aboutsummaryrefslogtreecommitdiff
path: root/gdb/blockframe.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/blockframe.c')
-rw-r--r--gdb/blockframe.c1228
1 files changed, 0 insertions, 1228 deletions
diff --git a/gdb/blockframe.c b/gdb/blockframe.c
deleted file mode 100644
index 3cb00c8..0000000
--- a/gdb/blockframe.c
+++ /dev/null
@@ -1,1228 +0,0 @@
-/* Get info from stack frames;
- convert between frames, blocks, functions and pc values.
- Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
- Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "symtab.h"
-#include "bfd.h"
-#include "symfile.h"
-#include "objfiles.h"
-#include "frame.h"
-#include "gdbcore.h"
-#include "value.h" /* for read_register */
-#include "target.h" /* for target_has_stack */
-#include "inferior.h" /* for read_pc */
-#include "annotate.h"
-
-/* Prototypes for exported functions. */
-
-void _initialize_blockframe PARAMS ((void));
-
-/* Is ADDR inside the startup file? Note that if your machine
- has a way to detect the bottom of the stack, there is no need
- to call this function from FRAME_CHAIN_VALID; the reason for
- doing so is that some machines have no way of detecting bottom
- of stack.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_entry_file (addr)
- CORE_ADDR addr;
-{
- if (addr == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
-#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
- /* Do not stop backtracing if the pc is in the call dummy
- at the entry point. */
-/* FIXME: Won't always work with zeros for the last two arguments */
- if (PC_IN_CALL_DUMMY (addr, 0, 0))
- return 0;
-#endif
- return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
- addr < symfile_objfile -> ei.entry_file_highpc);
-}
-
-/* Test a specified PC value to see if it is in the range of addresses
- that correspond to the main() function. See comments above for why
- we might want to do this.
-
- Typically called from FRAME_CHAIN_VALID.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_main_func (pc)
-CORE_ADDR pc;
-{
- if (pc == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
-
- /* If the addr range is not set up at symbol reading time, set it up now.
- This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
- it is unable to set it up and symbol reading time. */
-
- if (symfile_objfile -> ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
- symfile_objfile -> ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
- {
- struct symbol *mainsym;
-
- mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
- if (mainsym && SYMBOL_CLASS(mainsym) == LOC_BLOCK)
- {
- symfile_objfile->ei.main_func_lowpc =
- BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
- symfile_objfile->ei.main_func_highpc =
- BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
- }
- }
- return (symfile_objfile -> ei.main_func_lowpc <= pc &&
- symfile_objfile -> ei.main_func_highpc > pc);
-}
-
-/* Test a specified PC value to see if it is in the range of addresses
- that correspond to the process entry point function. See comments
- in objfiles.h for why we might want to do this.
-
- Typically called from FRAME_CHAIN_VALID.
-
- A PC of zero is always considered to be the bottom of the stack. */
-
-int
-inside_entry_func (pc)
-CORE_ADDR pc;
-{
- if (pc == 0)
- return 1;
- if (symfile_objfile == 0)
- return 0;
-#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
- /* Do not stop backtracing if the pc is in the call dummy
- at the entry point. */
-/* FIXME: Won't always work with zeros for the last two arguments */
- if (PC_IN_CALL_DUMMY (pc, 0, 0))
- return 0;
-#endif
- return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
- symfile_objfile -> ei.entry_func_highpc > pc);
-}
-
-/* Info about the innermost stack frame (contents of FP register) */
-
-static struct frame_info *current_frame;
-
-/* Cache for frame addresses already read by gdb. Valid only while
- inferior is stopped. Control variables for the frame cache should
- be local to this module. */
-
-struct obstack frame_cache_obstack;
-
-/* Return the innermost (currently executing) stack frame. */
-
-struct frame_info *
-get_current_frame ()
-{
- if (current_frame == NULL)
- {
- if (target_has_stack)
- current_frame = create_new_frame (read_fp (), read_pc ());
- else
- error ("No stack.");
- }
- return current_frame;
-}
-
-void
-set_current_frame (frame)
- struct frame_info *frame;
-{
- current_frame = frame;
-}
-
-/* Create an arbitrary (i.e. address specified by user) or innermost frame.
- Always returns a non-NULL value. */
-
-struct frame_info *
-create_new_frame (addr, pc)
- CORE_ADDR addr;
- CORE_ADDR pc;
-{
- struct frame_info *fi;
- char *name;
-
- fi = (struct frame_info *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_info));
-
- /* Arbitrary frame */
- fi->next = NULL;
- fi->prev = NULL;
- fi->frame = addr;
- fi->pc = pc;
- find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
- fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
-
-#ifdef INIT_EXTRA_FRAME_INFO
- INIT_EXTRA_FRAME_INFO (0, fi);
-#endif
-
- return fi;
-}
-
-/* Return the frame that called FI.
- If FI is the original frame (it has no caller), return 0. */
-
-struct frame_info *
-get_prev_frame (frame)
- struct frame_info *frame;
-{
- return get_prev_frame_info (frame);
-}
-
-/* Return the frame that FRAME calls (NULL if FRAME is the innermost
- frame). */
-
-struct frame_info *
-get_next_frame (frame)
- struct frame_info *frame;
-{
- return frame->next;
-}
-
-/* Flush the entire frame cache. */
-
-void
-flush_cached_frames ()
-{
- /* Since we can't really be sure what the first object allocated was */
- obstack_free (&frame_cache_obstack, 0);
- obstack_init (&frame_cache_obstack);
-
- current_frame = NULL; /* Invalidate cache */
- select_frame (NULL, -1);
- annotate_frames_invalid ();
-}
-
-/* Flush the frame cache, and start a new one if necessary. */
-
-void
-reinit_frame_cache ()
-{
- flush_cached_frames ();
-
- /* FIXME: The inferior_pid test is wrong if there is a corefile. */
- if (inferior_pid != 0)
- {
- select_frame (get_current_frame (), 0);
- }
-}
-
-/* If a machine allows frameless functions, it should define a macro
- FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
- frame_info for the frame, and FRAMELESS should be set to nonzero
- if it represents a frameless function invocation. */
-
-/* Return nonzero if the function for this frame lacks a prologue. Many
- machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
- function. */
-
-int
-frameless_look_for_prologue (frame)
- struct frame_info *frame;
-{
- CORE_ADDR func_start, after_prologue;
- func_start = get_pc_function_start (frame->pc);
- if (func_start)
- {
- func_start += FUNCTION_START_OFFSET;
- after_prologue = func_start;
-#ifdef SKIP_PROLOGUE_FRAMELESS_P
- /* This is faster, since only care whether there *is* a prologue,
- not how long it is. */
- SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
-#else
- SKIP_PROLOGUE (after_prologue);
-#endif
- return after_prologue == func_start;
- }
- else if (frame->pc == 0)
- /* A frame with a zero PC is usually created by dereferencing a NULL
- function pointer, normally causing an immediate core dump of the
- inferior. Mark function as frameless, as the inferior has no chance
- of setting up a stack frame. */
- return 1;
- else
- /* If we can't find the start of the function, we don't really
- know whether the function is frameless, but we should be able
- to get a reasonable (i.e. best we can do under the
- circumstances) backtrace by saying that it isn't. */
- return 0;
-}
-
-/* Default a few macros that people seldom redefine. */
-
-#if !defined (INIT_FRAME_PC)
-#define INIT_FRAME_PC(fromleaf, prev) \
- prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
- prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
-#endif
-
-#ifndef FRAME_CHAIN_COMBINE
-#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
-#endif
-
-/* Return a structure containing various interesting information
- about the frame that called NEXT_FRAME. Returns NULL
- if there is no such frame. */
-
-struct frame_info *
-get_prev_frame_info (next_frame)
- struct frame_info *next_frame;
-{
- CORE_ADDR address = 0;
- struct frame_info *prev;
- int fromleaf = 0;
- char *name;
-
- /* If the requested entry is in the cache, return it.
- Otherwise, figure out what the address should be for the entry
- we're about to add to the cache. */
-
- if (!next_frame)
- {
-#if 0
- /* This screws value_of_variable, which just wants a nice clean
- NULL return from block_innermost_frame if there are no frames.
- I don't think I've ever seen this message happen otherwise.
- And returning NULL here is a perfectly legitimate thing to do. */
- if (!current_frame)
- {
- error ("You haven't set up a process's stack to examine.");
- }
-#endif
-
- return current_frame;
- }
-
- /* If we have the prev one, return it */
- if (next_frame->prev)
- return next_frame->prev;
-
- /* On some machines it is possible to call a function without
- setting up a stack frame for it. On these machines, we
- define this macro to take two args; a frameinfo pointer
- identifying a frame and a variable to set or clear if it is
- or isn't leafless. */
-#ifdef FRAMELESS_FUNCTION_INVOCATION
- /* Still don't want to worry about this except on the innermost
- frame. This macro will set FROMLEAF if NEXT_FRAME is a
- frameless function invocation. */
- if (!(next_frame->next))
- {
- FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
- if (fromleaf)
- address = FRAME_FP (next_frame);
- }
-#endif
-
- if (!fromleaf)
- {
- /* Two macros defined in tm.h specify the machine-dependent
- actions to be performed here.
- First, get the frame's chain-pointer.
- If that is zero, the frame is the outermost frame or a leaf
- called by the outermost frame. This means that if start
- calls main without a frame, we'll return 0 (which is fine
- anyway).
-
- Nope; there's a problem. This also returns when the current
- routine is a leaf of main. This is unacceptable. We move
- this to after the ffi test; I'd rather have backtraces from
- start go curfluy than have an abort called from main not show
- main. */
- address = FRAME_CHAIN (next_frame);
- if (!FRAME_CHAIN_VALID (address, next_frame))
- return 0;
- address = FRAME_CHAIN_COMBINE (address, next_frame);
- }
- if (address == 0)
- return 0;
-
- prev = (struct frame_info *)
- obstack_alloc (&frame_cache_obstack,
- sizeof (struct frame_info));
-
- if (next_frame)
- next_frame->prev = prev;
- prev->next = next_frame;
- prev->prev = (struct frame_info *) 0;
- prev->frame = address;
- prev->signal_handler_caller = 0;
-
-/* This change should not be needed, FIXME! We should
- determine whether any targets *need* INIT_FRAME_PC to happen
- after INIT_EXTRA_FRAME_INFO and come up with a simple way to
- express what goes on here.
-
- INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
- (where the PC is already set up) and here (where it isn't).
- INIT_FRAME_PC is only called from here, always after
- INIT_EXTRA_FRAME_INFO.
-
- The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
- value (which hasn't been set yet). Some other machines appear to
- require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
-
- We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
- an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
-
- Assuming that some machines need INIT_FRAME_PC after
- INIT_EXTRA_FRAME_INFO, one possible scheme:
-
- SETUP_INNERMOST_FRAME()
- Default version is just create_new_frame (read_fp ()),
- read_pc ()). Machines with extra frame info would do that (or the
- local equivalent) and then set the extra fields.
- SETUP_ARBITRARY_FRAME(argc, argv)
- Only change here is that create_new_frame would no longer init extra
- frame info; SETUP_ARBITRARY_FRAME would have to do that.
- INIT_PREV_FRAME(fromleaf, prev)
- Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
- also return a flag saying whether to keep the new frame, or
- whether to discard it, because on some machines (e.g. mips) it
- is really awkward to have FRAME_CHAIN_VALID called *before*
- INIT_EXTRA_FRAME_INFO (there is no good way to get information
- deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
- std_frame_pc(fromleaf, prev)
- This is the default setting for INIT_PREV_FRAME. It just does what
- the default INIT_FRAME_PC does. Some machines will call it from
- INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
- Some machines won't use it.
- kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
-
-#ifdef INIT_FRAME_PC_FIRST
- INIT_FRAME_PC_FIRST (fromleaf, prev);
-#endif
-
-#ifdef INIT_EXTRA_FRAME_INFO
- INIT_EXTRA_FRAME_INFO(fromleaf, prev);
-#endif
-
- /* This entry is in the frame queue now, which is good since
- FRAME_SAVED_PC may use that queue to figure out its value
- (see tm-sparc.h). We want the pc saved in the inferior frame. */
- INIT_FRAME_PC(fromleaf, prev);
-
- /* If ->frame and ->pc are unchanged, we are in the process of getting
- ourselves into an infinite backtrace. Some architectures check this
- in FRAME_CHAIN or thereabouts, but it seems like there is no reason
- this can't be an architecture-independent check. */
- if (next_frame != NULL)
- {
- if (prev->frame == next_frame->frame
- && prev->pc == next_frame->pc)
- {
- next_frame->prev = NULL;
- obstack_free (&frame_cache_obstack, prev);
- return NULL;
- }
- }
-
- find_pc_partial_function (prev->pc, &name,
- (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
- if (IN_SIGTRAMP (prev->pc, name))
- prev->signal_handler_caller = 1;
-
- return prev;
-}
-
-CORE_ADDR
-get_frame_pc (frame)
- struct frame_info *frame;
-{
- return frame->pc;
-}
-
-#if defined (FRAME_FIND_SAVED_REGS)
-/* Find the addresses in which registers are saved in FRAME. */
-
-void
-get_frame_saved_regs (frame, saved_regs_addr)
- struct frame_info *frame;
- struct frame_saved_regs *saved_regs_addr;
-{
- FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
-}
-#endif
-
-/* Return the innermost lexical block in execution
- in a specified stack frame. The frame address is assumed valid. */
-
-struct block *
-get_frame_block (frame)
- struct frame_info *frame;
-{
- CORE_ADDR pc;
-
- pc = frame->pc;
- if (frame->next != 0 && frame->next->signal_handler_caller == 0)
- /* We are not in the innermost frame and we were not interrupted
- by a signal. We need to subtract one to get the correct block,
- in case the call instruction was the last instruction of the block.
- If there are any machines on which the saved pc does not point to
- after the call insn, we probably want to make frame->pc point after
- the call insn anyway. */
- --pc;
- return block_for_pc (pc);
-}
-
-struct block *
-get_current_block ()
-{
- return block_for_pc (read_pc ());
-}
-
-CORE_ADDR
-get_pc_function_start (pc)
- CORE_ADDR pc;
-{
- register struct block *bl;
- register struct symbol *symbol;
- register struct minimal_symbol *msymbol;
- CORE_ADDR fstart;
-
- if ((bl = block_for_pc (pc)) != NULL &&
- (symbol = block_function (bl)) != NULL)
- {
- bl = SYMBOL_BLOCK_VALUE (symbol);
- fstart = BLOCK_START (bl);
- }
- else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
- {
- fstart = SYMBOL_VALUE_ADDRESS (msymbol);
- }
- else
- {
- fstart = 0;
- }
- return (fstart);
-}
-
-/* Return the symbol for the function executing in frame FRAME. */
-
-struct symbol *
-get_frame_function (frame)
- struct frame_info *frame;
-{
- register struct block *bl = get_frame_block (frame);
- if (bl == 0)
- return 0;
- return block_function (bl);
-}
-
-
-/* Return the blockvector immediately containing the innermost lexical block
- containing the specified pc value and section, or 0 if there is none.
- PINDEX is a pointer to the index value of the block. If PINDEX
- is NULL, we don't pass this information back to the caller. */
-
-struct blockvector *
-blockvector_for_pc_sect (pc, section, pindex, symtab)
- register CORE_ADDR pc;
- struct sec *section;
- int *pindex;
- struct symtab *symtab;
-
-{
- register struct block *b;
- register int bot, top, half;
- struct blockvector *bl;
-
- if (symtab == 0) /* if no symtab specified by caller */
- {
- /* First search all symtabs for one whose file contains our pc */
- if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
- return 0;
- }
-
- bl = BLOCKVECTOR (symtab);
- b = BLOCKVECTOR_BLOCK (bl, 0);
-
- /* Then search that symtab for the smallest block that wins. */
- /* Use binary search to find the last block that starts before PC. */
-
- bot = 0;
- top = BLOCKVECTOR_NBLOCKS (bl);
-
- while (top - bot > 1)
- {
- half = (top - bot + 1) >> 1;
- b = BLOCKVECTOR_BLOCK (bl, bot + half);
- if (BLOCK_START (b) <= pc)
- bot += half;
- else
- top = bot + half;
- }
-
- /* Now search backward for a block that ends after PC. */
-
- while (bot >= 0)
- {
- b = BLOCKVECTOR_BLOCK (bl, bot);
- if (BLOCK_END (b) > pc)
- {
- if (pindex)
- *pindex = bot;
- return bl;
- }
- bot--;
- }
- return 0;
-}
-
-/* Return the blockvector immediately containing the innermost lexical block
- containing the specified pc value, or 0 if there is none.
- Backward compatibility, no section. */
-
-struct blockvector *
-blockvector_for_pc (pc, pindex)
- register CORE_ADDR pc;
- int *pindex;
-{
- return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
- pindex, NULL);
-}
-
-/* Return the innermost lexical block containing the specified pc value
- in the specified section, or 0 if there is none. */
-
-struct block *
-block_for_pc_sect (pc, section)
- register CORE_ADDR pc;
- struct sec *section;
-{
- register struct blockvector *bl;
- int index;
-
- bl = blockvector_for_pc_sect (pc, section, &index, NULL);
- if (bl)
- return BLOCKVECTOR_BLOCK (bl, index);
- return 0;
-}
-
-/* Return the innermost lexical block containing the specified pc value,
- or 0 if there is none. Backward compatibility, no section. */
-
-struct block *
-block_for_pc (pc)
- register CORE_ADDR pc;
-{
- return block_for_pc_sect (pc, find_pc_mapped_section (pc));
-}
-
-/* Return the function containing pc value PC in section SECTION.
- Returns 0 if function is not known. */
-
-struct symbol *
-find_pc_sect_function (pc, section)
- CORE_ADDR pc;
- struct sec *section;
-{
- register struct block *b = block_for_pc_sect (pc, section);
- if (b == 0)
- return 0;
- return block_function (b);
-}
-
-/* Return the function containing pc value PC.
- Returns 0 if function is not known. Backward compatibility, no section */
-
-struct symbol *
-find_pc_function (pc)
- CORE_ADDR pc;
-{
- return find_pc_sect_function (pc, find_pc_mapped_section (pc));
-}
-
-/* These variables are used to cache the most recent result
- * of find_pc_partial_function. */
-
-static CORE_ADDR cache_pc_function_low = 0;
-static CORE_ADDR cache_pc_function_high = 0;
-static char *cache_pc_function_name = 0;
-static struct sec *cache_pc_function_section = NULL;
-
-/* Clear cache, e.g. when symbol table is discarded. */
-
-void
-clear_pc_function_cache()
-{
- cache_pc_function_low = 0;
- cache_pc_function_high = 0;
- cache_pc_function_name = (char *)0;
- cache_pc_function_section = NULL;
-}
-
-/* Finds the "function" (text symbol) that is smaller than PC but
- greatest of all of the potential text symbols in SECTION. Sets
- *NAME and/or *ADDRESS conditionally if that pointer is non-null.
- If ENDADDR is non-null, then set *ENDADDR to be the end of the
- function (exclusive), but passing ENDADDR as non-null means that
- the function might cause symbols to be read. This function either
- succeeds or fails (not halfway succeeds). If it succeeds, it sets
- *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
- If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
- returns 0. */
-
-int
-find_pc_sect_partial_function (pc, section, name, address, endaddr)
- CORE_ADDR pc;
- asection *section;
- char **name;
- CORE_ADDR *address;
- CORE_ADDR *endaddr;
-{
- struct partial_symtab *pst;
- struct symbol *f;
- struct minimal_symbol *msymbol;
- struct partial_symbol *psb;
- struct obj_section *osect;
- int i;
- CORE_ADDR mapped_pc;
-
- mapped_pc = overlay_mapped_address (pc, section);
-
- if (mapped_pc >= cache_pc_function_low &&
- mapped_pc < cache_pc_function_high &&
- section == cache_pc_function_section)
- goto return_cached_value;
-
- /* If sigtramp is in the u area, it counts as a function (especially
- important for step_1). */
-#if defined SIGTRAMP_START
- if (IN_SIGTRAMP (mapped_pc, (char *)NULL))
- {
- cache_pc_function_low = SIGTRAMP_START (mapped_pc);
- cache_pc_function_high = SIGTRAMP_END (mapped_pc);
- cache_pc_function_name = "<sigtramp>";
- cache_pc_function_section = section;
- goto return_cached_value;
- }
-#endif
-
- msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
- pst = find_pc_sect_psymtab (mapped_pc, section);
- if (pst)
- {
- /* Need to read the symbols to get a good value for the end address. */
- if (endaddr != NULL && !pst->readin)
- {
- /* Need to get the terminal in case symbol-reading produces
- output. */
- target_terminal_ours_for_output ();
- PSYMTAB_TO_SYMTAB (pst);
- }
-
- if (pst->readin)
- {
- /* Checking whether the msymbol has a larger value is for the
- "pathological" case mentioned in print_frame_info. */
- f = find_pc_sect_function (mapped_pc, section);
- if (f != NULL
- && (msymbol == NULL
- || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
- >= SYMBOL_VALUE_ADDRESS (msymbol))))
- {
- cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
- cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
- cache_pc_function_name = SYMBOL_NAME (f);
- cache_pc_function_section = section;
- goto return_cached_value;
- }
- }
- else
- {
- /* Now that static symbols go in the minimal symbol table, perhaps
- we could just ignore the partial symbols. But at least for now
- we use the partial or minimal symbol, whichever is larger. */
- psb = find_pc_sect_psymbol (pst, mapped_pc, section);
-
- if (psb
- && (msymbol == NULL ||
- (SYMBOL_VALUE_ADDRESS (psb)
- >= SYMBOL_VALUE_ADDRESS (msymbol))))
- {
- /* This case isn't being cached currently. */
- if (address)
- *address = SYMBOL_VALUE_ADDRESS (psb);
- if (name)
- *name = SYMBOL_NAME (psb);
- /* endaddr non-NULL can't happen here. */
- return 1;
- }
- }
- }
-
- /* Not in the normal symbol tables, see if the pc is in a known section.
- If it's not, then give up. This ensures that anything beyond the end
- of the text seg doesn't appear to be part of the last function in the
- text segment. */
-
- osect = find_pc_sect_section (mapped_pc, section);
-
- if (!osect)
- msymbol = NULL;
-
- /* Must be in the minimal symbol table. */
- if (msymbol == NULL)
- {
- /* No available symbol. */
- if (name != NULL)
- *name = 0;
- if (address != NULL)
- *address = 0;
- if (endaddr != NULL)
- *endaddr = 0;
- return 0;
- }
-
- cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
- cache_pc_function_name = SYMBOL_NAME (msymbol);
- cache_pc_function_section = section;
-
- /* Use the lesser of the next minimal symbol in the same section, or
- the end of the section, as the end of the function. */
-
- /* Step over other symbols at this same address, and symbols in
- other sections, to find the next symbol in this section with
- a different address. */
-
- for (i=1; SYMBOL_NAME (msymbol+i) != NULL; i++)
- {
- if (SYMBOL_VALUE_ADDRESS (msymbol+i) != SYMBOL_VALUE_ADDRESS (msymbol)
- && SYMBOL_BFD_SECTION (msymbol+i) == SYMBOL_BFD_SECTION (msymbol))
- break;
- }
-
- if (SYMBOL_NAME (msymbol + i) != NULL
- && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
- cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
- else
- /* We got the start address from the last msymbol in the objfile.
- So the end address is the end of the section. */
- cache_pc_function_high = osect->endaddr;
-
- return_cached_value:
-
- if (address)
- {
- if (pc_in_unmapped_range (pc, section))
- *address = overlay_unmapped_address (cache_pc_function_low, section);
- else
- *address = cache_pc_function_low;
- }
-
- if (name)
- *name = cache_pc_function_name;
-
- if (endaddr)
- {
- if (pc_in_unmapped_range (pc, section))
- {
- /* Because the high address is actually beyond the end of
- the function (and therefore possibly beyond the end of
- the overlay), we must actually convert (high - 1)
- and then add one to that. */
-
- *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
- section);
- }
- else
- *endaddr = cache_pc_function_high;
- }
-
- return 1;
-}
-
-/* Backward compatibility, no section argument */
-
-int
-find_pc_partial_function (pc, name, address, endaddr)
- CORE_ADDR pc;
- char **name;
- CORE_ADDR *address;
- CORE_ADDR *endaddr;
-{
- asection *section;
-
- section = find_pc_overlay (pc);
- return find_pc_sect_partial_function (pc, section, name, address, endaddr);
-}
-
-/* Return the innermost stack frame executing inside of BLOCK,
- or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
-
-struct frame_info *
-block_innermost_frame (block)
- struct block *block;
-{
- struct frame_info *frame;
- register CORE_ADDR start;
- register CORE_ADDR end;
-
- if (block == NULL)
- return NULL;
-
- start = BLOCK_START (block);
- end = BLOCK_END (block);
-
- frame = NULL;
- while (1)
- {
- frame = get_prev_frame (frame);
- if (frame == NULL)
- return NULL;
- if (frame->pc >= start && frame->pc < end)
- return frame;
- }
-}
-
-/* Return the full FRAME which corresponds to the given CORE_ADDR
- or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
-
-struct frame_info *
-find_frame_addr_in_frame_chain (frame_addr)
- CORE_ADDR frame_addr;
-{
- struct frame_info *frame = NULL;
-
- if (frame_addr == (CORE_ADDR)0)
- return NULL;
-
- while (1)
- {
- frame = get_prev_frame (frame);
- if (frame == NULL)
- return NULL;
- if (FRAME_FP (frame) == frame_addr)
- return frame;
- }
-}
-
-#ifdef SIGCONTEXT_PC_OFFSET
-/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
-
-CORE_ADDR
-sigtramp_saved_pc (frame)
- struct frame_info *frame;
-{
- CORE_ADDR sigcontext_addr;
- char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
- int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
- int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
-
- /* Get sigcontext address, it is the third parameter on the stack. */
- if (frame->next)
- sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
- + FRAME_ARGS_SKIP
- + sigcontext_offs,
- ptrbytes);
- else
- sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
- + sigcontext_offs,
- ptrbytes);
-
- /* Don't cause a memory_error when accessing sigcontext in case the stack
- layout has changed or the stack is corrupt. */
- target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
- return extract_unsigned_integer (buf, ptrbytes);
-}
-#endif /* SIGCONTEXT_PC_OFFSET */
-
-#ifdef USE_GENERIC_DUMMY_FRAMES
-
-/*
- * GENERIC DUMMY FRAMES
- *
- * The following code serves to maintain the dummy stack frames for
- * inferior function calls (ie. when gdb calls into the inferior via
- * call_function_by_hand). This code saves the machine state before
- * the call in host memory, so we must maintain an independant stack
- * and keep it consistant etc. I am attempting to make this code
- * generic enough to be used by many targets.
- *
- * The cheapest and most generic way to do CALL_DUMMY on a new target
- * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to zero,
- * and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember to define
- * PUSH_RETURN_ADDRESS, because no call instruction will be being
- * executed by the target.
- */
-
-static struct dummy_frame *dummy_frame_stack = NULL;
-
-/* Function: find_dummy_frame(pc, fp, sp)
- Search the stack of dummy frames for one matching the given PC, FP and SP.
- This is the work-horse for pc_in_call_dummy and read_register_dummy */
-
-char *
-generic_find_dummy_frame (pc, fp)
- CORE_ADDR pc;
- CORE_ADDR fp;
-{
- struct dummy_frame * dummyframe;
-
- if (pc != entry_point_address ())
- return 0;
-
- for (dummyframe = dummy_frame_stack; dummyframe != NULL;
- dummyframe = dummyframe->next)
- if (fp == dummyframe->fp || fp == dummyframe->sp)
- /* The frame in question lies between the saved fp and sp, inclusive */
- return dummyframe->regs;
-
- return 0;
-}
-
-/* Function: pc_in_call_dummy (pc, fp)
- Return true if this is a dummy frame created by gdb for an inferior call */
-
-int
-generic_pc_in_call_dummy (pc, fp)
- CORE_ADDR pc;
- CORE_ADDR fp;
-{
- /* if find_dummy_frame succeeds, then PC is in a call dummy */
- return (generic_find_dummy_frame (pc, fp) != 0);
-}
-
-/* Function: read_register_dummy
- Find a saved register from before GDB calls a function in the inferior */
-
-CORE_ADDR
-generic_read_register_dummy (pc, fp, regno)
- CORE_ADDR pc;
- CORE_ADDR fp;
- int regno;
-{
- char *dummy_regs = generic_find_dummy_frame (pc, fp);
-
- if (dummy_regs)
- return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
- REGISTER_RAW_SIZE(regno));
- else
- return 0;
-}
-
-/* Save all the registers on the dummy frame stack. Most ports save the
- registers on the target stack. This results in lots of unnecessary memory
- references, which are slow when debugging via a serial line. Instead, we
- save all the registers internally, and never write them to the stack. The
- registers get restored when the called function returns to the entry point,
- where a breakpoint is laying in wait. */
-
-void
-generic_push_dummy_frame ()
-{
- struct dummy_frame *dummy_frame;
- CORE_ADDR fp = (get_current_frame ())->frame;
-
- /* check to see if there are stale dummy frames,
- perhaps left over from when a longjump took us out of a
- function that was called by the debugger */
-
- dummy_frame = dummy_frame_stack;
- while (dummy_frame)
- if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
- {
- dummy_frame_stack = dummy_frame->next;
- free (dummy_frame);
- dummy_frame = dummy_frame_stack;
- }
- else
- dummy_frame = dummy_frame->next;
-
- dummy_frame = xmalloc (sizeof (struct dummy_frame));
- dummy_frame->pc = read_register (PC_REGNUM);
- dummy_frame->sp = read_register (SP_REGNUM);
- dummy_frame->fp = fp;
- read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
- dummy_frame->next = dummy_frame_stack;
- dummy_frame_stack = dummy_frame;
-}
-
-/* Function: pop_frame
- Restore the machine state from either the saved dummy stack or a
- real stack frame. */
-
-void
-generic_pop_current_frame (pop)
- void (*pop) PARAMS ((struct frame_info *frame));
-{
- struct frame_info *frame = get_current_frame ();
- if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
- generic_pop_dummy_frame ();
- else
- pop (frame);
-}
-
-/* Function: pop_dummy_frame
- Restore the machine state from a saved dummy stack frame. */
-
-void
-generic_pop_dummy_frame ()
-{
- struct dummy_frame *dummy_frame = dummy_frame_stack;
-
- /* FIXME: what if the first frame isn't the right one, eg..
- because one call-by-hand function has done a longjmp into another one? */
-
- if (!dummy_frame)
- error ("Can't pop dummy frame!");
- dummy_frame_stack = dummy_frame->next;
- write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
- flush_cached_frames ();
- free (dummy_frame);
-}
-
-/* Function: frame_chain_valid
- Returns true for a user frame or a call_function_by_hand dummy frame,
- and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
-
-int
-generic_frame_chain_valid (fp, fi)
- CORE_ADDR fp;
- struct frame_info *fi;
-{
- if (PC_IN_CALL_DUMMY(FRAME_SAVED_PC(fi), fp, fp))
- return 1; /* don't prune CALL_DUMMY frames */
- else /* fall back to default algorithm (see frame.h) */
- return (fp != 0
- && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
- && !inside_entry_file (FRAME_SAVED_PC(fi)));
-}
-
-/* Function: get_saved_register
- Find register number REGNUM relative to FRAME and put its (raw,
- target format) contents in *RAW_BUFFER.
-
- Set *OPTIMIZED if the variable was optimized out (and thus can't be
- fetched). Note that this is never set to anything other than zero
- in this implementation.
-
- Set *LVAL to lval_memory, lval_register, or not_lval, depending on
- whether the value was fetched from memory, from a register, or in a
- strange and non-modifiable way (e.g. a frame pointer which was
- calculated rather than fetched). We will use not_lval for values
- fetched from generic dummy frames.
-
- Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
- offset into the registers array. If the value is stored in a dummy
- frame, set *ADDRP to zero.
-
- To use this implementation, define a function called
- "get_saved_register" in your target code, which simply passes all
- of its arguments to this function.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-generic_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lval;
-{
- struct frame_saved_regs fsr;
-
- if (!target_has_registers)
- error ("No registers.");
-
- /* Normal systems don't optimize out things with register numbers. */
- if (optimized != NULL)
- *optimized = 0;
-
- if (addrp) /* default assumption: not found in memory */
- *addrp = 0;
-
- /* Note: since the current frame's registers could only have been
- saved by frames INTERIOR TO the current frame, we skip examining
- the current frame itself: otherwise, we would be getting the
- previous frame's registers which were saved by the current frame. */
-
- while (frame && ((frame = frame->next) != NULL))
- {
- if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
- {
- if (lval) /* found it in a CALL_DUMMY frame */
- *lval = not_lval;
- if (raw_buffer)
- memcpy (raw_buffer,
- generic_find_dummy_frame (frame->pc, frame->frame) +
- REGISTER_BYTE (regnum),
- REGISTER_RAW_SIZE (regnum));
- return;
- }
-
- FRAME_FIND_SAVED_REGS(frame, fsr);
- if (fsr.regs[regnum] != 0)
- {
- if (lval) /* found it saved on the stack */
- *lval = lval_memory;
- if (regnum == SP_REGNUM)
- {
- if (raw_buffer) /* SP register treated specially */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
- fsr.regs[regnum]);
- }
- else
- {
- if (addrp) /* any other register */
- *addrp = fsr.regs[regnum];
- if (raw_buffer)
- read_memory (fsr.regs[regnum], raw_buffer,
- REGISTER_RAW_SIZE (regnum));
- }
- return;
- }
- }
-
- /* If we get thru the loop to this point, it means the register was
- not saved in any frame. Return the actual live-register value. */
-
- if (lval) /* found it in a live register */
- *lval = lval_register;
- if (addrp)
- *addrp = REGISTER_BYTE (regnum);
- if (raw_buffer)
- read_register_gen (regnum, raw_buffer);
-}
-#endif /* USE_GENERIC_DUMMY_FRAMES */
-
-void
-_initialize_blockframe ()
-{
- obstack_init (&frame_cache_obstack);
-}