aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-valprint.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1994-08-19 21:59:05 +0000
committerStan Shebs <shebs@codesourcery.com>1994-08-19 21:59:05 +0000
commita91a61923d82c39ebeb9971635b76c7da494cab4 (patch)
tree5d26199b5455ca2369b432d008da29521e861908 /gdb/f-valprint.c
parentf3806e3b6ceead276a3acba85ff944fde6668e39 (diff)
downloadfsf-binutils-gdb-a91a61923d82c39ebeb9971635b76c7da494cab4.zip
fsf-binutils-gdb-a91a61923d82c39ebeb9971635b76c7da494cab4.tar.gz
fsf-binutils-gdb-a91a61923d82c39ebeb9971635b76c7da494cab4.tar.bz2
Initial Fortran language support, adapted from work by Farooq Butt
(fmbutt@engage.sps.mot.com). * Makefile.in: Add Fortran-related files and dependencies. * defs.h (language_fortran): New language enum. * language.h (_LANG_fortran): Define. (MAX_FORTRAN_DIMS): Define. * expression.h: Reformat to standard. (MULTI_F77_SUBSCRIPT, OP_F77_UNDETERMINED_ARGLIST, OP_F77_LITERAL_COMPLEX, OP_F77_SUBSTR): New expression opcodes. * gdbtypes.h (TYPE_CODE_COMPLEX, TYPE_CODE_LITERAL_COMPLEX, TYPE_CODE_LITERAL_STRING): New type codes. (type): New fields upper_bound_type and lower_bound_type. (TYPE_ARRAY_UPPER_BOUND_TYPE, TYPE_ARRAY_LOWER_BOUND_TYPE, TYPE_ARRAY_UPPER_BOUND_VALUE, TYPE_ARRAY_LOWER_BOUND_VALUE): New macros. (builtin_type_f_character, etc): Declare. * value.h (VALUE_LITERAL_DATA, VALUE_SUBSTRING_START): Define. * f-exp.y: New file, Fortran expression grammar. * f-lang.c: New file, Fortran language support functions. * f-lang.h: New file, Fortran language support declarations. * f-typeprint.c: New file, Fortran type printing. * f-valprint.c: New file, Fortran value printing. * eval.c (evaluate_subexp): Add code for new expression opcodes, fix wording of error message. * gdbtypes.c (f77_create_literal_complex_type, f77_create_literal_string_type): New functions. * language.c (set_language_command): Add Fortran info. (calc_f77_array_dims): New function. * parse.c (length_of_subexp, prefixify_subexp): Add cases for new expression opcodes. * symfile.c (deduce_language_from_filename): Recognize .f and .F as Fortran source files. * valops.c (f77_value_literal_string, f77_value_substring, f77_value_literal_complex): New functions.
Diffstat (limited to 'gdb/f-valprint.c')
-rw-r--r--gdb/f-valprint.c889
1 files changed, 889 insertions, 0 deletions
diff --git a/gdb/f-valprint.c b/gdb/f-valprint.c
new file mode 100644
index 0000000..0e0cdbc
--- /dev/null
+++ b/gdb/f-valprint.c
@@ -0,0 +1,889 @@
+/* Support for printing Fortran values for GDB, the GNU debugger.
+ Copyright 1993, 1994 Free Software Foundation, Inc.
+ Contributed by Motorola. Adapted from the C definitions by Farooq Butt
+ (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "defs.h"
+#include "symtab.h"
+#include "gdbtypes.h"
+#include "expression.h"
+#include "value.h"
+#include "demangle.h"
+#include "valprint.h"
+#include "language.h"
+#include "f-lang.h"
+#include "frame.h"
+
+extern struct obstack dont_print_obstack;
+
+extern unsigned int print_max; /* No of array elements to print */
+
+int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
+
+/* Array which holds offsets to be applied to get a row's elements
+ for a given array. Array also holds the size of each subarray. */
+
+/* The following macro gives us the size of the nth dimension, Where
+ n is 1 based. */
+
+#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
+
+/* The following gives us the offset for row n where n is 1-based. */
+
+#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
+
+int
+f77_get_dynamic_lowerbound (type, lower_bound)
+ struct type *type;
+ int *lower_bound;
+{
+ CORE_ADDR current_frame_addr;
+ CORE_ADDR ptr_to_lower_bound;
+
+ switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
+ {
+ case BOUND_BY_VALUE_ON_STACK:
+ current_frame_addr = selected_frame->frame;
+ if (current_frame_addr > 0)
+ {
+ *lower_bound =
+ read_memory_integer (current_frame_addr +
+ TYPE_ARRAY_LOWER_BOUND_VALUE (type),4);
+ }
+ else
+ {
+ *lower_bound = DEFAULT_LOWER_BOUND;
+ return BOUND_FETCH_ERROR;
+ }
+ break;
+
+ case BOUND_SIMPLE:
+ *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
+ break;
+
+ case BOUND_CANNOT_BE_DETERMINED:
+ error("Lower bound may not be '*' in F77");
+ break;
+
+ case BOUND_BY_REF_ON_STACK:
+ current_frame_addr = selected_frame->frame;
+ if (current_frame_addr > 0)
+ {
+ ptr_to_lower_bound =
+ read_memory_integer (current_frame_addr +
+ TYPE_ARRAY_LOWER_BOUND_VALUE (type),
+ 4);
+ *lower_bound = read_memory_integer(ptr_to_lower_bound);
+ }
+ else
+ {
+ *lower_bound = DEFAULT_LOWER_BOUND;
+ return BOUND_FETCH_ERROR;
+ }
+ break;
+
+ case BOUND_BY_REF_IN_REG:
+ case BOUND_BY_VALUE_IN_REG:
+ default:
+ error ("??? unhandled dynamic array bound type ???");
+ break;
+ }
+ return BOUND_FETCH_OK;
+}
+
+int
+f77_get_dynamic_upperbound (type, upper_bound)
+ struct type *type;
+ int *upper_bound;
+{
+ CORE_ADDR current_frame_addr = 0;
+ CORE_ADDR ptr_to_upper_bound;
+
+ switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
+ {
+ case BOUND_BY_VALUE_ON_STACK:
+ current_frame_addr = selected_frame->frame;
+ if (current_frame_addr > 0)
+ {
+ *upper_bound =
+ read_memory_integer (current_frame_addr +
+ TYPE_ARRAY_UPPER_BOUND_VALUE (type),4);
+ }
+ else
+ {
+ *upper_bound = DEFAULT_UPPER_BOUND;
+ return BOUND_FETCH_ERROR;
+ }
+ break;
+
+ case BOUND_SIMPLE:
+ *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
+ break;
+
+ case BOUND_CANNOT_BE_DETERMINED:
+ /* we have an assumed size array on our hands. Assume that
+ upper_bound == lower_bound so that we show at least
+ 1 element.If the user wants to see more elements, let
+ him manually ask for 'em and we'll subscript the
+ array and show him */
+ f77_get_dynamic_lowerbound (type, &upper_bound);
+ break;
+
+ case BOUND_BY_REF_ON_STACK:
+ current_frame_addr = selected_frame->frame;
+ if (current_frame_addr > 0)
+ {
+ ptr_to_upper_bound =
+ read_memory_integer (current_frame_addr +
+ TYPE_ARRAY_UPPER_BOUND_VALUE (type),
+ 4);
+ *upper_bound = read_memory_integer(ptr_to_upper_bound);
+ }
+ else
+ {
+ *upper_bound = DEFAULT_UPPER_BOUND;
+ return BOUND_FETCH_ERROR;
+ }
+ break;
+
+ case BOUND_BY_REF_IN_REG:
+ case BOUND_BY_VALUE_IN_REG:
+ default:
+ error ("??? unhandled dynamic array bound type ???");
+ break;
+ }
+ return BOUND_FETCH_OK;
+}
+
+/* Obtain F77 adjustable array dimensions */
+
+void
+f77_get_dynamic_length_of_aggregate (type)
+ struct type *type;
+{
+ int upper_bound = -1;
+ int lower_bound = 1;
+ unsigned int current_total = 1;
+ int retcode;
+
+ /* Recursively go all the way down into a possibly
+ multi-dimensional F77 array
+ and get the bounds. For simple arrays, this is pretty easy
+ but when the bounds are dynamic, we must be very careful
+ to add up all the lengths correctly. Not doing this right
+ will lead to horrendous-looking arrays in parameter lists.
+
+ This function also works for strings which behave very
+ similarly to arrays. */
+
+ if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
+ || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
+ f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
+
+ /* Recursion ends here, start setting up lengths. */
+ retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
+ if (retcode == BOUND_FETCH_ERROR)
+ error ("Cannot obtain valid array lower bound");
+
+ retcode = f77_get_dynamic_upperbound (type, &upper_bound);
+ if (retcode == BOUND_FETCH_ERROR)
+ error ("Cannot obtain valid array upper bound");
+
+ /* Patch in a valid length value. */
+
+ TYPE_LENGTH (type) =
+ (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
+}
+
+/* Print a FORTRAN COMPLEX value of type TYPE, pointed to in GDB by VALADDR,
+ on STREAM. which_complex indicates precision, which may be regular,
+ *16, or *32 */
+
+void
+f77_print_cmplx (valaddr, type, stream, which_complex)
+ char *valaddr;
+ struct type *type;
+ FILE *stream;
+ int which_complex;
+{
+ float *f1,*f2;
+ double *d1, *d2;
+ int i;
+
+ switch (which_complex)
+ {
+ case TARGET_COMPLEX_BIT:
+ f1 = (float *) valaddr;
+ f2 = (float *) (valaddr + sizeof(float));
+ fprintf_filtered (stream, "(%.7e,%.7e)", *f1, *f2);
+ break;
+
+ case TARGET_DOUBLE_COMPLEX_BIT:
+ d1 = (double *) valaddr;
+ d2 = (double *) (valaddr + sizeof(double));
+ fprintf_filtered (stream, "(%.16e,%.16e)", *d1, *d2);
+ break;
+#if 0
+ case TARGET_EXT_COMPLEX_BIT:
+ fprintf_filtered (stream, "<complex*32 format unavailable, "
+ "printing raw data>\n");
+
+ fprintf_filtered (stream, "( [ ");
+
+ for (i = 0;i<4;i++)
+ fprintf_filtered (stream, "0x%x ",
+ * ( (unsigned int *) valaddr+i));
+
+ fprintf_filtered (stream, "],\n [ ");
+
+ for (i=4;i<8;i++)
+ fprintf_filtered (stream, "0x%x ",
+ * ((unsigned int *) valaddr+i));
+
+ fprintf_filtered (stream, "] )");
+
+ break;
+#endif
+ default:
+ fprintf_filtered (stream, "<cannot handle complex of this type>");
+ break;
+ }
+}
+
+/* Function that sets up the array offset,size table for the array
+ type "type". */
+
+void
+f77_create_arrayprint_offset_tbl (type, stream)
+ struct type *type;
+ FILE *stream;
+{
+ struct type *tmp_type;
+ int eltlen;
+ int ndimen = 1;
+ int upper, lower, retcode;
+
+ tmp_type = type;
+
+ while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
+ {
+ if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
+ fprintf_filtered (stream, "<assumed size array> ");
+
+ retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
+ if (retcode == BOUND_FETCH_ERROR)
+ error ("Cannot obtain dynamic upper bound");
+
+ retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
+ if (retcode == BOUND_FETCH_ERROR)
+ error("Cannot obtain dynamic lower bound");
+
+ F77_DIM_SIZE (ndimen) = upper - lower + 1;
+
+ if (ndimen == 1)
+ F77_DIM_OFFSET (ndimen) = 1;
+ else
+ F77_DIM_OFFSET (ndimen) =
+ F77_DIM_OFFSET (ndimen - 1) * F77_DIM_SIZE(ndimen - 1);
+
+ tmp_type = TYPE_TARGET_TYPE (tmp_type);
+ ndimen++;
+ }
+
+ eltlen = TYPE_LENGTH (tmp_type);
+
+ /* Now we multiply eltlen by all the offsets, so that later we
+ can print out array elements correctly. Up till now we
+ know an offset to apply to get the item but we also
+ have to know how much to add to get to the next item */
+
+ tmp_type = type;
+ ndimen = 1;
+
+ while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
+ {
+ F77_DIM_OFFSET (ndimen) *= eltlen;
+ ndimen++;
+ tmp_type = TYPE_TARGET_TYPE (tmp_type);
+ }
+}
+
+/* Actual function which prints out F77 arrays, Valaddr == address in
+ the superior. Address == the address in the inferior. */
+
+void
+f77_print_array_1 (nss, ndimensions, type, valaddr, address,
+ stream, format, deref_ref, recurse, pretty)
+ int nss;
+ int ndimensions;
+ char *valaddr;
+ struct type *type;
+ CORE_ADDR address;
+ FILE *stream;
+ int format;
+ int deref_ref;
+ int recurse;
+ enum val_prettyprint pretty;
+{
+ int i;
+
+ if (nss != ndimensions)
+ {
+ for (i = 0; i< F77_DIM_SIZE(nss); i++)
+ {
+ fprintf_filtered (stream, "( ");
+ f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
+ valaddr + i * F77_DIM_OFFSET (nss),
+ address + i * F77_DIM_OFFSET (nss),
+ stream, format, deref_ref, recurse, pretty, i);
+ fprintf_filtered (stream, ") ");
+ }
+ }
+ else
+ {
+ for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
+ {
+ val_print (TYPE_TARGET_TYPE (type),
+ valaddr + i * F77_DIM_OFFSET (ndimensions),
+ address + i * F77_DIM_OFFSET (ndimensions),
+ stream, format, deref_ref, recurse, pretty);
+
+ if (i != (F77_DIM_SIZE (nss) - 1))
+ fprintf_filtered (stream, ", ");
+
+ if (i == print_max - 1)
+ fprintf_filtered (stream, "...");
+ }
+ }
+}
+
+/* This function gets called to print an F77 array, we set up some
+ stuff and then immediately call f77_print_array_1() */
+
+void
+f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
+ pretty)
+ struct type *type;
+ char *valaddr;
+ CORE_ADDR address;
+ FILE *stream;
+ int format;
+ int deref_ref;
+ int recurse;
+ enum val_prettyprint pretty;
+{
+ int array_size_array[MAX_FORTRAN_DIMS+1];
+ int ndimensions;
+
+ ndimensions = calc_f77_array_dims (type);
+
+ if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
+ error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
+ ndimensions, MAX_FORTRAN_DIMS);
+
+ /* Since F77 arrays are stored column-major, we set up an
+ offset table to get at the various row's elements. The
+ offset table contains entries for both offset and subarray size. */
+
+ f77_create_arrayprint_offset_tbl (type, stream);
+
+ f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
+ deref_ref, recurse, pretty);
+}
+
+
+/* Print data of type TYPE located at VALADDR (within GDB), which came from
+ the inferior at address ADDRESS, onto stdio stream STREAM according to
+ FORMAT (a letter or 0 for natural format). The data at VALADDR is in
+ target byte order.
+
+ If the data are a string pointer, returns the number of string characters
+ printed.
+
+ If DEREF_REF is nonzero, then dereference references, otherwise just print
+ them like pointers.
+
+ The PRETTY parameter controls prettyprinting. */
+
+int
+f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
+ pretty)
+ struct type *type;
+ char *valaddr;
+ CORE_ADDR address;
+ FILE *stream;
+ int format;
+ int deref_ref;
+ int recurse;
+ enum val_prettyprint pretty;
+{
+ register unsigned int i = 0; /* Number of characters printed */
+ unsigned len;
+ struct type *elttype;
+ unsigned eltlen;
+ LONGEST val;
+ struct internalvar *ivar;
+ char *localstr;
+ unsigned char c;
+ CORE_ADDR addr;
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_LITERAL_STRING:
+ /* It is trivial to print out F77 strings allocated in the
+ superior process. The address field is actually a
+ pointer to the bytes of the literal. For an internalvar,
+ valaddr points to a ptr. which points to
+ VALUE_LITERAL_DATA(value->internalvar->value)
+ and for straight literals (i.e. of the form 'hello world'),
+ valaddr points a ptr to VALUE_LITERAL_DATA(value). */
+
+ /* First deref. valaddr */
+
+ addr = * (CORE_ADDR *) valaddr;
+
+ if (addr)
+ {
+ len = TYPE_LENGTH (type);
+ localstr = alloca (len + 1);
+ strncpy (localstr, addr, len);
+ localstr[len] = '\0';
+ fprintf_filtered (stream, "'%s'", localstr);
+ }
+ else
+ fprintf_filtered (stream, "Unable to print literal F77 string");
+ break;
+
+ /* Strings are a little bit funny. They can be viewed as
+ monolithic arrays that are dealt with as atomic data
+ items. As such they are the only atomic data items whose
+ contents are not located in the superior process. Instead
+ instead of having the actual data, they contain pointers
+ to addresses in the inferior where data is located. Thus
+ instead of using valaddr, we use address. */
+
+ case TYPE_CODE_STRING:
+ f77_get_dynamic_length_of_aggregate (type);
+ val_print_string (address, TYPE_LENGTH (type), stream);
+ break;
+
+ case TYPE_CODE_ARRAY:
+ fprintf_filtered (stream, "(");
+ f77_print_array (type, valaddr, address, stream, format,
+ deref_ref, recurse, pretty);
+ fprintf_filtered (stream, ")");
+ break;
+#if 0
+ /* Array of unspecified length: treat like pointer to first elt. */
+ valaddr = (char *) &address;
+ /* FALL THROUGH */
+#endif
+ case TYPE_CODE_PTR:
+ if (format && format != 's')
+ {
+ print_scalar_formatted (valaddr, type, format, 0, stream);
+ break;
+ }
+ else
+ {
+ addr = unpack_pointer (type, valaddr);
+ elttype = TYPE_TARGET_TYPE (type);
+
+ if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
+ {
+ /* Try to print what function it points to. */
+ print_address_demangle (addr, stream, demangle);
+ /* Return value is irrelevant except for string pointers. */
+ return 0;
+ }
+
+ if (addressprint && format != 's')
+ fprintf_filtered (stream, "0x%x", addr);
+
+ /* For a pointer to char or unsigned char, also print the string
+ pointed to, unless pointer is null. */
+ if (TYPE_LENGTH (elttype) == 1
+ && TYPE_CODE (elttype) == TYPE_CODE_INT
+ && (format == 0 || format == 's')
+ && addr != 0)
+ i = val_print_string (addr, 0, stream);
+
+ /* Return number of characters printed, plus one for the
+ terminating null if we have "reached the end". */
+ return (i + (print_max && i != print_max));
+ }
+ break;
+
+ case TYPE_CODE_FUNC:
+ if (format)
+ {
+ print_scalar_formatted (valaddr, type, format, 0, stream);
+ break;
+ }
+ /* FIXME, we should consider, at least for ANSI C language, eliminating
+ the distinction made between FUNCs and POINTERs to FUNCs. */
+ fprintf_filtered (stream, "{");
+ type_print (type, "", stream, -1);
+ fprintf_filtered (stream, "} ");
+ /* Try to print what function it points to, and its address. */
+ print_address_demangle (address, stream, demangle);
+ break;
+
+ case TYPE_CODE_INT:
+ format = format ? format : output_format;
+ if (format)
+ print_scalar_formatted (valaddr, type, format, 0, stream);
+ else
+ {
+ val_print_type_code_int (type, valaddr, stream);
+ /* C and C++ has no single byte int type, char is used instead.
+ Since we don't know whether the value is really intended to
+ be used as an integer or a character, print the character
+ equivalent as well. */
+ if (TYPE_LENGTH (type) == 1)
+ {
+ fputs_filtered (" ", stream);
+ LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
+ stream);
+ }
+ }
+ break;
+
+ case TYPE_CODE_FLT:
+ if (format)
+ print_scalar_formatted (valaddr, type, format, 0, stream);
+ else
+ print_floating (valaddr, type, stream);
+ break;
+
+ case TYPE_CODE_VOID:
+ fprintf_filtered (stream, "VOID");
+ break;
+
+ case TYPE_CODE_ERROR:
+ fprintf_filtered (stream, "<error type>");
+ break;
+
+ case TYPE_CODE_RANGE:
+ /* FIXME, we should not ever have to print one of these yet. */
+ fprintf_filtered (stream, "<range type>");
+ break;
+
+ case TYPE_CODE_BOOL:
+ format = format ? format : output_format;
+ if (format)
+ print_scalar_formatted (valaddr, type, format, 0, stream);
+ else
+ {
+ val = 0;
+ switch (TYPE_LENGTH(type))
+ {
+ case 1:
+ val = unpack_long (builtin_type_f_logical_s1, valaddr);
+ break ;
+
+ case 2:
+ val = unpack_long (builtin_type_f_logical_s2, valaddr);
+ break ;
+
+ case 4:
+ val = unpack_long (builtin_type_f_logical, valaddr);
+ break ;
+
+ default:
+ error ("Logicals of length %d bytes not supported",
+ TYPE_LENGTH (type));
+
+ }
+
+ if (val == 0)
+ fprintf_filtered (stream, ".FALSE.");
+ else
+ if (val == 1)
+ fprintf_filtered (stream, ".TRUE.");
+ else
+ /* Not a legitimate logical type, print as an integer. */
+ {
+ /* Bash the type code temporarily. */
+ TYPE_CODE (type) = TYPE_CODE_INT;
+ f_val_print (type, valaddr, address, stream, format,
+ deref_ref, recurse, pretty);
+ /* Restore the type code so later uses work as intended. */
+ TYPE_CODE (type) = TYPE_CODE_BOOL;
+ }
+ }
+ break;
+
+ case TYPE_CODE_LITERAL_COMPLEX:
+ /* We know that the literal complex is stored in the superior
+ process not the inferior and that it is 16 bytes long.
+ Just like the case above with a literal array, the
+ bytes for the the literal complex number are stored
+ at the address pointed to by valaddr */
+
+ if (TYPE_LENGTH(type) == 32)
+ error("Cannot currently print out complex*32 literals");
+
+ /* First deref. valaddr */
+
+ addr = * (CORE_ADDR *) valaddr;
+
+ if (addr)
+ {
+ fprintf_filtered (stream, "(");
+
+ if (TYPE_LENGTH(type) == 16)
+ {
+ fprintf_filtered (stream, "%.16f", * (double *) addr);
+ fprintf_filtered (stream, ", %.16f", * (double *)
+ (addr + sizeof(double)));
+ }
+ else
+ {
+ fprintf_filtered (stream, "%.8f", * (float *) addr);
+ fprintf_filtered (stream, ", %.8f", * (float *)
+ (addr + sizeof(float)));
+ }
+ fprintf_filtered (stream, ") ");
+ }
+ else
+ fprintf_filtered (stream, "Unable to print literal F77 array");
+ break;
+
+ case TYPE_CODE_COMPLEX:
+ switch (TYPE_LENGTH (type))
+ {
+ case 8:
+ f77_print_cmplx (valaddr, type, stream, TARGET_COMPLEX_BIT);
+ break;
+
+ case 16:
+ f77_print_cmplx(valaddr, type, stream, TARGET_DOUBLE_COMPLEX_BIT);
+ break;
+#if 0
+ case 32:
+ f77_print_cmplx(valaddr, type, stream, TARGET_EXT_COMPLEX_BIT);
+ break;
+#endif
+ default:
+ error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
+ }
+ break;
+
+ case TYPE_CODE_UNDEF:
+ /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
+ dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
+ and no complete type for struct foo in that file. */
+ fprintf_filtered (stream, "<incomplete type>");
+ break;
+
+ default:
+ error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
+ }
+ fflush (stream);
+ return 0;
+}
+
+void
+list_all_visible_commons (funname)
+ char *funname;
+{
+ SAVED_F77_COMMON_PTR tmp;
+
+ tmp = head_common_list;
+
+ printf_filtered ("All COMMON blocks visible at this level:\n\n");
+
+ while (tmp != NULL)
+ {
+ if (STREQ(tmp->owning_function,funname))
+ printf_filtered ("%s\n", tmp->name);
+
+ tmp = tmp->next;
+ }
+}
+
+/* This function is used to print out the values in a given COMMON
+ block. It will always use the most local common block of the
+ given name */
+
+static void
+info_common_command (comname, from_tty)
+ char *comname;
+ int from_tty;
+{
+ SAVED_F77_COMMON_PTR the_common;
+ COMMON_ENTRY_PTR entry;
+ struct frame_info *fi;
+ register char *funname = 0;
+ struct symbol *func;
+ char *cmd;
+
+ /* We have been told to display the contents of F77 COMMON
+ block supposedly visible in this function. Let us
+ first make sure that it is visible and if so, let
+ us display its contents */
+
+ fi = selected_frame;
+
+ if (fi == NULL)
+ error ("No frame selected");
+
+ /* The following is generally ripped off from stack.c's routine
+ print_frame_info() */
+
+ func = find_pc_function (fi->pc);
+ if (func)
+ {
+ /* In certain pathological cases, the symtabs give the wrong
+ function (when we are in the first function in a file which
+ is compiled without debugging symbols, the previous function
+ is compiled with debugging symbols, and the "foo.o" symbol
+ that is supposed to tell us where the file with debugging symbols
+ ends has been truncated by ar because it is longer than 15
+ characters).
+
+ So look in the minimal symbol tables as well, and if it comes
+ up with a larger address for the function use that instead.
+ I don't think this can ever cause any problems; there shouldn't
+ be any minimal symbols in the middle of a function.
+ FIXME: (Not necessarily true. What about text labels) */
+
+ struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
+
+ if (msymbol != NULL
+ && (SYMBOL_VALUE_ADDRESS (msymbol)
+ > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
+ funname = SYMBOL_NAME (msymbol);
+ else
+ funname = SYMBOL_NAME (func);
+ }
+ else
+ {
+ register struct minimal_symbol *msymbol =
+ lookup_minimal_symbol_by_pc (fi->pc);
+
+ if (msymbol != NULL)
+ funname = SYMBOL_NAME (msymbol);
+ }
+
+ /* If comnname is NULL, we assume the user wishes to see the
+ which COMMON blocks are visible here and then return */
+
+ if (strlen (comname) == 0)
+ {
+ list_all_visible_commons (funname);
+ return;
+ }
+
+ the_common = find_common_for_function (comname,funname);
+
+ if (the_common)
+ {
+ if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
+ printf_filtered ("Contents of blank COMMON block:\n");
+ else
+ printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
+
+ printf_filtered ("\n");
+ entry = the_common->entries;
+
+ while (entry != NULL)
+ {
+ printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
+ print_variable_value (entry->symbol,fi,stdout);
+ printf_filtered ("\n");
+ entry = entry->next;
+ }
+ }
+ else
+ printf_filtered ("Cannot locate the common block %s in function '%s'\n",
+ comname, funname);
+}
+
+/* This function is used to determine whether there is a
+ F77 common block visible at the current scope called 'comname'. */
+
+int
+there_is_a_visible_common_named (comname)
+ char *comname;
+{
+ SAVED_F77_COMMON_PTR the_common;
+ COMMON_ENTRY_PTR entry;
+ struct frame_info *fi;
+ register char *funname = 0;
+ struct symbol *func;
+
+ if (comname == NULL)
+ error ("Cannot deal with NULL common name!");
+
+ fi = selected_frame;
+
+ if (fi == NULL)
+ error ("No frame selected");
+
+ /* The following is generally ripped off from stack.c's routine
+ print_frame_info() */
+
+ func = find_pc_function (fi->pc);
+ if (func)
+ {
+ /* In certain pathological cases, the symtabs give the wrong
+ function (when we are in the first function in a file which
+ is compiled without debugging symbols, the previous function
+ is compiled with debugging symbols, and the "foo.o" symbol
+ that is supposed to tell us where the file with debugging symbols
+ ends has been truncated by ar because it is longer than 15
+ characters).
+
+ So look in the minimal symbol tables as well, and if it comes
+ up with a larger address for the function use that instead.
+ I don't think this can ever cause any problems; there shouldn't
+ be any minimal symbols in the middle of a function.
+ FIXME: (Not necessarily true. What about text labels) */
+
+ struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
+
+ if (msymbol != NULL
+ && (SYMBOL_VALUE_ADDRESS (msymbol)
+ > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
+ funname = SYMBOL_NAME (msymbol);
+ else
+ funname = SYMBOL_NAME (func);
+ }
+ else
+ {
+ register struct minimal_symbol *msymbol =
+ lookup_minimal_symbol_by_pc (fi->pc);
+
+ if (msymbol != NULL)
+ funname = SYMBOL_NAME (msymbol);
+ }
+
+ the_common = find_common_for_function (comname, funname);
+
+ return (the_common ? 1 : 0);
+}
+
+void
+_initialize_f_valprint ()
+{
+ add_info ("common", info_common_command,
+ "Print out the values contained in a Fortran COMMON block.");
+}