#endif /* USE_PROC_FS */
-
-
-#ifdef GET_LONGJMP_TARGET
-
-/* Figure out where the longjmp will land. We expect that we have just entered
- longjmp and haven't yet setup the stack frame, so the args are still in the
- output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
- extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
- This routine returns true on success */
-
-int
-get_longjmp_target (pc)
- CORE_ADDR *pc;
-{
- CORE_ADDR jb_addr;
-#define LONGJMP_TARGET_SIZE 4
- char buf[LONGJMP_TARGET_SIZE];
-
- jb_addr = read_register (O0_REGNUM);
-
- if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
- LONGJMP_TARGET_SIZE))
- return 0;
-
- *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
-
- return 1;
-}
-#endif /* GET_LONGJMP_TARGET */
-
-#ifdef STATIC_TRANSFORM_NAME
-/* SunPRO (3.0 at least), encodes the static variables. This is not
- related to C++ mangling, it is done for C too. */
-
-char *
-sunpro_static_transform_name (name)
- char *name;
-{
- char *p;
- if (name[0] == '$')
- {
- /* For file-local statics there will be a dollar sign, a bunch
- of junk (the contents of which match a string given in the
- N_OPT), a period and the name. For function-local statics
- there will be a bunch of junk (which seems to change the
- second character from 'A' to 'B'), a period, the name of the
- function, and the name. So just skip everything before the
- last period. */
- p = strrchr (name, '.');
- if (p != NULL)
- name = p + 1;
- }
- return name;
-}
-#endif /* STATIC_TRANSFORM_NAME */
-
-
-/* Utilities for printing registers.
- Page numbers refer to the SPARC Architecture Manual. */
-
-static void dump_ccreg PARAMS ((char *, int));
-
-static void
-dump_ccreg (reg, val)
- char *reg;
- int val;
-{
- /* page 41 */
- printf_unfiltered ("%s:%s,%s,%s,%s", reg,
- val & 8 ? "N" : "NN",
- val & 4 ? "Z" : "NZ",
- val & 2 ? "O" : "NO",
- val & 1 ? "C" : "NC"
- );
-}
-
-static char *
-decode_asi (val)
- int val;
-{
- /* page 72 */
- switch (val)
- {
- case 4 : return "ASI_NUCLEUS";
- case 0x0c : return "ASI_NUCLEUS_LITTLE";
- case 0x10 : return "ASI_AS_IF_USER_PRIMARY";
- case 0x11 : return "ASI_AS_IF_USER_SECONDARY";
- case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE";
- case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE";
- case 0x80 : return "ASI_PRIMARY";
- case 0x81 : return "ASI_SECONDARY";
- case 0x82 : return "ASI_PRIMARY_NOFAULT";
- case 0x83 : return "ASI_SECONDARY_NOFAULT";
- case 0x88 : return "ASI_PRIMARY_LITTLE";
- case 0x89 : return "ASI_SECONDARY_LITTLE";
- case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE";
- case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE";
- default : return NULL;
- }
-}
-
-/* PRINT_REGISTER_HOOK routine.
- Pretty print various registers. */
-/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
-
-void
-sparc_print_register_hook (regno)
- int regno;
-{
- ULONGEST val;
-
- /* Handle double/quad versions of lower 32 fp regs. */
- if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
- && (regno & 1) == 0)
- {
- char value[16];
-
- if (!read_relative_register_raw_bytes (regno, value)
- && !read_relative_register_raw_bytes (regno + 1, value + 4))
- {
- printf_unfiltered ("\t");
- print_floating (value, builtin_type_double, gdb_stdout);
- }
-#if 0 /* FIXME: gdb doesn't handle long doubles */
- if ((regno & 3) == 0)
- {
- if (!read_relative_register_raw_bytes (regno + 2, value + 8)
- && !read_relative_register_raw_bytes (regno + 3, value + 12))
- {
- printf_unfiltered ("\t");
- print_floating (value, builtin_type_long_double, gdb_stdout);
- }
- }
-#endif
- return;
- }
-
-#if 0 /* FIXME: gdb doesn't handle long doubles */
- /* Print upper fp regs as long double if appropriate. */
- if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
- /* We test for even numbered regs and not a multiple of 4 because
- the upper fp regs are recorded as doubles. */
- && (regno & 1) == 0)
- {
- char value[16];
-
- if (!read_relative_register_raw_bytes (regno, value)
- && !read_relative_register_raw_bytes (regno + 1, value + 8))
- {
- printf_unfiltered ("\t");
- print_floating (value, builtin_type_long_double, gdb_stdout);
- }
- return;
- }
-#endif
-
- /* FIXME: Some of these are priviledged registers.
- Not sure how they should be handled. */
-
-#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
-
- val = read_register (regno);
-
- /* pages 40 - 60 */
- switch (regno)
- {
-#ifdef GDB_TARGET_IS_SPARC64
- case CCR_REGNUM :
- printf_unfiltered("\t");
- dump_ccreg ("xcc", val >> 4);
- printf_unfiltered(", ");
- dump_ccreg ("icc", val & 15);
- break;
- case FPRS_REGNUM :
- printf ("\tfef:%d, du:%d, dl:%d",
- BITS (2, 1), BITS (1, 1), BITS (0, 1));
- break;
- case FSR_REGNUM :
- {
- static char *fcc[4] = { "=", "<", ">", "?" };
- static char *rd[4] = { "N", "0", "+", "-" };
- /* Long, yes, but I'd rather leave it as is and use a wide screen. */
- printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
- fcc[BITS (10, 3)], fcc[BITS (32, 3)],
- fcc[BITS (34, 3)], fcc[BITS (36, 3)],
- rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
- BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31));
- break;
- }
- case ASI_REGNUM :
- {
- char *asi = decode_asi (val);
- if (asi != NULL)
- printf ("\t%s", asi);
- break;
- }
- case VER_REGNUM :
- printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
- BITS (48, 0xffff), BITS (32, 0xffff),
- BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
- break;
- case PSTATE_REGNUM :
- {
- static char *mm[4] = { "tso", "pso", "rso", "?" };
- printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
- BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1),
- BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1),
- BITS (0, 1));
- break;
- }
- case TSTATE_REGNUM :
- /* FIXME: print all 4? */
- break;
- case TT_REGNUM :
- /* FIXME: print all 4? */
- break;
- case TPC_REGNUM :
- /* FIXME: print all 4? */
- break;
- case TNPC_REGNUM :
- /* FIXME: print all 4? */
- break;
- case WSTATE_REGNUM :
- printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
- break;
- case CWP_REGNUM :
- printf ("\t%d", BITS (0, 31));
- break;
- case CANSAVE_REGNUM :
- printf ("\t%-2d before spill", BITS (0, 31));
- break;
- case CANRESTORE_REGNUM :
- printf ("\t%-2d before fill", BITS (0, 31));
- break;
- case CLEANWIN_REGNUM :
- printf ("\t%-2d before clean", BITS (0, 31));
- break;
- case OTHERWIN_REGNUM :
- printf ("\t%d", BITS (0, 31));
- break;
-#else
- case PS_REGNUM:
- printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
- BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
- BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
- BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
- BITS (0, 31));
- break;
- case FPS_REGNUM:
- {
- static char *fcc[4] = { "=", "<", ">", "?" };
- static char *rd[4] = { "N", "0", "+", "-" };
- /* Long, yes, but I'd rather leave it as is and use a wide screen. */
- printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
- "fcc:%s, aexc:%d, cexc:%d",
- rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
- BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
- BITS (0, 31));
- break;
- }
-
-#endif /* GDB_TARGET_IS_SPARC64 */
- }
-
-#undef BITS
-}
-
-int
-gdb_print_insn_sparc (memaddr, info)
- bfd_vma memaddr;
- disassemble_info *info;
-{
- /* It's necessary to override mach again because print_insn messes it up. */
- info->mach = TM_PRINT_INSN_MACH;
- return print_insn_sparc (memaddr, info);
-}
-
-/* The SPARC passes the arguments on the stack; arguments smaller
- than an int are promoted to an int. */
-
-CORE_ADDR
-sparc_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
-{
- int i;
- int accumulate_size = 0;
- struct sparc_arg
- {
- char *contents;
- int len;
- int offset;
- };
- struct sparc_arg *sparc_args =
- (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg));
- struct sparc_arg *m_arg;
-
- /* Promote arguments if necessary, and calculate their stack offsets
- and sizes. */
- for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
- {
- value_ptr arg = args[i];
- struct type *arg_type = check_typedef (VALUE_TYPE (arg));
- /* Cast argument to long if necessary as the compiler does it too. */
- switch (TYPE_CODE (arg_type))
- {
- case TYPE_CODE_INT:
- case TYPE_CODE_BOOL:
- case TYPE_CODE_CHAR:
- case TYPE_CODE_RANGE:
- case TYPE_CODE_ENUM:
- if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
- {
- arg_type = builtin_type_long;
- arg = value_cast (arg_type, arg);
- }
- break;
- default:
- break;
- }
- m_arg->len = TYPE_LENGTH (arg_type);
- m_arg->offset = accumulate_size;
- accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
- m_arg->contents = VALUE_CONTENTS(arg);
- }
-
- /* Make room for the arguments on the stack. */
- accumulate_size += CALL_DUMMY_STACK_ADJUST;
- sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
-
- /* `Push' arguments on the stack. */
- for (i = nargs; m_arg--, --i >= 0; )
- write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
-
- return sp;
-}
-
-
-/* Extract from an array REGBUF containing the (raw) register state
- a function return value of type TYPE, and copy that, in virtual format,
- into VALBUF. */
-
-void
-sparc_extract_return_value (type, regbuf, valbuf)
- struct type *type;
- char *regbuf;
- char *valbuf;
-{
- int typelen = TYPE_LENGTH (type);
- int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
- memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
- else
- memcpy (valbuf,
- &regbuf [O0_REGNUM * regsize +
- (typelen >= regsize ? 0 : regsize - typelen)],
- typelen);
-}
-
-
-/* Write into appropriate registers a function return value
- of type TYPE, given in virtual format. On SPARCs with FPUs,
- float values are returned in %f0 (and %f1). In all other cases,
- values are returned in register %o0. */
-
-void
-sparc_store_return_value (type, valbuf)
- struct type *type;
- char *valbuf;
-{
- int regno;
- char buffer[MAX_REGISTER_RAW_SIZE];
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
- /* Floating-point values are returned in the register pair */
- /* formed by %f0 and %f1 (doubles are, anyway). */
- regno = FP0_REGNUM;
- else
- /* Other values are returned in register %o0. */
- regno = O0_REGNUM;
-
- /* Add leading zeros to the value. */
- if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno))
- {
- bzero (buffer, REGISTER_RAW_SIZE(regno));
- memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf,
- TYPE_LENGTH (type));
- write_register_bytes (REGISTER_BYTE (regno), buffer,
- REGISTER_RAW_SIZE(regno));
- }
- else
- write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
-}
-
-
-/* Insert the function address into a call dummy instsruction sequence
- stored at DUMMY.
-
- For structs and unions, if the function was compiled with Sun cc,
- it expects 'unimp' after the call. But gcc doesn't use that
- (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
- can assume it is operating on a pristine CALL_DUMMY, not one that
- has already been customized for a different function). */
-
-void
-sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
- char *dummy;
- CORE_ADDR pc;
- CORE_ADDR fun;
- struct type *value_type;
- int using_gcc;
-{
- int i;
-
- /* Store the relative adddress of the target function into the
- 'call' instruction. */
- store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
- (0x40000000
- | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
- & 0x3fffffff)));
-
- /* Comply with strange Sun cc calling convention for struct-returning
- functions. */
- if (!using_gcc
- && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
- || TYPE_CODE (value_type) == TYPE_CODE_UNION))
- store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
- TYPE_LENGTH (value_type) & 0x1fff);
-
-#ifndef GDB_TARGET_IS_SPARC64
- /* If this is not a simulator target, change the first four instructions
- of the call dummy to NOPs. Those instructions include a 'save'
- instruction and are designed to work around problems with register
- window flushing in the simulator. */
- if (strcmp (target_shortname, "sim") != 0)
- {
- for (i = 0; i < 4; i++)
- store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
- }
-#endif
-}
-
-
-/* Set target byte order based on machine type. */
-
-static int
-sparc_target_architecture_hook (ap)
- const bfd_arch_info_type *ap;
-{
- int i, j;
-
-#ifdef TARGET_BYTE_ORDER_SELECTABLE
- if (ap->mach == bfd_mach_sparc_sparclite_le)
- target_byte_order = LITTLE_ENDIAN;
-#endif
- return 1;
-}
-
-
-void
-_initialize_sparc_tdep ()
-{
- tm_print_insn = gdb_print_insn_sparc;
- tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
- target_architecture_hook = sparc_target_architecture_hook;
-}
-
-
-#ifdef GDB_TARGET_IS_SPARC64
-
-/* Compensate for stack bias. Note that we currently don't handle mixed
- 32/64 bit code. */
-CORE_ADDR
-sparc64_read_sp ()
-{
- CORE_ADDR sp = read_register (SP_REGNUM);
-
- if (sp & 1)
- sp += 2047;
- return sp;
-}
-
-CORE_ADDR
-sparc64_read_fp ()
-{
- CORE_ADDR fp = read_register (FP_REGNUM);
-
- if (fp & 1)
- fp += 2047;
- return fp;
-}
-
-void
-sparc64_write_sp (val)
- CORE_ADDR val;
-{
- CORE_ADDR oldsp = read_register (SP_REGNUM);
- if (oldsp & 1)
- write_register (SP_REGNUM, val - 2047);
- else
- write_register (SP_REGNUM, val);
-}
-
-void
-sparc64_write_fp (val)
- CORE_ADDR val;
-{
- CORE_ADDR oldfp = read_register (FP_REGNUM);
- if (oldfp & 1)
- write_register (FP_REGNUM, val - 2047);
- else
- write_register (FP_REGNUM, val);
-}
-
-/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are
- also copied onto the stack in the correct places. */
-
-CORE_ADDR
-sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- unsigned char struct_return;
- CORE_ADDR struct_retaddr;
-{
- int x;
- int regnum = 0;
- CORE_ADDR tempsp;
-
- sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL));
-
- /* Figure out how much space we'll need. */
- for (x = nargs - 1; x >= 0; x--)
- {
- int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
- value_ptr copyarg = args[x];
- int copylen = len;
-
- /* This code is, of course, no longer correct. */
- if (copylen < TYPE_LENGTH (builtin_type_long))
- {
- copyarg = value_cast(builtin_type_long, copyarg);
- copylen = TYPE_LENGTH (builtin_type_long);
- }
- sp -= copylen;
- }
-
- /* Round down. */
- sp = sp & ~7;
- tempsp = sp;
-
- /* Now write the arguments onto the stack, while writing FP arguments
- into the FP registers. */
- for (x = 0; x < nargs; x++)
- {
- int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
- value_ptr copyarg = args[x];
- int copylen = len;
-
- /* This code is, of course, no longer correct. */
- if (copylen < TYPE_LENGTH (builtin_type_long))
- {
- copyarg = value_cast(builtin_type_long, copyarg);
- copylen = TYPE_LENGTH (builtin_type_long);
- }
- write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
- tempsp += copylen;
- if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32)
- {
- /* This gets copied into a FP register. */
- int nextreg = regnum + 2;
- char *data = VALUE_CONTENTS (args[x]);
- /* Floats go into the lower half of a FP register pair; quads
- use 2 pairs. */
-
- if (len == 16)
- nextreg += 2;
- else if (len == 4)
- regnum++;
-
- write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum),
- data,
- len);
- regnum = nextreg;
- }
- }
- return sp;
-}
-
-/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
- returned in f0-f3). */
-void
-sparc64_extract_return_value (type, regbuf, valbuf, bitoffset)
- struct type *type;
- char *regbuf;
- char *valbuf;
- int bitoffset;
-{
- int typelen = TYPE_LENGTH (type);
- int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
-
- if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
- {
- memcpy (valbuf, &regbuf [REGISTER_BYTE (FP0_REGNUM)], typelen);
- return;
- }
-
- if (TYPE_CODE (type) != TYPE_CODE_STRUCT
- || (TYPE_LENGTH (type) > 32))
- {
- memcpy (valbuf,
- &regbuf [O0_REGNUM * regsize +
- (typelen >= regsize ? 0 : regsize - typelen)],
- typelen);
- return;
- }
- else
- {
- char *o0 = &regbuf[O0_REGNUM * regsize];
- char *f0 = &regbuf[FP0_REGNUM * regsize];
- int x;
-
- for (x = 0; x < TYPE_NFIELDS (type); x++)
- {
- struct field *f = &TYPE_FIELDS(type)[x];
- /* FIXME: We may need to handle static fields here. */
- int whichreg = (f->loc.bitpos + bitoffset) / 32;
- int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
- int where = (f->loc.bitpos + bitoffset) / 8;
- int size = TYPE_LENGTH (f->type);
- int typecode = TYPE_CODE (f->type);
-
- if (typecode == TYPE_CODE_STRUCT)
- {
- sparc64_extract_return_value (f->type,
- regbuf,
- valbuf,
- bitoffset + f->loc.bitpos);
- }
- else if (typecode == TYPE_CODE_FLT)
- {
- memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
- }
- else
- {
- memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
- }
- }
- }
-}
-#endif