aboutsummaryrefslogtreecommitdiff
path: root/gdb/amd64-tdep.c
diff options
context:
space:
mode:
authorMark Kettenis <kettenis@gnu.org>2004-02-25 20:45:31 +0000
committerMark Kettenis <kettenis@gnu.org>2004-02-25 20:45:31 +0000
commit9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c (patch)
treee2207e2678b98497e5c5a01503e0998e9aa7e063 /gdb/amd64-tdep.c
parent4b8dad4a1e2d5d5c91b6ec087211b213a18d4396 (diff)
downloadfsf-binutils-gdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.zip
fsf-binutils-gdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.tar.gz
fsf-binutils-gdb-9c1488cbbce26c9b9bdf5d0f9d515c272a6dc48c.tar.bz2
* amd64-tdep.h: Renamed from x86-64-tdep.h.
* amd64-tdep.c: Renamed from x86-64-tdep.c. Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64-linux-tdep.h: Renamed from x86-64-linux.h. * amd64-linux-tdep.c: Renamed from x86-64-linux-tdep.c. Include "amd64-tdep.h" and "amd64-linux-tdep.h" instead of "x86-64-tdep.h" and "x86-64-tdep.c". * amd64-linux-nat.c: Renamed from x86-64-linux-nat.c. Include "amd64-tdep.h" and "amd64-linux-tdep.h" instead of "x86-64-tdep.h" and "x86-64-tdep.c". * amd64bsd-nat.c: Update copyright year. Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64fbsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64fbsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64nbsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64nbsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64obsd-tdep.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * amd64obsd-nat.c: Include "amd64-tdep.h" instead of "x86-64-tdep.h". * configure.host: (x86_64-*-linux*): Set gdb_target to linux64. * configure.tgt (x86_64-*-linux*): Set gdb_target to linux64. * Makefile.in (amd64_linux_tdep_h): Renamed from x86_64_linux_tdep_h. (amd64_tdep_h): Renamed from x86_64_tdep_h. (amd64bsd-nat.o, amd64fbsd-nat.o, amd64fbsd-tdep.o, amd64-nat.o) (amd64nbsd-nat.o, amd64nbsd-tdep.o, amd64obsd-nat.o) (amd64obsd-tdep.o): Update dependencies. (amd64-tdep.o, amd64-linux-nat.o, amd64-linux-tdep.o): New dependencies. (x86-64-linux-nat.o, x86-64-linux-tdep.o, x86-64-tdep.o): Remove dependencies. (ALLDEPFILES): Add amd64-tdep.c, amd64obsd-nat.c, amd64obsd-nat.c, amd64-linux-nat.c amd64-linux-tdep.c. * config/i386/tm-linux64.h: Renamed from tm-x86-64linux.h * config/i386/nm-linux64.h: Renamed from nm-x86-64linux.h. * config/i386/linux64.mt: Renamed from x86-64linux.mt. (TDEPFILES): Replace x86-64-tdep.o and x86-64-linux-tdep.o with amd64-tdep.o and amd64-linux-tdep.o. (TM_FILE): Set to tm-linux64.h. * config/i386/linux64.mh: Renamed from x86-64linux.mh. (NAT_FILE): Set to nm-linux64.h. (NATDEPFILES): Replace x86-64-linux-nat.o with amd64-linux-nat.o. * config/i386/fbsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o. * config/i386/nbsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o. * config/i386/obsd64.mt (TDEPFILES): Replace x86-64-tdep.o with amd64-tdep.o.
Diffstat (limited to 'gdb/amd64-tdep.c')
-rw-r--r--gdb/amd64-tdep.c1186
1 files changed, 1186 insertions, 0 deletions
diff --git a/gdb/amd64-tdep.c b/gdb/amd64-tdep.c
new file mode 100644
index 0000000..46ee806
--- /dev/null
+++ b/gdb/amd64-tdep.c
@@ -0,0 +1,1186 @@
+/* Target-dependent code for AMD64.
+
+ Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+ Contributed by Jiri Smid, SuSE Labs.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "arch-utils.h"
+#include "block.h"
+#include "dummy-frame.h"
+#include "frame.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
+#include "inferior.h"
+#include "gdbcmd.h"
+#include "gdbcore.h"
+#include "objfiles.h"
+#include "regcache.h"
+#include "regset.h"
+#include "symfile.h"
+
+#include "gdb_assert.h"
+
+#include "amd64-tdep.h"
+#include "i387-tdep.h"
+
+/* Note that the AMD64 architecture was previously known as x86-64.
+ The latter is (forever) engraved into the canonical system name as
+ returned by config.guess, and used as the name for the AMD64 port
+ of GNU/Linux. The BSD's have renamed their ports to amd64; they
+ don't like to shout. For GDB we prefer the amd64_-prefix over the
+ x86_64_-prefix since it's so much easier to type. */
+
+/* Register information. */
+
+struct amd64_register_info
+{
+ char *name;
+ struct type **type;
+};
+
+static struct amd64_register_info amd64_register_info[] =
+{
+ { "rax", &builtin_type_int64 },
+ { "rbx", &builtin_type_int64 },
+ { "rcx", &builtin_type_int64 },
+ { "rdx", &builtin_type_int64 },
+ { "rsi", &builtin_type_int64 },
+ { "rdi", &builtin_type_int64 },
+ { "rbp", &builtin_type_void_data_ptr },
+ { "rsp", &builtin_type_void_data_ptr },
+
+ /* %r8 is indeed register number 8. */
+ { "r8", &builtin_type_int64 },
+ { "r9", &builtin_type_int64 },
+ { "r10", &builtin_type_int64 },
+ { "r11", &builtin_type_int64 },
+ { "r12", &builtin_type_int64 },
+ { "r13", &builtin_type_int64 },
+ { "r14", &builtin_type_int64 },
+ { "r15", &builtin_type_int64 },
+ { "rip", &builtin_type_void_func_ptr },
+ { "eflags", &builtin_type_int32 },
+ { "cs", &builtin_type_int32 },
+ { "ss", &builtin_type_int32 },
+ { "ds", &builtin_type_int32 },
+ { "es", &builtin_type_int32 },
+ { "fs", &builtin_type_int32 },
+ { "gs", &builtin_type_int32 },
+
+ /* %st0 is register number 24. */
+ { "st0", &builtin_type_i387_ext },
+ { "st1", &builtin_type_i387_ext },
+ { "st2", &builtin_type_i387_ext },
+ { "st3", &builtin_type_i387_ext },
+ { "st4", &builtin_type_i387_ext },
+ { "st5", &builtin_type_i387_ext },
+ { "st6", &builtin_type_i387_ext },
+ { "st7", &builtin_type_i387_ext },
+ { "fctrl", &builtin_type_int32 },
+ { "fstat", &builtin_type_int32 },
+ { "ftag", &builtin_type_int32 },
+ { "fiseg", &builtin_type_int32 },
+ { "fioff", &builtin_type_int32 },
+ { "foseg", &builtin_type_int32 },
+ { "fooff", &builtin_type_int32 },
+ { "fop", &builtin_type_int32 },
+
+ /* %xmm0 is register number 40. */
+ { "xmm0", &builtin_type_v4sf },
+ { "xmm1", &builtin_type_v4sf },
+ { "xmm2", &builtin_type_v4sf },
+ { "xmm3", &builtin_type_v4sf },
+ { "xmm4", &builtin_type_v4sf },
+ { "xmm5", &builtin_type_v4sf },
+ { "xmm6", &builtin_type_v4sf },
+ { "xmm7", &builtin_type_v4sf },
+ { "xmm8", &builtin_type_v4sf },
+ { "xmm9", &builtin_type_v4sf },
+ { "xmm10", &builtin_type_v4sf },
+ { "xmm11", &builtin_type_v4sf },
+ { "xmm12", &builtin_type_v4sf },
+ { "xmm13", &builtin_type_v4sf },
+ { "xmm14", &builtin_type_v4sf },
+ { "xmm15", &builtin_type_v4sf },
+ { "mxcsr", &builtin_type_int32 }
+};
+
+/* Total number of registers. */
+#define AMD64_NUM_REGS \
+ (sizeof (amd64_register_info) / sizeof (amd64_register_info[0]))
+
+/* Return the name of register REGNUM. */
+
+static const char *
+amd64_register_name (int regnum)
+{
+ if (regnum >= 0 && regnum < AMD64_NUM_REGS)
+ return amd64_register_info[regnum].name;
+
+ return NULL;
+}
+
+/* Return the GDB type object for the "standard" data type of data in
+ register REGNUM. */
+
+static struct type *
+amd64_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
+
+ return *amd64_register_info[regnum].type;
+}
+
+/* DWARF Register Number Mapping as defined in the System V psABI,
+ section 3.6. */
+
+static int amd64_dwarf_regmap[] =
+{
+ /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
+ AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
+ AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
+ AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
+
+ /* Frame Pointer Register RBP. */
+ AMD64_RBP_REGNUM,
+
+ /* Stack Pointer Register RSP. */
+ AMD64_RSP_REGNUM,
+
+ /* Extended Integer Registers 8 - 15. */
+ 8, 9, 10, 11, 12, 13, 14, 15,
+
+ /* Return Address RA. Mapped to RIP. */
+ AMD64_RIP_REGNUM,
+
+ /* SSE Registers 0 - 7. */
+ AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
+ AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
+ AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
+ AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
+
+ /* Extended SSE Registers 8 - 15. */
+ AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
+ AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
+ AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
+ AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
+
+ /* Floating Point Registers 0-7. */
+ AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
+ AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
+ AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
+ AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7
+};
+
+static const int amd64_dwarf_regmap_len =
+ (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
+
+/* Convert DWARF register number REG to the appropriate register
+ number used by GDB. */
+
+static int
+amd64_dwarf_reg_to_regnum (int reg)
+{
+ int regnum = -1;
+
+ if (reg >= 0 || reg < amd64_dwarf_regmap_len)
+ regnum = amd64_dwarf_regmap[reg];
+
+ if (regnum == -1)
+ warning ("Unmapped DWARF Register #%d encountered\n", reg);
+
+ return regnum;
+}
+
+/* Return nonzero if a value of type TYPE stored in register REGNUM
+ needs any special handling. */
+
+static int
+amd64_convert_register_p (int regnum, struct type *type)
+{
+ return i386_fp_regnum_p (regnum);
+}
+
+
+/* Register classes as defined in the psABI. */
+
+enum amd64_reg_class
+{
+ AMD64_INTEGER,
+ AMD64_SSE,
+ AMD64_SSEUP,
+ AMD64_X87,
+ AMD64_X87UP,
+ AMD64_COMPLEX_X87,
+ AMD64_NO_CLASS,
+ AMD64_MEMORY
+};
+
+/* Return the union class of CLASS1 and CLASS2. See the psABI for
+ details. */
+
+static enum amd64_reg_class
+amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
+{
+ /* Rule (a): If both classes are equal, this is the resulting class. */
+ if (class1 == class2)
+ return class1;
+
+ /* Rule (b): If one of the classes is NO_CLASS, the resulting class
+ is the other class. */
+ if (class1 == AMD64_NO_CLASS)
+ return class2;
+ if (class2 == AMD64_NO_CLASS)
+ return class1;
+
+ /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
+ if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
+ return AMD64_MEMORY;
+
+ /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
+ if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
+ return AMD64_INTEGER;
+
+ /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ MEMORY is used as class. */
+ if (class1 == AMD64_X87 || class1 == AMD64_X87UP
+ || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
+ || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
+ return AMD64_MEMORY;
+
+ /* Rule (f): Otherwise class SSE is used. */
+ return AMD64_SSE;
+}
+
+static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
+
+/* Return non-zero if TYPE is a non-POD structure or union type. */
+
+static int
+amd64_non_pod_p (struct type *type)
+{
+ /* ??? A class with a base class certainly isn't POD, but does this
+ catch all non-POD structure types? */
+ if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
+ return 1;
+
+ return 0;
+}
+
+/* Classify TYPE according to the rules for aggregate (structures and
+ arrays) and union types, and store the result in CLASS. */
+
+static void
+amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
+{
+ int len = TYPE_LENGTH (type);
+
+ /* 1. If the size of an object is larger than two eightbytes, or in
+ C++, is a non-POD structure or union type, or contains
+ unaligned fields, it has class memory. */
+ if (len > 16 || amd64_non_pod_p (type))
+ {
+ class[0] = class[1] = AMD64_MEMORY;
+ return;
+ }
+
+ /* 2. Both eightbytes get initialized to class NO_CLASS. */
+ class[0] = class[1] = AMD64_NO_CLASS;
+
+ /* 3. Each field of an object is classified recursively so that
+ always two fields are considered. The resulting class is
+ calculated according to the classes of the fields in the
+ eightbyte: */
+
+ if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
+ {
+ struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
+
+ /* All fields in an array have the same type. */
+ amd64_classify (subtype, class);
+ if (len > 8 && class[1] == AMD64_NO_CLASS)
+ class[1] = class[0];
+ }
+ else
+ {
+ int i;
+
+ /* Structure or union. */
+ gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
+ || TYPE_CODE (type) == TYPE_CODE_UNION);
+
+ for (i = 0; i < TYPE_NFIELDS (type); i++)
+ {
+ struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
+ int pos = TYPE_FIELD_BITPOS (type, i) / 64;
+ enum amd64_reg_class subclass[2];
+
+ /* Ignore static fields. */
+ if (TYPE_FIELD_STATIC (type, i))
+ continue;
+
+ gdb_assert (pos == 0 || pos == 1);
+
+ amd64_classify (subtype, subclass);
+ class[pos] = amd64_merge_classes (class[pos], subclass[0]);
+ if (pos == 0)
+ class[1] = amd64_merge_classes (class[1], subclass[1]);
+ }
+ }
+
+ /* 4. Then a post merger cleanup is done: */
+
+ /* Rule (a): If one of the classes is MEMORY, the whole argument is
+ passed in memory. */
+ if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
+ class[0] = class[1] = AMD64_MEMORY;
+
+ /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
+ SSE. */
+ if (class[0] == AMD64_SSEUP)
+ class[0] = AMD64_SSE;
+ if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
+ class[1] = AMD64_SSE;
+}
+
+/* Classify TYPE, and store the result in CLASS. */
+
+static void
+amd64_classify (struct type *type, enum amd64_reg_class class[2])
+{
+ enum type_code code = TYPE_CODE (type);
+ int len = TYPE_LENGTH (type);
+
+ class[0] = class[1] = AMD64_NO_CLASS;
+
+ /* Arguments of types (signed and unsigned) _Bool, char, short, int,
+ long, long long, and pointers are in the INTEGER class. */
+ if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
+ || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
+ && (len == 1 || len == 2 || len == 4 || len == 8))
+ class[0] = AMD64_INTEGER;
+
+ /* Arguments of types float, double and __m64 are in class SSE. */
+ else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
+ /* FIXME: __m64 . */
+ class[0] = AMD64_SSE;
+
+ /* Arguments of types __float128 and __m128 are split into two
+ halves. The least significant ones belong to class SSE, the most
+ significant one to class SSEUP. */
+ /* FIXME: __float128, __m128. */
+
+ /* The 64-bit mantissa of arguments of type long double belongs to
+ class X87, the 16-bit exponent plus 6 bytes of padding belongs to
+ class X87UP. */
+ else if (code == TYPE_CODE_FLT && len == 16)
+ /* Class X87 and X87UP. */
+ class[0] = AMD64_X87, class[1] = AMD64_X87UP;
+
+ /* Aggregates. */
+ else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
+ || code == TYPE_CODE_UNION)
+ amd64_classify_aggregate (type, class);
+}
+
+static enum return_value_convention
+amd64_return_value (struct gdbarch *gdbarch, struct type *type,
+ struct regcache *regcache,
+ void *readbuf, const void *writebuf)
+{
+ enum amd64_reg_class class[2];
+ int len = TYPE_LENGTH (type);
+ static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
+ static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
+ int integer_reg = 0;
+ int sse_reg = 0;
+ int i;
+
+ gdb_assert (!(readbuf && writebuf));
+
+ /* 1. Classify the return type with the classification algorithm. */
+ amd64_classify (type, class);
+
+ /* 2. If the type has class MEMORY, then the caller provides space
+ for the return value and passes the address of this storage in
+ %rdi as if it were the first argument to the function. In
+ effect, this address becomes a hidden first argument. */
+ if (class[0] == AMD64_MEMORY)
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ gdb_assert (class[1] != AMD64_MEMORY);
+ gdb_assert (len <= 16);
+
+ for (i = 0; len > 0; i++, len -= 8)
+ {
+ int regnum = -1;
+ int offset = 0;
+
+ switch (class[i])
+ {
+ case AMD64_INTEGER:
+ /* 3. If the class is INTEGER, the next available register
+ of the sequence %rax, %rdx is used. */
+ regnum = integer_regnum[integer_reg++];
+ break;
+
+ case AMD64_SSE:
+ /* 4. If the class is SSE, the next available SSE register
+ of the sequence %xmm0, %xmm1 is used. */
+ regnum = sse_regnum[sse_reg++];
+ break;
+
+ case AMD64_SSEUP:
+ /* 5. If the class is SSEUP, the eightbyte is passed in the
+ upper half of the last used SSE register. */
+ gdb_assert (sse_reg > 0);
+ regnum = sse_regnum[sse_reg - 1];
+ offset = 8;
+ break;
+
+ case AMD64_X87:
+ /* 6. If the class is X87, the value is returned on the X87
+ stack in %st0 as 80-bit x87 number. */
+ regnum = AMD64_ST0_REGNUM;
+ if (writebuf)
+ i387_return_value (gdbarch, regcache);
+ break;
+
+ case AMD64_X87UP:
+ /* 7. If the class is X87UP, the value is returned together
+ with the previous X87 value in %st0. */
+ gdb_assert (i > 0 && class[0] == AMD64_X87);
+ regnum = AMD64_ST0_REGNUM;
+ offset = 8;
+ len = 2;
+ break;
+
+ case AMD64_NO_CLASS:
+ continue;
+
+ default:
+ gdb_assert (!"Unexpected register class.");
+ }
+
+ gdb_assert (regnum != -1);
+
+ if (readbuf)
+ regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
+ (char *) readbuf + i * 8);
+ if (writebuf)
+ regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
+ (const char *) writebuf + i * 8);
+ }
+
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+
+static CORE_ADDR
+amd64_push_arguments (struct regcache *regcache, int nargs,
+ struct value **args, CORE_ADDR sp, int struct_return)
+{
+ static int integer_regnum[] =
+ {
+ AMD64_RDI_REGNUM, /* %rdi */
+ AMD64_RSI_REGNUM, /* %rsi */
+ AMD64_RDX_REGNUM, /* %rdx */
+ AMD64_RCX_REGNUM, /* %rcx */
+ 8, /* %r8 */
+ 9 /* %r9 */
+ };
+ static int sse_regnum[] =
+ {
+ /* %xmm0 ... %xmm7 */
+ AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
+ AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
+ AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
+ AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
+ };
+ struct value **stack_args = alloca (nargs * sizeof (struct value *));
+ int num_stack_args = 0;
+ int num_elements = 0;
+ int element = 0;
+ int integer_reg = 0;
+ int sse_reg = 0;
+ int i;
+
+ /* Reserve a register for the "hidden" argument. */
+ if (struct_return)
+ integer_reg++;
+
+ for (i = 0; i < nargs; i++)
+ {
+ struct type *type = VALUE_TYPE (args[i]);
+ int len = TYPE_LENGTH (type);
+ enum amd64_reg_class class[2];
+ int needed_integer_regs = 0;
+ int needed_sse_regs = 0;
+ int j;
+
+ /* Classify argument. */
+ amd64_classify (type, class);
+
+ /* Calculate the number of integer and SSE registers needed for
+ this argument. */
+ for (j = 0; j < 2; j++)
+ {
+ if (class[j] == AMD64_INTEGER)
+ needed_integer_regs++;
+ else if (class[j] == AMD64_SSE)
+ needed_sse_regs++;
+ }
+
+ /* Check whether enough registers are available, and if the
+ argument should be passed in registers at all. */
+ if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
+ || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
+ || (needed_integer_regs == 0 && needed_sse_regs == 0))
+ {
+ /* The argument will be passed on the stack. */
+ num_elements += ((len + 7) / 8);
+ stack_args[num_stack_args++] = args[i];
+ }
+ else
+ {
+ /* The argument will be passed in registers. */
+ char *valbuf = VALUE_CONTENTS (args[i]);
+ char buf[8];
+
+ gdb_assert (len <= 16);
+
+ for (j = 0; len > 0; j++, len -= 8)
+ {
+ int regnum = -1;
+ int offset = 0;
+
+ switch (class[j])
+ {
+ case AMD64_INTEGER:
+ regnum = integer_regnum[integer_reg++];
+ break;
+
+ case AMD64_SSE:
+ regnum = sse_regnum[sse_reg++];
+ break;
+
+ case AMD64_SSEUP:
+ gdb_assert (sse_reg > 0);
+ regnum = sse_regnum[sse_reg - 1];
+ offset = 8;
+ break;
+
+ default:
+ gdb_assert (!"Unexpected register class.");
+ }
+
+ gdb_assert (regnum != -1);
+ memset (buf, 0, sizeof buf);
+ memcpy (buf, valbuf + j * 8, min (len, 8));
+ regcache_raw_write_part (regcache, regnum, offset, 8, buf);
+ }
+ }
+ }
+
+ /* Allocate space for the arguments on the stack. */
+ sp -= num_elements * 8;
+
+ /* The psABI says that "The end of the input argument area shall be
+ aligned on a 16 byte boundary." */
+ sp &= ~0xf;
+
+ /* Write out the arguments to the stack. */
+ for (i = 0; i < num_stack_args; i++)
+ {
+ struct type *type = VALUE_TYPE (stack_args[i]);
+ char *valbuf = VALUE_CONTENTS (stack_args[i]);
+ int len = TYPE_LENGTH (type);
+
+ write_memory (sp + element * 8, valbuf, len);
+ element += ((len + 7) / 8);
+ }
+
+ /* The psABI says that "For calls that may call functions that use
+ varargs or stdargs (prototype-less calls or calls to functions
+ containing ellipsis (...) in the declaration) %al is used as
+ hidden argument to specify the number of SSE registers used. */
+ regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
+ return sp;
+}
+
+static CORE_ADDR
+amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ char buf[8];
+
+ /* Pass arguments. */
+ sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
+
+ /* Pass "hidden" argument". */
+ if (struct_return)
+ {
+ store_unsigned_integer (buf, 8, struct_addr);
+ regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
+ }
+
+ /* Store return address. */
+ sp -= 8;
+ store_unsigned_integer (buf, 8, bp_addr);
+ write_memory (sp, buf, 8);
+
+ /* Finally, update the stack pointer... */
+ store_unsigned_integer (buf, 8, sp);
+ regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
+
+ /* ...and fake a frame pointer. */
+ regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
+
+ return sp + 16;
+}
+
+
+/* The maximum number of saved registers. This should include %rip. */
+#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
+
+struct amd64_frame_cache
+{
+ /* Base address. */
+ CORE_ADDR base;
+ CORE_ADDR sp_offset;
+ CORE_ADDR pc;
+
+ /* Saved registers. */
+ CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
+ CORE_ADDR saved_sp;
+
+ /* Do we have a frame? */
+ int frameless_p;
+};
+
+/* Allocate and initialize a frame cache. */
+
+static struct amd64_frame_cache *
+amd64_alloc_frame_cache (void)
+{
+ struct amd64_frame_cache *cache;
+ int i;
+
+ cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
+
+ /* Base address. */
+ cache->base = 0;
+ cache->sp_offset = -8;
+ cache->pc = 0;
+
+ /* Saved registers. We initialize these to -1 since zero is a valid
+ offset (that's where %rbp is supposed to be stored). */
+ for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
+ cache->saved_regs[i] = -1;
+ cache->saved_sp = 0;
+
+ /* Frameless until proven otherwise. */
+ cache->frameless_p = 1;
+
+ return cache;
+}
+
+/* Do a limited analysis of the prologue at PC and update CACHE
+ accordingly. Bail out early if CURRENT_PC is reached. Return the
+ address where the analysis stopped.
+
+ We will handle only functions beginning with:
+
+ pushq %rbp 0x55
+ movq %rsp, %rbp 0x48 0x89 0xe5
+
+ Any function that doesn't start with this sequence will be assumed
+ to have no prologue and thus no valid frame pointer in %rbp. */
+
+static CORE_ADDR
+amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
+ struct amd64_frame_cache *cache)
+{
+ static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
+ unsigned char buf[3];
+ unsigned char op;
+
+ if (current_pc <= pc)
+ return current_pc;
+
+ op = read_memory_unsigned_integer (pc, 1);
+
+ if (op == 0x55) /* pushq %rbp */
+ {
+ /* Take into account that we've executed the `pushq %rbp' that
+ starts this instruction sequence. */
+ cache->saved_regs[AMD64_RBP_REGNUM] = 0;
+ cache->sp_offset += 8;
+
+ /* If that's all, return now. */
+ if (current_pc <= pc + 1)
+ return current_pc;
+
+ /* Check for `movq %rsp, %rbp'. */
+ read_memory (pc + 1, buf, 3);
+ if (memcmp (buf, proto, 3) != 0)
+ return pc + 1;
+
+ /* OK, we actually have a frame. */
+ cache->frameless_p = 0;
+ return pc + 4;
+ }
+
+ return pc;
+}
+
+/* Return PC of first real instruction. */
+
+static CORE_ADDR
+amd64_skip_prologue (CORE_ADDR start_pc)
+{
+ struct amd64_frame_cache cache;
+ CORE_ADDR pc;
+
+ pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
+ if (cache.frameless_p)
+ return start_pc;
+
+ return pc;
+}
+
+
+/* Normal frames. */
+
+static struct amd64_frame_cache *
+amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
+{
+ struct amd64_frame_cache *cache;
+ char buf[8];
+ int i;
+
+ if (*this_cache)
+ return *this_cache;
+
+ cache = amd64_alloc_frame_cache ();
+ *this_cache = cache;
+
+ cache->pc = frame_func_unwind (next_frame);
+ if (cache->pc != 0)
+ amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
+
+ if (cache->frameless_p)
+ {
+ /* We didn't find a valid frame, which means that CACHE->base
+ currently holds the frame pointer for our calling frame. If
+ we're at the start of a function, or somewhere half-way its
+ prologue, the function's frame probably hasn't been fully
+ setup yet. Try to reconstruct the base address for the stack
+ frame by looking at the stack pointer. For truly "frameless"
+ functions this might work too. */
+
+ frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
+ cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
+ }
+ else
+ {
+ frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
+ cache->base = extract_unsigned_integer (buf, 8);
+ }
+
+ /* Now that we have the base address for the stack frame we can
+ calculate the value of %rsp in the calling frame. */
+ cache->saved_sp = cache->base + 16;
+
+ /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
+ frame we find it at the same offset from the reconstructed base
+ address. */
+ cache->saved_regs[AMD64_RIP_REGNUM] = 8;
+
+ /* Adjust all the saved registers such that they contain addresses
+ instead of offsets. */
+ for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
+ if (cache->saved_regs[i] != -1)
+ cache->saved_regs[i] += cache->base;
+
+ return cache;
+}
+
+static void
+amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
+ struct frame_id *this_id)
+{
+ struct amd64_frame_cache *cache =
+ amd64_frame_cache (next_frame, this_cache);
+
+ /* This marks the outermost frame. */
+ if (cache->base == 0)
+ return;
+
+ (*this_id) = frame_id_build (cache->base + 16, cache->pc);
+}
+
+static void
+amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *valuep)
+{
+ struct amd64_frame_cache *cache =
+ amd64_frame_cache (next_frame, this_cache);
+
+ gdb_assert (regnum >= 0);
+
+ if (regnum == SP_REGNUM && cache->saved_sp)
+ {
+ *optimizedp = 0;
+ *lvalp = not_lval;
+ *addrp = 0;
+ *realnump = -1;
+ if (valuep)
+ {
+ /* Store the value. */
+ store_unsigned_integer (valuep, 8, cache->saved_sp);
+ }
+ return;
+ }
+
+ if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
+ {
+ *optimizedp = 0;
+ *lvalp = lval_memory;
+ *addrp = cache->saved_regs[regnum];
+ *realnump = -1;
+ if (valuep)
+ {
+ /* Read the value in from memory. */
+ read_memory (*addrp, valuep,
+ register_size (current_gdbarch, regnum));
+ }
+ return;
+ }
+
+ frame_register_unwind (next_frame, regnum,
+ optimizedp, lvalp, addrp, realnump, valuep);
+}
+
+static const struct frame_unwind amd64_frame_unwind =
+{
+ NORMAL_FRAME,
+ amd64_frame_this_id,
+ amd64_frame_prev_register
+};
+
+static const struct frame_unwind *
+amd64_frame_sniffer (struct frame_info *next_frame)
+{
+ return &amd64_frame_unwind;
+}
+
+
+/* Signal trampolines. */
+
+/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
+ 64-bit variants. This would require using identical frame caches
+ on both platforms. */
+
+static struct amd64_frame_cache *
+amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
+{
+ struct amd64_frame_cache *cache;
+ struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
+ CORE_ADDR addr;
+ char buf[8];
+ int i;
+
+ if (*this_cache)
+ return *this_cache;
+
+ cache = amd64_alloc_frame_cache ();
+
+ frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
+ cache->base = extract_unsigned_integer (buf, 8) - 8;
+
+ addr = tdep->sigcontext_addr (next_frame);
+ gdb_assert (tdep->sc_reg_offset);
+ gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
+ for (i = 0; i < tdep->sc_num_regs; i++)
+ if (tdep->sc_reg_offset[i] != -1)
+ cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
+
+ *this_cache = cache;
+ return cache;
+}
+
+static void
+amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
+ void **this_cache, struct frame_id *this_id)
+{
+ struct amd64_frame_cache *cache =
+ amd64_sigtramp_frame_cache (next_frame, this_cache);
+
+ (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
+}
+
+static void
+amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
+ void **this_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *valuep)
+{
+ /* Make sure we've initialized the cache. */
+ amd64_sigtramp_frame_cache (next_frame, this_cache);
+
+ amd64_frame_prev_register (next_frame, this_cache, regnum,
+ optimizedp, lvalp, addrp, realnump, valuep);
+}
+
+static const struct frame_unwind amd64_sigtramp_frame_unwind =
+{
+ SIGTRAMP_FRAME,
+ amd64_sigtramp_frame_this_id,
+ amd64_sigtramp_frame_prev_register
+};
+
+static const struct frame_unwind *
+amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
+{
+ CORE_ADDR pc = frame_pc_unwind (next_frame);
+ char *name;
+
+ find_pc_partial_function (pc, &name, NULL, NULL);
+ if (PC_IN_SIGTRAMP (pc, name))
+ {
+ gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
+
+ return &amd64_sigtramp_frame_unwind;
+ }
+
+ return NULL;
+}
+
+
+static CORE_ADDR
+amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct amd64_frame_cache *cache =
+ amd64_frame_cache (next_frame, this_cache);
+
+ return cache->base;
+}
+
+static const struct frame_base amd64_frame_base =
+{
+ &amd64_frame_unwind,
+ amd64_frame_base_address,
+ amd64_frame_base_address,
+ amd64_frame_base_address
+};
+
+static struct frame_id
+amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ char buf[8];
+ CORE_ADDR fp;
+
+ frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
+ fp = extract_unsigned_integer (buf, 8);
+
+ return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
+}
+
+/* 16 byte align the SP per frame requirements. */
+
+static CORE_ADDR
+amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+ return sp & -(CORE_ADDR)16;
+}
+
+
+/* Supply register REGNUM from the floating-point register set REGSET
+ to register cache REGCACHE. If REGNUM is -1, do this for all
+ registers in REGSET. */
+
+static void
+amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
+ int regnum, const void *fpregs, size_t len)
+{
+ const struct gdbarch_tdep *tdep = regset->descr;
+
+ gdb_assert (len == tdep->sizeof_fpregset);
+ amd64_supply_fxsave (regcache, regnum, fpregs);
+}
+
+/* Return the appropriate register set for the core section identified
+ by SECT_NAME and SECT_SIZE. */
+
+static const struct regset *
+amd64_regset_from_core_section (struct gdbarch *gdbarch,
+ const char *sect_name, size_t sect_size)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
+ {
+ if (tdep->fpregset == NULL)
+ {
+ tdep->fpregset = XMALLOC (struct regset);
+ tdep->fpregset->descr = tdep;
+ tdep->fpregset->supply_regset = amd64_supply_fpregset;
+ }
+
+ return tdep->fpregset;
+ }
+
+ return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
+}
+
+
+void
+amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
+ floating-point registers. */
+ tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
+
+ /* AMD64 has an FPU and 16 SSE registers. */
+ tdep->st0_regnum = AMD64_ST0_REGNUM;
+ tdep->num_xmm_regs = 16;
+
+ /* This is what all the fuss is about. */
+ set_gdbarch_long_bit (gdbarch, 64);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 64);
+
+ /* In contrast to the i386, on AMD64 a `long double' actually takes
+ up 128 bits, even though it's still based on the i387 extended
+ floating-point format which has only 80 significant bits. */
+ set_gdbarch_long_double_bit (gdbarch, 128);
+
+ set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
+ set_gdbarch_register_name (gdbarch, amd64_register_name);
+ set_gdbarch_register_type (gdbarch, amd64_register_type);
+
+ /* Register numbers of various important registers. */
+ set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
+ set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
+ set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
+ set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
+
+ /* The "default" register numbering scheme for AMD64 is referred to
+ as the "DWARF Register Number Mapping" in the System V psABI.
+ The preferred debugging format for all known AMD64 targets is
+ actually DWARF2, and GCC doesn't seem to support DWARF (that is
+ DWARF-1), but we provide the same mapping just in case. This
+ mapping is also used for stabs, which GCC does support. */
+ set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
+ set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
+
+ /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
+ be in use on any of the supported AMD64 targets. */
+
+ /* Call dummy code. */
+ set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
+ set_gdbarch_frame_align (gdbarch, amd64_frame_align);
+ set_gdbarch_frame_red_zone_size (gdbarch, 128);
+
+ set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
+ set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
+ set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
+
+ set_gdbarch_return_value (gdbarch, amd64_return_value);
+
+ set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
+
+ /* Avoid wiring in the MMX registers for now. */
+ set_gdbarch_num_pseudo_regs (gdbarch, 0);
+ tdep->mm0_regnum = -1;
+
+ set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
+
+ /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
+ since all supported AMD64 targets are ELF, but that might change
+ in the future. */
+ set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
+
+ frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
+ frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
+ frame_base_set_default (gdbarch, &amd64_frame_base);
+
+ /* If we have a register mapping, enable the generic core file support. */
+ if (tdep->gregset_reg_offset)
+ set_gdbarch_regset_from_core_section (gdbarch,
+ amd64_regset_from_core_section);
+}
+
+
+#define I387_ST0_REGNUM AMD64_ST0_REGNUM
+
+/* The 64-bit FXSAVE format differs from the 32-bit format in the
+ sense that the instruction pointer and data pointer are simply
+ 64-bit offsets into the code segment and the data segment instead
+ of a selector offset pair. The functions below store the upper 32
+ bits of these pointers (instead of just the 16-bits of the segment
+ selector). */
+
+/* Fill register REGNUM in REGCACHE with the appropriate
+ floating-point or SSE register value from *FXSAVE. If REGNUM is
+ -1, do this for all registers. This function masks off any of the
+ reserved bits in *FXSAVE. */
+
+void
+amd64_supply_fxsave (struct regcache *regcache, int regnum,
+ const void *fxsave)
+{
+ i387_supply_fxsave (regcache, regnum, fxsave);
+
+ if (fxsave)
+ {
+ const char *regs = fxsave;
+
+ if (regnum == -1 || regnum == I387_FISEG_REGNUM)
+ regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
+ if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
+ regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
+ }
+}
+
+/* Fill register REGNUM (if it is a floating-point or SSE register) in
+ *FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
+ this for all registers. This function doesn't touch any of the
+ reserved bits in *FXSAVE. */
+
+void
+amd64_fill_fxsave (char *fxsave, int regnum)
+{
+ i387_fill_fxsave (fxsave, regnum);
+
+ if (regnum == -1 || regnum == I387_FISEG_REGNUM)
+ regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
+ if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
+ regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
+}