aboutsummaryrefslogtreecommitdiff
path: root/gdb/arm-tdep.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:34:07 +0000
commit071ea11e85eb9d529cc5eb3d35f6247466a21b99 (patch)
tree5deda65b8d7b04d1f4cbc534c3206d328e1267ec /gdb/arm-tdep.c
parent1730ec6b1848f0f32154277f788fb29f88d8475b (diff)
downloadfsf-binutils-gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.zip
fsf-binutils-gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.gz
fsf-binutils-gdb-071ea11e85eb9d529cc5eb3d35f6247466a21b99.tar.bz2
Initial creation of sourceware repository
Diffstat (limited to 'gdb/arm-tdep.c')
-rw-r--r--gdb/arm-tdep.c1583
1 files changed, 0 insertions, 1583 deletions
diff --git a/gdb/arm-tdep.c b/gdb/arm-tdep.c
deleted file mode 100644
index a190765..0000000
--- a/gdb/arm-tdep.c
+++ /dev/null
@@ -1,1583 +0,0 @@
-/* Target-dependent code for the Acorn Risc Machine, for GDB, the GNU Debugger.
- Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998
- Free Software Foundation, Inc.
-
-This file is part of GDB.
-
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
-
-#include "defs.h"
-#include "frame.h"
-#include "inferior.h"
-#include "gdbcmd.h"
-#include "gdbcore.h"
-#include "symfile.h"
-#include "gdb_string.h"
-#include "coff/internal.h" /* Internal format of COFF symbols in BFD */
-
-/*
- The following macros are actually wrong. Neither arm nor thumb can
- or should set the lsb on addr.
- The thumb addresses are mod 2, so (addr & 2) would be a good heuristic
- to use when checking for thumb (see arm_pc_is_thumb() below).
- Unfortunately, something else depends on these (incorrect) macros, so
- fixing them actually breaks gdb. I didn't have time to investigate. Z.R.
-*/
-/* Thumb function addresses are odd (bit 0 is set). Here are some
- macros to test, set, or clear bit 0 of addresses. */
-#define IS_THUMB_ADDR(addr) ((addr) & 1)
-#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
-#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
-
-/* Macros to round N up or down to the next A boundary; A must be
- a power of two. */
-#define ROUND_DOWN(n,a) ((n) & ~((a) - 1))
-#define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1))
-
-/* Should call_function allocate stack space for a struct return? */
-/* The system C compiler uses a similar structure return convention to gcc */
-int
-arm_use_struct_convention (gcc_p, type)
- int gcc_p;
- struct type *type;
-{
- return (TYPE_LENGTH (type) > 4);
-}
-
-/* Set to true if the 32-bit mode is in use. */
-
-int arm_apcs_32 = 1;
-
-/* Flag set by arm_fix_call_dummy that tells whether the target function
- is a Thumb function. This flag is checked by arm_push_arguments.
- FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to
- pass the function address as an additional parameter. */
-
-static int target_is_thumb;
-
-/* Flag set by arm_fix_call_dummy that tells whether the calling function
- is a Thumb function. This flag is checked by arm_pc_is_thumb
- and arm_call_dummy_breakpoint_offset. */
-
-static int caller_is_thumb;
-
-/* Tell if the program counter value in MEMADDR is in a Thumb function. */
-
-int
-arm_pc_is_thumb (memaddr)
- bfd_vma memaddr;
-{
- struct minimal_symbol * sym;
- CORE_ADDR sp;
-
- /* If bit 0 of the address is set, assume this is a Thumb address. */
- if (IS_THUMB_ADDR (memaddr))
- return 1;
-
- /* Thumb function have a "special" bit set in minimal symbols */
- sym = lookup_minimal_symbol_by_pc (memaddr);
- if (sym)
- {
- return (MSYMBOL_IS_SPECIAL(sym));
- }
- else
- return 0;
-}
-
-/* Tell if the program counter value in MEMADDR is in a call dummy that
- is being called from a Thumb function. */
-
-int
-arm_pc_is_thumb_dummy (memaddr)
- bfd_vma memaddr;
-{
- CORE_ADDR sp = read_sp();
-
- if (PC_IN_CALL_DUMMY (memaddr, sp, sp+64))
- return caller_is_thumb;
- else
- return 0;
-}
-
-CORE_ADDR
-arm_addr_bits_remove (val)
- CORE_ADDR val;
-{
- if (arm_pc_is_thumb (val))
- return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
- else
- return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
-}
-
-CORE_ADDR
-arm_saved_pc_after_call (frame)
- struct frame_info *frame;
-{
- return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
-}
-
-/* A typical Thumb prologue looks like this:
- push {r7, lr}
- add sp, sp, #-28
- add r7, sp, #12
- Sometimes the latter instruction may be replaced by:
- mov r7, sp
-*/
-
-static CORE_ADDR
-thumb_skip_prologue (pc)
- CORE_ADDR pc;
-{
- CORE_ADDR current_pc;
-
- for (current_pc = pc; current_pc < pc + 20; current_pc += 2)
- {
- unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
-
- if ( (insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */
- && (insn & 0xff00) != 0xb000 /* add sp, #simm */
- && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */
- && insn != 0x466f /* mov r7, sp */
- && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */
- break;
- }
-
- return current_pc;
-}
-
-/* APCS (ARM procedure call standard) defines the following prologue:
-
- mov ip, sp
- [stmfd sp!, {a1,a2,a3,a4}]
- stmfd sp!, {...,fp,ip,lr,pc}
- [stfe f7, [sp, #-12]!]
- [stfe f6, [sp, #-12]!]
- [stfe f5, [sp, #-12]!]
- [stfe f4, [sp, #-12]!]
- sub fp, ip, #nn // nn == 20 or 4 depending on second ins
-*/
-
-CORE_ADDR
-arm_skip_prologue (pc)
- CORE_ADDR pc;
-{
- unsigned long inst;
- CORE_ADDR skip_pc;
- CORE_ADDR func_addr, func_end;
- struct symtab_and_line sal;
-
- /* See what the symbol table says. */
- if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
- {
- sal = find_pc_line (func_addr, 0);
- if (sal.line != 0 && sal.end < func_end)
- return sal.end;
- }
-
- /* Check if this is Thumb code. */
- if (arm_pc_is_thumb (pc))
- return thumb_skip_prologue (pc);
-
- /* Can't find the prologue end in the symbol table, try it the hard way
- by disassembling the instructions. */
- skip_pc = pc;
- inst = read_memory_integer (skip_pc, 4);
- if (inst != 0xe1a0c00d) /* mov ip, sp */
- return pc;
-
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
-
- if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
- return pc;
-
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
-
- /* Any insns after this point may float into the code, if it makes
- for better instruction scheduling, so we skip them only if
- we find them, but still consdier the function to be frame-ful */
-
- /* We may have either one sfmfd instruction here, or several stfe insns,
- depending on the version of floating point code we support. */
- if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
- else
- {
- while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
- {
- skip_pc += 4;
- inst = read_memory_integer (skip_pc, 4);
- }
- }
-
- if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
- skip_pc += 4;
-
- return skip_pc;
-}
-
-
-
-/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
- This function decodes a Thumb function prologue to determine:
- 1) the size of the stack frame
- 2) which registers are saved on it
- 3) the offsets of saved regs
- 4) the offset from the stack pointer to the frame pointer
- This information is stored in the "extra" fields of the frame_info.
-
- A typical Thumb function prologue might look like this:
- push {r7, lr}
- sub sp, #28,
- add r7, sp, #12
- Which would create this stack frame (offsets relative to FP)
- old SP -> 24 stack parameters
- 20 LR
- 16 R7
- R7 -> 0 local variables (16 bytes)
- SP -> -12 additional stack space (12 bytes)
- The frame size would thus be 36 bytes, and the frame offset would be
- 12 bytes. The frame register is R7. */
-
-static void
-thumb_scan_prologue (fi)
- struct frame_info * fi;
-{
- CORE_ADDR prologue_start;
- CORE_ADDR prologue_end;
- CORE_ADDR current_pc;
- int saved_reg[16]; /* which register has been copied to register n? */
- int i;
-
- if (find_pc_partial_function (fi->pc, NULL, & prologue_start, & prologue_end))
- {
- struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
- if (sal.line == 0) /* no line info, use current PC */
- prologue_end = fi->pc;
- else if (sal.end < prologue_end) /* next line begins after fn end */
- prologue_end = sal.end; /* (probably means no prologue) */
- }
- else
- prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
- /* 16 pushes, an add, and "mv fp,sp" */
-
- prologue_end = min (prologue_end, fi->pc);
-
- /* Initialize the saved register map. When register H is copied to
- register L, we will put H in saved_reg[L]. */
- for (i = 0; i < 16; i++)
- saved_reg[i] = i;
-
- /* Search the prologue looking for instructions that set up the
- frame pointer, adjust the stack pointer, and save registers. */
-
- fi->framesize = 0;
- for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
- {
- unsigned short insn;
- int regno;
- int offset;
-
- insn = read_memory_unsigned_integer (current_pc, 2);
-
- if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
- {
- /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
- whether to save LR (R14). */
- int mask = (insn & 0xff) | ((insn & 0x100) << 6);
-
- /* Calculate offsets of saved R0-R7 and LR. */
- for (regno = LR_REGNUM; regno >= 0; regno--)
- if (mask & (1 << regno))
- {
- fi->framesize += 4;
- fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
- saved_reg[regno] = regno; /* reset saved register map */
- }
- }
- else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */
- {
- offset = (insn & 0x7f) << 2; /* get scaled offset */
- if (insn & 0x80) /* is it signed? */
- offset = -offset;
- fi->framesize -= offset;
- }
- else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
- {
- fi->framereg = THUMB_FP_REGNUM;
- fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
- }
- else if (insn == 0x466f) /* mov r7, sp */
- {
- fi->framereg = THUMB_FP_REGNUM;
- fi->frameoffset = 0;
- saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
- }
- else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
- {
- int lo_reg = insn & 7; /* dest. register (r0-r7) */
- int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
- saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
- }
- else
- break; /* anything else isn't prologue */
- }
-}
-
-/* Function: check_prologue_cache
- Check if prologue for this frame's PC has already been scanned.
- If it has, copy the relevant information about that prologue and
- return non-zero. Otherwise do not copy anything and return zero.
-
- The information saved in the cache includes:
- * the frame register number;
- * the size of the stack frame;
- * the offsets of saved regs (relative to the old SP); and
- * the offset from the stack pointer to the frame pointer
-
- The cache contains only one entry, since this is adequate
- for the typical sequence of prologue scan requests we get.
- When performing a backtrace, GDB will usually ask to scan
- the same function twice in a row (once to get the frame chain,
- and once to fill in the extra frame information).
-*/
-
-static struct frame_info prologue_cache;
-
-static int
-check_prologue_cache (fi)
- struct frame_info * fi;
-{
- int i;
-
- if (fi->pc == prologue_cache.pc)
- {
- fi->framereg = prologue_cache.framereg;
- fi->framesize = prologue_cache.framesize;
- fi->frameoffset = prologue_cache.frameoffset;
- for (i = 0; i <= NUM_REGS; i++)
- fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
- return 1;
- }
- else
- return 0;
-}
-
-
-/* Function: save_prologue_cache
- Copy the prologue information from fi to the prologue cache.
-*/
-
-static void
-save_prologue_cache (fi)
- struct frame_info * fi;
-{
- int i;
-
- prologue_cache.pc = fi->pc;
- prologue_cache.framereg = fi->framereg;
- prologue_cache.framesize = fi->framesize;
- prologue_cache.frameoffset = fi->frameoffset;
-
- for (i = 0; i <= NUM_REGS; i++)
- prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
-}
-
-
-/* Function: arm_scan_prologue
- This function decodes an ARM function prologue to determine:
- 1) the size of the stack frame
- 2) which registers are saved on it
- 3) the offsets of saved regs
- 4) the offset from the stack pointer to the frame pointer
- This information is stored in the "extra" fields of the frame_info.
-
- A typical Arm function prologue might look like this:
- mov ip, sp
- stmfd sp!, {fp, ip, lr, pc}
- sub fp, ip, #4
- sub sp, sp, #16
- Which would create this stack frame (offsets relative to FP):
- IP -> 4 (caller's stack)
- FP -> 0 PC (points to address of stmfd instruction + 12 in callee)
- -4 LR (return address in caller)
- -8 IP (copy of caller's SP)
- -12 FP (caller's FP)
- SP -> -28 Local variables
- The frame size would thus be 32 bytes, and the frame offset would be
- 28 bytes. */
-
-static void
-arm_scan_prologue (fi)
- struct frame_info * fi;
-{
- int regno, sp_offset, fp_offset;
- CORE_ADDR prologue_start, prologue_end, current_pc;
-
- /* Check if this function is already in the cache of frame information. */
- if (check_prologue_cache (fi))
- return;
-
- /* Assume there is no frame until proven otherwise. */
- fi->framereg = SP_REGNUM;
- fi->framesize = 0;
- fi->frameoffset = 0;
-
- /* Check for Thumb prologue. */
- if (arm_pc_is_thumb (fi->pc))
- {
- thumb_scan_prologue (fi);
- save_prologue_cache (fi);
- return;
- }
-
- /* Find the function prologue. If we can't find the function in
- the symbol table, peek in the stack frame to find the PC. */
- if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
- {
- /* Assume the prologue is everything between the first instruction
- in the function and the first source line. */
- struct symtab_and_line sal = find_pc_line (prologue_start, 0);
-
- if (sal.line == 0) /* no line info, use current PC */
- prologue_end = fi->pc;
- else if (sal.end < prologue_end) /* next line begins after fn end */
- prologue_end = sal.end; /* (probably means no prologue) */
- }
- else
- {
- /* Get address of the stmfd in the prologue of the callee; the saved
- PC is the address of the stmfd + 12. */
- prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
- prologue_end = prologue_start + 40; /* FIXME: should be big enough */
- }
-
- /* Now search the prologue looking for instructions that set up the
- frame pointer, adjust the stack pointer, and save registers. */
-
- sp_offset = fp_offset = 0;
- for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 4)
- {
- unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
-
- if ((insn & 0xffff0000) == 0xe92d0000) /* stmfd sp!, {..., r7, lr} */
- {
- int mask = insn & 0xffff;
-
- /* Calculate offsets of saved registers. */
- for (regno = PC_REGNUM; regno >= 0; regno--)
- if (mask & (1 << regno))
- {
- sp_offset -= 4;
- fi->fsr.regs[regno] = sp_offset;
- }
- }
- else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
- {
- unsigned imm = insn & 0xff; /* immediate value */
- unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
- imm = (imm >> rot) | (imm << (32-rot));
- fp_offset = -imm;
- fi->framereg = FP_REGNUM;
- }
- else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
- {
- unsigned imm = insn & 0xff; /* immediate value */
- unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
- imm = (imm >> rot) | (imm << (32-rot));
- sp_offset -= imm;
- }
- else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
- {
- sp_offset -= 12;
- regno = F0_REGNUM + ((insn >> 12) & 0x07);
- fi->fsr.regs[regno] = sp_offset;
- }
- else if (insn == 0xe1a0c00d) /* mov ip, sp */
- continue;
- else
- break; /* not a recognized prologue instruction */
- }
-
- /* The frame size is just the negative of the offset (from the original SP)
- of the last thing thing we pushed on the stack. The frame offset is
- [new FP] - [new SP]. */
- fi->framesize = -sp_offset;
- fi->frameoffset = fp_offset - sp_offset;
-
- save_prologue_cache (fi);
-}
-
-
-/* Function: find_callers_reg
- Find REGNUM on the stack. Otherwise, it's in an active register. One thing
- we might want to do here is to check REGNUM against the clobber mask, and
- somehow flag it as invalid if it isn't saved on the stack somewhere. This
- would provide a graceful failure mode when trying to get the value of
- caller-saves registers for an inner frame. */
-
-static CORE_ADDR
-arm_find_callers_reg (fi, regnum)
- struct frame_info * fi;
- int regnum;
-{
- for (; fi; fi = fi->next)
-
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return generic_read_register_dummy (fi->pc, fi->frame, regnum);
- else
-#endif
- if (fi->fsr.regs[regnum] != 0)
- return read_memory_integer (fi->fsr.regs[regnum],
- REGISTER_RAW_SIZE(regnum));
- return read_register (regnum);
-}
-
-
-/* Function: frame_chain
- Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
- For ARM, we save the frame size when we initialize the frame_info.
-
- The original definition of this function was a macro in tm-arm.h:
- { In the case of the ARM, the frame's nominal address is the FP value,
- and 12 bytes before comes the saved previous FP value as a 4-byte word. }
-
- #define FRAME_CHAIN(thisframe) \
- ((thisframe)->pc >= LOWEST_PC ? \
- read_memory_integer ((thisframe)->frame - 12, 4) :\
- 0)
-*/
-
-CORE_ADDR
-arm_frame_chain (fi)
- struct frame_info * fi;
-{
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- CORE_ADDR fn_start, callers_pc, fp;
-
- /* is this a dummy frame? */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return fi->frame; /* dummy frame same as caller's frame */
-
- /* is caller-of-this a dummy frame? */
- callers_pc = FRAME_SAVED_PC(fi); /* find out who called us: */
- fp = arm_find_callers_reg (fi, FP_REGNUM);
- if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
- return fp; /* dummy frame's frame may bear no relation to ours */
-
- if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
- if (fn_start == entry_point_address ())
- return 0; /* in _start fn, don't chain further */
-#endif
- CORE_ADDR caller_pc, fn_start;
- struct frame_info caller_fi;
- int framereg = fi->framereg;
-
- if (fi->pc < LOWEST_PC)
- return 0;
-
- /* If the caller is the startup code, we're at the end of the chain. */
- caller_pc = FRAME_SAVED_PC (fi);
- if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
- if (fn_start == entry_point_address ())
- return 0;
-
- /* If the caller is Thumb and the caller is ARM, or vice versa,
- the frame register of the caller is different from ours.
- So we must scan the prologue of the caller to determine its
- frame register number. */
- if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
- {
- memset (& caller_fi, 0, sizeof (caller_fi));
- caller_fi.pc = caller_pc;
- arm_scan_prologue (& caller_fi);
- framereg = caller_fi.framereg;
- }
-
- /* If the caller used a frame register, return its value.
- Otherwise, return the caller's stack pointer. */
- if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
- return arm_find_callers_reg (fi, framereg);
- else
- return fi->frame + fi->framesize;
-}
-
-/* Function: init_extra_frame_info
- This function actually figures out the frame address for a given pc and
- sp. This is tricky because we sometimes don't use an explicit
- frame pointer, and the previous stack pointer isn't necessarily recorded
- on the stack. The only reliable way to get this info is to
- examine the prologue. */
-
-void
-arm_init_extra_frame_info (fi)
- struct frame_info * fi;
-{
- int reg;
-
- if (fi->next)
- fi->pc = FRAME_SAVED_PC (fi->next);
-
- memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
-
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- {
- /* We need to setup fi->frame here because run_stack_dummy gets it wrong
- by assuming it's always FP. */
- fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
- fi->framesize = 0;
- fi->frameoffset = 0;
- return;
- }
- else
-#endif
- {
- arm_scan_prologue (fi);
-
- if (!fi->next) /* this is the innermost frame? */
- fi->frame = read_register (fi->framereg);
- else /* not the innermost frame */
- /* If we have an FP, the callee saved it. */
- if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
- if (fi->next->fsr.regs[fi->framereg] != 0)
- fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
- 4);
-
- /* Calculate actual addresses of saved registers using offsets determined
- by arm_scan_prologue. */
- for (reg = 0; reg < NUM_REGS; reg++)
- if (fi->fsr.regs[reg] != 0)
- fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
- }
-}
-
-
-/* Function: frame_saved_pc
- Find the caller of this frame. We do this by seeing if LR_REGNUM is saved
- in the stack anywhere, otherwise we get it from the registers.
-
- The old definition of this function was a macro:
- #define FRAME_SAVED_PC(FRAME) \
- ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4))
-*/
-
-CORE_ADDR
-arm_frame_saved_pc (fi)
- struct frame_info * fi;
-{
-#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
- if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
- return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
- else
-#endif
- {
- CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
- return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
- }
-}
-
-
-/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
- Examine the Program Status Register to decide which state we're in. */
-
-CORE_ADDR
-arm_target_read_fp ()
-{
- if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
- return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
- else
- return read_register (FP_REGNUM); /* R11 if ARM */
-}
-
-
-/* Calculate the frame offsets of the saved registers (ARM version). */
-void
-arm_frame_find_saved_regs (fi, regaddr)
- struct frame_info *fi;
- struct frame_saved_regs *regaddr;
-{
- memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
-}
-
-
-void
-arm_push_dummy_frame ()
-{
- CORE_ADDR old_sp = read_register (SP_REGNUM);
- CORE_ADDR sp = old_sp;
- CORE_ADDR fp, prologue_start;
- int regnum;
-
- /* Push the two dummy prologue instructions in reverse order,
- so that they'll be in the correct low-to-high order in memory. */
- /* sub fp, ip, #4 */
- sp = push_word (sp, 0xe24cb004);
- /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
- prologue_start = sp = push_word (sp, 0xe92ddfff);
-
- /* push a pointer to the dummy prologue + 12, because when
- stm instruction stores the PC, it stores the address of the stm
- instruction itself plus 12. */
- fp = sp = push_word (sp, prologue_start + 12);
- sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */
- sp = push_word (sp, old_sp);
- sp = push_word (sp, read_register (FP_REGNUM));
-
- for (regnum = 10; regnum >= 0; regnum --)
- sp = push_word (sp, read_register (regnum));
-
- write_register (FP_REGNUM, fp);
- write_register (THUMB_FP_REGNUM, fp);
- write_register (SP_REGNUM, sp);
-}
-
-/* Fix up the call dummy, based on whether the processor is currently
- in Thumb or ARM mode, and whether the target function is Thumb
- or ARM. There are three different situations requiring three
- different dummies:
-
- * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
- been copied into the dummy parameter to this function.
- * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
- "mov pc,r4" instruction patched to be a "bx r4" instead.
- * Thumb calling anything: uses the Thumb dummy defined below, which
- works for calling both ARM and Thumb functions.
-
- All three call dummies expect to receive the target function address
- in R4, with the low bit set if it's a Thumb function.
-*/
-
-void
-arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
- char * dummy;
- CORE_ADDR pc;
- CORE_ADDR fun;
- int nargs;
- value_ptr * args;
- struct type * type;
- int gcc_p;
-{
- static short thumb_dummy[4] =
- {
- 0xf000, 0xf801, /* bl label */
- 0xdf18, /* swi 24 */
- 0x4720, /* label: bx r4 */
- };
- static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
-
- /* Set flag indicating whether the current PC is in a Thumb function. */
- caller_is_thumb = arm_pc_is_thumb (read_pc());
-
- /* If the target function is Thumb, set the low bit of the function address.
- And if the CPU is currently in ARM mode, patch the second instruction
- of call dummy to use a BX instruction to switch to Thumb mode. */
- target_is_thumb = arm_pc_is_thumb (fun);
- if (target_is_thumb)
- {
- fun |= 1;
- if (!caller_is_thumb)
- store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
- }
-
- /* If the CPU is currently in Thumb mode, use the Thumb call dummy
- instead of the ARM one that's already been copied. This will
- work for both Thumb and ARM target functions. */
- if (caller_is_thumb)
- {
- int i;
- char *p = dummy;
- int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
-
- for (i = 0; i < len; i++)
- {
- store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
- p += sizeof (thumb_dummy[0]);
- }
- }
-
- /* Put the target address in r4; the call dummy will copy this to the PC. */
- write_register (4, fun);
-}
-
-
-/* Return the offset in the call dummy of the instruction that needs
- to have a breakpoint placed on it. This is the offset of the 'swi 24'
- instruction, which is no longer actually used, but simply acts
- as a place-holder now.
-
- This implements the CALL_DUMMY_BREAK_OFFSET macro.
-*/
-
-int
-arm_call_dummy_breakpoint_offset ()
-{
- if (caller_is_thumb)
- return 4;
- else
- return 8;
-}
-
-
-CORE_ADDR
-arm_push_arguments(nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr * args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
-{
- int argreg;
- int float_argreg;
- int argnum;
- int stack_offset;
- struct stack_arg {
- char *val;
- int len;
- int offset;
- };
- struct stack_arg *stack_args =
- (struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
- int nstack_args = 0;
-
-
- /* Initialize the integer and float register pointers. */
- argreg = A1_REGNUM;
- float_argreg = F0_REGNUM;
-
- /* the struct_return pointer occupies the first parameter-passing reg */
- if (struct_return)
- write_register (argreg++, struct_addr);
-
- /* The offset onto the stack at which we will start copying parameters
- (after the registers are used up) begins at 16 in the old ABI.
- This leaves room for the "home" area for register parameters. */
- stack_offset = REGISTER_SIZE * 4;
-
- /* Process args from left to right. Store as many as allowed in
- registers, save the rest to be pushed on the stack */
- for(argnum = 0; argnum < nargs; argnum++)
- {
- char * val;
- value_ptr arg = args[argnum];
- struct type * arg_type = check_typedef (VALUE_TYPE (arg));
- struct type * target_type = TYPE_TARGET_TYPE (arg_type);
- int len = TYPE_LENGTH (arg_type);
- enum type_code typecode = TYPE_CODE (arg_type);
- CORE_ADDR regval;
- int newarg;
-
- val = (char *) VALUE_CONTENTS (arg);
-
- /* If the argument is a pointer to a function, and it's a Thumb
- function, set the low bit of the pointer. */
- if (typecode == TYPE_CODE_PTR
- && target_type != NULL
- && TYPE_CODE (target_type) == TYPE_CODE_FUNC)
- {
- regval = extract_address (val, len);
- if (arm_pc_is_thumb (regval))
- store_address (val, len, MAKE_THUMB_ADDR (regval));
- }
-
-#define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */
-#if MAPCS_FLOAT
- /* Up to four floating point arguments can be passed in floating
- point registers on ARM (not on Thumb). */
- if (typecode == TYPE_CODE_FLT
- && float_argreg <= ARM_LAST_FP_ARG_REGNUM
- && !target_is_thumb)
- {
- /* This is a floating point value that fits entirely
- in a single register. */
- regval = extract_address (val, len);
- write_register (float_argreg++, regval);
- }
- else
-#endif
- {
- /* Copy the argument to general registers or the stack in
- register-sized pieces. Large arguments are split between
- registers and stack. */
- while (len > 0)
- {
- if (argreg <= ARM_LAST_ARG_REGNUM)
- {
- int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
- regval = extract_address (val, partial_len);
-
- /* It's a simple argument being passed in a general
- register. */
- write_register (argreg, regval);
- argreg++;
- len -= partial_len;
- val += partial_len;
- }
- else
- {
- /* keep for later pushing */
- stack_args[nstack_args].val = val;
- stack_args[nstack_args++].len = len;
- break;
- }
- }
- }
- }
- /* now do the real stack pushing, process args right to left */
- while(nstack_args--)
- {
- sp -= stack_args[nstack_args].len;
- write_memory(sp, stack_args[nstack_args].val,
- stack_args[nstack_args].len);
- }
-
- /* Return adjusted stack pointer. */
- return sp;
-}
-
-void
-arm_pop_frame ()
-{
- struct frame_info *frame = get_current_frame();
- int regnum;
-
- for (regnum = 0; regnum < NUM_REGS; regnum++)
- if (frame->fsr.regs[regnum] != 0)
- write_register (regnum,
- read_memory_integer (frame->fsr.regs[regnum], 4));
-
- write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
- write_register (SP_REGNUM, read_register (frame->framereg));
-
- flush_cached_frames ();
-}
-
-static void
-print_fpu_flags (flags)
- int flags;
-{
- if (flags & (1 << 0)) fputs ("IVO ", stdout);
- if (flags & (1 << 1)) fputs ("DVZ ", stdout);
- if (flags & (1 << 2)) fputs ("OFL ", stdout);
- if (flags & (1 << 3)) fputs ("UFL ", stdout);
- if (flags & (1 << 4)) fputs ("INX ", stdout);
- putchar ('\n');
-}
-
-void
-arm_float_info ()
-{
- register unsigned long status = read_register (FPS_REGNUM);
- int type;
-
- type = (status >> 24) & 127;
- printf ("%s FPU type %d\n",
- (status & (1<<31)) ? "Hardware" : "Software",
- type);
- fputs ("mask: ", stdout);
- print_fpu_flags (status >> 16);
- fputs ("flags: ", stdout);
- print_fpu_flags (status);
-}
-
-static void
-arm_othernames ()
-{
- static int toggle;
- static char *original[] = ORIGINAL_REGISTER_NAMES;
- static char *extra_crispy[] = ADDITIONAL_REGISTER_NAMES;
-
- memcpy (reg_names, toggle ? extra_crispy : original, sizeof(original));
- toggle = !toggle;
-}
-
-/* FIXME: Fill in with the 'right thing', see asm
- template in arm-convert.s */
-
-void
-convert_from_extended (ptr, dbl)
- void * ptr;
- double * dbl;
-{
- *dbl = *(double*)ptr;
-}
-
-void
-convert_to_extended (dbl, ptr)
- void * ptr;
- double * dbl;
-{
- *(double*)ptr = *dbl;
-}
-
-static int
-condition_true (cond, status_reg)
- unsigned long cond;
- unsigned long status_reg;
-{
- if (cond == INST_AL || cond == INST_NV)
- return 1;
-
- switch (cond)
- {
- case INST_EQ:
- return ((status_reg & FLAG_Z) != 0);
- case INST_NE:
- return ((status_reg & FLAG_Z) == 0);
- case INST_CS:
- return ((status_reg & FLAG_C) != 0);
- case INST_CC:
- return ((status_reg & FLAG_C) == 0);
- case INST_MI:
- return ((status_reg & FLAG_N) != 0);
- case INST_PL:
- return ((status_reg & FLAG_N) == 0);
- case INST_VS:
- return ((status_reg & FLAG_V) != 0);
- case INST_VC:
- return ((status_reg & FLAG_V) == 0);
- case INST_HI:
- return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
- case INST_LS:
- return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
- case INST_GE:
- return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
- case INST_LT:
- return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
- case INST_GT:
- return (((status_reg & FLAG_Z) == 0) &&
- (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
- case INST_LE:
- return (((status_reg & FLAG_Z) != 0) ||
- (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
- }
- return 1;
-}
-
-#define submask(x) ((1L << ((x) + 1)) - 1)
-#define bit(obj,st) (((obj) >> (st)) & 1)
-#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
-#define sbits(obj,st,fn) \
- ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
-#define BranchDest(addr,instr) \
- ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
-#define ARM_PC_32 1
-
-static unsigned long
-shifted_reg_val (inst, carry, pc_val, status_reg)
- unsigned long inst;
- int carry;
- unsigned long pc_val;
- unsigned long status_reg;
-{
- unsigned long res, shift;
- int rm = bits (inst, 0, 3);
- unsigned long shifttype = bits (inst, 5, 6);
-
- if (bit(inst, 4))
- {
- int rs = bits (inst, 8, 11);
- shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
- }
- else
- shift = bits (inst, 7, 11);
-
- res = (rm == 15
- ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
- + (bit (inst, 4) ? 12 : 8))
- : read_register (rm));
-
- switch (shifttype)
- {
- case 0: /* LSL */
- res = shift >= 32 ? 0 : res << shift;
- break;
-
- case 1: /* LSR */
- res = shift >= 32 ? 0 : res >> shift;
- break;
-
- case 2: /* ASR */
- if (shift >= 32) shift = 31;
- res = ((res & 0x80000000L)
- ? ~((~res) >> shift) : res >> shift);
- break;
-
- case 3: /* ROR/RRX */
- shift &= 31;
- if (shift == 0)
- res = (res >> 1) | (carry ? 0x80000000L : 0);
- else
- res = (res >> shift) | (res << (32-shift));
- break;
- }
-
- return res & 0xffffffff;
-}
-
-
-/* Return number of 1-bits in VAL. */
-
-static int
-bitcount (val)
- unsigned long val;
-{
- int nbits;
- for (nbits = 0; val != 0; nbits++)
- val &= val - 1; /* delete rightmost 1-bit in val */
- return nbits;
-}
-
-
-static CORE_ADDR
-thumb_get_next_pc (pc)
- CORE_ADDR pc;
-{
- unsigned long pc_val = ((unsigned long)pc) + 4; /* PC after prefetch */
- unsigned short inst1 = read_memory_integer (pc, 2);
- CORE_ADDR nextpc = pc + 2; /* default is next instruction */
- unsigned long offset;
-
- if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
- {
- CORE_ADDR sp;
-
- /* Fetch the saved PC from the stack. It's stored above
- all of the other registers. */
- offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
- sp = read_register (SP_REGNUM);
- nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
- {
- unsigned long status = read_register (PS_REGNUM);
- unsigned long cond = bits (inst1, 8, 11);
- if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
- nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
- }
- else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
- {
- nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
- }
- else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
- {
- unsigned short inst2 = read_memory_integer (pc + 2, 2);
- offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
- nextpc = pc_val + offset;
- }
-
- return nextpc;
-}
-
-
-CORE_ADDR
-arm_get_next_pc (pc)
- CORE_ADDR pc;
-{
- unsigned long pc_val;
- unsigned long this_instr;
- unsigned long status;
- CORE_ADDR nextpc;
-
- if (arm_pc_is_thumb (pc))
- return thumb_get_next_pc (pc);
-
- pc_val = (unsigned long) pc;
- this_instr = read_memory_integer (pc, 4);
- status = read_register (PS_REGNUM);
- nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
-
- if (condition_true (bits (this_instr, 28, 31), status))
- {
- switch (bits (this_instr, 24, 27))
- {
- case 0x0: case 0x1: /* data processing */
- case 0x2: case 0x3:
- {
- unsigned long operand1, operand2, result = 0;
- unsigned long rn;
- int c;
-
- if (bits (this_instr, 12, 15) != 15)
- break;
-
- if (bits (this_instr, 22, 25) == 0
- && bits (this_instr, 4, 7) == 9) /* multiply */
- error ("Illegal update to pc in instruction");
-
- /* Multiply into PC */
- c = (status & FLAG_C) ? 1 : 0;
- rn = bits (this_instr, 16, 19);
- operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
-
- if (bit (this_instr, 25))
- {
- unsigned long immval = bits (this_instr, 0, 7);
- unsigned long rotate = 2 * bits (this_instr, 8, 11);
- operand2 = ((immval >> rotate) | (immval << (32-rotate)))
- & 0xffffffff;
- }
- else /* operand 2 is a shifted register */
- operand2 = shifted_reg_val (this_instr, c, pc_val, status);
-
- switch (bits (this_instr, 21, 24))
- {
- case 0x0: /*and*/
- result = operand1 & operand2;
- break;
-
- case 0x1: /*eor*/
- result = operand1 ^ operand2;
- break;
-
- case 0x2: /*sub*/
- result = operand1 - operand2;
- break;
-
- case 0x3: /*rsb*/
- result = operand2 - operand1;
- break;
-
- case 0x4: /*add*/
- result = operand1 + operand2;
- break;
-
- case 0x5: /*adc*/
- result = operand1 + operand2 + c;
- break;
-
- case 0x6: /*sbc*/
- result = operand1 - operand2 + c;
- break;
-
- case 0x7: /*rsc*/
- result = operand2 - operand1 + c;
- break;
-
- case 0x8: case 0x9: case 0xa: case 0xb: /* tst, teq, cmp, cmn */
- result = (unsigned long) nextpc;
- break;
-
- case 0xc: /*orr*/
- result = operand1 | operand2;
- break;
-
- case 0xd: /*mov*/
- /* Always step into a function. */
- result = operand2;
- break;
-
- case 0xe: /*bic*/
- result = operand1 & ~operand2;
- break;
-
- case 0xf: /*mvn*/
- result = ~operand2;
- break;
- }
- nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
-
- if (nextpc == pc)
- error ("Infinite loop detected");
- break;
- }
-
- case 0x4: case 0x5: /* data transfer */
- case 0x6: case 0x7:
- if (bit (this_instr, 20))
- {
- /* load */
- if (bits (this_instr, 12, 15) == 15)
- {
- /* rd == pc */
- unsigned long rn;
- unsigned long base;
-
- if (bit (this_instr, 22))
- error ("Illegal update to pc in instruction");
-
- /* byte write to PC */
- rn = bits (this_instr, 16, 19);
- base = (rn == 15) ? pc_val + 8 : read_register (rn);
- if (bit (this_instr, 24))
- {
- /* pre-indexed */
- int c = (status & FLAG_C) ? 1 : 0;
- unsigned long offset =
- (bit (this_instr, 25)
- ? shifted_reg_val (this_instr, c, pc_val)
- : bits (this_instr, 0, 11));
-
- if (bit (this_instr, 23))
- base += offset;
- else
- base -= offset;
- }
- nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
- 4);
-
- nextpc = ADDR_BITS_REMOVE (nextpc);
-
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- }
- break;
-
- case 0x8: case 0x9: /* block transfer */
- if (bit (this_instr, 20))
- {
- /* LDM */
- if (bit (this_instr, 15))
- {
- /* loading pc */
- int offset = 0;
-
- if (bit (this_instr, 23))
- {
- /* up */
- unsigned long reglist = bits (this_instr, 0, 14);
- offset = bitcount (reglist) * 4;
- if (bit (this_instr, 24)) /* pre */
- offset += 4;
- }
- else if (bit (this_instr, 24))
- offset = -4;
-
- {
- unsigned long rn_val =
- read_register (bits (this_instr, 16, 19));
- nextpc =
- (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
- + offset),
- 4);
- }
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- }
- }
- break;
-
- case 0xb: /* branch & link */
- case 0xa: /* branch */
- {
- nextpc = BranchDest (pc, this_instr);
-
- nextpc = ADDR_BITS_REMOVE (nextpc);
- if (nextpc == pc)
- error ("Infinite loop detected");
- break;
- }
-
- case 0xc: case 0xd:
- case 0xe: /* coproc ops */
- case 0xf: /* SWI */
- break;
-
- default:
- fprintf (stderr, "Bad bit-field extraction\n");
- return (pc);
- }
- }
-
- return nextpc;
-}
-
-#include "bfd-in2.h"
-#include "libcoff.h"
-
-static int
-gdb_print_insn_arm (memaddr, info)
- bfd_vma memaddr;
- disassemble_info * info;
-{
- if (arm_pc_is_thumb (memaddr))
- {
- static asymbol * asym;
- static combined_entry_type ce;
- static struct coff_symbol_struct csym;
- static struct _bfd fake_bfd;
- static bfd_target fake_target;
-
- if (csym.native == NULL)
- {
- /* Create a fake symbol vector containing a Thumb symbol. This is
- solely so that the code in print_insn_little_arm() and
- print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
- of a Thumb symbol and switch to decoding Thumb instructions. */
-
- fake_target.flavour = bfd_target_coff_flavour;
- fake_bfd.xvec = & fake_target;
- ce.u.syment.n_sclass = C_THUMBEXTFUNC;
- csym.native = & ce;
- csym.symbol.the_bfd = & fake_bfd;
- csym.symbol.name = "fake";
- asym = (asymbol *) & csym;
- }
-
- memaddr = UNMAKE_THUMB_ADDR (memaddr);
- info->symbols = & asym;
- }
- else
- info->symbols = NULL;
-
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- return print_insn_big_arm (memaddr, info);
- else
- return print_insn_little_arm (memaddr, info);
-}
-
-/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
- counter value to determine whether a 16- or 32-bit breakpoint should be
- used. It returns a pointer to a string of bytes that encode a breakpoint
- instruction, stores the length of the string to *lenptr, and adjusts pc
- (if necessary) to point to the actual memory location where the
- breakpoint should be inserted. */
-
-unsigned char *
-arm_breakpoint_from_pc (pcptr, lenptr)
- CORE_ADDR * pcptr;
- int * lenptr;
-{
- if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
- {
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
- *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
- *lenptr = sizeof (thumb_breakpoint);
- return thumb_breakpoint;
- }
- else
- {
- static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
- *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
- *lenptr = sizeof (thumb_breakpoint);
- return thumb_breakpoint;
- }
- }
- else
- {
- if (TARGET_BYTE_ORDER == BIG_ENDIAN)
- {
- static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
- *lenptr = sizeof (arm_breakpoint);
- return arm_breakpoint;
- }
- else
- {
- static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
- *lenptr = sizeof (arm_breakpoint);
- return arm_breakpoint;
- }
- }
-}
-/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
- This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
-
-int
-arm_in_call_stub (pc, name)
- CORE_ADDR pc;
- char * name;
-{
- CORE_ADDR start_addr;
-
- /* Find the starting address of the function containing the PC. If the
- caller didn't give us a name, look it up at the same time. */
- if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
- return 0;
-
- return strncmp (name, "_call_via_r", 11) == 0;
-}
-
-
-/* If PC is in a Thumb call or return stub, return the address of the target
- PC, which is in a register. The thunk functions are called _called_via_xx,
- where x is the register name. The possible names are r0-r9, sl, fp, ip,
- sp, and lr. */
-
-CORE_ADDR
-arm_skip_stub (pc)
- CORE_ADDR pc;
-{
- char * name;
- CORE_ADDR start_addr;
-
- /* Find the starting address and name of the function containing the PC. */
- if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
- return 0;
-
- /* Call thunks always start with "_call_via_". */
- if (strncmp (name, "_call_via_", 10) == 0)
- {
- /* Use the name suffix to determine which register contains
- the target PC. */
- static char *table[15] =
- { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "sl", "fp", "ip", "sp", "lr"
- };
- int regno;
-
- for (regno = 0; regno <= 14; regno++)
- if (strcmp (&name[10], table[regno]) == 0)
- return read_register (regno);
- }
- return 0; /* not a stub */
-}
-
-
-void
-_initialize_arm_tdep ()
-{
- tm_print_insn = gdb_print_insn_arm;
-
- add_com ("othernames", class_obscure, arm_othernames,
- "Switch to the other set of register names.");
-
- /* ??? Maybe this should be a boolean. */
- add_show_from_set (add_set_cmd ("apcs32", no_class,
- var_zinteger, (char *)&arm_apcs_32,
- "Set usage of ARM 32-bit mode.\n", &setlist),
- & showlist);
-
-}
-
-/* Test whether the coff symbol specific value corresponds to a Thumb function */
-int
-coff_sym_is_thumb(int val)
-{
- return (val == C_THUMBEXT ||
- val == C_THUMBSTAT ||
- val == C_THUMBEXTFUNC ||
- val == C_THUMBSTATFUNC ||
- val == C_THUMBLABEL);
-}