aboutsummaryrefslogtreecommitdiff
path: root/gdb/h8500-tdep.c
diff options
context:
space:
mode:
authorSteve Chamberlain <sac@cygnus>1993-03-19 23:05:34 +0000
committerSteve Chamberlain <sac@cygnus>1993-03-19 23:05:34 +0000
commit195e46ea0b78d25aff048f3e88019c7a7ae8135e (patch)
tree5c05ad80f2f4ac008cc80df4c180bf1d34568128 /gdb/h8500-tdep.c
parent9d19b85b6a01c0d9ef7f64e66869f1dea2355a2d (diff)
downloadfsf-binutils-gdb-195e46ea0b78d25aff048f3e88019c7a7ae8135e.zip
fsf-binutils-gdb-195e46ea0b78d25aff048f3e88019c7a7ae8135e.tar.gz
fsf-binutils-gdb-195e46ea0b78d25aff048f3e88019c7a7ae8135e.tar.bz2
Checkpoint for Stu
Diffstat (limited to 'gdb/h8500-tdep.c')
-rw-r--r--gdb/h8500-tdep.c802
1 files changed, 802 insertions, 0 deletions
diff --git a/gdb/h8500-tdep.c b/gdb/h8500-tdep.c
new file mode 100644
index 0000000..31ad3f5
--- /dev/null
+++ b/gdb/h8500-tdep.c
@@ -0,0 +1,802 @@
+/* Target-machine dependent code for Hitachi H8/500, for GDB.
+ Copyright (C) 1993 Free Software Foundation, Inc.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/*
+ Contributed by Steve Chamberlain
+ sac@cygnus.com
+ */
+
+#include "defs.h"
+#include "frame.h"
+#include "obstack.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "gdbcmd.h"
+#include "dis-asm.h"
+#include "../opcodes/h8500-opc.h"
+;
+#undef NUM_REGS
+#define NUM_REGS 11
+
+#define UNSIGNED_SHORT(X) ((X) & 0xffff)
+
+
+/* Shape of an H8/500 frame :
+
+
+ arg-n
+ ..
+ arg-2
+ arg-1
+ return address <2 or 4 bytes>
+ old fp <2 bytes>
+ auto-n
+ ..
+ auto-1
+ saved registers
+
+*/
+
+
+/* an easy to debug H8 stack frame looks like:
+0x6df6 push r6
+0x0d76 mov.w r7,r6
+0x6dfn push reg
+0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
+0x1957 sub.w r5,sp
+
+ */
+
+#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
+#define IS_LINK_8(x) ((x) == 0x17)
+#define IS_LINK_16(x) ((x) == 0x1f)
+#define IS_MOVE_FP(x) (x == 0x0d76)
+#define IS_MOV_SP_FP(x) (x == 0x0d76)
+#define IS_SUB2_SP(x) (x==0x1b87)
+#define IS_MOVK_R5(x) (x==0x7905)
+#define IS_SUB_R5SP(x) (x==0x1957)
+
+#define LINK_8 0x17
+#define LINK_16 0x1f
+
+int minimum_mode = 1;
+CORE_ADDR examine_prologue ();
+
+void frame_find_saved_regs ();
+CORE_ADDR
+h8500_skip_prologue (start_pc)
+ CORE_ADDR start_pc;
+
+{
+ short int w;
+
+
+ w = read_memory_integer (start_pc, 1);
+ if (w == LINK_8)
+ {
+ start_pc ++;
+ w = read_memory_integer (start_pc,1);
+ }
+
+ if (w == LINK_16)
+ {
+ start_pc +=2;
+ w = read_memory_integer (start_pc,2);
+ }
+
+ /* Skip past a move to FP */
+ if (IS_MOVE_FP (w))
+ {
+ start_pc += 2;
+ w = read_memory_short (start_pc);
+ }
+
+ /* Skip the stack adjust */
+
+ if (IS_MOVK_R5 (w))
+ {
+ start_pc += 2;
+ w = read_memory_short (start_pc);
+ }
+ if (IS_SUB_R5SP (w))
+ {
+ start_pc += 2;
+ w = read_memory_short (start_pc);
+ }
+ while (IS_SUB2_SP (w))
+ {
+ start_pc += 2;
+ w = read_memory_short (start_pc);
+ }
+
+ return start_pc;
+
+}
+
+int
+print_insn (memaddr, stream)
+ CORE_ADDR memaddr;
+ FILE *stream;
+{
+ /* Nothing is bigger than 8 bytes */
+ char data[8];
+ disassemble_info info;
+ read_memory (memaddr, data, sizeof (data));
+ GDB_INIT_DISASSEMBLE_INFO(info, stream);
+ return print_insn_h8500 (memaddr, data, &info);
+}
+
+/* Given a GDB frame, determine the address of the calling function's frame.
+ This will be used to create a new GDB frame struct, and then
+ INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
+
+ For us, the frame address is its stack pointer value, so we look up
+ the function prologue to determine the caller's sp value, and return it. */
+
+FRAME_ADDR
+FRAME_CHAIN (thisframe)
+ FRAME thisframe;
+{
+ static int loopcount;
+ static int prevr;
+ if (!inside_entry_file ((thisframe)->pc))
+ {
+ int v = read_memory_integer ((thisframe)->frame, PTR_SIZE) ;
+
+ /* Detect loops in the stack */
+ if (v == prevr) loopcount++;
+ else loopcount = 0;
+ v = prevr;
+ if (loopcount > 5) return 0;
+ }
+ return 0;
+}
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame.
+
+ We cache the result of doing this in the frame_cache_obstack, since
+ it is fairly expensive. */
+#if 0
+
+void
+frame_find_saved_regs (fi, fsr)
+ struct frame_info *fi;
+ struct frame_saved_regs *fsr;
+{
+ register CORE_ADDR next_addr;
+ register CORE_ADDR *saved_regs;
+ register int regnum;
+ register struct frame_saved_regs *cache_fsr;
+ extern struct obstack frame_cache_obstack;
+ CORE_ADDR ip;
+ struct symtab_and_line sal;
+ CORE_ADDR limit;
+
+ if (!fi->fsr)
+ {
+ cache_fsr = (struct frame_saved_regs *)
+ obstack_alloc (&frame_cache_obstack,
+ sizeof (struct frame_saved_regs));
+ bzero (cache_fsr, sizeof (struct frame_saved_regs));
+
+ fi->fsr = cache_fsr;
+
+ /* Find the start and end of the function prologue. If the PC
+ is in the function prologue, we only consider the part that
+ has executed already. */
+
+ ip = get_pc_function_start (fi->pc);
+ sal = find_pc_line (ip, 0);
+ limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
+
+ /* This will fill in fields in *fi as well as in cache_fsr. */
+ examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
+ }
+
+ if (fsr)
+ *fsr = *fi->fsr;
+}
+
+#endif
+
+/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
+ is not the address of a valid instruction, the address of the next
+ instruction beyond ADDR otherwise. *PWORD1 receives the first word
+ of the instruction.*/
+
+CORE_ADDR
+NEXT_PROLOGUE_INSN (addr, lim, pword1)
+ CORE_ADDR addr;
+ CORE_ADDR lim;
+ char *pword1;
+{
+ if (addr < lim + 8)
+ {
+ read_memory (addr, pword1, 1);
+ read_memory (addr, pword1 + 1, 1);
+ return 1;
+ }
+ return 0;
+}
+
+/* Examine the prologue of a function. `ip' points to the first instruction.
+ `limit' is the limit of the prologue (e.g. the addr of the first
+ linenumber, or perhaps the program counter if we're stepping through).
+ `frame_sp' is the stack pointer value in use in this frame.
+ `fsr' is a pointer to a frame_saved_regs structure into which we put
+ info about the registers saved by this frame.
+ `fi' is a struct frame_info pointer; we fill in various fields in it
+ to reflect the offsets of the arg pointer and the locals pointer. */
+#if 0
+static CORE_ADDR
+examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
+ register CORE_ADDR ip;
+ register CORE_ADDR limit;
+ FRAME_ADDR after_prolog_fp;
+ struct frame_saved_regs *fsr;
+ struct frame_info *fi;
+{
+ register CORE_ADDR next_ip;
+ int r;
+ int i;
+ int have_fp = 0;
+
+ register int src;
+ register struct pic_prologue_code *pcode;
+ char insn[2];
+ int size, offset;
+ unsigned int reg_save_depth = 2; /* Number of things pushed onto
+ stack, starts at 2, 'cause the
+ PC is already there */
+
+ unsigned int auto_depth = 0; /* Number of bytes of autos */
+
+ char in_frame[8]; /* One for each reg */
+
+ memset (in_frame, 1, 8);
+ for (r = 0; r < 8; r++)
+ {
+ fsr->regs[r] = 0;
+ }
+ if (after_prolog_fp == 0)
+ {
+ after_prolog_fp = read_register (SP_REGNUM);
+ }
+ if (ip == 0 || ip & ~0xffffff)
+ return 0;
+
+ ok = NEXT_PROLOGUE_INSN (ip, limit, &insn[0]);
+
+ /* Skip over any fp push instructions */
+ fsr->regs[6] = after_prolog_fp;
+
+ if (ok && IS_LINK_8 (insn[0]))
+ {
+ ip++;
+
+ in_frame[6] = reg_save_depth;
+ reg_save_depth += 2;
+ }
+
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+
+ /* Is this a move into the fp */
+ if (next_ip && IS_MOV_SP_FP (insn_word))
+ {
+ ip = next_ip;
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+ have_fp = 1;
+ }
+
+ /* Skip over any stack adjustment, happens either with a number of
+ sub#2,sp or a mov #x,r5 sub r5,sp */
+
+ if (next_ip && IS_SUB2_SP (insn_word))
+ {
+ while (next_ip && IS_SUB2_SP (insn_word))
+ {
+ auto_depth += 2;
+ ip = next_ip;
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+ }
+ }
+ else
+ {
+ if (next_ip && IS_MOVK_R5 (insn_word))
+ {
+ ip = next_ip;
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+ auto_depth += insn_word;
+
+ next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
+ auto_depth += insn_word;
+
+ }
+ }
+ /* Work out which regs are stored where */
+ while (next_ip && IS_PUSH (insn_word))
+ {
+ ip = next_ip;
+ next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
+ fsr->regs[r] = after_prolog_fp + auto_depth;
+ auto_depth += 2;
+ }
+
+ /* The args are always reffed based from the stack pointer */
+ fi->args_pointer = after_prolog_fp;
+ /* Locals are always reffed based from the fp */
+ fi->locals_pointer = after_prolog_fp;
+ /* The PC is at a known place */
+ fi->from_pc = read_memory_short (after_prolog_fp + 2);
+
+ /* Rememeber any others too */
+ in_frame[PC_REGNUM] = 0;
+
+ if (have_fp)
+ /* We keep the old FP in the SP spot */
+ fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
+ else
+ fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
+
+ return (ip);
+}
+#endif
+#if 0
+void
+init_extra_frame_info (fromleaf, fi)
+ int fromleaf;
+ struct frame_info *fi;
+{
+ fi->fsr = 0; /* Not yet allocated */
+ fi->args_pointer = 0; /* Unknown */
+ fi->locals_pointer = 0; /* Unknown */
+ fi->from_pc = 0;
+
+}
+#endif
+
+/* Return the saved PC from this frame. */
+
+CORE_ADDR
+frame_saved_pc (frame)
+ FRAME frame;
+{
+ return read_memory_integer ((frame)->frame + 2, PTR_SIZE);
+}
+
+CORE_ADDR
+frame_locals_address (fi)
+ struct frame_info *fi;
+{
+ return fi->frame;
+}
+
+/* Return the address of the argument block for the frame
+ described by FI. Returns 0 if the address is unknown. */
+
+CORE_ADDR
+frame_args_address (fi)
+ struct frame_info *fi;
+{
+ return fi->frame + PTR_SIZE; /* Skip the PC */
+}
+
+void
+h8300_pop_frame ()
+{
+ unsigned regnum;
+ struct frame_saved_regs fsr;
+ struct frame_info *fi;
+
+ FRAME frame = get_current_frame ();
+
+ fi = get_frame_info (frame);
+ get_frame_saved_regs (fi, &fsr);
+
+ for (regnum = 0; regnum < 8; regnum++)
+ {
+ if (fsr.regs[regnum])
+ {
+ write_register (regnum, read_memory_short (fsr.regs[regnum]));
+ }
+
+ flush_cached_frames ();
+ set_current_frame (create_new_frame (read_register (FP_REGNUM),
+ read_pc ()));
+
+ }
+
+}
+
+void
+print_register_hook (regno)
+{
+ if (regno == CCR_REGNUM)
+ {
+ /* CCR register */
+
+ int C, Z, N, V;
+ unsigned char b[2];
+ unsigned char l;
+
+ read_relative_register_raw_bytes (regno, b);
+ l = b[1];
+ printf ("\t");
+ printf ("I-%d - ", (l & 0x80) != 0);
+ N = (l & 0x8) != 0;
+ Z = (l & 0x4) != 0;
+ V = (l & 0x2) != 0;
+ C = (l & 0x1) != 0;
+ printf ("N-%d ", N);
+ printf ("Z-%d ", Z);
+ printf ("V-%d ", V);
+ printf ("C-%d ", C);
+ if ((C | Z) == 0)
+ printf ("u> ");
+ if ((C | Z) == 1)
+ printf ("u<= ");
+ if ((C == 0))
+ printf ("u>= ");
+ if (C == 1)
+ printf ("u< ");
+ if (Z == 0)
+ printf ("!= ");
+ if (Z == 1)
+ printf ("== ");
+ if ((N ^ V) == 0)
+ printf (">= ");
+ if ((N ^ V) == 1)
+ printf ("< ");
+ if ((Z | (N ^ V)) == 0)
+ printf ("> ");
+ if ((Z | (N ^ V)) == 1)
+ printf ("<= ");
+ }
+}
+
+
+
+#if 0
+register_byte (N)
+{
+ return reginfo[N].offset;
+}
+#endif
+register_raw_size (N)
+{
+ if (N <= R7) return 2;
+ return 4;
+}
+
+register_virtual_size (N)
+{
+ if (N <= R7) return 2;
+ return 4;
+}
+
+
+
+register_convert_to_raw (regnum, from, to)
+ int regnum;
+ char *from;
+ char *to;
+{
+ switch (regnum)
+ {
+ case PR0:
+ case PR1:
+ case PR2:
+ case PR3:
+ case PR4:
+ case PR5:
+ case PR6:
+ case PR7:
+ case PC_REGNUM:
+ to[0] = 0;
+ to[1] = from[1];
+ to[2] = from[2];
+ to[3] = from[3];
+ break;
+ default:
+ to[0] = from[0];
+ to[1] = from[1];
+ break;
+ }
+}
+
+
+register_convert_to_virtual (regnum, from, to)
+ int regnum;
+ char *from;
+ char *to;
+{
+ switch (regnum)
+ {
+ case PR0:
+ case PR1:
+ case PR2:
+ case PR3:
+ case PR4:
+ case PR5:
+ case PR6:
+ case PR7:
+ case PC_REGNUM:
+ to[0] = 0;
+ to[1] = from[1];
+ to[2] = from[2];
+ to[3] = from[3];
+ break;
+ default:
+ to[0] = from[0];
+ to[1] = from[1];
+ break;
+ }
+}
+
+struct type *
+register_virtual_type (N)
+{
+ switch (N)
+ {
+ /* Although these are actually word size registers, we treat them
+ like longs so that we can deal with any implicit segmentation */
+ case PR0:
+ case PR1:
+ case PR2:
+ case PR3:
+ case PR4:
+ case PR5:
+ case PR6:
+ case PR7:
+ case PC_REGNUM:
+ return builtin_type_unsigned_long;
+ case SEG_C:
+ case SEG_E:
+ case SEG_D:
+ case SEG_T:
+ return builtin_type_unsigned_char;
+ case R0:
+ case R1:
+ case R2:
+ case R3:
+ case R4:
+ case R5:
+ case R6:
+ case R7:
+ case CCR_REGNUM:
+ return builtin_type_unsigned_short;
+
+
+ default:
+ abort();
+ }
+}
+
+
+
+
+/* Put here the code to store, into a struct frame_saved_regs,
+ the addresses of the saved registers of frame described by FRAME_INFO.
+ This includes special registers such as pc and fp saved in special
+ ways in the stack frame. sp is even more special:
+ the address we return for it IS the sp for the next frame. */
+
+void
+frame_find_saved_regs (frame_info, frame_saved_regs)
+ struct frame_info *frame_info;
+ struct frame_saved_regs *frame_saved_regs;
+
+{
+ register int regnum;
+ register int regmask;
+ register CORE_ADDR next_addr;
+ register CORE_ADDR pc;
+ unsigned char thebyte;
+
+ bzero (frame_saved_regs, sizeof *frame_saved_regs);
+
+ if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4
+ && (frame_info)->pc <= (frame_info)->frame)
+ {
+ next_addr = (frame_info)->frame;
+ pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4;
+ }
+ else
+ {
+ pc = get_pc_function_start ((frame_info)->pc);
+ /* Verify we have a link a6 instruction next;
+ if not we lose. If we win, find the address above the saved
+ regs using the amount of storage from the link instruction.
+ */
+
+ thebyte = read_memory_integer(pc, 1);
+ if (0x1f == thebyte)
+ next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2;
+ else if (0x17 == thebyte)
+ next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 1), pc += 1;
+ else
+ goto lose;
+#if 0
+ fixme steve
+ /* If have an add:g.waddal #-n, sp next, adjust next_addr. */
+ if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774)
+ next_addr += read_memory_integer (pc += 2, 4), pc += 4;
+#endif
+ }
+
+ thebyte = read_memory_integer(pc, 1);
+ if (thebyte == 0x12) {
+ /* Got stm */
+ pc++;
+ regmask = read_memory_integer(pc,1);
+ pc++;
+ for (regnum = 0; regnum < 8; regnum ++, regmask >>=1)
+ {
+ if (regmask & 1)
+ {
+ (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
+ }
+ }
+ thebyte = read_memory_integer(pc, 1);
+ }
+ /* Maybe got a load of pushes */
+ while (thebyte == 0xbf) {
+ pc++;
+ regnum = read_memory_integer(pc,1) & 0x7;
+ pc++;
+ (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
+ thebyte = read_memory_integer(pc, 1);
+ }
+
+ lose:;
+
+ /* Remember the address of the frame pointer */
+ (frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame;
+
+ /* This is where the old sp is hidden */
+ (frame_saved_regs)->regs[SP_REGNUM] = (frame_info)->frame;
+
+ /* And the PC - remember the pushed FP is always two bytes long */
+ (frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2;
+}
+
+saved_pc_after_call(frame)
+{
+ int x;
+ int a = read_register(SP_REGNUM);
+ x = read_memory_integer (a, PTR_SIZE);
+ return x;
+}
+
+
+/* Nonzero if instruction at PC is a return instruction. */
+
+about_to_return(pc)
+{
+ int b1 = read_memory_integer(pc,1);
+
+ switch (b1)
+ {
+ case 0x14: /* rtd #8 */
+ case 0x1c: /* rtd #16 */
+ case 0x19: /* rts */
+ case 0x1a: /* rte */
+ return 1;
+ case 0x11:
+ {
+ int b2 = read_memory_integer(pc+1,1);
+ switch (b2)
+ {
+ case 0x18: /* prts */
+ case 0x14: /* prtd #8 */
+ case 0x16: /* prtd #16 */
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+
+void
+h8500_set_pointer_size (newsize)
+ int newsize;
+{
+ static int oldsize = 0;
+
+ if (oldsize != newsize)
+ {
+ printf ("pointer size set to %d bits\n", newsize);
+ oldsize = newsize;
+ if (newsize == 32)
+ {
+ minimum_mode = 0;
+ }
+ else
+ {
+ minimum_mode = 1;
+ }
+ _initialize_gdbtypes ();
+ }
+}
+
+
+struct cmd_list_element *setmemorylist;
+
+
+static void
+segmented_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ h8500_set_pointer_size (32);
+}
+
+static void
+unsegmented_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ h8500_set_pointer_size (16);
+}
+
+static void
+set_memory (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ printf ("\"set memory\" must be followed by the name of a memory subcommand.\n");
+ help_list (setmemorylist, "set memory ", -1, stdout);
+}
+
+
+_initialize_h8500_tdep ()
+{
+ /* Sanitity check a few things */
+ if (FP_REGNUM != GPR6
+ || SP_REGNUM != GPR7
+ || CCR_REGNUM != GCCR
+ || PC_REGNUM != GPC
+ || SEG_C != GSEGC
+ || SEG_D != GSEGD
+ || SEG_E != GSEGE
+ || SEG_T != GSEGT
+ || PR0 != GPR0
+ || PR1 != GPR1
+ || PR2 != GPR2
+ || PR3 != GPR3
+ || PR4 != GPR4
+ || PR5 != GPR5
+ || PR6 != GPR6
+ || PR7 != GPR7)
+ abort ();
+
+ add_prefix_cmd ("memory", no_class, set_memory,
+ "set the memory model", &setmemorylist, "set memory ", 0,
+ &setlist);
+ add_cmd ("segmented", class_support, segmented_command,
+ "Set segmented memory model.", &setmemorylist);
+ add_cmd ("unsegmented", class_support, unsegmented_command,
+ "Set unsegmented memory model.", &setmemorylist);
+
+}