Coding Rules for FORTE*

Version 1.0

Alois Zoitl? Rene Smodict
25.06.2007
Contents
1 Comments 1
1.1 Fileheaders e 2
12 RevisionHistory 2
1.3 Keywords 2
2 Datatypes 2
3 Naming of Identifiers 2
3.1 Variables 3
3.2 Prefixes 3
33 Constants. 4
4 Classes 4
4.1 ClassStructure. e e 4
4.2 Functions/Methods e 4
43 Parameters e e e e 4
5 Code Formatting 4
51 Indentation. e 4
5.2 Blocks e e 5
6 Exceptions for IEC 61499 Elements 5
6.1 Naming of [EC 61499 Objects 5
A Examples 5
Al FileHeader. e 5
A2 Indentionand Blocks 5

1 Comments

A sufficient amount of comments has to be written. There are never too many comments, whereas
invalid comments are worse than none — thus invalid comments have to be removed from the
source code. Comments have to be written in English.

*Framework for Distributed Industrial Automation and Control—Run-Time Environment
*zoitlacin.tuwien.ac.at
¥smodicacin.tuwien.ac.at

Comments for class, function, ... definitions have to follow the conventions of Doxy-
gen to allow the automated generation of documentation for the sourcecode.

For documenting the implementation it is allowed to indicate Single-line comments with //
ahead of the command or in the same line right after the command. All other comments have
to be located ahead of the command or block. Generally comments have to be tagged with // to
allow the temporarily commenting out of code with /*. . .*/. Comments have to be meaningful,
to describe to program and to be up to date.

1.1 Fileheaders

Every source-file must contain a fileheader as follows:

/***
* Copyright (c) 2007 4DIAC — consortium.

All rights reserved. This program and the accompanying materials

are made available under the terms of the Eclipse Public License v1.0

which accompanies this distribution , and is available at

http ://www. eclipse .org/legal /epl —v10. html

Contributors:
<author >, <author email> — changes

*
*
*
*
*
*
*
sk sk sk sk sk sk ok sk ok sk ok sk ok sk s sk sk sk sk sk sk ok sk sk sk sk sk s sk s sk sk sk sk ok sk ok sk ok sk s sk s sk s sk sk ok sk sk sk sk sk s sk s sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk ok sk ok

Each author needs to explain his changes in the code. An example for the fileheader used in an
full header file is given in Appendix A.1 of this document.
1.2 Revision History
The revision history has to be done in a style usable by Doxygen. This means that the history is
independent of the files, but all classes are documented.
1.3 Keywords
The following Keywords should be used in the source code to mark special comments:
e TODO: For comments about possible or needed extensions

e FIXME: To be used for comments about potential (or known) bugs

2 Datatypes

The following table contains the definitions of important standard datatypes. This is done to
ensure a machine independant defintion of the bit-width of the standard data types. For FORTE-
development these definitions are in the file: src/arch/datatypes.h

3 Naming of Identifiers

Every identifier has to be named in English. The first character of an identifier must not contain
underscores (there are some compiler directives which start with underscores and this could lead
to conflicts). Mixed case letters has to be used and the appropriate prefixes have to be inserted
where necessary.

defined data type bit-width / description used C-datatype

T_BYTE 8 bit unsigned char

T_WORD 16 bit unsigned unsigned short
T_-DWORD 32 bit unsigned unsigned long
T_INT8 8 bit signed signed char
T_INT16 16 bit signed short

T_INT32 32 bit signed long

T_UINT8 8 bit unsigned char
T_UINT16 16 bit unsigned unsigned short
T_UINT32 32 bit unsigned unsigned long
T_FLOAT single precission IEEE float (32 bit) float
T_DFLOAT double precission IEEE float (64 bit) double
T_BOOLS byte variable as boolean value bool

3.1 Variables

Variables have to be named self explanatory. The names have to be provided with the appropriate
prefixes and they have to start with an uppercase letter. In case of combining prefixes, the use
of ranges, arrays, pointer, enumerations, or structures is at first, followed by basic data types
or object prefixes. The only exception are loop variables (thereby the use of i, j, k is allowed).
Only one variable declaration per line is allowed. Pointer operators at the declaration have to be
located in front of the variable (not after the type identifier). If possible initializations have to be
done directly at the declaration.
Global variables are prohibited!

3.2 Prefixes

The following prefixes have to be applied to identifiers:

Type Definitions Ranges
S for structures m_ for member variables of classes
C forclass s- for static variables
I for interface pa- for function parameters
E for enum sm_ static member
T_ for types (e.g. typedef in C++) csm_ constant static member
Variable Types Basic Data Types

a forarrays

p for pointers

r for references

en for enumerations
st for structures

Objects
o for meaningless objects
Ist for list objects
v for vector objects
s for string objects

¢ for characters
b for booleans

n forintegers

f for all floating point numbers

Examples

class CFunctionBlock;

int nNumber;

int *pnNumber = &nNumber;
char cKey;

bool g_bIsInitialized;
float m_fPi = 3.1415;
int anNumbers[10];

3.3 Constants

Constants have to be named with block letters (only upper case letters). If a name consists of more
words, underscores for separation are allowed. With C++ it is prohibited to declare constants
with the #define statement (const has to be used instead). Constants with a validity exceeding
a file have to be centralized in a separate file with the prefix “Const”. Never ever use “magic
numbers” (e.g. if (x == 3){...}). Instead use constants.

4 Classes

In addition to the type—prefix the class identifiers have to start with a capital letter.

4.1 Class Structure

The declaration of the class content has to be done in the following order:
1. Private
2. Protected
3. Public

4.2 Functions/Methods

Function- and method-identifiers have to start with a lower case letter. Functions with a return
value of a Boolean type should have a name which points to the result (relate the name to the
more likely result) and the name should start with the prefix “is”. Set and get methods have to
start with the appropriate prefix. Methods which are not modifying the state of the object have
to be declared as a const method (keyword const).

4.3 Parameters

Parameters which are keeping their value within a method have to be declared as const parame-
ters.

5 Code Formatting

5.1 Indentation

The tabulator width has to be set to 2. Instead of tabulator characters spaces have to inserted
(usually there is an option for this in the IDE called: “replace tabs”). A new block has to be
started at the same line as its initial statement. An example is given in the appendix A.2 of this
document.

5.2 Blocks

The left parenthesis of a block has to be in the same line as the construct. The right parenthesis
has to be in an own line. No single-lined if statements need to be put into two lines (1 for the if
statement 1 for the expression). An example how to format blocks is given in the appendix A.2
of this document.

6 Exceptions for IEC 61499 Elements
6.1 Naming of IEC 61499 Objects

All identifiers corresponding to IEC 61499 objecets (ressources) should be named as defined in
the IEC 61499 Standard. So they are execepted from the rules in sections 3 to 6. This has two
advantages:

e No parsing/substitution of names in the code files is needed

e It helps to differentiate between “runtime-code” and "user-code”

A Examples
A.1 File Header

/% sk st ok s sk o sk sk sk sk sk sk sk sk s sk sk sk sk sk st sk sk sk sk sk sk sk sk s sk sk s sk sk sk sk sk sk sk sk s sk sk s sk sk s sk ok s sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok
* Copyright (c) 2007 4DIAC — consortium.
« All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution , and is available at
* http ://www. eclipse.org/legal /epl—v10. html
*
* Contributors:
* <author >, <author email> — changes
sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ko ok ok sk ok o ok sk ok ok
#ifndef FILENAME_H.
#define _-FILENAME_H_
//! short class description
/x! long class description
* @uersion: <date>/<author >: <description>
*/
class CFooSpace {
private:
//! short member var description
int m_nIsBar; /«!> long description
*/
protected:
//! short description
void bar(void); /x!> long description
*/
public:
//! short description
int foo(void); /x/< long description
*/
%
#endif

A.2 Indention and Blocks

int CFooSpace:: foo(void){
if (m_nIsBar){
bar ();

return 1;

else
return 0;

if (!m_nIsBar)
notBar ();

	Comments
	Fileheaders
	Revision History
	Keywords

	Datatypes
	Naming of Identifiers
	Variables
	Prefixes
	Constants

	Classes
	Class Structure
	Functions/Methods
	Parameters

	Code Formatting
	Indentation
	Blocks

	Exceptions for IEC 61499 Elements
	Naming of IEC 61499 Objects

	Examples
	File Header
	Indention and Blocks

