You can include LaTeX math equations in AsciiDoc documents that are processed by dblatex.
Inline equations
This markup:
An inline equation latexmath:[$C = \alpha + \beta Y^{\gamma} + \epsilon$] using the 'math' inline macro. You can use the same 'math' macro to inject arbitrary latexmath:[\LaTeX] markup (but beware, this is an undocumented trick).
Renders:
An inline equation $C = \alpha + \beta Y^{\gamma} + \epsilon$ using the math inline macro.
You can use the same math macro to inject arbitrary \LaTeX markup (but beware, this is an undocumented trick).
Informal equations
Informal (untitled) equations are generated with a math style passthrough delimited block. This markup:
[latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \[C = \alpha + \beta Y^{\gamma} + \epsilon\] ++++++++++++++++++++++++++++++++++++++++++++
Renders:
\[C = \alpha + \beta Y^{\gamma} + \epsilon\]
Functionally identical block macro syntax:
latexmath::[\[C = \alpha + \beta Y^{\gamma} + \epsilon\]]
Renders:
\[C = \alpha + \beta Y^{\gamma} + \epsilon\]
Formal equations
Formal equations are titled and are generated with a math style passthrough delimited block.
This markup:
.Unnumbered [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \[C = \alpha + \beta Y^{\gamma} + \epsilon\] ++++++++++++++++++++++++++++++++++++++++++++
Renders:
Unnumbered
\[C = \alpha + \beta Y^{\gamma} + \epsilon\]This markup:
.Aligned [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \begin{align*} 2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2) \\ &= 2x^2 + 3x^2 - 9x + 6 \\ &= 5x^2 - 9x + 6 \end{align*} ++++++++++++++++++++++++++++++++++++++++++++
Renders:
Aligned
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2) \\
&= 2x^2 + 3x^2 - 9x + 6 \\
&= 5x^2 - 9x + 6
\end{align*}This markup:
.Array [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \begin{eqnarray} x & = & \frac{-7 \pm \sqrt{49 - 24}}{6} \\ & = & -2 \textrm{ or } -\frac13 \end{eqnarray} ++++++++++++++++++++++++++++++++++++++++++++
Renders:
Array
\begin{eqnarray}
x & = & \frac{-7 \pm \sqrt{49 - 24}}{6} \\
& = & -2 \textrm{ or } -\frac13
\end{eqnarray}This markup:
.Array [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \begin{eqnarray*} 4r^2\int_0^{\pi/2} \cos^2 \theta\, d\theta &=& 4r^2\int_0^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) \,d\theta\\ & = & {2r^2\theta}\Bigg{|}_0^{\pi/2} + 2r^2\int_0^{\pi/2} \cos 2\theta \,d\theta\\ & = & \pi r^2 + 2r^2(\sin2\theta)\Bigg{|}_0^{\pi/2}\\ & = & \pi r^2 \end{eqnarray*} ++++++++++++++++++++++++++++++++++++++++++++
Renders:
Array
\begin{eqnarray*}
4r^2\int_0^{\pi/2} \cos^2 \theta\, d\theta
&=& 4r^2\int_0^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) \,d\theta\\
& = & {2r^2\theta}\Bigg{|}_0^{\pi/2}
+ 2r^2\int_0^{\pi/2} \cos 2\theta \,d\theta\\
& = & \pi r^2 + 2r^2(\sin2\theta)\Bigg{|}_0^{\pi/2}\\
& = & \pi r^2
\end{eqnarray*}This markup:
.List [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \begin{enumerate} \item $\frac{da}{dx} = 0$ \item $\frac{d}{dx} ax = a$ \item $\frac{d}{dx} x^n = nx^{n-1}$ \item $\displaystyle \frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$ \item $\displaystyle \frac{d}{dx} f(x)g(x) = g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x)$ \item $\displaystyle \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{(g(x))^2}$ \end{enumerate} ++++++++++++++++++++++++++++++++++++++++++++
Renders:
List
\begin{enumerate}
\item $\frac{da}{dx} = 0$
\item $\frac{d}{dx} ax = a$
\item $\frac{d}{dx} x^n = nx^{n-1}$
\item $\displaystyle \frac{d}{dx} (f(x) + g(x))
= \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$
\item $\displaystyle \frac{d}{dx} f(x)g(x)
= g(x) \frac{d}{dx} f(x) + f(x) \frac{d}{dx} g(x)$
\item $\displaystyle \frac{d}{dx} \frac{f(x)}{g(x)}
= \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{(g(x))^2}$
\end{enumerate}This markup:
.Matrix [latexmath] ++++++++++++++++++++++++++++++++++++++++++++ \[ P^{e \rightarrow c}= \left[ \begin{array}{*{3}{r@{}l}} & \cos \theta & & \sin \theta \sin \varphi & & \sin \theta \cos \varphi\\ & \sin \theta \sin \psi & & \cos \varphi \cos \psi - \cos \theta \sin \varphi \sin \psi & - & \sin \varphi \cos \psi - \cos \theta \cos \varphi \sin \psi\\ - & \sin \theta \cos \psi & & \cos \varphi \sin \psi + \cos \theta \sin \varphi \cos \psi & - & \sin \varphi \sin \psi + \cos \theta \cos \varphi \cos \psi\\ \end{array} \right] \] ++++++++++++++++++++++++++++++++++++++++++++
Renders:
Matrix
\[ P^{e \rightarrow c}= \left[
\begin{array}{*{3}{r@{}l}}
& \cos \theta & & \sin \theta \sin \varphi & & \sin \theta \cos \varphi\\
& \sin \theta \sin \psi
& & \cos \varphi \cos \psi - \cos \theta \sin \varphi \sin \psi
& - & \sin \varphi \cos \psi - \cos \theta \cos \varphi \sin \psi\\
- & \sin \theta \cos \psi
& & \cos \varphi \sin \psi + \cos \theta \sin \varphi \cos \psi
& - & \sin \varphi \sin \psi + \cos \theta \cos \varphi \cos \psi\\
\end{array}
\right] \]