
These notes present a representative agent New Keynesian model with Epstein-Zin pref-
erences and disaster shocks and borrow from Fernández-Villaverde and Levintal (2018) “So-
lution Methods for Models with Rare Disasters”, Kekre and Lenel (2020) “Monetary Policy,
Redistribution, and Risk Premia”, and de Groot et al. (2020) “Valuation Risk Revalued.”

1 Model

1.1 Household

The model admits a representative agent, so I directly write households’ problem as the
representative agent’s. The representative household chooses consumption Ct, labor supply
Lt, next-period nominal bond holdings Bt, and next-period capital holdings Kt to maximize,
in the cashless limit, the Epstein-Zin preferences

Vt =

(
(1− exp(ηβ,t)β) (CtL(Lt))

1−ψ + exp(ηβ,t)βEt
[
(Vt+1)

1−γ] 1−ψ
1−γ

) 1
1−ψ

, (1)

where β is the time preference rate; ψ is the inverse intertemporal elasticity of substitution;
γ is the risk aversion coefficient; and the labor disutility function1 L(Lt) is

L(Lt) =

(
1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν

) ψ
1−ψ

, (2)

where ηl,t is a shock to labor disutility, ν is the disutility of labor, ν is the inverse Frisch
elasticity subject to the budget constraint

Ct +
Bt

Pt
+QtKt ≤ WtLt + (Rk,t +Rq,tQt) exp(ηk,t)Kt−1 +Rt−1

Bt−1

Pt
+ Ft + Tt. (3)

The quantity Pt is the price of the final consumption good, Qt the real price of capital, Wt

the real wage, Rk,t the gross real rental rate on capital, ηk,t a disaster shock,2 Rq,t the returns
from capital gains on the capital stock, Rt the gross nominal interest rate on bonds, Ft real
profits from intermediate firms, and Tt real lump-sum transfers from the government. The
budget constraint (3) indicates that households can choose to consume, save in bonds, or
invest in units of the capital stock from income through labor, capital, bonds, intermediate
firms, and government transfers. Markets are assumed complete, but securities are in zero
net supply. Because there is a representative agent, I may omit the Arrow securities from
the budget constraint.

My notation treats Bt−1 and Kt−1 as the stocks of bonds and capital present at time t,
while Bt and Kt are the chosen stocks of bonds and capital for the following period. I adopt

1This functional form is proposed by Shimer (2010) (see Chapter 1.4). Kekre and Lenel (2020) adapt this
functional form for Epstein-Zin preferences. I have additionally included shocks to the disutility of labor.

2I follow Kekre and Lenel (2020)’s specifications of the disaster shock, but I could also define an interme-
diate variable K̂t and set Kt = K̂t exp(ηk,t), following Fernández-Villaverde and Levintal (2018).
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this notation so that all time t choices are dated at time t rather than having to differentiate
between the predetermined time-t variables from the endogenous controls.

Solving the household’s problem is the same as solving the maximization problem

Vt = max
Ct,Lt,Bt,Kt

(
(1− exp(ηβ,t)β) (CtL(Lt))

1−ψ + exp(ηβ,t)βEt
[
(Vt+1)

1−γ] 1−ψ
1−γ

) 1
1−ψ

+ λt

(
WtLt + (Rk,t +Rq,tQt) exp(ηk,t)Kt−1 +Rt−1

Bt−1

Pt
+ Ft + Tt

)
− λt

(
Ct +

Bt

Pt
+QtKt

)
.

(4)

Define V̂t = V 1−ψ
t , and conjecture that Vt is a function of the state variables Kt−1 and Bt−1,

among other states (e.g. the realized shocks). The first-order conditions with respect to
controls are

0 =
1

1− ψ
V̂

ψ
1−ψ
t (1− exp(ηβ,t)β)(1− ψ)C−ψt L(Lt)

1−ψ − λt

0 =
1

1− ψ
V̂

ψ
1−ψ
t (1− exp(ηβ,t)β)(1− ψ)C1−ψ

t L(Lt)
−ψ ∂

∂L
L(Lt) + λtWt

0 =
1

1− ψ
V̂

ψ
1−ψ
t exp(ηβ,t)β

1− ψ
1− γ

Et[V 1−γ
t+1 ]

γ−ψ
1−γ (1− γ)Et

[
V −γt+1

∂Vt+1

∂Bt

]
− λt
Pt
,

0 =
1

1− ψ
V̂

ψ
1−ψ
t exp(ηβ,t)β

1− ψ
1− γ

Et[V 1−γ
t+1 ]

γ−ψ
1−γ (1− γ)Et

[
V −γt+1

∂Vt+1

∂Kt

]
− λtQt.

The envelope conditions for Bt−1 and Kt−1 are

∂Vt
∂Bt−1

= λt
Rt−1

Pt
,

∂Vt
∂Kt−1

= λt(Rk,t +Rq,tQt) exp(ηk,t).

The first two first-order conditions can be combined by isolating λt, which obtains the
intratemporal consumption-labor condition

0 = C−ψt L(Lt)
1−ψ +

C1−ψ
t

Wt

L(Lt)
−ψ ∂

∂L
L(Lt)

= L(Lt) +
Ct
Wt

∂

∂L
L(Lt).

The derivative of L(Lt) evaluates to

∂

∂L
L(Lt) =

ψ

1− ψ

(
1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν

) 2ψ−1
1−ψ

(ψ − 1) exp(ηl,t)νL
ν
t
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=
ψ − 1

1− ψ
L(Lt)

2ψ−1
ψ ψ exp(ηl,t)νL

ν
t = −L(Lt)

2ψ−1
ψ ψ exp(ηl,t)νL

ν
t ,

hence the intratemporal consumption-labor condition becomes

0 = 1− Ct
Wt

ψ exp(ηl,t)νL
ν
tL(Lt)

ψ−1
ψ .

Re-arrange to acquire

Wt =
ψ exp(ηl,t)νCtL

ν
t

L(Lt)
1−ψ
ψ

. (5)

Notice additionally that

L(Lt)
1−ψ
ψ = 1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν
.

The Euler equation for bonds can be obtained by combining the envelope condition for Bt−1
with the first and third first-order conditions. Iterate the envelope condition for Bt−1 forward
by one period.

∂Vt+1

∂Bt

= λt+1
Rt

Pt+1

.

Define

CEt = Et[V 1−γ
t+1 ]

1
1−γ (6)

as households’ certainty equivalent. Substitute this expression and the iterated envelope
condition into the third first-order condition.

0 =
1

1− ψ
V̂

ψ
1−ψ
t exp(ηβ,t)β(1− ψ)CEγ−ψt Et

[
V −γt+1λt+1

Rt

Pt+1

]
− λt
Pt

= V̂
ψ

1−ψ
t exp(ηβ,t)βCEγ−ψt Et

[
V −γt+1λt+1

Rt

Pt+1

]
− λt
Pt
.

Observe that, from the first first-order condition,

λt+1

λt
=
V̂

ψ
1−ψ
t+1 (1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)

1−ψ

V̂
ψ

1−ψ
t (1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ

,

and that V̂t satisfies

V̂
ψ

1−ψ
t = V ψ

t .
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Divide the third first-order condition by λt/Pt and substitute these quantities. Re-arrange
to acquire

1 = exp(ηβ,t)βCEγ−ψt Et

[
V −γt+1Rt

Pt
Pt+1

V ψ
t+1

(1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)
1−ψ

(1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ

]

= CEγ−ψt Et

[
exp(ηβ,t)β

(1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)
1−ψ

(1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ
V ψ−γ
t+1 Rt

Pt
Pt+1

]
.

Define the gross inflation rate and real stochastic discount factors as

Πt =
Pt+1

Pt
, (7)

Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−ψt+1L(Lt+1)
1−ψ

C−ψt L(Lt)1−ψ

(
Vt+1

CEt

)ψ−γ
, (8)

where the two time subscripts in Mt,t+1 indicate that the real stochastic discount factor
includes terms dated at times t and t + 1. Using these definitions, the Euler equation for
bonds becomes

1 = Et
[
Mt,t+1

Rt

Πt+1

]
. (9)

Households’ asset pricing equation for capital can be obtained using similar steps and will
take the familiar form from consumption-based asset pricing. Iterate the envelope condition
for Kt−1 forward by one period.

∂Vt+1

∂Kt

= λt+1(Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1).

Substitute this expression and other quantities derived previously into the fourth first-order
condition.

0 = V ψ
t exp(ηβ,t)βCEγ−ψt Et

[
V −γt+1λt+1(Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)

]
− λtQt.

Divide by λt and plug in λt+1/λt.

0 = V ψ
t exp(ηβ,t)βCEγ−ψt

× Et

[
V ψ−γ
t+1 (1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)

1−ψ

V ψ
t (1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ

(Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)

]
−Qt

= Et [Mt,t+1(Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)]−Qt

Qt = Et [Mt,t+1(Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)] .
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Finally, because Vt is defined recursively, I can express households’ preferences as a forward-
looking difference equation. The value function Vt is homogeneous of degree 1 in Ct and
Vt+1. By Euler’s Theorem,

Vt =
∂Vt
∂Ct

Ct + Et
[
∂Vt
∂Vt+1

Vt+1

]
. (10)

The derivatives in this expression are, after simplification,

∂Vt
∂Ct

= V ψ
t (1− exp(ηβ,t)β)C−ψt L(Lt)

1−ψ,

∂Vt
∂Vt+1

= V ψ
t exp(ηβ,t)βEt[V 1−γ

t+1 ]
γ−ψ
1−γ V −γt+1.

It is easy to verify this claim is true by direct calculation. Since Et[V 1−γ
t+1 ] is t-measurable,

Et
[
∂Vt
∂Vt+1

Vt+1

]
= Et

[
V ψ
t exp(ηβ,t)βEt[V 1−γ

t+1 ]
γ−ψ
1−γ V 1−γ

t+1

]
= V ψ

t exp(ηβ,t)βEt[V 1−γ
t+1 ]

γ−ψ
1−γ Et[V 1−γ

t+1 ]

= V ψ
t exp(ηβ,t)βEt[V 1−γ

t+1 ]
1−ψ
1−γ .

Further algebraic manipulation verifies the claim.
To obtain a forward difference equation, define

Ωt =
Vt

∂Vt/∂Ct
. (11)

Given this definition, (10) becomes

Ωt = Ct + Et
[
∂Vt
∂Vt+1

1

∂Vt/∂Ct
Vt+1

]
= Ct + Et

[
∂Vt+1/∂Ct+1

∂Vt/∂Ct

∂Vt
∂Vt+1

Vt+1

∂Vt+1/∂Ct+1

]
.

Notice that

∂Vt+1/∂Ct+1

∂Vt/∂Ct

∂Vt
∂Vt+1

=
V ψ
t+1(1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)

1−ψ

V ψ
t (1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ

× V ψ
t exp(ηβ,t)βEt[V 1−γ

t+1 ]
γ−ψ
1−γ V −γt+1

= exp(ηβ,t)β
(1− exp(ηβ,t+1)β)C−ψt+1L(Lt+1)

1−ψ

(1− exp(ηβ,t)β)C−ψt L(Lt)1−ψ

(
Vt+1

CEt

)ψ−γ
= Mt,t+1.
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Therefore, (10) simplifies to

Ωt = Ct + Et[Mt,t+1Ωt+1], (12)

which is a forward difference equation in Ωt. This expression also shows that Ωt may be
interpreted as wealth because it is the price of a claim to consumption.

The equations defining the value function Vt and certainty equivalent CEt can also be
rewritten using Ωt. Observe that

V ψ
t exp(ηβ,t)βCE1−ψt = Et

[
∂Vt
∂Vt+1

Vt+1

]
= Vt −

∂Vt
∂Ct

Ct =
∂Vt
∂Ct

(Ωt − Ct)

= V ψ
t (1− exp(ηβ,t)β)C−ψt L(Lt)

1−ψ(Ωt − Ct)

CEt =

(
1− exp(ηβ,t)β

exp(ηβ,t)β
(CtL(Lt))

1−ψ
(

Ωt

Ct
− 1

)) 1
1−ψ

.

Plug this version of CEt into the definition of the value function to acquire

Vt =

(
(1− exp(ηβ,t)β)(CtL(Lt))

1−ψ + exp(ηβ,t)β
1− exp(ηβ,t)β

exp(ηβ,t)β
(CtL(Lt))

1−ψ
(

Ωt

Ct
− 1

)) 1
1−ψ

= CtL(Lt)

(
(1− exp(ηβ,t)β)

Ωt

Ct

) 1
1−ψ

.

In light of these formulas, it will be convenient to define

Ṽt =
Vt

CtL(Lt)
, C̃E t =

CEt
CtL(Lt)

, Ω̃t =
Ωt

Ct
. (13)

These transformations adjust the definition of the stochastic discount factor to become

Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−ψt+1L(Lt+1)
1−ψ

C−ψt L(Lt)1−ψ

(
Ṽt+1Ct+1L(Lt+1)

C̃E tCtL(Lt)

)ψ−γ

= exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−γt+1L(Lt+1)
1−γ

C−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ

.

In summary, households’ optimality conditions are

Ṽt = ((1− exp(ηβ,t)β)Ω̃t)
1

1−ψ , (14)

C̃E t =

(
1− exp(ηβ,t)β

exp(ηβ,t)β
(Ω̃t − 1)

) 1
1−ψ

, (15)

Ω̃t = 1 + Et
[
Mt,t+1

Ct+1

Ct
Ω̃t+1

]
, (16)
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Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−γt+1L(Lt+1)
1−γ

C−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ

, (17)

Wt =
ψ exp(ηl,t)νCtL

ν
t

L(Lt)
1−ψ
ψ

, (18)

L(Lt) =

(
1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν

) ψ
1−ψ

, (19)

1 = Et
[
Mt,t+1

Rt

Πt+1

]
, (20)

Qt = Et [Mt,t+1 (Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)] . (21)

1.2 Production

Final Producers There is a representative final goods firm which sells consumption goods
in a competitive market. It aggregates intermediate goods using the CES technology

Yt =

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

(22)

where ε > 1 so that inputs are substitutes. Profit maximization for the final good firm is

max
Yt(j)

Pt

(∫ 1

0

Yt(j)
ε−1
ε

) ε
ε−1

−
∫ 1

0

Pt(j)Yt(j) dj. (23)

The FOC for Yt(j) is

0 = Pt
ε

ε− 1

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1 ε− 1

ε
Yt(j)

− 1
ε − Pt(j)

0 =

(∫ 1

0

Yt(j)
ε
ε−1

) 1
ε−1

Yt(j)
− 1
ε − Pt(j)

Pt

0 =

(∫ 1

0

Yt(j)
ε
ε−1

)− ε
ε−1

Yt(j)−
(
Pt(j)

Pt

)−ε
.

Re-arranging obtains

Yt(j) =

(
Pt(j)

Pt

)−ε
Yt. (24)

Plugging this quantity into the identity

PtYt =

∫ 1

0

Pt(j)Yt(j) dj

and simplifying yields the price index

Pt =

(∫ 1

0

Pt(j)
1−ε dj

) 1
1−ε

. (25)
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Intermediate Producers Intermediate goods are producing according to the Cobb-Douglas
technology

Yt(j) = K̂α
t (j)(exp(ηa,t)Lt)

1−α(j)− χy exp(ηA,t), (26)

where K̂t = exp(ηk,t)Kt−1 and productivity exp(ηa, t) follows the unit root process

ηa,t = µa + ηa,t−1 + σaεa,t + κaηk,t. (27)

Intermediate producers minimize cost subject to the constraint of meeting demand and Calvo
price rigidities. Formally,

min
K̂t(j),Lt(j)

Rk,tK̂t(j) +WtLt(j)

s.t. K̂α
t (j)(exp(ηa,t)Lt)

1−α(j)− χy exp(ηa,t) ≥
(
Pt(j)

Pt

)−ε
Yt.

(28)

The RHS of the inequality constraint is the demand from final goods producers for interme-
diate j. The Lagrangian is

H = Rk,tK̂t(j) +WtLt(j)

+MCt(j)

((
Pt(j)

Pt

)−ε
Yt − K̂α

t (j)(exp(ηa,t)Lt)
1−α(j) + χy exp(ηa,t)

)
,

so the first-order conditions are

0 = Rk,t −MCt(j)α exp(ηa,t)
1−α

(
Lt(j)

K̂t(j)

)1−α

0 = Wt −MCt(j)(1− α) exp(ηa,t)
1−α

(
K̂t(j)

Lt(j)

)α

,

hence the optimal capital-labor ratio satisfies

Rk,t

α exp(ηa,t)1−α(K̂t(j)/Lt(j))α−1
=

Wt

(1− α) exp(ηa,t)1−α(K̂t(j)/Lt(j))α

K̂t(j)

Lt(j)
=

α

1− α
Wt

Rk,t

.

Since the RHS does not vary with j, all firms choose the same capital-labor ratio. Given
this optimal ratio, the marginal cost satisfies

MCt =
Rk,t

α exp(ηa,t)1−α

(
K̂t

Lt

)1−α
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=
Rk,t

α exp(ηa,t)1−α

(
α

1− α
Wt

Rk,t

)1−α

=

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

k,t

exp(ηa,t)1−α
.

It follows that

Rk,tK̂t +WtLt =

 Rk,t

exp(ηa,t)

(
K̂t

Lt

)1−α

+
Wt

exp(ηa,t)

(
Lt

K̂t

)α (exp(ηa,t)K̂
α
t L

1−α
t )

= (αMCt + (1− α)MCt)Yt(j) = MCtYt(j).

Therefore, (real) profits for an intermediate producer become

Pt(j)

Pt
Yt(j)−MCtYt(j)− χy exp(ηa,t). (29)

In addition to the capital-labor choice, firms also have the chance to reset prices in every
period with probability 1− θ. This problem can be written as

max
Pt(j)

Et
∞∑
s=0

θsMt,t+s

(
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ε
Yt+s −MCt+s

(
Pt(j)

Pt+s

)−ε
Yt+s − χy exp(ηa,t)

)
,

(30)

where I have imposed that intermediate output equals demand. The quantity Mt,t+s is the
stochastic discount factor between periods t and t+ s and is given by

Mt,t+s =
βs
∏s

u=1 exp(ηβ,t+u)

exp(ηβ,t)

∂Vt+u/∂Ct+s
∂Vt/∂Ct

s∏
u=1

∂Vt+u−1
∂Vt+u

, (31)

with the boundary condition Mt,t = 1. The first-order condition is

0 = (1− ε)Pt(j)−εEt
∞∑
s=0

θsMt,t+s(Pt+s)
−(1−ε)Yt+s

+ εPt(j)
−ε−1Et

∞∑
s=0

θsMt,t+sMCt+sP
ε
t+sYt+s

Divide by Pt(j)
−ε, apply the abuse of notation that

∏0
u=1 Πt+u = 1, and re-arrange to obtain

Pt(j) =
ε

ε− 1

Et
∑∞

s=0 θ
sMt,t+sMCt+sP

ε
t+sYt+s

Et
∑∞

s=0 θ
sMt,t+sP

ε−1
t+s Yt+s

=
ε

ε− 1

Et
∑∞

s=0 θ
sMt,t+sMCt+sP

ε
t (
∏s

u=1 Πt+u)
ε
Yt+s

Et
∑∞

s=0 θ
sMt,t+sP

ε−1
t (

∏s
u=1 Πt+u)

ε−1
Yt+s
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Pt(j)

Pt
=

ε

ε− 1

Et
∑∞

s=0 θ
sMt,t+sMCt+s (

∏s
u=1 Πt+u)

ε
Yt+s

Et
∑∞

s=0 θ
sMt,t+s (

∏s
u=1 Πt+u)

ε−1
Yt+s

.

This expression gives the optimal (real) reset price P ∗t ≡ Pt(j)/Pt (note that the RHS does
not depend on j). Define

S1,t = Et
∞∑
s=0

θsMt,t+sMCt+sYt+s

(
s∏

u=1

Πt+s

)ε

, (32)

S2,t = Et
∞∑
s=0

θsMt,t+sYt+s

(
s∏

u=1

Πt+s

)ε−1

. (33)

Using these definitions, I may write the optimal reset price more compactly as

P ∗t =
ε

ε− 1

S1,t

S2,t

(34)

where S1,t and S2,t satisfy the recursions

S1,t = MCtYt + θEtMt,t+1Π
ε
t+sS1,t+1, (35)

S2,t = Yt + θEtMt,t+1Π
ε−1
t+sS2,t+1. (36)

From this section, we obtain the following five equilibrium conditions:

MCt =

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

k,t

exp(ηa,t)1−α
, (37)

exp(ηk,t)Kt−1

Lt
=

α

1− α
Wt

Rk,t

, (38)

P ∗t =
ε

ε− 1

S1,t

S2,t

, (39)

S1,t = MCtYt + θEt[Mt,t+1Π
ε
t+1S1,t+1], (40)

S2,t = Yt + θEt[Mt,t+1Π
ε−1
t+1S2,t+1]. (41)

Capital Producers For expositional clarity, I model capital production as its own sec-
tor.3 After intermediate firms finish using the time t stock of capital K̂t = exp(ηk,t)Kt−1,
households trade their capital holdings to capital producers in exchange for claims to profits
from capital production. Each producer solves the problem

max
Xt

Φ

(
Xt

K̂t

)
)QtK̂t −Xt. (42)

3I could subsume capital production within the household problem by adding as an additional constraint
Kt = Φ(Xt/K̂t)K̂t.
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In other words, capital producers maximize the static profits from producing new capital
since it costs them Xt in investment to produce Φ(Xt/K̂t)QtK̂t in revenue.4 The solution to
this problem yields the Tobin’s Q equation

1 = Φ′
(

Xt

exp(ηk,t)Kt−1

)
Qt. (43)

After production, capital producers return the initial investment of capital K̂t to their owners
and pay profits to households in proportion to the invested capital. A fraction δ of the initial
investment then deprecaites. Thus, the return from capital gains on K̂t for households is

Rq,t = 1− δ + Φ

(
Xt

exp(ηk,t)Kt−1

)
− Xt

Qt exp(ηk,t)Kt−1
.

From (43), this expression can be re-written as

Rq,t = 1− δΦ
(

Xt

exp(ηk,t)Kt−1

)
− Φ′

(
Xt

exp(ηk,t)Kt−1

)
Xt

exp(ηk,t)Kt−1
. (44)

Further, the evolution of the aggregate capital stock is

Kt =

(
1− δ + Φ

(
Xt

exp(ηk,t)Kt−1

))
exp(ηk,t)Kt−1. (45)

1.3 Monetary Policy

I specify the monetary policy rule as the following Taylor rule

Rt

R
=

(
Rt−1

R

)φr ((Πt

Π

)φπ ( Yt
Yt−1

exp(−µa)
)φy)1−φr

exp(ηr,t) (46)

Any proceeds from monetary policy are distributed as lump sum to the representative house-
hold.

1.4 Aggregation

The price level is currently characterized as the integral

P 1−ε
t =

∫ 1

0

Pt(j)
1−ε dj.

To represent the model entirely in terms of aggregates, notice that, without loss of generality,
we may re-order the fraction θ of firms which cannot reset prices to the top of the interval
so that

P 1−ε
t = (1− θ)(P ∗t )1−ε +

∫ 1

1−θ
Pt−1(j)

1−ε dj.

4The cost of buying the initial stock of capital K̂t is offset by selling K̂t at the same price after production.
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The latter term can be further simplified under the law of large numbers assumption that
a positive measure of firms which cannot change their price still comprise a representative
sample of all firms, yielding

P 1−ε
t = (1− θ)(P ∗t )1−ε + θ

∫ 1

0

Pt−1(j)
1−ε dj = (1− θ)(P ∗t )1−ε + θP 1−ε

t−1 .

Dividing by P 1−ε
t−1 implies

Π1−ε
t = (1− θ)(P ∗t Πt)

1−ε + θ. (47)

The price dispersion term can similarly be re-written in terms of aggregates by distinguishing
which firms get to change prices.

∆t =

∫ 1−θ

0

(P ∗t )−ε dj +

∫ 1

1−θ

(
Pt−1(j)

Pt

)−ε
dj

=

∫ 1−θ

0

(P ∗t Πt)
−ε
(

1

Πt

)−ε
dj +

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε(
Pt−1
Pt

)−ε
dj

= (1− θ)(P ∗t Πt)
−εΠε

t + Πε
t

∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε
dj.

By invoking the law of large assumptions applied to any positive measure subset of firms,
we must have ∫ 1

1−θ

(
Pt−1(j)

Pt−1

)−ε
dj = θ

∫ 1

0

(
Pt−1(j)

Pt−1

)−ε
dj = θ∆p

t−1.

Thus, we acquire

∆t = Πε
t((1− θ)(P ∗t Πt)

−ε + θ∆p
t−1) (48)

1.5 Equilibrium

To close the model, I need to specify the functional form for investment, remaining aggregate
shocks, and market-clearing conditions.

1.5.1 Investment Function

Following Jermann (1998), I assume the investment function takes the concave form

Φ

(
Xt

K̂t

)
=

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− X

χ(χ− 1)
(49)
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where

X =
δχ

χ+ 1
+ χ(χ− 1)

(
1− 1

exp(E[ηk,t])

)
(50)

is the steady-state investment rate (per unit of capital). The expectation exp(E[ηk,t]) is
the unconditional expected value of the disaster shock and is necessary to guarantee the
(stochastic) steady-state investment rate is indeed X. The first derivative of Φ(·) w.r.t.
Xt/K̂t is

Φ′
(
Xt

K̂t

)
= X

1/χ
(
Xt

K̂t

)−1/χ
. (51)

This functional form implies the law of motion

Kt =

(
1− δ +

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− X

χ(χ− 1)

)
K̂t

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− δ
(

1 +
1

(χ− 1)(χ+ 1)

)
− χ(χ− 1)(1− 1/ exp(E[ηk,t]))

χ(χ− 1)

)
K̂t

=

(
1 +

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− δ
(

χ2

(χ− 1)(χ+ 1)

)
− 1 +

1

exp(E[ηk,t])

)
K̂t

=

(
1

exp(E[ηk,t])
+

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− δχ2

χ2(1− 1/χ)(1 + 1/χ)

)
K̂t

=

(
1

exp(E[ηk,t])
+

X
1/χ

1− 1/χ

(
Xt

K̂t

)1−1/χ

− X

1− 1/χ

)
K̂t.

To verify that X is indeed the steady-state investment rate, suppose Kss is some steady-state
capital stock, and suppose ηk,t = ηk = E[ηk,t], i.e. ηk,t obtains its value consistent with a
deterministic or stochastic steady state. Then

Kss =

(
1

exp(E[ηk,t])
+

X
1/χ

1− 1/χ

(
X
)1−1/χ − χ

1− 1/χ

)
exp(ηk)Kss

⇒ 1 =
exp(ηk)

exp(E[ηk,t])
= 1,

as desired.

1.5.2 Exogenous Shocks

There are five shocks in the model: ηa,t, ηk,t, ηβ,t, ηl,t, and ηr,t. The first shock has been
specified as an AR(1) with a disaster component. I specify ηk,t below. Without loss of
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generality, I assume the last three shocks follow AR(1) processes with persistence ρi and
standard deviation σi. Shocks to the time preference rate should ideally satisfy β exp(ηβ,t) <
1 for all t. To ensure this property is satisfied most of the time, I add the restriction

σ2
β =

(
log(β)

nβ

)2

(1− ρ2β) (52)

where nβ parameterizes the number of standard deviations above zero that should correspond
to the event β exp(ηβ,t) ≥ 1. For example, nβ = 4 implies a violation of the property
β exp(ηβ,t) < 1 is a 4 standard deviation above zero event. I could alternatively assume ηβ,t
follows a Markov chain with all values strictly below − log(β) or specify the shock to ηβ,t
using an auxiliary variable η̃β,t ≡ 1− β exp(ηβ,t) such that

log(η̃β,t+1) = (1− ρβ) log(η̃β) + ρβ log(η̃β,t) + σβεβ,t+1. (53)

Since this process for η̃β,t occurs in logs, β exp(ηβ,t) < 1 for all t.
There are multiple ways to model the disaster shock. The simplest approach borrows

from Kekre and Lenel (2020). The shock ηk,t equals η
k
< 0 with probability pt−1 and zero

with probability 1 − pt−1.
5 The probability of a disaster varies according to a two-state

Markov process, which takes values p and p, with p < p. The probability of remaining
in state p (p) is ρ

p
(ρp). The values and transition probabilities of the Markov chain are

restricted by the requirement that the unconditional mean of the Markov chain must be p,
i.e.

(1− ρp)p+ (1− ρ
p
)p

2− (ρ
p

+ ρp)
= p.

In this case, I construct martingale difference sequences for ηk,t and pt by defining εk,t =
ηk,t − Et−1[ηk,t] and εp,t = pt − Et−1[pt]. Then

ηk,t+1 = η
k
pt + εk,t+1, (54)

pt+1 = εp,t+1 +

{
ρ
p
p+ (1− ρ

p
)p if pt = p,

ρpp+ (1− ρp)p if pt = p.
(55)

The second approach models the time variation in pt as a discrete-time Cox-Ingersoll-Ross
process:

pt+1 = (1− ρp)p+ ρppt +
√
ptσpεp,t+1. (56)

In this case, εp,t+1 ∼ N(0, 1). The disaster shock ηk,t still follows the martingale difference
sequence η̃k,t. The disadvantage of this approach is that pt+1 can move outside [0, 1], given

5A direct translation of Kekre and Lenel (2020) sets ηk,t equal to η
k

with probability pt so that ηk,t is
represented by a four-state process. This approach is feasible, but, absent an empirical rationale, I do not
see any advantage from assuming randomness in both size and probability for the disaster.
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a sufficiently large shock. To address this problem, the shock εp,t+1 could be a truncated
normal random variable with lower bound −((1−ρp)p+ρppt)/(

√
ptσp). The variance of εp,t+1

before truncation will be one, but the mean will change over time to guarantee Et[pt+1] =
(1 − ρp + ρppt. The sequence εp,t+1 remains a martingale difference sequence because the
mean is chosen to satisfy Et[pt+1] = 0.

The third approach models the time variation in pt in logs to avoid pt moving below zero:

log(pt+1) = (1− ρp) log(p) + ρp log(pt) + σpεp,t+1. (57)

This approach still risks pt increasing above 1.
The fourth approach models the disaster shock as an exponentially distributed shock

ηk,t ∼ Exponential(pt), where pt is now the intensity of the exponential distribution. The
evolution of pt can be modeled in three ways, as before, but pt may now increase above one.

The fifth approach uses time variation in the size of the shock rather than the probability.
The disaster shock ηk,t takes the form

ηk,t = η̂k,tpt, (58)

where η̂k,t is modeled as a Bernoulli random variable and pt evolves according to a Markov
chain, the Cox-Ingersoll-Ross process, or in logs.

The sixth approach allows time variation in the size and probability of the shock through
a mixture model. The disaster risk ηk,t is distributed according to a Gamma distribution
with shape jt and scale σk; an exponential distribution shifted by −jt and intensity σk; or
a Normal distribution with mean −jt and variance jtσ

2
k. The parameter jt is distributed

according to a Bernoulli(pt−1) with low and high values of j and j, HyperPoisson(pt−1, p),
6

or Exponential(pt−1). The probability varies over time according to a Markov chain, the
Cox-Ingersoll-Ross process, or in logs.

The seventh approach models disaster risk as a “risk-on risk-off” phenomenon. The size
of the disaster shock ηk,t is still modeled according to one of the ways described above.
However, the probability of a diasster pt now depends on an additional two-state Markov
chain denoted by dt. The Markov chain dt equals either zero or one. When dt equals one,
pt varies according to one of the ways described above, hence dt = 1 represents “risk-on”
periods or “disaster” times. When dt equals zero, pt = 0 so that disasters never realize,
hence dt = 0 represents “risk-off” periods or “normal” times.

1.5.3 Market Clearing

Markets must clear for capital, labor, bonds, final goods, and intermediate goods. The
first three markets clear as a consequence of optimality conditions and the assumption that
bonds have zero net supply. To clear the market for final goods, we set the sum of aggregate
consumption demand Ct and investment demand Xt equal to aggregate supply Yt net of
fixed costs, which satisfies∫ 1

0

(K̂α
t (Lt exp(ηa,t))

1−α − χy exp(ηa,t)) dj =

∫ 1

0

(
Pt(j)

Pt

)−ε
Yt dj

6See https://www.jstor.org/stable/2283992?seq=1#metadata_info_tab_contents.
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K̂α
t (exp(ηa,t)Lt)

1−α − χy exp(ηa,t) = Yt

∫ 1

0

(
Pt(j)

Pt

)−ε
dj = ∆tYt.

Re-arranging yields the output market-clearing condition

Ct +Xt = Yt, (59)

Yt =
(exp(ηk,t)Kt−1)

α(exp(ηa,t)Lt)
1−α − χy exp(ηa,t)

∆t

. (60)

It can be shown that ∆t ≥ 1 by applying Jensen’s inequality. For our purposes, because the
dimensionality of our model is not too large, we add the auxiliary Yt variable, even though
we could substitute it out of the system of equations.

1.5.4 Equilibrium Conditions

All together, the equilibrium conditions are

Ṽt = ((1− exp(ηβ,t)β)Ω̃t)
1

1−ψ , (61)

C̃E t =

(
1− exp(ηβ,t)β

exp(ηβ,t)β
(Ω̃t − 1)

) 1
1−ψ

, (62)

Ω̃t = 1 + Et
[
Mt,t+1

Ct+1

Ct
Ω̃t+1

]
, (63)

Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−γt+1L(Lt+1)
1−γ

C−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ

, (64)

Wt =
ψ exp(ηl,t)νCtL

ν
t

L(Lt)
1−ψ
ψ

, (65)

L(Lt) =

(
1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν

) ψ
1−ψ

, (66)

1 = Et
[
Mt,t+1

Rt

Πt+1

]
, (67)

Qt = Et [Mt,t+1 (Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)] , (68)

MCt =

(
1

1− α

)1−α(
1

α

)α W 1−α
t Rα

k,t

exp(ηa,t)1−α
, (69)

exp(ηk,t)Kt−1

Lt
=

α

1− α
Wt

Rk,t

, (70)

P ∗t =
ε

ε− 1

S1,t

S2,t

, (71)

S1,t = MCtYt + θEt[Mt,t+1Π
ε
t+1S1,t+1], (72)

S2,t = Yt + θEt[Mt,t+1Π
ε−1
t+1S2,t+1], (73)
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1 = Φ′
(

Xt

exp(ηk,t)Kt−1

)
Qt, (74)

Rq,t = 1− δ + Φ

(
Xt

exp(ηk,t)Kt−1

)
− Φ′

(
Xt

exp(ηk,t)Kt−1

)
Xt

exp(ηk,t)Kt−1
, (75)

Kt =

(
1− δ + Φ

(
Xt

exp(ηk,t)Kt−1

))
exp(ηk,t)Kt−1, (76)

Π1−ε
t = (1− θ)(P ∗t Πt)

1−ε + θ, (77)

∆t = Πε
t((1− θ)(P ∗t Πt)

−ε + θ∆p
t−1), (78)

Rt

R
=

(
Rt−1

R

)φr ((Πt

Π

)φπ ( Yt
Yt−1

exp(−µa)
)φy)1−φr

exp(ηr,t), (79)

Ct +Xt = Yt, (80)

Yt =
(exp(ηk,t)Kt−1)

α(exp(ηa,t)Lt)
1−α − χy exp(ηa,t)

∆t

, (81)

the three exogenous processes

ηβ,t+1 = ρβηβ,t + σβεβ,t+1, (82)

ηl,t+1 = ρlηl,t + σlεL,t+1, (83)

ηr,t+1 = ρrηr,t + σrεR,t+1, (84)

the process for productivity

ηa,t = µa + ηa,t−1 + σaεa,t + κaηk,t, (85)

and one of the proposed disaster processes in Section 1.5.2.

1.5.5 Stationary Equilibrium Conditions

Because of the unit root in ηa,t, the model is non-stationary. To obtain a stationary repre-
sentation, define the transformations

C̃t =
Ct

exp(ηa,t)
, K̃t =

Kt

exp(ηa,t)
, K̃t−1 =

Kt−1

exp(ηa,t)
, W̃t =

Wt

exp(ηa,t)
, (86)

X̃t =
Xt

exp(ηa,t)
, S̃1,t =

S1,t

exp(ηa,t)
, S̃2,t =

S2,t

exp(ηa,t)
, Ỹt =

Yt
exp(ηa,t)

, (87)

At = exp(ηa,t − ηa,t−1 − µa) = exp(σaεa,t + κaηk,t). (88)

Most of the calculations for the stationary representation are straightforward, so I only show
the work for the more complicated cases.

The stochastic discount factor (64) becomes

Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C−γt+1L(Lt+1)
1−γ

C−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ

,
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= exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C̃−γt+1L(Lt+1)
1−γ

C̃−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ (
exp(ηa,t+1)

exp(ηa,t)

)−γ
,

= exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C̃−γt+1L(Lt+1)
1−γ

C̃−γt L(Lt)1−γ

(
Ṽt+1

C̃E t

)ψ−γ

(At+1 exp(µa))
−γ .

The forward difference equation for Ω̃t (63) becomes

Ω̃t = 1 + Et

[
Mt,t+1

C̃t+1 exp(ηa,t+1)

C̃t exp(ηa,t)
Ω̃t

]

= 1 + exp(µa)Et

[
Mt,t+1

C̃t+1

C̃t
At+1Ω̃t

]
The recursions for the optimal price resetting problem become

exp(ηa,t)S̃1,t = MCt exp(ηa,t)Ỹt + θEt[Mt,t+1Π
ε
t+1S̃1,t+1 exp(ηa,t+1)]

S̃1,t = MCtỸt + exp(µa)θEt[Mt,t+1At+1Π
ε
t+1S̃1,t+1]

exp(ηa,t)S̃2,t = exp(ηa,t)Ỹt + θEt[Mt,t+1Π
ε−1
t+1S̃2,t+1 exp(ηa,t+1)]

S̃2,t = Ỹt + exp(µa)θEt[Mt,t+1At+1Π
ε−1
t+1S̃2,t+1].

Finally, instead of ηa,t, the relevant productivity process is

log(At) = σaεa,t + κaηk,t.

In summary, the stationary equilibrium conditions (excluding the exogenous shocks) are

Ṽt = ((1− exp(ηβ,t)β)Ω̃t)
1

1−ψ , (89)

C̃E t =

(
1− exp(ηβ,t)β

exp(ηβ,t)β
(Ω̃t − 1)

) 1
1−ψ

, (90)

Ω̃t = 1 + exp(µa)Et

[
Mt,t+1

C̃t+1

C̃t
At+1Ω̃t+1

]
, (91)

Mt,t+1 = exp(ηβ,t)β
1− exp(ηβ,t+1)β

1− exp(ηβ,t)β

C̃−γt+1L(Lt+1)
1−γ

C̃−γt L(Lt)1−γ

×

(
Ṽt+1

C̃E t

)ψ−γ

(At+1 exp(µa))
−γ ,

(92)

W̃t =
ψ exp(ηl,t)νC̃tL

ν
t

L(Lt)
1−ψ
ψ

, (93)

L(Lt) =

(
1 + (ψ − 1) exp(ηl,t)ν

L1+ν
t

1 + ν

) ψ
1−ψ

, (94)
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1 = Et
[
Mt,t+1

Rt

Πt+1

]
, (95)

Qt = Et [Mt,t+1 (Rk,t+1 +Rq,t+1Qt+1) exp(ηk,t+1)] , (96)

MCt =

(
1

1− α

)1−α(
1

α

)α
W̃ 1−α
t Rα

k,t, (97)

exp(ηk,t)K̃t−1

Lt
=

α

1− α
W̃t

Rk,t

, (98)

P ∗t =
ε

ε− 1

S̃1,t

S̃2,t

, (99)

S̃1,t = MCtỸt + exp(µa)θEt[Mt,t+1At+1Π
ε
t+1S̃1,t+1], (100)

S̃2,t = Ỹt + exp(µa)θEt[Mt,t+1At+1Π
ε−1
t+1S̃2,t+1], (101)

1 = Φ′

(
X̃t

exp(ηk,t)K̃t−1

)
Qt, (102)

Rq,t = 1− δ + Φ

(
X̃t

exp(ηk,t)K̃t−1

)
− Φ′

(
X̃t

exp(ηk,t)K̃t−1

)
X̃t

exp(ηk,t)K̃t−1
, (103)

K̃t =

(
1− δ + Φ

(
X̃t

exp(ηk,t)K̃t−1

))
exp(ηk,t)K̃t−1, (104)

Π1−ε
t = (1− θ)(P ∗t Πt)

1−ε + θ, (105)

∆t = Πε
t((1− θ)(P ∗t Πt)

−ε + θ∆p
t−1), (106)

Rt

R
=

(
Rt−1

R

)φr (Πt

Π

)φπ ( Ỹt

Ỹt−1
At

)φy
1−φr

exp(ηr,t), (107)

C̃t + X̃t = Ỹt, (108)

Ỹt =
(exp(ηk,t)K̃t−1)

α(Lt)
1−α − χy

∆t

. (109)

1.6 Deterministic Steady State

To provide an initial guess for the risk-adjusted linearization and to provide a verification
that the model is coded correctly, I determine some reasonable guesses for the deterministic
steady state.

Within this subsection, I denote the deterministic steady state values by an absence of
a time subscript or tilde. By construction, ηβ = ηl = ηr = 0 in a deterministic steady
state. Since ηk,t may not be continuous, the correct notion of a deterministic steady state
is not obvious. For example, if a deterministic steady state should feature zero aggregate
disaster risk, then the disaster component could be either zero to model the absence of any
disaster or some nonzero constant so that some fraction of capital deterministically rather
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than stochastically depreciates every period due to disasters. However, I am not particularly
interested in the model’s properties in a specific deterministic steady state, so I will define
the deterministic steady state for ηk,t to be ηk ≡ Et−1[ηk,t], i.e. the mean with aggregate risk,
because it is computationally convenient. For example, in the case where ηk,t ∼ Bernoulli(pt)
and pt follows the discrete-time Cox-Ingersoll-Ross process, ηk = p where p is the steady state
value for pt. This assumption also implies that A = exp(κaηk).

Focusing now on the equilibrium conditions, from (89) and (90)

Ṽ = ((1− β)Ω̃)
1

1−ψ , C̃E =

(
1− β
β

(Ω̃− 1)

) 1
1−ψ

⇒ Ṽ

C̃E
=

(
(1− β)Ω̃

1−β
β

(Ω̃− 1)

) 1
1−ψ

=

(
β

Ω̃

Ω̃− 1

) 1
1−ψ

.

From (92) and (91),

M = β

(
Ṽ

C̃E

)ψ−γ

(A exp(µa))
−γ = β

(
β

Ω̃

Ω̃− 1

)ψ−γ
1−ψ

(A exp(µa))
−γ

Ω̃ = 1 + exp(µa)MAΩ̃

= 1 + exp(µa)β

(
β

Ω̃

Ω̃− 1

)ψ−γ
1−ψ

(A exp(µa))
−γAΩ̃

= 1 + β
ψ−γ+(1−ψ)

1−ψ

(
β

Ω̃

Ω̃− 1

)ψ−γ
1−ψ

(A exp(µa))
1−γΩ̃

1 =

βA exp(µa)

(
Ω̃

Ω̃− 1

) 1
1−ψ
1−γ

Ω̃− 1 = (βA exp(µa))
1−ψΩ̃

Ω̃ =
1

1− (βA exp(µa))1−ψ
.

Since A can be determined directly from parameters, this is a closed form formula for Ω̃,
which also determines the values of Ṽ , C̃E , and M in the deterministic steady state.

Skipping over the intratemporal consumption-labor condition (65) and the labor disutility
function (94), the monetary policy rule (107), the target inflation rate Π, and the Euler
equation (95) require R to satisfy

R =
Π

M
. (110)

To pin down the steady state values of the model’s supply block, I begin with the steady
state investment rate. From (102), the fact that X is the steady-state investment rate, and
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the fact that Φ′(X) = 1,

Q = 1.

From (96), first observing that,

Φ(X) =
Xχ

χ− 1
− X

χ(χ− 1)
= X

χ2 − 1

χ(χ− 1)
= X

(χ− 1)(χ+ 1)

χ(χ− 1)
=

δχ

χ+ 1

χ+ 1

χ
= δ,

which ensures that K does indeed remain at steady state, it must be the case that

Rq = Φ(X)−X
1 = M(Rk + (1− δ +Rq)) exp(ηk)

= M(Rk + 1−X) exp(ηk)

Rk =
1

M exp(ηk)
+X − 1.

Equation (97) remains as it is but with time subscripts removed. From (100),

S1 = MC · Y + exp(µa)θMAΠεS1 ⇒ S1 =
MC · Y

1− exp(µa)θMAΠε
.

From (101),

S2 = Y + exp(µa)θMAΠε−1S2 ⇒ S2 =
Y

1− exp(µa)θMAΠε−1 .

Given S1 and S2, P
∗ can be calculated. From (106),

∆ = Πε
(
(1− θ)(P ∗Π)−ε + θ∆

)
∆ =

(1− θ)(P ∗Π)−ε

Π−ε − θ
=

(1− θ)(P ∗)−ε

1− θΠε
.

Thus, the marginal cost MC, S1, S2, optimal real reset price P ∗, and ∆ can be calculated
once the wage W is known.

To finish, I show that the deterministic steady state’s solution reduces to solving a non-
linear equation in L. From (108),

C +X = Y.

From (109),

Y =
(exp(ηk)K)αL1−α − χy

∆
.

As shown previously, the steady-state investment rate is X, hence

X = X exp(ηk)K.
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Using the aggregate supply and capital accumulation equations,

C +X exp(ηk)K =
(exp(ηk)K)αL1−α − χy

∆
.

The optimal capital-labor ratio (98) implies

exp(ηk)K =
α

1− α
W

RK

L,

C +X exp(ηk)K =

((
α

1− α

)α(
W

RK

)α
L− χy

)
∆−1.

Let L(L) denote the steady state labor disutility given by (94). The intratemporal condition
for consumption and labor (93) implies

exp(ηk)K =
α

1− α
ψνCLν

L(L)Rk

L,

C +X exp(ηk)K =

((
α

1− α

)α(
ψνCLν

L(L)Rk

)α
L− χy

)
∆−1

Given a guess for L, I can compute C using these two equations. Given C, I can compute
W . Given the wage W , I can compute K and MC. Given the marginal cost MC, I can
compute the remaining terms in the supply block.

2 Risk-Adjusted Linearization

We now proceed to converting the equilibrium conditions into a suitable form for a risk-
adjusted linearization. The system should conform to the representation

0 = logEt [exp (ξ(zt, yt) + Γ5zt+1 + Γ6yt+1)]

zt+1 = µ(zt, yt) + Λ(zt, yt)(yt+1 − Etyt+1) + Σ(zt, yt)εt+1,

where zt are (predetermined) state variables and yt are (nondetermined) jump variables. For
the remainder of this section, lower case variables are generally the logs of previously upper
case variables, whether or not they had tildes. The exceptions are as follows. The price
dispersion ∆t will remain in levels to avoid confusion with the depreciation rate δ. The
lowercase equivalent of the certainty equivalent CEt will be the plain lowercase letters cet.
The lowercase equivalent of the labor disutility function L(Lt) will be `t.

2.1 Endogenous Equilibrium Conditions

Equation (89) becomes

0 =
1

1− ψ
(log((1− exp(ηβ,t)β)) + ωt)− vt.
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Equation (90) becomes

0 =
1

1− ψ
(log(1− exp(ηβ,t)β)− (ηβ,t + log(β)) + (exp(ωt)− 1))− cet

Equation (91) will be handled later because it is a forward difference equation. Equation
(92) will be directly substituted rather than used as an equilibrium condition. Using the
transformations for a risk-adjusted linearization, the stochastic discount factor becomes

mt,t+1 = ηβ,t + log(β) + log(1− exp(ηβ,t+1))− log(1− exp(ηβ,t))− γ(ct+1 − ct)
+ (1− γ)(`t+1 − `t) + (ψ − γ)(vt+1 − cet)− γ(at+1 + µa)

= ηβ,t + log(β)− log(1− exp(ηβ,t)) + γct − (1− γ)`t − (ψ − γ)cet − γµa︸ ︷︷ ︸
ξ

+ log(1− exp(ηβ,t+1))− γct+1 + (1− γ)`t+1 + (ψ − γ)vt+1 − γat+1︸ ︷︷ ︸
forward

.

Equation (93) becomes

0 = log(ψ) + ηl,t + log(ν + ct + νlt −
1− ψ
ψ

`t − wt

Equation (94) becomes

0 =
ψ

1− ψ
log

(
1 + (ψ − 1) exp(ηl,t)ν

exp((1 + ν)lt)

1 + ν

)
− `t.

Equation (95) becomes

0 = Et

 rt︸︷︷︸
ξ

+mt,t+1︸ ︷︷ ︸
both

− πt+1︸︷︷︸
forward

 .
Equation (68) will be handled below because it is a forward difference equation. Equation
(97) becomes

mct = −(1− α) log(1− α)− α log(α) + (1− α)wt + αrk,t

0 = (1− α)(wt − log(1− α)) + α(rk,t − log(α))−mct.

Equation (70) becomes

0 = log(α)− log(1− α) + wt − rk,t − (ηk,t + kt−1 − lt).

Equation (99) will be directly substituted rather than used as an equilibrium condition. Using
the transformations for a risk-adjusted linearization, the real optimal reset price becomes

p∗t = log(ε)− log(ε− 1) + s1,t − s2,t.
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Equations (100) and (101) will be handled below because they are forward difference equa-
tions. Equation (102) becomes

0 =
1

χ
log(X)− 1

χ
(xt − ηk,t − kt−1) + qt.

Equation (103) becomes

rq,t = log (Φ (exp(xt − ηk,t − kt−1))− Φ′ (exp(xt − ηk,t − kt−1)) exp(xt − ηk,t − kt−1))

rq,t = log

(
X

1/χ

1− 1/χ
exp((1− 1/χ)(xt − ηk,t − kt−1))−

X

χ(χ− 1)
−X1/χ

exp((1− 1/χ)(xt − ηk,t − kt−1))

)

0 = log

(
X

1/χ

χ− 1
exp((1− 1/χ)(xt − ηk,t − kt−1))−

X

χ(χ− 1)

)
− rq,t

Equation (104) becomes

k(t−1)+1 = log

(
1− δ +

X
1/χ

1− 1/χ
exp((1− 1/χ)(xt − ηk,t − kt−1))

)
+ ηk,t + kt−1.

Equation (105) becomes

0 = log ((1− θ) exp((1− ε)(π∗t + πt)) + θ)− (1− ε)πt.

Equation (106) becomes

0 = επt + log((1− θ) exp(−ε(p∗t + πt)) + θ∆t−1)− log(∆t).

Equation (79) becomes

0 = φrrt−1 + (1− φr)r + (1− φr)(φπ(πt − π) + φy(yt − yt−1 + at)) + ηr,t − rt.

Equation (108) becomes

0 = log(exp(ct) + exp(xt))− yt.

Equation (109) becomes

0 = log(exp(α(ηk,t + kt−1) + (1− α)lt)− χy)− log(∆t)− yt.

Equation (65) becomes

1 = ϕ exp(ηl,t)
Lνt

C−γt Wt

0 = logEt

exp

log(ϕ) + ηl,t + νlt − (−γct + wt)︸ ︷︷ ︸
ξ


 .
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2.2 Exogenous Shocks

The autoregressive processes (82) to (84) remain as they are. The productivity process
becomes

at+1 = σaεa,t+1 + κaηk,t+1.

The disaster shock can be modeled in multiple ways, and the conditional cumulant gen-
erating function (ccgf) will be different depending on the specification. I shall derive the
various ccgfs for the proposed models of the disaster shock.

As stated previously, the first approach models the disaster shock as

ηk,t+1 = η
k
pt + εk,t+1, (111)

pt+1 = εp,t+1 +

{
ρ
p
p+ (1− ρ

p
)p if pt = p

ρpp+ (1− ρp)p if pt = p,
(112)

εk,t = ηk,t − Et−1[ηk,t], (113)

εp,t = ηp,t − Et−1[ηp,t], (114)

where ηk,t takes the value η
k

in a disaster with probability pt−1 and zero with probability
1− pt−1, and pt evolves according to a two-state Markov process with unconditional mean p;
states p and p; and persistence probabilities ρ

p
and ρp. The conditional moment-generating

function for εk,t+1 is

Mεk,t+1
(s) = Et[exp(s(ηk,t+1 − Et[ηk,t+1]))] = Et[exp(s(ηk,t+1 − ηkpt))] =

Et[exp(sηk,t+1)]

exp(η
k
pt)

.

Since ηk,t+1 | pt has a Bernoulli(pt) distribution and pt belongs to the time-t information set,

Et[exp(sηk,t+1)] = exp(sη
k
)pt + exp(0)(1− pt) = 1− pt + pt exp(sη

k
).

Thus, the ccgf for εk,t+1 is

ccgfεk,t+1
(s) = log(1− pt + pt exp(sη

k
))− η

k
− pt. (115)

The conditional moment-generating function for εp,t+1 is

Mεp,t+1(s) = Et[exp(s(pt+1 − Et[pt+1]))] =
Et[exp(spt+1)]

Et[pt+1]
,

where

Et[pt+1] =

{
ρ
p
p+ (1− ρ

p
)p if pt = p

ρpp+ (1− ρp)p if pt = p.
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Since pt is part of the time-t information set, the ccgf of pt+1 is also Bernoulli:

ccgfεp,t+1(s) =

{
log((1− ρ

p
) exp(sp) + ρ

p
exp(sp))− log(Et[pt+1]) if pt = p

log((1− ρp) exp(sp) + ρp exp(sp))− log(Et[pt+1]) if pt = p.
(116)

The second approach models the time variation in pt as a discrete-time Cox-Ingersoll-
Ross process. The disaster shock ηk,t still follows the martingale difference sequence η̃k,t.
Since pt is still part of the time-t information set, the ccgf for εk,t+1 remains the same. If
εp,t+1 is a truncated normal, then the moment-generating function will be7

Mεp,t+1(s) = exp

(
µ(pt)s+

s2

2

)(
1− Φ

(
−
(

(1− ρp)p+ ρppt√
ptσp

)
− (s+ µ(pt))

))
,

where µ(pt) computes the mean necessary to ensure Et[εp,t+1] = 0 and Φ(·) in this equation
refers to the CDF of the standard normal distribution. Thus, the ccgf is

ccgfεp,t+1(s) = µ(pt)s+
s2

2
+ log

(
1− Φ

(
−
(

(1− ρp)p+ ρppt√
ptσp

)
− (s+ µ(pt))

))
. (117)

The third approach models the time variation in pt in logs to avoid pt moving below zero:

log(pt+1) = (1− ρp) log(p) + ρp log(pt) + σpεp,t+1. (118)

In this case, log(pt) is the state variable instead of pt. If pt+1 enters in any of the equilibrium
conditions, e.g. if the probability of ηk,t = η

k
is pt rather than pt−1, then pt needs to be

added as a jump variable with the additional equilibrium condition

0 = exp(log(pt))− pt. (119)

To achieve a better approximation, I could also add consistency conditions for forward ex-
pectations. Let p̂t,t+1 = Et[pt+1]. Then Markov rational expectations require

1 = Et
[
pt+1

p̂t,t+1

]
.

Now let p̂t,t+s = Et[pt+s]. Then Markov rational expectations also require

1 = Et
[
p̂t+1,(t+s−1)+1

p̂t,t+s

]
.

The fourth approach models the disaster shock as an exponentially distributed shock
ηk,t ∼ Exponential(pt−1), where pt is now the intensity of the exponential distribution. The
evolution of pt can be modeled in the three ways described previously. The conditional
moment generating function for εk,t+1 is

Mεk,t+1
(s) = Et[exp(s(ηk,t+1 − Et[ηk,t+1]))] =

Et[exp(sηk,t+1)]

exp(pt)
,

7See http://web.ist.utl.pt/~ist11038/compute/qc/,truncG/lecture4k.pdf.
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hence the ccgf for ηk,t+1 is

ccgfηk,t+1
(s) = log

(
pt

pt − s

)
− pt. (120)

The fifth approach uses time variation in the size of the shock rather than the probability.
The disaster shock ηk,t takes the form

ηk,t = η̂k,tpt, (121)

where η̂k,t is modeled as a Bernoulli random variable and pt evolves according to a Markov
chain, the Cox-Ingersoll-Ross process, or in logs. Let the probability that η̂k,t equals one be
j. The moment-generating function for ηk,t is

Mηk,t(s) = Et[exp(sηk,t)] = Et[Et[exp(sηk,t) | pt]]
= Et[exp(0)(1− j) + j exp(spt)]

= 1− j + jEt[exp(spt)]

= 1− j + jMpt(s),

where Mpt(s) is the conditional moment-generating function for pt.
8

The sixth approach allows time variation in the size and probability of the shock through
a mixture model. As discussed in these notes, if X and Y are random variables, and the
moment-generating function of the conditional random variable X | Y can be written as

MX|Y (s) = C1(s) exp(C2(s)Y ),

then the moment-generating function of X is

MX(s) = C1(s)MY (C2(s)).

Thus, the primary problem in deriving the ccgf of a mixture model for the disaster risk is
finding C1(s) and C2(s) for the size of the disaster shock. If −ηk,t ∼ Gamma(jt, j̃), then

M−ηk,t|jt(s) = (1− j̃s)−jt = exp(−jt log(1− j̃s)) = exp(− log(1− j̃s)jt)
⇒ C1(s) = 1, C2(s) = − log(1− j̃s).

If −ηk,t ∼ ShiftedExponential(j̃, jt),
9 then

M−ηk,t|jt(s) = j̃

∫ ∞
jt

exp(sx) exp(−j̃(x− jt) dx = j̃ exp(j̃jt)

∫ ∞
jt

exp(−(j̃ − s)x) dx

= j̃ exp(j̃jt)

(
− exp(−(j̃ − s)∞)

j̃ − s
+

exp(−(j̃ − s)jt)
j̃ − s

)
8For example, if log(pt) follows an AR(1) process, then pt will be log-normally distributed with a mean

depending on pt−1.
9The pdf is f(x) = j̃ exp(−j̃(x− jt)).
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=
j̃ exp(sjt)

j̃ − s

⇒ C1(s) =
j̃

j̃ − s
, C2(s) = s.

If ηk,t ∼ N(−jt, jtj̃2), then

Mηk,t|jt(s) = exp(−jts+ jtj̃
2s2/2) = exp((−s+ j̃2s2/2)jt)

⇒ C1(s) = 1, C2(s) = −s+
j̃2s̃2

2
.

The seventh approach models disaster risk as a “risk-on risk-off” phenomenon. This
case requires the disaster shock to take on at least two possible states in the future. Let
dt = 1 denote “risk-on” or “disaster times”, dt = 0 denote “risk-off” or “normal times”, and
ρd,i,t be the persistence of remaining in state i ∈ {0, 1}. If dt = 1, then ηk,t either realizes
a disaster shock with probability ρd,1,t or equals zero with probability 1 − ρd,1,t. Applying
tower property yields the ccgf for ηk,t.

2.3 Forward Difference Equations

This system has four forward difference equations (91), (96), (100), and (101). To ensure
accuracy of the risk-adjusted linearization, I derive N -period ahead forward difference equa-
tions for all four.

To start, I begin with (96) because it does not have any terms outside the expectation.
The equation can be recursively written as

Qt = Et[Mt,t+1(Rk,t+1 +Qt+1Rq,t+1)]

= Et[Mt,t+1Rk,t+1 +Rq,t+1Mt,t+1Et+1[Mt+1,t+2(Rk,t+2 +Qt+2Rq,t+1)]]

= Et[Mt,t+1Rk,t+1] +Rq,t+1EtEt+1[Mt,t+1Mt+1,t+2(Rk,t+2 +Qt+2Rq,t+2)].

By the tower property,

Qt = Et[Mt,t+1Rk,t+1] +Rq,t+1Et[Mt,t+1Mt+1,t+2(Rk,t+2 +Qt+2Rq,t+2)]

= Et

[(
2∑
s=1

(
s−1∏
u=1

Rq,t+u

)(
s∏

u=1

Mt+u−1,t+u

)
Rk,t+s

)
+Mt,t+1Mt+1,t+2Qt+2Rq,t+1Rq,t+2

]

= Et

[(
2∑
s=1

(
s−1∏
u=1

Rq,t+u

)(
s∏

u=1

Mt+u−1,t+u

)
Rk,t+s

)
+

2∏
s=1

(Mt+s−1,t+sRq,t+s)Et+2[Mt+2,t+3(Rk,t+3 +Qt+3Rq,t+3)]

]

= Et

[(
3∑
s=1

(
s−1∏
u=1

Rq,t+u

)(
s∏

u=1

Mt+u−1,t+u

)
Rk,t+s

)
+

3∏
s=1

(Mt+s−1,t+sRq,t+s)Qt+3

]
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and so on, with the abuse of notation that
∏0

u=1Rq,t+u = 1. Given this recursive structure,

define D
(n)
Q,t and P

(n)
Q,t as

D
(n)
Q,t = Et

[
Rq,t+1Mt,t+1D

(n−1)
Q,t+1

]
P

(n)
Q,t = Et

[
Rq,t+1Mt,t+1P

(n−1)
Q,t+1

]
with boundary conditions

D
(0)
Q,t =

Rk,t

Rq,t

P
(0)
Q,t = Q.

Then I may write the N -period ahead recursive form of equation (68) as

Qt =
N∑
n=1

D
(n)
Q,t + P

(N)
Q,t .

To see why this recursion works, it is simpler to first verify that P
(3)
Q,t is correct:

P
(1)
Q,t = Et [Rq,t+1Mt,t+1Qt+1]

P
(2)
Q,t = Et [Rq,t+1Mt,t+1(Et+1[Rq,t+2Mt+1,t+2Qt+2])]

= Et

[
Et+1

[
2∏
s=1

(Rq,t+sMt+s−1,t+s)Qt+2

]]

= Et

[
2∏
s=1

(Rq,t+sMt+s−1,t+s)Qt+2

]
.

where the second equality for P
(2)
Q,t follows from the fact that Mt,t+1 is measurable with respect

to the information set at time t + 1 and can therefore be moved insided the conditional
expectation Et+1[·]. Continuing for one more recursion, I have

P
(3)
Q,t = Et

[
Rq,t+1Mt,t+1Et+1

[
2∏
s=1

(Rq,t+1+sMt,t+1+s)Qt+3

]]

= Et

[
3∏
s=1

(Rq,t+sMt+s−1,t+s)Qt+3

]
.

Similarly, for DQ,t, I have

D
(1)
Q,t = Et

[
Rq,t+1Mt,t+1

Rk,t+1

Rq,t+1

]
= Et[Mt,t+1Rk,t+1]
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D
(2)
Q,t = Et[Rq,t+1Mt,t+1Et+1[Mt+1,t+2Rk,t+2]]

= Et[Rq,t+1Mt,t+1Mt+1,t+2Rk,t+2]

D
(3)
Q,t = Et[Rq,t+1Mt,t+1Et+1[Rq,t+2Mt+1,t+2Mt+2,t+3Rk,t+3]]

= Et[Rq,t+1Rq,t+2Mt,t+1Mt+1,t+2Mt+2,t+3Rk,t+3].

Since P
(n)
Q,t and D

(n)
Q,t are time-t conditional expectations, they are measurable at time t, so

they are not forward-looking variables. Thus, to get this version of (68) in the appropriate

form, define dq,n,t = log(D
(n)
Q,t) and pq,n,t = log(P

(n)
Q,t ), and use the following 2N + 1 equations:

0 = logEt

exp

qt − log

(
N∑
n=1

exp(dq,n,t) + exp(pq,N,t)

)
︸ ︷︷ ︸

ξ


 (122)

0 =



logEt

exp

−dq,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ωt+1 + dq,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

−dq,1,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ rk,t+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(123)

0 =



logEt

exp

−pq,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ωt+1 + pq,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

−pq,1,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ ωt+1 + qt+1︸ ︷︷ ︸
forward-looking


 if n = 1.

(124)

For (100), observe that

S̃1,t = MCtỸt + exp(µa)θEt[Mt,t+1At+1Π
ε
t+1(MCt+1Ỹt+1 + exp(µa)θEt+1[Mt+2At+2Π

ε
t+2S̃1,t+2])]

= MCtỸt + exp(µa)θEt[Mt,t+1At+1Π
ε
t+1MCt+1Ỹt+1 + exp(µa)θMt,t+1At+1Π

ε
t+1Mt+2At+2Π

ε
t+2S̃1,t+2]

= MCtỸt + Et

[
1∑
s=1

(exp(µa)θ
s

s∏
u=1

(Mt+u−1,t+uAt+uΠ
ε
t+u))MCt+sỸt+s

]

+ Et

[
2∏
s=1

(exp(µa)θMt+s−1,t+sAt+sΠ
ε
t+s)S̃1,t+2

]
.

Thus, define D
(n)
S1,t and P

(n)
S1,t as the recursions

D
(n)
S1,t = Et[exp(µa)θMt,t+1At+1Π

ε
t+1D

(n−1)
S1,t+1],

30



P
(n)
S1,t = Et[exp(µa)θMt,t+1At+1Π

ε
t+1P

(n−1)
S1,t+1],

with boundary conditions

D
(0)
S1,t = MCtỸt

P
(0)
S1,t = S̃1,t.

Given these definitions, it follows that

D
(1)
S1,t = Et[exp(µa)θMt,t+1At+1Π

ε
t+1MCt+1Ỹt+1]

P
(1)
S1,t = Et[exp(µa)θMt,t+1At+1Π

ε
t+1S̃1,t+1]

P
(2)
S1,t = Et[exp(µa)θMt,t+1At+1Π

ε
t+1Et+1[exp(µa)θMt+1,t+2At+2Π

ε
t+2S̃1,t+2]]

= Et[(exp(µa)θ)
2Mt,t+1At+1Π

ε
t+1Mt+1,t+2At+2Π

ε
t+2S̃1,t+2].

Thus, defining ds1,t = log(DS1,t) and ps1,t = log(PS1,t), the N -period ahead recursive form of
(100) results in the 2N + 1 equations

0 = logEt

exp

s1,t − log

(
N−1∑
n=0

exp(ds1,n,t) + exp(ps1,N,t)

)
︸ ︷︷ ︸

ξ


 (125)

0 =



logEt

exp

log(exp(µa)θ)− ds1,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ at+1 + επt+1 + ds1,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

ds1,0,t −mct − yt︸ ︷︷ ︸
ξ


 if n = 0.

(126)

0 =



logEt

exp

µa + log(θ)− ps1,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ επt+1 + ps1,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µa + log(θ)− ps1,1,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ at+1 + επt+1 + s1,t+1︸ ︷︷ ︸
forward-looking


 if n = 1.

(127)
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It is straightforward to show that a similar recursive form applies to (101):

0 = logEt

exp

s2,t − log

(
N−1∑
n=0

exp(ds2,n,t) + exp(ps2,N,t)

)
︸ ︷︷ ︸

ξ


 (128)

0 =



logEt

exp

µa + log(θ)− ds2,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ at+1 + (ε− 1)πt+1 + ds2,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

ds2,0,t − yt︸ ︷︷ ︸
ξ


 if n = 0.

(129)

0 =



logEt

exp

µa + log(θ)− ps2,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ at+1 + (ε− 1)πt+1 + ps2,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µa + log(θ)− ps2,1,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ (ε− 1)πt+1 + s2,t+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(130)

where terms and boundary conditions are analogously defined.
Similarly, (91) yields the recursion

0 = logEt

exp

ωt − log

(
N−1∑
n=0

exp(dω,n,t) + exp(pω,N,t)

)
︸ ︷︷ ︸

ξ


 (131)

0 =



logEt

exp

µa − ct − dω,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ ct+1 + at+1 + dω,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n ≥ 1

logEt

exp

dω,0,t︸︷︷︸
ξ


 if n = 0.

(132)
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0 =



logEt

exp

µa − ct − pω,n,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ ct+1 + at+1 + pω,n−1,t+1︸ ︷︷ ︸
forward-looking


 if n > 1

logEt

exp

µa − ct − pω,1,t︸ ︷︷ ︸
ξ

+mt,t+1︸ ︷︷ ︸
both

+ ct+1 + at+1 + ωt+1︸ ︷︷ ︸
forward-looking


 if n = 1,

(133)

where terms and boundary conditions are analogously defined.
The jump variables are yt, ct, lt, vt, cet, ωt, `t, wt, rt, πt, qt, xt, rk,t, rq,t, mct, s1,t, s2,t, and

log(∆t). The state variables are kt−1, log(∆t−1), rt−1, yt−1, and the autoregressive processes.
The equations defining the evolution of the lags log(∆t−1), rt−1, and yt−1 are obtained by
the formula z(t−1)+1 = zt.
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