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Introduction

These notes constitute the theory documentation for the PSSFSS program. PSSFSS is a Julia
[1] program for the analysis of polarization and frequency selective surfaces (PSSs and FSSs).
The structure under consideration may contain any number of stratified dielectric layers, possibly
including one or more zero-thickness conducting1 sheets located at the dielectric interface layers.
The metalization pattern on the sheets is assumed to exhibit a two-dimensional periodicity, which
may vary from sheet to sheet. The structure is illuminated by a monochromatic plane wave incident
at an arbitrary angle, and the goal of this analysis is to efficiently compute the complex scattering
matrix whose entries are reflection and transmission coefficients for the scattered plane waves.
Various performance parameters can be obtained from the scattering matrix, such as reflection and
transmission coefficients, axial ratio, polarization purity, delta insertion phase delay, etc.

To calculate the fields scattered from the metallic sheets, we will use one of two approaches,
depending on the sheet geometry:

1. If a sheet’s unit cell of periodicity is mostly absent of metalization (“wire”, “strip”, or
“capacitive” type FSSs are typical examples of this), it is more efficient to replace the
metalization with unknown induced electric surface current, which will be solved for in the
course of the analysis.

2. Alternatively, if the unit cell is mostly metalized (as in a “slot” or “inductive” type of FSS),
then it is more efficient to solve for the tangential electric field in the non-metalized (“void”)
area. In practice this is done by filling in the void regions with metalization and impressing
upon these regions induced (fictitious) magnetic surface current. Note that this technique can
only be used when the metalization is assumed to be perfectly conducting. Lossy conducting
metalization requires the use of electric surface currents.

The unknown electric or magnetic surface currents in the unit cell are approximately determined
by solving a mixed-potential integral equation using the method of moments in conjunction with
the so-called “RWG” triangle subdomain basis functions [2].

1imperfect conductors are also allowed

v
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Each sheet in the structure is characterized by its generalized scattering matrix (GSM). “Gener-
alized” refers to the fact that both propagating and evanescent modes are treated. The GSMs of the
sheets and dielectric layers are cascaded to obtain the GSM of the entire structure. If the sheets do
not all share the same periodic lattice, then the sheet interactions are approximated by accounting
only for the dominant, propagating TE and TM modes during the cascading process. Also, if a sheet
is surrounded by very thin dielectric layers, then it would require a very large number of evanescent
modes to correctly model the effects of these layers. So in this case, the composite GSM of the
sheet together with its surrounding thin layers is directly computed, by using a Green’s function for
multiply stratified dielectric layers.

This document is organized as follows:

Chapter 1 documents the basic assumptions and fundamental equations for the fields and potentials
needed in the rest of the analysis.

Chapter 2 describes the type of periodic structures treated in this analysis, defines the direct and
reciprocal lattices, and derives the form of Floquet modes used in subsequent chapters.

Chapter 3 defines the generalized scattering matrix (GSM), and derives formulas for the GSMs of
canonical structures needed later in the analysis.

Chapter 4 derives an efficient, wide-band formula for the potential Green’s functions for abutted
half-spaces under quasi-periodic (Floquet) boundary conditions, as needed for FSS and PSS
sheets that are surrounded by reasonably thick adjacent dielectric layers.

Chapter 5 extends this formulation to multiply stratified media on each side of the sheet, as is
needed for a sheet immediately adjacent to one or more very thin dielectric layers.

Chapter 6 discusses how to calculate the incident fields and extract scattering matrix entries from
computed currents.

Chapter 7 provides the details of the method of moments (MoM) solution of the mixed potential
integral equations for the electric or magnetic currents flowing on the FSS/PSS sheets. Care
is taken to exploit the wide-band nature of the Green’s functions to minimize matrix fill time
for multi-frequency analysis.

Chapter 8 describes the performance parameters that are available as output of the program.



Chapter 1

Fundamentals

This chapter documents the definitions for fields, potentials, and Fourier transforms that are em-
ployed in remainder of this document.

We restrict consideration to time-harmonic sources in simple, linear media, assuming and
suppressing a time dependence of 𝑒 𝑗𝜔𝑡 . RMS phasers are used throughout, employing rationalized
MKS units. Thus, if 𝑉 is a (complex) phaser voltage, then the corresponding function of time is
𝑣(𝑡) =

√
2 Re

{
𝑉𝑒 𝑗𝜔𝑡

}
.

A right-handed Cartesian coordinate system is adopted, with 𝑥, 𝑦, and 𝑧 axes, and unit vectors 𝒙̂,
𝒚̂, and 𝒛. A point 𝑃 = (𝑥, 𝑦, 𝑧) is typically identified by the vector 𝒓 = 𝑥𝒙̂ + 𝑦 𝒚̂ + 𝑧𝒛 which measures
the displacement of 𝑃 from the origin.

The medium under consideration is characterized by its scalar, complex permittivity 𝜖 [F/m]
and its scalar, complex permeability 𝜇 [H/m], both of which may be functions of position, 𝜖 = 𝜖 (𝒓),
𝜇 = 𝜇(𝒓). Although these parameters are both positive for lossless media, in the presence of electric
and/or magnetic losses the imaginary part of 𝜖 and/or 𝜇, respectively, is negative. Thus, 𝜖 and 𝜇
both lie in the fourth quadrant (or positive real axis) of the complex plane.

For convenience we define the medium’s intrinsic wavenumber

𝑘 = 𝜔
√
𝜇𝜖 (fourth quadrant) (1.1)

and intrinsic impedance
𝜂 =

√
𝜇/𝜖

(
|arg 𝜂 | < 𝜋

4

)
, (1.2)

which, of course, vary with position if 𝜖 or 𝜇 do.

1



1.1 Maxwell’s Equations and Potentials for Electric Sources 2

1.1 Maxwell’s Equations and Potentials for Electric Sources

Under the assumptions listed above, and postulating the existence of only electric sources, Maxwell’s
curl equations (Ampere’s Law and Faraday’s Law) take the form

∇ × 𝑯 = 𝑗𝜔𝜖𝑬 + 𝑱 (1.3a)
∇ × 𝑬 = − 𝑗𝜔𝜇𝑯 (1.3b)

where 𝑬 is the electric field vector [V/m], 𝑯 is the magnetic field vector [A/m], and 𝑱 is the electric
current density [A/m2]. When combined with the equation of continuity

∇ · 𝑱 + 𝑗𝜔𝑞e = 0 (1.4)

we obtain the divergence relations

∇ · 𝜖𝑬 = 𝑞e (1.5a)
∇ · 𝜇𝑯 = 0, (1.5b)

where 𝑞e is the electric charge density, with units of [C/m3]. The fact that 𝜇𝑯 is divergenceless
leads to the introduction of the magnetic vector potential 𝑨 having units of [Vs/m]:

𝜇𝑯 = ∇ × 𝑨. (1.6)

Substituting (1.6) into (1.3b) we find that −𝑬 − 𝑗𝜔𝑨 is curl-free, and so can be written as the
gradient of the so-called electric scalar potential Φ [V]:

𝑬 = − 𝑗𝜔𝑨 − ∇Φ. (1.7)

To derive the differential equations for 𝑨 and Φ we begin with the identity

∇ × ∇ × 𝑨 = ∇ × 𝜇𝑯 = 𝜇∇ × 𝑯 + ∇𝜇 × 𝑯 (1.8)

and use Equations (1.3a) and (1.6) to eliminate 𝑯:

∇∇ · 𝑨 − ∇2𝑨 = 𝑗𝜔𝜖𝜇𝑬 + 𝜇𝑱 + ∇𝜇 ×
(
1
𝜇
∇ × 𝑨

)
. (1.9)

Note that we also employed the identity ∇ × ∇ × 𝑨 = ∇∇ · 𝑨 − ∇2𝑨. Now eliminating 𝑬 using
(1.7) we obtain

∇2𝑨 + 𝑘2𝑨 + ∇𝜇 ×
(
1
𝜇
∇ × 𝑨

)
− ∇ [∇ · 𝑨 + 𝑗𝜔𝜇𝜖Φ] = −𝜇𝑱. (1.10)

Since the divergence of the magnetic vector potential is as yet unspecified, we may apply the Lorentz
gauge, ∇ · 𝑨 = − 𝑗𝜔𝜖𝜇Φ, and set the quantity in square brackets above to zero:

∇2𝑨 + 𝑘2𝑨 + ∇𝜇
𝜇
× ∇ × 𝑨 = −𝜇𝑱. (1.11)
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Equation (1.11) is the fundamental wave equation for the magnetic vector potential under the Lorentz
gauge in an inhomogeneous medium.

An equation for Φ is now obtained by employing the identity ∇ · 𝜖𝑬 = 𝑬 · ∇𝜖 + 𝜖∇ · 𝑬 in (1.5a)
and then eliminating 𝑬 using (1.7):

𝑞e = 𝑬 · ∇𝜖 + 𝜖∇ · 𝑬
= −( 𝑗𝜔𝑨 + ∇Φ) · ∇𝜖 − 𝜖∇ · ( 𝑗𝜔𝑨 + ∇Φ). (1.12)

After invoking the Lorentz gauge this can be written as

∇2Φ + 𝑘2Φ + ∇Φ · ∇𝜖
𝜖

= −𝑞e

𝜖
− 𝑗𝜔𝑨 · ∇𝜖

𝜖
. (1.13)

Equation (1.13) is the wave equation for the electric scalar potential under the Lorentz gauge in an
inhomogeneous medium.

1.1.1 Piecewise Homogeneous Medium

Suppose that the spatial domain 𝑈 of the boundary value problem for which Maxwell’s Equations
are to be solved consists of a disjoint union of a finite number 𝑁 of homogeneous regions𝑈𝑖 , as in
the case of a stratified medium:

𝑈 =
𝑁⋃
𝑖=1
𝑈𝑖 , (1.14)

and suppose that the permittivity and permeability of the 𝑖th region are the constants 𝜖𝑖 and 𝜇𝑖 ,
respectively, with corresponding wavenumber 𝑘𝑖 . Then, for points within the 𝑖th medium, the terms
involving the gradient of the permittivity and permeability are zero, and the potentials within the
𝑖th region are solutions to

∇2𝑨(𝑖) + 𝑘2
𝑖 𝑨
(𝑖) = −𝜇𝑖 𝑱, (1.15a)

∇2Φ(𝑖) + 𝑘2
𝑖Φ
(𝑖) = −𝑞e/𝜖𝑖 . (1.15b)

If the 𝑖th region contains no sources, then the potentials in that region are solutions to the Helmholtz
equation:

∇2𝑨(𝑖) + 𝑘2
𝑖 𝑨
(𝑖) = 0, (1.16a)

∇2Φ(𝑖) + 𝑘2
𝑖Φ
(𝑖) = 0. (1.16b)

1.2 Maxwell’s Equations for Magnetic Sources

Under the assumptions listed in the introduction, and postulating the existence of only magnetic
sources, Maxwell’s curl equations (Ampere’s Law and Faraday’s Law) take the form

∇ × 𝑯 = 𝑗𝜔𝜖𝑬 (1.17a)
∇ × 𝑬 = − 𝑗𝜔𝜇𝑯 − 𝑴 (1.17b)
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where 𝑬 is the electric field vector [V/m], 𝑯 is the magnetic field vector [A/m], and 𝑴 is the
magnetic current density [V/m2]. When combined with the equation of continuity

∇ · 𝑴 + 𝑗𝜔𝑞m = 0 (1.18)

we obtain the divergence relations

∇ · 𝜖𝑬 = 0 (1.19a)
∇ · 𝜇𝑯 = 𝑞m, (1.19b)

where 𝑞m is the magnetic charge density, with units of [Wb/m3]. The fact that 𝜖𝑬 is divergenceless
leads to the introduction of the electric vector potential 𝑭 having units of [As/m]:

𝜖𝑬 = ∇ × 𝑭. (1.20)

Substituting (1.20) into (1.17a) we find that 𝑗𝜔𝑭 − 𝑯 is curl-free, and so can be written as the
gradient of the so-called magnetic scalar potential Ψ [A]:

𝑯 = 𝑗𝜔𝑭 − ∇Ψ. (1.21)

To derive the differential equations for 𝑭 and Ψ we begin with the identity

∇ × ∇ × 𝑭 = ∇ × 𝜖𝑬 = 𝜖∇ × 𝑬 + ∇𝜖 × 𝑬 (1.22)

and use Equations (1.17b) and (1.20) to eliminate 𝑬:

∇∇ · 𝑭 − ∇2𝑭 = − 𝑗𝜔𝜖𝜇𝑯 − 𝜖𝑴 + ∇𝜖 ×
(
1
𝜖
∇ × 𝑭

)
. (1.23)

Note that we also employed the identity ∇ × ∇ × 𝑭 = ∇∇ · 𝑭 − ∇2𝑭. Now eliminating 𝑯 using
(1.21) we obtain

∇2𝑭 + 𝑘2𝑭 + ∇𝜖 ×
(
1
𝜖
∇ × 𝑭

)
− ∇ [∇ · 𝑭 − 𝑗𝜔𝜇𝜖Ψ] = 𝜖𝑴 . (1.24)

Since the divergence of the electric vector potential is as yet unspecified, we may apply the Lorentz
gauge, ∇ · 𝑭 = 𝑗𝜔𝜖𝜇Ψ, and set the quantity in square brackets above to zero:

∇2𝑭 + 𝑘2𝑭 + ∇𝜖
𝜖
× ∇ × 𝑭 = 𝜖𝑴 . (1.25)

Equation (1.25) is the fundamental wave equation for the electric vector potential under the Lorentz
gauge in an inhomogeneous medium.
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An equation for Ψ is now obtained by employing the identity ∇ · 𝜇𝑯 = 𝑯 · ∇𝜇 + 𝜇∇ · 𝑯 in
(1.19b) and then eliminating 𝑯 using (1.21):

𝑞m = 𝑯 · ∇𝜇 + 𝜇∇ · 𝑯
= ( 𝑗𝜔𝑭 − ∇Ψ) · ∇𝜇 + 𝜇∇ · ( 𝑗𝜔𝑭 − ∇Ψ). (1.26)

After invoking the Lorentz gauge this can be written as

∇2Ψ + 𝑘2Ψ + ∇Ψ · ∇𝜇
𝜇

= −𝑞m

𝜇
+ 𝑗𝜔𝑭 · ∇𝜇

𝜇
. (1.27)

Equation (1.27) is the wave equation for the electric scalar potential under the Lorentz gauge in an
inhomogeneous medium.

1.2.1 Piecewise Homogeneous Medium

Suppose that the spatial domain 𝑈 of the boundary value problem for which Maxwell’s Equations
are to be solved consists of a disjoint union of a finite number 𝑁 of homogeneous regions𝑈𝑖 , as in
the case of a stratified medium:

𝑈 =
𝑁⋃
𝑖=1
𝑈𝑖 , (1.28)

and suppose that the permittivity and permeability of the 𝑖th region are the constants 𝜖𝑖 and 𝜇𝑖 ,
respectively, with corresponding wavenumber 𝑘𝑖 . Then, for points within the 𝑖th medium, the terms
involving the gradient of the permittivity and permeability are zero, and the potentials within the
𝑖th region are solutions to

∇2𝑭 (𝑖) + 𝑘2
𝑖 𝑭
(𝑖) = 𝜖𝑖𝑴, (1.29a)

∇2Ψ (𝑖) + 𝑘2
𝑖Ψ
(𝑖) = −𝑞m/𝜇𝑖 . (1.29b)

If the 𝑖th region contains no sources, then the potentials in that region are solutions to the Helmholtz
equation:

∇2𝑭 (𝑖) + 𝑘2
𝑖 𝑭
(𝑖) = 0, (1.30a)

∇2Ψ (𝑖) + 𝑘2
𝑖Ψ
(𝑖) = 0. (1.30b)

1.3 Duality

We note that the cases of electric-only and magnetic-only sources are duals. Any valid equation
involving electromagnetic quantities has a dual equation which can be obtained by applying the
following rules:

1. Interchange 𝜇 and 𝜖 .
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2. Electric quantities are replaced by their corresponding magnetic quantity.

3. Magnetic quantities are replaced by the negative of their corresponding electric quantity.

The mappings between original and dual quantities are given in Table 1.1.

Original→ Dual
𝜇→ 𝜖

𝜖 → 𝜇

𝑘 → 𝑘

𝜂→ 1/𝜂
𝑬 → 𝑯

𝑱 → 𝑴

𝑭 → 𝑨

Φ→ Ψ
𝑞e → 𝑞m
𝑯 → −𝑬
𝑴 → −𝑱
𝑨→ −𝑭
Ψ→ −Φ
𝑞m → −𝑞e

Table 1.1 Electromagnetic dual quantities.

1.4 Fourier Transform Definitions

1.4.1 One-dimensional Transform

The Fourier transform of a function 𝑓 : R→ C is 𝑓 = F{ 𝑓 }, where

𝑓 (𝑘) =
∫ ∞

−∞
𝑓 (𝑥)𝑒 𝑗𝑘𝑥d𝑥, (1.31)

so that
𝑓 (𝑥) = 1

2𝜋

∫ ∞

−∞
𝑓 (𝑘)𝑒− 𝑗𝑘𝑥d𝑘. (1.32)

The completeness statement is

𝛿(𝑥) = 1
2𝜋

∫ ∞

−∞
𝑒± 𝑗𝑘𝑥d𝑘 (1.33)
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and Parseval’s relation is ∫ ∞

−∞
𝑓 (𝑥)𝑔∗(𝑥) d𝑥 = 1

2𝜋

∫ ∞

−∞
𝑓 (𝑘)𝑔̃∗(𝑘) d𝑘. (1.34)

Finally, if

ℎ(𝑥) =
∫ ∞

−∞
𝑓 (𝑥 ′)𝑔(𝑥 − 𝑥 ′) d𝑥 ′ (1.35)

then the convolution theorem states that

ℎ̃(𝑘) = 𝑓 (𝑘)𝑔̃(𝑘). (1.36)

1.4.2 Two-dimensional Transform

The Fourier transform of a function 𝑓 : R × R→ C is 𝑓 = F{ 𝑓 }, where

𝑓 (𝑘𝑥 , 𝑘𝑦) =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑒 𝑗 (𝑘𝑥 𝑥+𝑘𝑦𝑦)d𝑥d𝑦, (1.37)

so that
𝑓 (𝑥, 𝑦) = 1

4𝜋2

∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑘𝑥 , 𝑘𝑦)𝑒− 𝑗 (𝑘𝑥 𝑥+𝑘𝑦𝑦)d𝑘𝑥d𝑘𝑦 . (1.38)

The completeness statement is

𝛿(𝑥)𝛿(𝑦) = 1
4𝜋2

∫ ∞

−∞

∫ ∞

−∞
𝑒± 𝑗 (𝑘𝑥 𝑥+𝑘𝑦𝑦)d𝑘𝑥d𝑘𝑦 (1.39)

and Parseval’s relation is∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑥, 𝑦)𝑔∗(𝑥, 𝑦) d𝑥d𝑦 = 1

4𝜋2

∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑘𝑥 , 𝑘𝑦)𝑔̃∗(𝑘𝑥 , 𝑘𝑦) d𝑘𝑥d𝑘𝑦 . (1.40)

Finally, if

ℎ(𝑥, 𝑦) =
∫ ∞

−∞

∫ ∞

−∞
𝑓 (𝑥 ′, 𝑦′)𝑔(𝑥 − 𝑥 ′, 𝑦 − 𝑦′) d𝑥 ′d𝑦′ (1.41)

then the convolution theorem states that

ℎ̃(𝑘𝑥 , 𝑘𝑦) = 𝑓 (𝑘𝑥 , 𝑘𝑦)𝑔̃(𝑘𝑥 , 𝑘𝑦). (1.42)



Chapter 2

Periodicity, Reciprocal Lattice, Floquet Modes

This chapter discusses the direct and reciprocal lattice vectors, and defines the Floquet modes that
can exist in the dielectric regions.

2.1 The Direct Lattice

We consider a structure with discrete translational invariance in two space dimensions. The
periodicity is characterized by the direct lattice vectors 𝒔1 and 𝒔2, a pair of real vectors satisfying

𝒔1 · 𝒛 = 𝒔2 · 𝒛 = 0, 𝐴 ≡ 𝒛 · 𝒔1 × 𝒔2 > 0. (2.1)

The structure is invariant to a translation consisting of any integer number of shifts in the 𝒔1 or 𝒔2
directions. Such periodicity is exhibited by idealized models of frequency selective surfaces (FSSs)
and phased arrays, for example. This periodicity gives rise to the concept of the direct lattice, the
set of points 𝝆𝑚𝑛 = 𝒙̂𝑥𝑚𝑛 + 𝒚̂𝑦𝑚𝑛 satisfying

𝝆𝑚𝑛 = 𝑚𝒔1 + 𝑛𝒔2, for 𝑚 and 𝑛 any integers. (2.2)

A periodic structure and its direct lattice is shown in Figure 2.1.

2.2 Periodic Boundary Conditions and the Unit Cell

We now assume that an electromagnetic excitation of some type is applied to the structure. In the
case of a FSS, the excitation takes the form of an incident plane wave. In the case of a phased array,
the excitation may be an incident plane wave, or perhaps a set of incoming waveguide modes in each
of the excitation ports of the radiating elements. Denote the spatial variation of the excitation by
the function 𝑉 (𝒓). We insist that the function 𝑉 satisfy the following quasi-periodicity condition:

𝑉 (𝒓 + 𝑚𝒔1 + 𝑛𝒔2) = 𝑉 (𝒓)𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) , for any integers 𝑚 and 𝑛 (2.3)

8
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𝒔1

𝒔2

Figure 2.1 A frequency selective surface consisting of a thin metal plate with hexagonal perforations, and
the associated direct lattice. The location selected for the lattice origin is arbitrary.

where 𝜓1 and 𝜓2 are given real numbers, which we will refer to as the “unit cell incremental phase
shifts”. By the translational invariance of Maxwell’s equations and given the discrete translational
invariance of the structure, it is clear that all electromagnetic fields, charges, etc., resulting from the
given excitation must also satisfy (2.3), which we refer to as the “Floquet boundary condition.”

Since the fields throughout the structure satisfy Equation (2.3), it suffices to restrict consideration
to a single unit cell𝑈, defined1 as the set of points 𝒓 satisfying

𝑈 = {𝒓 : 𝒓 = 𝜉1𝒔1 + 𝜉2𝒔2 + 𝒛𝑧, 0 ≤ 𝜉1, 𝜉2 ≤ 1}, (2.4)

where 𝜉1 and 𝜉2 are the so-called “normalized area coordinates,” each constrained to the interval
[0, 1]. We seek a set of modes that can propagate in the unit cell, subject to an appropriate set of
boundary conditions to be stated below. Let 𝐸 (𝒓) be some rectangular component of electric or
magnetic field evaluated at a point 𝒓 = 𝒙̂𝑥 + 𝒚̂𝑦 + 𝒛𝑧 = 𝜉1𝒔1 + 𝜉2𝒔2 + 𝒛𝑧 within the unit cell. Then
the quasi-periodic boundary condition can be expressed as

𝐸 (𝒔1 + 𝜉2𝒔2 + 𝒛𝑧) = 𝐸 (𝜉2𝒔2 + 𝒛𝑧)𝑒− 𝑗𝜓1 (2.5a)
𝐸 (𝜉1𝒔1 + 𝒔2 + 𝒛𝑧) = 𝐸 (𝜉1𝒔1 + 𝒛𝑧)𝑒− 𝑗𝜓2 (2.5b)

which must hold for all 𝑧 and for all 𝜉1 and 𝜉2 in the interval [0, 1].

2.2.1 Mode Potentials

Following the formalism of Section 5.1 of [3], for both TE and TM modes we seek mode potentials
Ψ(𝝆) = Ψ(𝑥, 𝑦) that satisfy the two-dimensional Helmholtz equation

∇2
𝑡Ψ + 𝑘2

𝑐Ψ = 0 (2.6)
1The definition of a unit cell is not unique. The present definition is most useful for our purposes.
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within the unit cell in addition to the boundary conditions (2.5). To simplify the following derivation,
let 𝑓 (𝜉1, 𝜉2) = Ψ(𝜉1𝒔1 + 𝜉2𝒔2) = Ψ(𝑥, 𝑦). Then the boundary condition (2.5) satisfied by Ψ can be
expressed more simply in terms of 𝑓 as

𝑓 (1, 𝜉2) = 𝑓 (0, 𝜉2)𝑒− 𝑗𝜓1 (2.7a)
𝑓 (𝜉1, 1) = 𝑓 (𝜉1, 0)𝑒− 𝑗𝜓2 (2.7b)

Note that 𝑓 is periodic in 𝜉1 and 𝜉2 with unit period except for the progressive phase shifts 𝜓1 and
𝜓2. This motivates us to consider the function 𝑓 (𝜉1, 𝜉2)𝑒 𝑗 ( 𝜉1𝜓1+𝜉2𝜓2) which is indeed periodic and
can therefore be expanded in a double Fourier series:

𝑓 (𝜉1, 𝜉2)𝑒 𝑗 ( 𝜉1𝜓1+𝜉2𝜓2) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓𝑚𝑛 𝑒
− 𝑗 (𝑚2𝜋 𝜉1+𝑛2𝜋 𝜉2)

or equivalently

𝑓 (𝜉1, 𝜉2) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓𝑚𝑛 𝑒
− 𝑗 [𝜉1 (𝜓1+𝑚2𝜋)+𝜉2 (𝜓2+𝑛2𝜋) ] . (2.8)

We wish to write Equation (2.8) explicitly in terms of 𝝆 = 𝒙̂𝑥 + 𝒚̂𝑦. Recalling that 𝝆 = 𝜉1𝒔1 + 𝜉2𝒔2
and writing the relation in matrix form yields[

𝑥
𝑦

]
=

[
𝑠1𝑥 𝑠2𝑥
𝑠1𝑦 𝑠2𝑦

] [
𝜉1
𝜉2

]
. (2.9)

Inverting, we obtain [
𝜉1
𝜉2

]
=

1
𝐴

[
𝑠2𝑦 −𝑠2𝑥
−𝑠1𝑦 𝑠1𝑥

] [
𝑥
𝑦

]
=

1
𝐴

[
𝑠2𝑦𝑥 − 𝑠2𝑥𝑦
−𝑠1𝑦𝑥 + 𝑠1𝑥𝑦

]
=

1
𝐴

[
𝒔2 × 𝒛 · 𝝆
𝒛 × 𝒔1 · 𝝆

]
=

1
2𝜋

[
𝜷1 · 𝝆
𝜷2 · 𝝆

]
(2.10)

where
𝜷1 =

2𝜋
𝐴
𝒔2 × 𝒛, 𝜷2 =

2𝜋
𝐴
𝒛 × 𝒔1, (2.11)

are the reciprocal lattice vectors [4, 5] and 𝐴 = 𝒛 · 𝒔1 × 𝒔2 is the area of the unit cell. Substituting
(2.11) into (2.8), we obtain the desired representation of the mode potential:

𝑓 (𝜉1, 𝜉2) = Ψ(𝑥, 𝑦) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆 (2.12)
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𝜷1

𝜷2

𝜷0,0

Figure 2.2 The reciprocal lattice for the structure of Figure 2.1. Note that this lattice is a scaled and rotated
(by 90◦) version of the direct lattice. Modes are located at the tips of the small, offset vectors. Propagating
modes lie within the dashed circle of radius 𝑘 centered on the origin. The offset vector 𝜷00 accounts for the
effects of the impressed phase shift.

where

𝜷𝑚𝑛 = 𝜷00 + 𝑚𝜷1 + 𝑛𝜷2, (2.13a)

𝜷00 =
𝜓1

2𝜋
𝜷1 +

𝜓2

2𝜋
𝜷2. (2.13b)

We see that the mode potentials assume the form of a discrete set of plane waves for both TE and
TM modes. The cutoff wavenumber 𝑘𝑐 of a plane wave with transverse propagation vector 𝜷𝑚𝑛 is
given by

𝑘𝑐 = 𝛽𝑚𝑛 ≡
√
𝜷𝑚𝑛 · 𝜷𝑚𝑛. (2.14)

For a lossless medium a finite number of modes may satisfy 𝑘 > 𝛽𝑚𝑛; these are the propagating
modes. The remaining modes, comprising a denumerably infinite set, are cut-off (or evanescent).
The situation is depicted in Figure 2.2 for the structure of Figure 2.1.

Following the prescription given in [3], we may now write down the explicit forms of the modal
fields:
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2.2.2 TE modes

Oblique Incidence

We first assume that 𝛽𝑚𝑛 ≠ 0, in which case the modal fields are

ΨTE
𝑚𝑛 (𝝆) =

𝑐TE
𝑚𝑛

𝑘𝜂𝛽𝑚𝑛
𝑒− 𝑗𝜷𝑚𝑛 ·𝝆 (2.15a)

𝛾𝑚𝑛 =
√
𝛽2
𝑚𝑛 − 𝑘2 (1st quadrant) (2.15b)

𝑍TE
𝑚𝑛 =

1
𝑌TE
𝑚𝑛

=
𝑗 𝑘𝜂

𝛾𝑚𝑛
(2.15c)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯TE
𝑚𝑛 (𝒓) = ±𝛾𝑚𝑛𝑒

±𝛾𝑚𝑛𝑧 ∇𝑡Ψ
TE
𝑚𝑛

= ∓ 𝑗𝛾𝑚𝑛Ψ
TE
𝑚𝑛𝑒

±𝛾𝑚𝑛𝑧𝜷𝑚𝑛

= ±𝑐TE
𝑚𝑛𝑌

TE
𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 𝜷̂𝑚𝑛 (2.15d)
𝒛 · 𝑯TE

𝑚𝑛 (𝒓) = 𝛽2
𝑚𝑛Ψ

TE
𝑚𝑛𝑒

±𝛾𝑚𝑛𝑧

= 𝑐TE
𝑚𝑛

𝛽𝑚𝑛

𝑘𝜂
𝑒− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 (2.15e)

𝑬TE
𝑚𝑛 (𝒓) = ±𝑍TE

𝑚𝑛𝒛 × 𝑯𝑚𝑛 (𝒓)
= 𝑐TE

𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (2.15f)

where we have used 𝜷̂𝑚𝑛 = 𝜷𝑚𝑛/𝛽𝑚𝑛.

Normal Incidence

In the case where 𝛽𝑚𝑛 = 0, we use the following convention:

𝜷̂𝑚𝑛 = 𝒙̂, (2.16)

so that the final formulas in (2.15) remain valid.
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2.2.3 TM modes

Oblique Incidence

We first assume that 𝛽𝑚𝑛 ≠ 0, in which case

ΨTM
𝑚𝑛 (𝝆) =

± 𝑗𝑐TM
𝑚𝑛

𝛾𝑚𝑛𝛽𝑚𝑛
𝑒− 𝑗𝜷𝑚𝑛 ·𝝆 (2.17a)

𝛾𝑚𝑛 =
√
𝛽2
𝑚𝑛 − 𝑘2 (1st quadrant) (2.17b)

𝑌TM
𝑚𝑛 =

1
𝑍TM
𝑚𝑛

=
𝑗 𝑘

𝜂𝛾𝑚𝑛
(2.17c)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬TM
𝑚𝑛 (𝒓) = ±𝛾𝑚𝑛𝑒

±𝛾𝑚𝑛𝑧 ∇𝑡Ψ
TM
𝑚𝑛

= ∓ 𝑗𝛾𝑚𝑛Ψ
TM
𝑚𝑛 𝑒

±𝛾𝑚𝑛𝑧𝜷𝑚𝑛

= 𝑐TM
𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 𝜷̂𝑚𝑛 (2.17d)
𝒛 · 𝑬TM

𝑚𝑛 (𝒓) = 𝛽2
𝑚𝑛Ψ

TM
𝑚𝑛 𝑒

±𝛾𝑚𝑛𝑧

= ± 𝑗𝑐TM
𝑚𝑛

𝛽𝑚𝑛

𝛾𝑚𝑛
𝑒− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 (2.17e)

𝑯TM
𝑚𝑛 (𝒓) = ∓𝑌TM

𝑚𝑛 𝒛 × 𝑬TM
𝑚𝑛 (𝒓)

= ∓𝑐TM
𝑚𝑛𝑌

TM
𝑚𝑛 𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆±𝛾𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (2.17f)

Normal Incidence

In the case where 𝛽𝑚𝑛 = 0, we again employ the convention (2.16), so that the final formulas in
(2.17) remain valid.

2.2.4 Mode Normalization

So far we have not specified values for the set of mode normalization constants {𝑐TE
𝑚𝑛} and {𝑐TM

𝑚𝑛}.
These can be specified in any convenient manner. We will choose a normalization that allows us to
easily interpret the incident and reflected traveling wave variables in terms of power transported by
the modes. Consider a source-free slab of the unit cell bounded by 𝑧 = constant planes, filled with
homogeneous dielectric material. Taking account of the results of Sections 2.2.2 and 2.2.3, we see
that the transverse components of the most general electromagnetic field that can exist in this region
can be written as

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬 (𝒓) =
∑

(𝑝,𝑚,𝑛) ∈𝑆
𝒆𝑝𝑚𝑛 (𝑥, 𝑦)

(
𝑎𝑝𝑚𝑛𝑒

−𝛾𝑚𝑛𝑧 + 𝑏𝑝𝑚𝑛𝑒
𝛾𝑚𝑛𝑧

)
, (2.18a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯(𝒓) =
∑

(𝑝,𝑚,𝑛) ∈𝑆
𝒉𝑝𝑚𝑛 (𝑥, 𝑦)

(
𝑎𝑝𝑚𝑛𝑒

−𝛾𝑚𝑛𝑧 − 𝑏𝑝𝑚𝑛𝑒
𝛾𝑚𝑛𝑧

)
, (2.18b)
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where the summations are taken over the set of integer triples 𝑆 = {(𝑝, 𝑚, 𝑛) ∈ {1, 2}×Z×Z}, Z is
the set of all integers, 𝑝 = 1 corresponds to TE modes, and 𝑝 = 2 corresponds to TM modes. The
modal fields 𝒆𝑝𝑚𝑛 and 𝒉𝑝𝑚𝑛 are given explicitly by

𝒆1𝑚𝑛 = 𝑐1𝑚𝑛𝒛 × 𝜷̂𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆 (2.19a)

𝒆2𝑚𝑛 = 𝑐2𝑚𝑛 𝜷̂𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆 (2.19b)

𝒉𝑝𝑚𝑛 = 𝑌𝑝𝑚𝑛𝒛 × 𝒆𝑝𝑚𝑛 (2.19c)

where

𝑌1𝑚𝑛 = 𝑌TE
𝑚𝑛, 𝑐1𝑚𝑛 = 𝑐TE

𝑚𝑛 (2.20a)
𝑌2𝑚𝑛 = 𝑌TM

𝑚𝑛 , 𝑐2𝑚𝑛 = 𝑐TM
𝑚𝑛 . (2.20b)

By virtue of the orthogonality of the Floquet modes (see Appendix A), the complex power P
traveling down the unit cell in the 𝑧 direction can be expressed as a sum of the individual complex
powers transported by each mode:

𝑃 =
∬

𝑈 ′
𝑬 × 𝑯∗ · 𝒛 d𝐴

=
∑

(𝑝,𝑚,𝑛) ∈𝑆
(𝑎𝑝𝑚𝑛 + 𝑏𝑝𝑚𝑛) (𝑎∗𝑝𝑚𝑛 − 𝑏∗𝑝𝑚𝑛)

∬
𝑈 ′

𝒆𝑝𝑚𝑛 × 𝒉∗𝑝𝑚𝑛 · 𝒛 d𝐴

=
∑

(𝑝,𝑚,𝑛) ∈𝑆

[
|𝑎𝑝𝑚𝑛 |2 − |𝑏𝑝𝑚𝑛 |2 − 2 𝑗 Im

{
𝑎𝑝𝑚𝑛𝑏

∗
𝑝𝑚𝑛

}]
𝑃𝑝𝑚𝑛 (2.21)

where𝑈 ′ is the restriction of the unit cell to the plane 𝑧 = 0, and

𝑃𝑝𝑚𝑛 =
∬

𝑈 ′
𝒆𝑝𝑚𝑛 × 𝒉∗𝑝𝑚𝑛 · 𝒛 d𝐴 = |𝑐𝑝𝑚𝑛 |2𝑌 ∗𝑝𝑚𝑛𝐴 (2.22)

is the complex power associated with each unit-strength positive-going mode. Its value depends
on the choice of mode normalization constant 𝑐𝑝𝑚𝑛, which has not yet been specified. Note that if
𝑃𝑝𝑚𝑛 is equal to 1, then the time-average (real) power carried down the guide in the +𝑧 direction
is just |𝑎𝑝𝑚𝑛 |2 − |𝑏𝑝𝑚𝑛 |2, consistent with the usual definition of traveling wave variables [6]. Such
a normalization is not possible, since in many cases of practical interest, 𝑃𝑝𝑚𝑛 has zero real part.
Consider the case of a lossless medium with 𝛽𝑚𝑛 > 𝑘 . Then 𝛾𝑚𝑛 is pure real, so that 𝑌𝑝𝑚𝑛 is
pure imaginary. It follows from Equation (2.22) that 𝑃𝑝𝑚𝑛 is pure imaginary, since 𝐴 and |𝑐𝑝𝑚𝑛 |
are both pure real. Therefore, we content ourselves with setting the magnitude of 𝑃𝑝𝑚𝑛 equal to
𝑃0 ≡ one watt:

𝑃𝑝𝑚𝑛 =
𝑌 ∗𝑝𝑚𝑛

|𝑌𝑝𝑚𝑛 |
𝑃0. (2.23)
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Substituting (2.23) into (2.22) determines the value of the mode normalization constant (up to an
arbitrary phase):

|𝑐𝑝𝑚𝑛 | =
√

𝑃0

𝐴|𝑌𝑝𝑚𝑛 |
. (2.24)

This choice results in a unitary scattering matrix for propagating modes in lossless media. It will
be convenient for later work to choose the phase of 𝑐𝑝𝑚𝑛 as follows:

𝑐𝑝𝑚𝑛 =

√
𝑃0

𝐴𝑌𝑝𝑚𝑛
. (2.25)

where we agree to take that square root of 𝑌𝑝𝑚𝑛 having positive real part.



Chapter 3

Generalized Scattering Matrix

3.1 Introduction

This chapter documents the form of the GSM (generalized scattering matrix) used in the PSSFSS
program and provides formulas for the scattering parameters of several canonical structures needed
in the analysis of an FSS (Frequency Selective Surface). These include a dielectric interface, a
dielectric slab, and the cascade interconnection of two FSS structures.

3.2 Definition of the GSM

We consider a structure with two-dimensional periodicity as described in Chapter 2. The structure
occupies the region 𝑧1 ≤ 𝑧 ≤ 𝑧2, as shown in Figure 3.1. It is bounded by the two half-spaces
denoted as Region 1 and Region 2. Each is characterized by its electrical parameters 𝜇𝑖 , 𝜖𝑖 , 𝑘𝑖 , and
𝜂𝑖 , 𝑖 = 1, 2, which are the permittivity, permeability, intrinsic wavenumber, and intrinsic impedance,
respectively. Given the lattice vectors 𝒔1 and 𝒔2 and impressed phasings 𝜓1 and 𝜓2, as defined in
Chapter 2, we may expand the transverse fields in each of Regions 1 and 2 in terms of incident and

𝑧1 𝑧2

FSS/Radome
Structure

a(1)−→

b(1)←−

a(2)←−

b(2)−→

Region 1:
𝜖1, 𝜇1, 𝑘1, 𝜂1

Region 2:
𝜖2, 𝜇2, 𝑘2, 𝜂2

Figure 3.1 A structure to be characterized by its GSM occupies the region 𝑧1 ≤ 𝑧 ≤ 𝑧2. It is bounded on
each side by (possibly dissimilar) homogeneous, dielectric half-spaces.

16
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reflected Floquet modes:

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬 (1) (𝒓) =
𝑁1∑
𝑞=1

𝒆 (1)𝑞 (𝑥, 𝑦)
(
𝑎 (1)𝑞 𝑒−𝛾

(1)
𝑞 (𝑧−𝑧1) + 𝑏 (1)𝑞 𝑒𝛾

(1)
𝑞 (𝑧−𝑧1)

)
, (3.1a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯 (1) (𝒓) =
𝑁1∑
𝑞=1

𝒉 (1)𝑞 (𝑥, 𝑦)
(
𝑎 (1)𝑞 𝑒−𝛾

(1)
𝑞 (𝑧−𝑧1) − 𝑏 (1)𝑞 𝑒𝛾

(1)
𝑞 (𝑧−𝑧1)

)
, (3.1b)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬 (2) (𝒓) =
𝑁2∑
𝑞=1

𝒆 (2)𝑞 (𝑥, 𝑦)
(
𝑎 (2)𝑞 𝑒𝛾

(2)
𝑞 (𝑧−𝑧2) + 𝑏 (2)𝑞 𝑒−𝛾

(2)
𝑞 (𝑧−𝑧2)

)
, (3.1c)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯 (2) (𝒓) =
𝑁2∑
𝑞=1

𝒉 (2)𝑞 (𝑥, 𝑦)
(
−𝑎 (2)𝑞 𝑒𝛾

(2)
𝑞 (𝑧−𝑧2) + 𝑏 (2)𝑞 𝑒−𝛾

(2)
𝑞 (𝑧−𝑧2)

)
. (3.1d)

Superscripted numbers in parentheses are used in Equations (3.1) as region designators. The sums
are taken over the set of modes in each region, which for convenience are enumerated with a single
index 𝑞, rather than the triple index (𝑝, 𝑚, 𝑛) as was used in Section 2.2. We will make use of both
subscripting schemes, employing whichever is most convenient in a particular formula. Although
the limits on the sums should be infinite in principle, the numbers of modes in each region are
truncated to a finite value (𝑁1 modes in Region 1 and 𝑁2 in Region 2) so that a numerical evaluation
can be accomplished. In general the modes are sorted prior to enumeration so that those with the
smallest values of 𝛽𝑚𝑛 are retained in the finite sums.

The generalized scattering matrix S expresses the linear relationship between the incident and
scattered Floquet modal coefficients evaluated at each terminal plane of the FSS structure. This
relationship is written in partitioned form as[

b(1)

b(2)

]
=

[
S11 S12

S21 S22

] [
a(1)

a(2)

]
(3.2)

where

a(1) =



𝑎 (1)1
𝑎 (1)2
𝑎 (1)3
...

𝑎 (1)𝑁1


, b(1) =



𝑏 (1)1
𝑏 (1)2
𝑏 (1)3
...

𝑏 (1)𝑁1


, a(2) =



𝑎 (2)1
𝑎 (2)2
𝑎 (2)3
...

𝑎 (2)𝑁2


, b(2) =



𝑏 (2)1
𝑏 (2)2
𝑏 (2)3
...

𝑏 (2)𝑁2


, (3.3)

and S11 ∈ C𝑁1×𝑁1 , S12 ∈ C𝑁1×𝑁2 , S21 ∈ C𝑁2×𝑁1 , S22 ∈ C𝑁2×𝑁2 . We see that the entries of the S11

and S22 matrices are reflection coefficients while those of S12 and S21 are transmission coefficients.
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3.3 GSM of a Dielectric Interface

Consider the case where 𝑧1 = 𝑧2 = 0 and there is no FSS present at the junction plane. The resulting
structure is then just the interface between two homogeneous half-spaces.

3.3.1 Wave Incident from Region 1

TE Mode Incident

The transverse components of the incident field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬inc = 𝑐 (1)1𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾

(1)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.4a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯inc = −𝑐 (1)1𝑚𝑛𝑌
(1)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(1)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.4b)

The transverse components of the reflected field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬ref = 𝑅 (1)1𝑚𝑛𝑐
(1)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.5a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯ref = 𝑅 (1)1𝑚𝑛𝑐
(1)
1𝑚𝑛𝑌

(1)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.5b)

The transverse components of the transmitted field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬tran = 𝑇 (2)1𝑚𝑛𝑐
(2)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.6a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯tran = −𝑇 (2)1𝑚𝑛𝑐
(2)
1𝑚𝑛𝑌

(2)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.6b)

The unknown reflection and transmission coefficients 𝑅 (1)1𝑚𝑛 and 𝑇 (2)1𝑚𝑛 are determined by equating
the total transverse electric and magnetic fields at each side of the interface:

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) ·
[
𝑬inc(0, 0, 0) + 𝑬ref(0, 0, 0)

]
= (𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬tran(0, 0, 0), (3.7a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) ·
[
𝑯inc(0, 0, 0) + 𝑯ref(0, 0, 0)

]
= (𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯tran(0, 0, 0). (3.7b)

This procedure results in the following system of equations for the transmission and reflection
coefficient:

1 + 𝑅 (1)1𝑚𝑛 =
𝑐 (2)1𝑚𝑛

𝑐 (1)1𝑚𝑛

𝑇 (2)1𝑚𝑛 =

√
𝑌 (1)1𝑚𝑛√
𝑌 (2)1𝑚𝑛

𝑇 (2)1𝑚𝑛 (3.8a)

1 − 𝑅 (1)1𝑚𝑛 =
𝑐 (2)1𝑚𝑛𝑌

(2)
1𝑚𝑛

𝑐 (1)1𝑚𝑛𝑌
(1)
1𝑚𝑛

𝑇 (2)1𝑚𝑛 =

√
𝑌 (2)1𝑚𝑛√
𝑌 (1)1𝑚𝑛

𝑇 (2)1𝑚𝑛 (3.8b)
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where we have made use of Equation (2.25). One can easily solve for 𝑅 (1)1𝑚𝑛 by dividing the equations
and recalling that

𝑦 =
1 − 𝑥
1 + 𝑥 ⇐⇒ 𝑥 =

1 − 𝑦
1 + 𝑦 . (3.9)

The result is

𝑅 (1)1𝑚𝑛 =
𝑌 (1)1𝑚𝑛 − 𝑌

(2)
1𝑚𝑛

𝑌 (1)1𝑚𝑛 + 𝑌
(2)
1𝑚𝑛

=
𝑍 (2)1𝑚𝑛 − 𝑍

(1)
1𝑚𝑛

𝑍 (2)1𝑚𝑛 + 𝑍
(1)
1𝑚𝑛

, (3.10)

𝑇 (2)1𝑚𝑛 =
2
√
𝑌 (1)1𝑚𝑛

√
𝑌 (2)1𝑚𝑛

𝑌 (1)1𝑚𝑛 + 𝑌
(2)
1𝑚𝑛

=
2
√
𝑍 (1)1𝑚𝑛

√
𝑍 (2)1𝑚𝑛

𝑍 (1)1𝑚𝑛 + 𝑍
(2)
1𝑚𝑛

. (3.11)

TM Mode Incident

The transverse components of the incident field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬inc = 𝑐 (1)2𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾

(1)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.12a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯inc = 𝑐 (1)2𝑚𝑛𝑌
(1)
2𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(1)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.12b)

The transverse components of the reflected field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬ref = 𝑅 (1)2𝑚𝑛𝑐
(1)
2𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.13a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯ref = −𝑅 (1)2𝑚𝑛𝑐
(1)
2𝑚𝑛𝑌

(1)
2𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.13b)

The transverse components of the transmitted field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬tran = 𝑇 (2)2𝑚𝑛𝑐
(2)
2𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.14a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯tran = −𝑇 (2)2𝑚𝑛𝑐
(2)
2𝑚𝑛𝑌

(2)
2𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.14b)

When the total transverse fields are equated at the plane 𝑧 = 0, we again arrive at the set of
equations (3.8) for the unknowns 𝑅 (1)2𝑚𝑛 and 𝑇 (2)2𝑚𝑛. Therefore, the TM reflection and transmission
coefficients for a wave incident from Region 1 are identical to the TE coefficients:

𝑅 (1)2𝑚𝑛 =
𝑌 (1)2𝑚𝑛 − 𝑌

(2)
2𝑚𝑛

𝑌 (1)2𝑚𝑛 + 𝑌
(2)
2𝑚𝑛

=
𝑍 (2)2𝑚𝑛 − 𝑍

(1)
2𝑚𝑛

𝑍 (2)2𝑚𝑛 + 𝑍
(1)
2𝑚𝑛

, (3.15)

𝑇 (2)2𝑚𝑛 =
2
√
𝑌 (1)2𝑚𝑛

√
𝑌 (2)2𝑚𝑛

𝑌 (1)2𝑚𝑛 + 𝑌
(2)
2𝑚𝑛

=
2
√
𝑍 (1)2𝑚𝑛

√
𝑍 (2)2𝑚𝑛

𝑍 (1)2𝑚𝑛 + 𝑍
(2)
2𝑚𝑛

. (3.16)
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3.3.2 Wave Incident from Region 2

TE Mode Incident

The transverse components of the incident field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬inc = 𝑐 (2)1𝑚𝑛𝑒
− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾

(2)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.17a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯inc = 𝑐 (2)1𝑚𝑛𝑌
(2)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(2)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.17b)

The transverse components of the reflected field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬ref = 𝑅 (2)1𝑚𝑛𝑐
(2)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.18a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯ref = −𝑅 (2)1𝑚𝑛𝑐
(2)
1𝑚𝑛𝑌

(2)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆−𝛾
(2)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.18b)

The transverse components of the transmitted field are

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬tran = 𝑇 (1)1𝑚𝑛𝑐
(1)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝒛 × 𝜷̂𝑚𝑛 (3.19a)

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑯tran = 𝑇 (1)1𝑚𝑛𝑐
(1)
1𝑚𝑛𝑌

(1)
1𝑚𝑛𝑒

− 𝑗𝜷𝑚𝑛 ·𝝆+𝛾
(1)
𝑚𝑛𝑧 𝜷̂𝑚𝑛 (3.19b)

Equating the total transverse electric and magnetic field across the 𝑧 = 0 plane results in the
following system of equations for the transmission and reflection coefficient:

1 + 𝑅 (2)1𝑚𝑛 =
𝑐 (1)1𝑚𝑛

𝑐 (2)1𝑚𝑛

𝑇 (1)1𝑚𝑛 =

√
𝑌 (2)1𝑚𝑛√
𝑌 (1)1𝑚𝑛

𝑇 (1)1𝑚𝑛 (3.20a)

1 − 𝑅 (2)1𝑚𝑛 =
𝑐 (1)1𝑚𝑛𝑌

(1)
1𝑚𝑛

𝑐 (2)1𝑚𝑛𝑌
(2)
1𝑚𝑛

𝑇 (1)1𝑚𝑛 =

√
𝑌 (1)1𝑚𝑛√
𝑌 (2)1𝑚𝑛

𝑇 (1)1𝑚𝑛. (3.20b)

We note that these are identical to Equations (3.8) with the roles of Regions 1 and 2 reversed.
Therefore, the solution is

𝑅 (2)1𝑚𝑛 = −𝑅 (1)1𝑚𝑛 =
𝑌 (2)1𝑚𝑛 − 𝑌

(1)
1𝑚𝑛

𝑌 (2)1𝑚𝑛 + 𝑌
(1)
1𝑚𝑛

=
𝑍 (1)1𝑚𝑛 − 𝑍

(2)
1𝑚𝑛

𝑍 (1)1𝑚𝑛 + 𝑍
(2)
1𝑚𝑛

, (3.21)

𝑇 (1)1𝑚𝑛 = 𝑇 (2)1𝑚𝑛 =
2
√
𝑌 (2)1𝑚𝑛

√
𝑌 (1)1𝑚𝑛

𝑌 (2)1𝑚𝑛 + 𝑌
(1)
1𝑚𝑛

=
2
√
𝑍 (2)1𝑚𝑛

√
𝑍 (1)1𝑚𝑛

𝑍 (2)1𝑚𝑛 + 𝑍
(1)
1𝑚𝑛

. (3.22)

TM Mode Incident

The results for TM incidence are identical to the TE case, as they were for a wave incident from
Region 1.
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3.3.3 Summary

Considering the results of Sections 3.3.1 and 3.3.2, we can write the GSM of the dielectric interface
in the following form:

S=

[
R(1) TT

T R(2)

]
(3.23)

where

𝑅 (1)𝑞𝑞′ = −𝑅
(2)
𝑞′𝑞 =

𝑌 (1)𝑝𝑞𝑚𝑞𝑛𝑞 − 𝑌
(2)
𝑝𝑞𝑚𝑞𝑛𝑞

𝑌 (1)𝑝𝑞𝑚𝑞𝑛𝑞 + 𝑌
(2)
𝑝𝑞𝑚𝑞𝑛𝑞

𝛿𝑝𝑞 𝑝𝑞′𝛿𝑚𝑞𝑚𝑞′𝛿𝑛𝑞𝑛𝑞′ , (3.24a)

𝑇𝑞𝑞′ =
2
√
𝑌 (1)𝑝𝑞𝑚𝑞𝑛𝑞

√
𝑌 (2)𝑝𝑞𝑚𝑞𝑛𝑞

𝑌 (1)𝑝𝑞𝑚𝑞𝑛𝑞 + 𝑌
(2)
𝑝𝑞𝑚𝑞𝑛𝑞

𝛿𝑝𝑞 𝑝𝑞′𝛿𝑚𝑞𝑚𝑞′𝛿𝑛𝑞𝑛𝑞′ . (3.24b)

Note that even though the matrices T, R(1) , and R(2) are diagonal, T is not square, unless
𝑁1 = 𝑁2; i.e., the number of modes used in Regions 1 and 2 is the same. Only in this case is it true
that R(2) = −R(1) .

It is also important to realize that the two radicands in Eq. (3.24b) must not be combined under
a single radical, since, for general complex numbers 𝑎 and 𝑏,

√
𝑎𝑏 ≠

√
𝑎
√
𝑏.

3.4 GSM of a Dielectric Slab

We consider the case where Regions 1 and 2 are identical, there is no FSS present, and 𝑧2 − 𝑧1 = 𝐿.
In this case we will always insist that 𝑁2 = 𝑁1 = 𝑁 (same number of modes in each region). It is
simple to see that all reflection coefficients are identically zero, and the transmission coefficients
are just the propagation factors of each mode:

S=

[
0 P

P 0

]
(3.25)

where P is the propagator matrix [7]

P = diag
{
𝑒−𝛾𝑚1𝑛1𝐿 , 𝑒−𝛾𝑚2𝑛2𝐿 , . . . , 𝑒−𝛾𝑚𝑁 𝑛𝑁 𝐿

}
(3.26)

3.5 GSM of a Cascade

In this section we consider the cascade connection of a pair of FSS structures as shown in Figure 3.2.
We have two FSS structures 𝐴 and 𝐵, with the Region 2 terminal plane of 𝐴 coinciding with the
Region 1 terminal plane of 𝐵. The scattering matrix for 𝐴 is A and the scattering matrix for 𝐵 is
B. Note that the number of modes used in Region 2 of device 𝐴 must equal the number of modes
used in Region 1 of device 𝐵. In fact, these two regions are really the same region, and the Floquet
modes defined for each device for this common region are in fact identical.
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𝐴

a(1)−→

b(1)←−

a(3)←−

b(3)−→

𝐵

a(2)←−

b(2)−→

a(4)−→

b(4)←−

Figure 3.2 A structure consisting of a pair of FSS structures connected in cascade.

The goal of this section is to find the scattering matrix S that relates a(1) and a(2) to b(1) and
b(2) under the interconnection condition:[

b(3)

b(4)

]
=

[
0 I

I 0

] [
a(3)

a(4)

]
, (3.27)

where I is the identity matrix. Each device satisfies its own scattering relation:[
b(1)

b(3)

]
=

[
A11 A12

A21 A22

] [
a(1)

a(3)

]
(3.28a)[

b(4)

b(2)

]
=

[
B11 B12

B21 B22

] [
a(4)

a(2)

]
. (3.28b)

In light of (3.27), it is useful to partition the scattering relations (3.28) in the following manner:[
b(1)

b(2)

]
=

[
A11 0
0 B22

] [
a(1)

a(2)

]
+

[
A12 0
0 B21

] [
a(3)

a(4)

]
(3.29a)[

b(3)

b(4)

]
=

[
A21 0
0 B12

] [
a(1)

a(2)

]
+

[
A22 0
0 B11

] [
a(3)

a(4)

]
. (3.29b)

Equating (3.27) and (3.29b), one can solve for a(3) and a(4) in terms of a(1) and a(2) :[
a(3)

a(4)

]
=

[
−A22 I

I −B11

]−1 [
A21 0
0 B12

] [
a(1)

a(2)

]
=

[
C11 C12

C21 C22

] [
A21 0
0 B12

] [
a(1)

a(2)

]
=

[
C11A21 C12B12

C21A21 C22B12

] [
a(1)

a(2)

]
(3.30)
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where [
C11 C12

C21 C22

]
≡

[
−A22 I

I −B11

]−1

=

[
B11(I−A22B11)−1 (I−B11A22)−1

(I−A22B11)−1 A22(I−B11A22)−1

]
, (3.31)

a result obtainable using [8, Exercise 1.3.12]. For conciseness, we make the following definitions.

G𝐴𝐵 ≡ (I−A22B11)−1, G𝐵𝐴 ≡ (I−B11A22)−1 (3.32)

so that [
C11 C12

C21 C22

]
=

[
B11G𝐴𝐵 G𝐵𝐴

G𝐴𝐵 A22G𝐵𝐴

]
(3.33)

and (3.30) can be written as[
a(3)

a(4)

]
=

[
B11G𝐴𝐵A21 G𝐵𝐴B12

G𝐴𝐵A21 A22G𝐵𝐴B12

] [
a(1)

a(2)

]
. (3.34)

We can now substitute (3.34) into (3.29a) to obtain[
b(1)

b(2)

]
=

{[
A11 0
0 B22

]
+

[
A12 0
0 B21

] [
B11G𝐴𝐵A21 G𝐵𝐴B12

G𝐴𝐵A21 A22G𝐵𝐴B12

]} [
a(1)

a(2)

]
=

[
A11 +A12B11G𝐴𝐵A21 A12G𝐵𝐴B12

B21G𝐴𝐵A21 B22 +B21A22G𝐵𝐴B12

] [
a(1)

a(2)

]
so that the composite scattering matrix is

S=

[
S11 S12

S21 S22

]
=

[
A11 +A12B11G𝐴𝐵A21 A12G𝐵𝐴B12

B21G𝐴𝐵A21 B22 +B21A22G𝐵𝐴B12

]
. (3.35)

The result in (3.35) is sometimes written as S= A★Bwhere ★ is the Redheffer star product [9].

3.5.1 Device A is a Dielectric Slab

In the case where device 𝐴 is just a dielectric slab, we have

A=

[
0 P

P 0

]
(3.36)

where P is defined in Equation (3.26). G𝐴𝐵 and G𝐵𝐴 both reduce to the unit matrix, and the
formula given in (3.35) for the composite scattering matrix simplifies to[

S11 S12

S21 S22

]
=

[
PB11P PB12

B21P B22

]
. (3.37)



3.5 GSM of a Cascade 24

3.5.2 Device B is a Dielectric Slab

In the case where device 𝐵 is just a dielectric slab, we have

B =

[
0 P

P 0

]
(3.38)

where P is defined in Equation (3.26). G𝐴𝐵 and G𝐵𝐴 both reduce to the unit matrix, and the
formula given in (3.35) for the composite scattering matrix simplifies to[

S11 S12

S21 S22

]
=

[
A11 A12P

PA21 PA22P

]
. (3.39)



Chapter 4

Mixed Potential Green’s Functions for Abutted
Half-Spaces

In this chapter, we derive an efficient method of evaluating the potential Green’s functions for a
geometry consisting of the abutment of two dissimilar half-spaces. The formulas derived herein
will be used as the asymptotic forms for those of Chapter 5, which deals with multiply stratified
media.

The structure for which the potential Green’s functions are desired consists of two layers, as
shown in Figure 4.1. The coordinate system origin is located in the interface between layers 1 and 2
and the 𝑧 axis points into layer 2. Both layers are semi-infinite in the 𝑧 direction and translationally
invariant in the 𝑥 and 𝑦 directions. Each layer 𝑖 = 1, 2 is characterized by a complex permittivity
𝜖𝑖 and permeability 𝜇𝑖 , each of which lies either in the fourth quadrant of the complex plane, or on
the real axis. The medium intrinsic wavenumbers are 𝑘𝑖 = 𝜔

√
𝜇𝑖𝜖𝑖 .

We will use the shorthand notation
∑
𝑚,𝑛

to denote the double sum
∞∑

𝑚=−∞

∞∑
𝑛=−∞

.

𝑧 = 0

Region 1: 𝑧 < 0
𝜖1, 𝜇1, 𝑘1, 𝜂1

Region 2: 𝑧 > 0
𝜖2, 𝜇2, 𝑘2, 𝜂2

Figure 4.1 The two-layer structure for which the Green’s functions are desired.
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4.1 Derivation of Modal Series

4.1.1 Magnetic Vector Potential

The assumed source is the electric current density

𝑱(𝒓) = 𝒙̂
∑
𝑚,𝑛

𝛿(𝒓 − 𝝆′ − 𝑚𝒔1 − 𝑛𝒔2)𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) (4.1)

where, as usual

𝒓 = 𝒙̂𝑥 + 𝒚̂𝑦 + 𝒛𝑧 (4.2a)
𝝆 = 𝒙̂𝑥 + 𝒚̂𝑦 (4.2b)
𝒓 ′ = 𝒙̂𝑥 ′ + 𝒚̂𝑦′ + 𝒛𝑧′ (4.2c)
𝝆′ = 𝒙̂𝑥 ′ + 𝒚̂𝑦′. (4.2d)

The electric current density 𝑱 can also be expanded into a series of Floquet modes as follows:

𝑱(𝒓) = 𝒙̂
𝛿(𝑧)
𝐴

∑
𝑚,𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.3)

The surface current density is

𝑱s(𝝆) =
∫ ∞

−∞
𝑱(𝒓) d𝑧 = 𝒙̂

1
𝐴

∑
𝑚,𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.4)

The region 𝑖 magnetic vector potential 𝑨(𝑖) satisfies the Helmholtz equation

(∇2 + 𝑘2
𝑖 )𝑨(𝑖) = 0, (4.5)

the radiation condition as |𝑧 | → ∞, and the following interface conditions at 𝑧 = 0 obtained from
the fundamental boundary conditions on 𝑬 and 𝑯:

𝐴(1)𝑥 = 𝐴(2)𝑥 , (4.6a)
1
𝜇1
𝐴(1)𝑧 =

1
𝜇2
𝐴(2)𝑧 , (4.6b)

1
𝜇1

𝜕𝐴(1)𝑥

𝜕𝑧
− 1
𝜇2

𝜕𝐴(2)𝑥

𝜕𝑧
= 𝒙̂ · 𝑱s, (4.6c)

1
𝑘2

1

(
𝜕𝐴(1)𝑥

𝜕𝑥
+ 𝜕𝐴

(1)
𝑧

𝜕𝑧

)
=

1
𝑘2

2

(
𝜕𝐴(2)𝑥

𝜕𝑥
+ 𝜕𝐴

(2)
𝑧

𝜕𝑧

)
. (4.6d)



4.1 Derivation of Modal Series 27

It is well known that the interface conditions require two components of 𝑨. We follow the
standard procedure and choose 𝑨(𝑖) = 𝒙̂𝐴(𝑖)𝑥 + 𝒛𝐴(𝑖)𝑧 . Writing 𝑨 as a series of Floquet modes we
have

𝑨(𝑖) =
∑
𝑚,𝑛

(
𝒙̂𝐴(𝑖)𝑚𝑛 + 𝒛𝐵 (𝑖)𝑚𝑛

)
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′)−𝛾

(𝑖)
𝑚𝑛 |𝑧 |, (4.7)

where
𝛾 (𝑖)𝑚𝑛 =

√
𝜷𝑚𝑛 · 𝜷𝑚𝑛 − 𝑘2

𝑖 . (4.8)

Because the modal expansions consist of a series of orthogonal functions, each term (mode)
must independently obey the stated boundary conditions. To satisfy (4.6a), let 𝐴(1)𝑚𝑛 = 𝐴(2)𝑚𝑛 ≡ 𝑎𝑚𝑛.
To satisfy (4.6b), let 𝐵 (𝑖)𝑚𝑛 = 𝜇𝑖𝑏𝑚𝑛. The series for 𝑨 can then be written as

𝑨(𝑖) =
∑
𝑚,𝑛

(𝒙̂𝑎𝑚𝑛 + 𝒛𝜇𝑖𝑏𝑚𝑛) 𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′)−𝛾
(𝑖)
𝑚𝑛 |𝑧 | . (4.9)

From (4.6c) we obtain
1
𝜇1
𝛾 (1)𝑚𝑛𝑎𝑚𝑛 +

1
𝜇2
𝛾 (2)𝑚𝑛𝑎𝑚𝑛 =

1
𝐴

so that
𝑎𝑚𝑛 =

𝜇̃

2𝐴
𝜇1 + 𝜇2

𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛

(4.10)

where
𝜇̃ =

2𝜇1𝜇2

𝜇1 + 𝜇2
. (4.11)

From (4.6d) we obtain

1
𝜇1𝜖1

(
− 𝑗 𝛽𝑚𝑛𝑥𝑎𝑚𝑛 + 𝛾 (1)𝑚𝑛 𝜇1𝑏𝑚𝑛

)
=

1
𝜇2𝜖2

(
− 𝑗 𝛽𝑚𝑛𝑥𝑎𝑚𝑛 − 𝛾 (2)𝑚𝑛 𝜇2𝑏𝑚𝑛

)
where 𝛽𝑚𝑛𝑥 = 𝒙̂ · 𝜷𝑚𝑛. After some algebraic manipulations the expression for 𝑏𝑚𝑛 is obtained.

𝑏𝑚𝑛 =
𝜇1𝜖1 − 𝜇2𝜖2

𝐴

− 𝑗 𝛽𝑚𝑛𝑥

(𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛)(𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛)

(4.12)

4.1.2 Scalar Electric Potential

Using the Lorentz gauge the electric scalar potential Φ is

Φ(𝑖) (𝒓) = 𝑗

𝜔𝜇𝑖𝜖𝑖
∇ · 𝑨(𝑖)

=
𝑗

𝜔𝜇𝑖𝜖𝑖

∑
𝑚,𝑛

(
− 𝑗 𝛽𝑚𝑛𝑥𝑎𝑚𝑛 − 𝛾 (𝑖)𝑚𝑛 sgn(𝑧)𝜇𝑖𝑏𝑚𝑛

)
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′)−𝛾

(𝑖)
𝑚𝑛 |𝑧 | (4.13)
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To aid in simplifying this summand, let us define 𝐹 (𝑖) = − 𝑗 𝛽𝑥𝑎 − 𝛾 (𝑖) sgn(𝑧)𝜇𝑖𝑏, where for
simplicity we have temporarily omitted the subscript 𝑚𝑛. Proceeding with the algebra:

𝐹 (𝑖) =
− 𝑗 𝛽𝑥
𝐴𝜇𝑖𝜖𝑖

[
𝜇1𝜇2

𝜇1𝛾 (2) + 𝜇2𝛾 (1)
− 𝛾 (𝑖) sgn(𝑧)𝜇𝑖 (𝜇1𝜖1 − 𝜇2𝜖2)(

𝜖1𝛾 (2) + 𝜖2𝛾 (1)
) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

) ]
= − 𝑗 𝛽𝑥

𝜇1𝜇2𝜖1𝛾
(2) + 𝜇1𝜇2𝜖2𝛾

(1) − 𝛾 (𝑖) sgn(𝑧)𝜇𝑖 (𝜇1𝜖1 − 𝜇2𝜖2)
𝐴𝜇𝑖𝜖𝑖

(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

) (4.14)

Evaluated in Region 2 (𝑧 > 0) this expression becomes

𝐹 (2) = − 𝑗 𝛽𝑥
𝜇1𝜇2𝜖1𝛾

(2) + 𝜇1𝜇2𝜖2𝛾
(1) − 𝛾 (2)𝜇2(𝜇1𝜖1 − 𝜇2𝜖2)

𝐴𝜇2𝜖2
(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

)
= − 𝑗 𝛽𝑥

𝜇1𝜖1𝛾
(2) + 𝜇1𝜖2𝛾

(1) − 𝛾 (2) (𝜇1𝜖1 − 𝜇2𝜖2)
𝐴𝜖2

(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

)
= − 𝑗 𝛽𝑥

𝜇1𝛾
(1) + 𝜇2𝛾

(2)

𝐴
(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

) (4.15)

A similar derivation for Region 1 yields

𝐹 (1) = − 𝑗 𝛽𝑥
𝜇2𝜖1𝛾

(2) + 𝜇2𝜖2𝛾
(1) + 𝛾 (1) (𝜇1𝜖1 − 𝜇2𝜖2)

𝐴𝜖1
(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

)
= − 𝑗 𝛽𝑥

𝜇1𝛾
(1) + 𝜇2𝛾

(2)

𝐴
(
𝜖1𝛾 (2) + 𝜖2𝛾 (1)

) (
𝜇1𝛾 (2) + 𝜇2𝛾 (1)

)
= 𝐹 (2) . (4.16)

The expression for Φ is therefore

Φ(𝑖) (𝒓) = 𝑗

𝜔𝐴

∑
𝑚,𝑛

− 𝑗 𝛽𝑚𝑛𝑥
(𝜇1𝛾

(1)
𝑚𝑛 + 𝜇2𝛾

(2)
𝑚𝑛)𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′)−𝛾

(𝑖)
𝑚𝑛 |𝑧 |

(𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛)(𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛)

(4.17)

From the equation of continuity we find that the electric charge density 𝑞𝑒 that gives rise to Φ is

𝑞𝑒 =
𝑗

𝜔
∇ · 𝑱 =

𝑗

𝜔
∇ · [𝒙̂𝛿(𝑥 − 𝑥 ′)𝛿(𝑦 − 𝑦′)𝛿(𝑧)] = 𝑗

𝜔
𝛿′(𝑥 − 𝑥 ′)𝛿(𝑦 − 𝑦′)𝛿(𝑧) (4.18)

To determine an expression for the Green’s function 𝐺Φ for the electric scalar potential, note that

Φ(𝒓) =
∭

𝐺Φ(𝒓 − 𝒓0) 𝑞𝑒 (𝒓0) d𝑉0 =
− 𝑗
𝜔

𝜕𝐺Φ(𝒓 − 𝝆′)
𝜕𝑥 ′

=
𝑗

𝜔

𝜕𝐺Φ(𝒓 − 𝝆′)
𝜕𝑥

(4.19)

so that
𝜕𝐺Φ

𝜕𝑥
=
𝜔

𝑗
Φ. (4.20)



4.2 Series Acceleration 29

Comparing (4.17) and (4.20) we conclude that the expression for the Green’s function is

𝐺Φ(𝒓 − 𝝆′) = 1
2𝜖 𝐴

∑
𝑚,𝑛

(𝜖1 + 𝜖2) (𝜇1𝛾
(1)
𝑚𝑛 + 𝜇2𝛾

(2)
𝑚𝑛)

(𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛)(𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛)

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′)−𝛾
(𝑖)
𝑚𝑛 |𝑧 | (4.21)

where 𝜖 =
𝜖1 + 𝜖2

2
.

4.1.3 Summary of Source Plane Potentials

For convenience we list here the four potential Green’s functions that will be required for the
moment method analysis. Those for the electric vector potential 𝑭 and magnetic scalar potential Ψ
are obtained from those of 𝑨 and Φ, respectively, via duality.

𝐺𝐴
𝑥𝑥 (𝝆 − 𝝆′) = 𝜇̃

2𝐴

∑
𝑚,𝑛

𝜇1 + 𝜇2

𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.22a)

𝐺Φ(𝝆 − 𝝆′) = 1
2𝜖 𝐴

∑
𝑚,𝑛

(𝜖1 + 𝜖2)(𝜇1𝛾
(1)
𝑚𝑛 + 𝜇2𝛾

(2)
𝑚𝑛)

(𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛) (𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛)

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.22b)

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′) = − 𝜖

2𝐴

∑
𝑚,𝑛

𝜖1 + 𝜖2
𝜖1𝛾
(2)
𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.22c)

𝐺Ψ (𝝆 − 𝝆′) = 1
2𝜇̄𝐴

∑
𝑚,𝑛

(𝜇1 + 𝜇2)(𝜖1𝛾 (1)𝑚𝑛 + 𝜖2𝛾 (2)𝑚𝑛)
(𝜇1𝛾

(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛) (𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛)

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.22d)

where
𝜇̃ =

2𝜇1𝜇2

𝜇1 + 𝜇2
, 𝜖 =

𝜖1 + 𝜖2
2

, 𝜖 =
2𝜖1𝜖2
𝜖1 + 𝜖2

, 𝜇̄ =
𝜇1 + 𝜇2

2
. (4.23)

It should be noted that these series represent only a formal solution of Maxwell’s equations. They are
at best only conditionally convergent and are completely unsuitable for direct numerical evaluation.
In fact, it is easy to see that these series can not be absolutely convergent, for as 𝝆 → 𝝆′ the Green’s
functions increase in magnitude without bound, a singularity that is proportional to 1/∥𝝆 − 𝝆′∥. It
is desirable to extract this singularity as an explicit term, so that it can be integrated in closed form,
as in [10]. The next section describes the technique used to perform this extraction and accelerate
the series for efficient evaluation.

4.2 Series Acceleration

We now manipulate the series in Equations (4.22) to arrive at an efficient, wide-band formulation.
In the process, the Green’s functions will be expressed as the sum of several absolutely, uniformly
convergent series. Our strategy is to find the first few terms of an asymptotic expansion of the
summands in a suitably chosen variable. Applying a Kummer’s transformation, these terms are
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subtracted from the original summand, leaving a spectral sum with greatly accelerated convergence.
The sum of the asymptotic terms is then accelerated by means of the Poisson transformation (which
converts it to a spatial sum) after which it is recombined with the spectral sum. A careful choice
of the expansion variable ensures that all sums are rapidly convergent and provides the wide-band
capability described below.

The basic idea used here is based on the approach presented in [11], where a first-order Kummer’s
transformation is applied to the free-space periodic Green’s function. The technique was extended
to a second-order transformation primarily by Kim McInturff of Raytheon Electromagnetic Systems
Division and was presented in [12] and [13]. The extension of the technique to periodic sources in
stratified media is due to the present author and was first presented in [14].

4.2.1 Kummer’s Transformation

Let 𝑢 > 0 be an appropriately chosen positive smoothing factor; define

𝜅𝑚𝑛 =
√
𝜷𝑚𝑛 · 𝜷𝑚𝑛 + 𝑢2 (4.24)

and
𝑤𝑖 ≡ 𝑤(𝜇𝑖 , 𝜖𝑖) =

√
𝜔2𝜇𝑖𝜖𝑖 + 𝑢2 =

√
𝑘2
𝑖 + 𝑢2, 𝑖 = 1, 2 (4.25)

so that

𝛾 (𝑖)𝑚𝑛 ≡ 𝛾𝑚𝑛 (𝜇𝑖 , 𝜖𝑖) =
√
𝜅2
𝑚𝑛 − 𝑢2 − 𝜔2𝜇𝑖𝜖𝑖 = 𝜅𝑚𝑛

√
1 −

(
𝑤𝑖

𝜅𝑚𝑛

)2
(4.26)

The original summands in (4.22) will be expanded in series of reciprocal powers of 𝜅𝑚𝑛. The
smoothing factor 𝑢 should be chosen large enough to ensure that the spatial series of asymptotic
terms converges rapidly, yet small enough so that after only a few terms, the differences between
the original summands of (4.22) and their asymptotic expansions are negligible.

Consider first the summand for magnetic vector potential given in (4.22a):

𝐴𝑚𝑛 (𝜇1, 𝜖1, 𝜇2, 𝜖2) ≡
𝜇1 + 𝜇2

𝜇1𝛾𝑚𝑛 (𝜇2, 𝜖2) + 𝜇2𝛾𝑚𝑛 (𝜇1, 𝜖1)
=

𝜇1 + 𝜇2

𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛

=
1
𝜅𝑚𝑛

𝜇1 + 𝜇2

𝜇1

√
1 − 𝑤2

2/𝜅2
𝑚𝑛 + 𝜇2

√
1 − 𝑤2

1/𝜅2
𝑚𝑛

(4.27)

An asymptotic expansion of the summand 𝐴𝑚𝑛 for large 𝜅𝑚𝑛 can be found by determining the first
few coefficients in the MacLaurin series of the function

𝑓 (𝑥) = 𝑥 𝜇1 + 𝜇2

𝜇1

√
1 − 𝑤2

2𝑥
2 + 𝜇2

√
1 − 𝑤2

1𝑥
2
. (4.28)
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This task was accomplished with the aid of a computer algebra system with the result

𝐴𝑚𝑛 =
𝑐1

𝜅𝑚𝑛
+ 𝑐3

𝜅3
𝑚𝑛

+𝑂 (𝜅−5
𝑚𝑛), (4.29)

where

𝑐1 = 1, 𝑐3(𝜇1, 𝜖1, 𝜇2, 𝜖2) =
𝜇1𝑤

2(𝜇2, 𝜖2) + 𝜇2𝑤
2(𝜇1, 𝜖1)

2(𝜇1 + 𝜇2)
=
𝜇1𝑤

2
2 + 𝜇2𝑤

2
1

2(𝜇1 + 𝜇2)
. (4.30)

Now consider the summand for the electric scalar potential Green’s function, Equation (4.22b).

Φ𝑚𝑛 ≡
(𝜖1 + 𝜖2)(𝜇1𝛾

(1)
𝑚𝑛 + 𝜇2𝛾

(2)
𝑚𝑛)

(𝜖1𝛾 (2)𝑚𝑛 + 𝜖2𝛾 (1)𝑚𝑛)(𝜇1𝛾
(2)
𝑚𝑛 + 𝜇2𝛾

(1)
𝑚𝑛)

=
1
𝜅𝑚𝑛

(𝜖1 + 𝜖2)
(
𝜇1

√
1 − 𝑤2

1
𝜅2
𝑚𝑛
+ 𝜇2

√
1 − 𝑤2

2
𝜅2
𝑚𝑛

)
(
𝜖1

√
1 − 𝑤2

2
𝜅2
𝑚𝑛
+ 𝜖2

√
1 − 𝑤2

1
𝜅2
𝑚𝑛

) (
𝜇1

√
1 − 𝑤2

2
𝜅2
𝑚𝑛
+ 𝜇2

√
1 − 𝑤2

1
𝜅2
𝑚𝑛

) (4.31)

A MacLaurin expansion of this summand in the variable 1/𝜅𝑚𝑛 yields the result

Φ𝑚𝑛 =
𝑑1

𝜅𝑚𝑛
+ 𝑑3

𝜅3
𝑚𝑛

+𝑂 (𝜅−5
𝑚𝑛), (4.32)

where

𝑑1 = 1, (4.33a)

𝑑3(𝜇1, 𝜖1, 𝜇2, 𝜖2) =
𝜇1 [𝑤2

2(2𝜖1 + 𝜖2) − 𝑤2
1𝜖1] + 𝜇2 [𝑤2

1(𝜖1 + 2𝜖2) − 𝑤2
2𝜖2]

2(𝜇1 + 𝜇2)(𝜖1 + 𝜖2)
. (4.33b)

The potential Green’s functions can now be written as (note that we are showing the explicit
dependence of the Green’s functions on the material parameters of Regions 1 and 2):

𝐺𝐴
𝑥𝑥 (𝝆 − 𝝆′; 𝜇1, 𝜖1,𝜇2, 𝜖2) = 𝜇̃

{
Σ𝑀1(𝜇1, 𝜖1,𝜇2, 𝜖2) +

𝑢

4𝜋

[
Σ𝑆1 +

𝑐3(𝜇1, 𝜖1,𝜇2, 𝜖2)
𝑢2 Σ𝑆2

]}
(4.34a)

𝐺Φ(𝝆 − 𝝆′; 𝜇1, 𝜖1,𝜇2, 𝜖2) =
1
𝜖

{
Σ𝑀2(𝜇1, 𝜖1,𝜇2, 𝜖2) +

𝑢

4𝜋

[
Σ𝑆1 +

𝑑3(𝜇1, 𝜖1,𝜇2, 𝜖2)
𝑢2 Σ𝑆2

]}
(4.34b)

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′; 𝜇1, 𝜖1,𝜇2, 𝜖2) = −𝜖

{
Σ𝑀1( 𝜖1,𝜇1, 𝜖2,𝜇2) +

𝑢

4𝜋

[
Σ𝑆1 +

𝑐3( 𝜖1,𝜇1, 𝜖2,𝜇2)
𝑢2 Σ𝑆2

]}
(4.34c)

𝐺Ψ (𝝆 − 𝝆′; 𝜇1, 𝜖1,𝜇2, 𝜖2) =
1
𝜇̄

{
Σ𝑀2( 𝜖1,𝜇1, 𝜖2,𝜇2) +

𝑢

4𝜋

[
Σ𝑆1 +

𝑑3( 𝜖1,𝜇1, 𝜖2,𝜇2)
𝑢2 Σ𝑆2

]}
(4.34d)
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where

Σ𝑀1(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
1

2𝐴

∑
𝑚,𝑛[
𝑥1 + 𝑥2

𝑥1𝛾𝑚𝑛 (𝑥2, 𝑦2) + 𝑥2𝛾𝑚𝑛 (𝑥1, 𝑦1)
− 1
𝜅𝑚𝑛
− 𝑐3(𝑥1, 𝑦1, 𝑥2, 𝑦2)

𝜅3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.35)

Σ𝑀2(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
1

2𝐴

∑
𝑚,𝑛[
(𝑦1 + 𝑦2) (𝑥1𝛾𝑚𝑛 (𝑥1, 𝑦1) + 𝑥2𝛾𝑚𝑛 (𝑥2, 𝑦2))

(𝑦1𝛾𝑚𝑛 (𝑥2, 𝑦2) + 𝑦2𝛾𝑚𝑛 (𝑥1, 𝑦1)) (𝑥1𝛾𝑚𝑛 (𝑥2, 𝑦2) + 𝑥2𝛾𝑚𝑛 (𝑥1, 𝑦1))

− 1
𝜅𝑚𝑛
− 𝑑3(𝑥1, 𝑥2, 𝑦1, 𝑦2)

𝜅3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.36)

Σ𝑆1(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
2𝜋
𝑢𝐴

∑
𝑚,𝑛

1
𝜅𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (4.37)

Σ𝑆2(𝑥1, 𝑦1, 𝑥2, 𝑦2) =
2𝜋𝑢
𝐴

∑
𝑚,𝑛

1
𝜅3
𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) . (4.38)

The modal series Σ𝑀1 and Σ𝑀2 are in a form suitable for direct numerical evaluation. They are
absolutely convergent since their summands decay as (𝛾 (𝑖)𝑚𝑛)−5. Considered as a function of 𝝆 − 𝝆′,
they are uniformly convergent and extremely smooth, since all of their singularities have been
subtracted off. This suggests that an efficient method of evaluation is to tabulate the series on a
grid of points in the unit cell using the fast Fourier transform (FFT). Then, a low-order bivariate
interpolation scheme can be used to evaluate the functions at arbitrary points in the unit cell. More
will said on this topic later, in Section 5.4.

The (soon to be) spatial sums Σ𝑆1 and Σ𝑆2 are still slowly convergent, especially Σ𝑆1 which is
at best only conditionally convergent. However, they are in a form suitable for application of the
Poisson summation formula, as discussed in the next section.

4.2.2 Application of the Poisson Transformation

We now wish to accelerate the convergence of the double sums

𝑆𝑙 =
1

2𝐴

∑
𝑚,𝑛

𝑒
− 𝑗

[(
𝜓1
2𝜋 +𝑚

)
𝜷1+

(
𝜓2
2𝜋 +𝑛

)
𝜷2

]
·(𝝆−𝝆′)

𝜅𝑙𝑚𝑛

(4.39)
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for 𝑙 = 1 and 3. For 𝑚 and 𝑛 defined as real variables, let

𝑓𝑙 (𝑚, 𝑛) =
𝑒
− 𝑗

[(
𝜓1
2𝜋 +𝑚

)
𝜷1+

(
𝜓2
2𝜋 +𝑛

)
𝜷2

]
·(𝝆−𝝆′)

2𝐴
[


( 𝜓1

2𝜋 + 𝑚
)
𝜷1 +

(
𝜓2
2𝜋 + 𝑛

)
𝜷2




2
+ 𝑢2

] 𝑙/2 . (4.40)

Then by the Poisson summation formula [15, p. 139], [16]

𝑆𝑙 =
∑
𝑚,𝑛

𝑓𝑙 (𝑚, 𝑛) =
∑
𝑚,𝑛

𝐹𝑙 (2𝜋𝑚, 2𝜋𝑛) (4.41)

where
𝐹𝑙 (𝜁, 𝜂) =

∫ ∞

−∞

∫ ∞

−∞
𝑓𝑙 (𝑚, 𝑛)𝑒 𝑗 (𝜁𝑚+𝜂𝑛)d𝑚 d𝑛. (4.42)

Let
𝜇 =

𝜓1

2𝜋
+ 𝑚 and 𝜈 =

𝜓2

2𝜋
+ 𝑛, (4.43)

so

𝐹𝑙 (𝜁, 𝜂) =
𝑒
− 𝑗

(
𝜓1
2𝜋 𝜁+ 𝜓2

2𝜋 𝜂
)

2𝐴

∫ ∞

−∞

∫ ∞

−∞

𝑒− 𝑗 (𝜇𝜷1+𝜈𝜷2) ·(𝝆−𝝆′)𝑒 𝑗 (𝜇𝜁+𝜈𝜂)

(∥𝜇𝜷1 + 𝜈𝜷2∥2 + 𝑢2)𝑙/2
d𝜇 d𝜈 (4.44)

In order to proceed we now introduce the change of variables

𝜇𝜷1 + 𝜈𝜷2 = 𝒙̂𝑘𝑥 + 𝒚̂𝑘𝑦 = 𝒌 . (4.45)

The differential elements of area in the 𝑘𝑥-𝑘𝑦 and 𝜇-𝜈 planes are related as follows:

d𝑘𝑥 d𝑘𝑦 = d𝜇 d𝜈 ∥𝜷1 × 𝜷2∥ = d𝜇 d𝜈
4𝜋2

∥𝒔1 × 𝒔2∥
= d𝜇 d𝜈

4𝜋2

𝐴
. (4.46)

Recalling the properties of the direct and reciprocal lattice vectors

𝜷1 · 𝒔1 = 2𝜋, 𝜷1 · 𝒔2 = 0 (4.47a)
𝜷2 · 𝒔2 = 2𝜋, 𝜷2 · 𝒔1 = 0 (4.47b)

we see that
𝜇 = 𝒌 · 𝒔1/(2𝜋), 𝜈 = 𝒌 · 𝒔2/(2𝜋),

so that Equation (4.44) can be written as

𝐹𝑙 (𝜁, 𝜂) =
𝑒
− 𝑗

(
𝜓1
2𝜋 𝜁+ 𝜓2

2𝜋 𝜂
)

4𝜋
𝐵𝑙

(
𝝆 − 𝝆′ − 𝜁 𝒔1 + 𝜂𝒔2

2𝜋

)
(4.48)

where
𝐵𝑙 (𝝆) ≡

1
2𝜋

∫ ∞

−∞

∫ ∞

−∞

𝑒− 𝑗𝒌 ·𝝆

(∥𝒌∥2 + 𝑢2)𝑙/2
d𝑘𝑥 d𝑘𝑦 (4.49)
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The form of the integrand in (4.49) immediately suggests a transformation to polar coordinates:

𝑘𝑥 = 𝑘𝜌 cos 𝜃, 𝑘𝑦 = 𝑘𝜌 sin 𝜃
𝑥 = 𝜌 cos 𝜙, 𝑦 = 𝜌 sin 𝜙

yielding

𝐵𝑙 (𝝆) =
1

2𝜋

∫ ∞

0

∫ 2𝜋

0

𝑒− 𝑗𝑘𝜌𝜌 cos(𝜃−𝜙)

(𝑘2
𝜌 + 𝑢2)𝑙/2

𝑘𝜌 d𝜃 d𝑘𝜌

=
∫ ∞

0

𝐽0(𝑘𝜌𝜌)
(𝑘2

𝜌 + 𝑢2)𝑙/2
𝑘𝜌 d𝑘𝜌, (4.50)

which is recognized as a Hankel (Fourier-Bessel) transform that depends only on 𝜌 = ∥𝝆∥. The
case 𝑙 = 1 is given in [17, Eqn. (5.15.5)]:

𝐵1(𝝆) =
∫ ∞

0

𝐽0(𝑘𝜌𝜌)
(𝑘2

𝜌 + 𝑢2)1/2
𝑘𝜌 d𝑘𝜌 =

𝑒−𝑢𝜌

𝜌
. (4.51)

𝐵3 is easily evaluated by noting that
𝜕𝐵1(𝝆)
𝜕𝑢

= −𝑒−𝑢𝜌

=
𝜕

𝜕𝑢

∫ ∞

0

𝐽0(𝑘𝜌𝜌)
(𝑘2

𝜌 + 𝑢2)1/2
𝑘𝜌 d𝑘𝜌

= −𝑢
∫ ∞

0

𝐽0(𝑘𝜌𝜌)
(𝑘2

𝜌 + 𝑢2)3/2
𝑘𝜌 d𝑘𝜌

= −𝑢𝐵3(𝝆) (4.52)

so that
𝐵3(𝝆) =

1
𝑢
𝑒−𝑢𝜌. (4.53)

We then have
𝐹𝑙 (2𝜋𝑚, 2𝜋𝑛) =

1
4𝜋
𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝐵𝑙 (𝝆𝑚𝑛) (4.54)

where
𝝆𝑚𝑛 = 𝝆 − 𝝆′ − 𝑚𝒔1 − 𝑛𝒔2 (4.55)

is the vector from the (𝑚, 𝑛)th translational image of the source point to the observation point. The
spatial series are thus given explicitly by the formulas:

Σ𝑆1 =
∑
𝑚,𝑛

𝑒−𝑢𝜌𝑚𝑛

𝑢𝜌𝑚𝑛
𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) (4.56a)

Σ𝑆2 =
∑
𝑚,𝑛

𝑒−𝑢𝜌𝑚𝑛𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) . (4.56b)

Let us take note of the following facts regarding these series:
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• The free-space singularity is explicitly recovered in the 𝑚 = 𝑛 = 0 term of the first series in
Σ𝑆1 and Σ𝑆2.

• The summands exhibit exponential decay with 𝜌𝑚𝑛. An astute choice of 𝑢 will assure
convergence using only a few rings in the summation lattice.

• These series consist of frequency-independent terms, which are then multiplied by the
frequency-dependent constants 𝑐3 and 𝑑3 before being combined. Therefore, it is possi-
ble to compute the contribution of the frequency-independent sums to the interaction matrix
that occurs in the moment method procedure once, prior to sweeping the analysis frequency.
These contributions can be weighted appropriately and combined at each desired analysis
frequency, avoiding redundant calculations and saving large amounts of execution time. In
this sense the formulation of the periodic Green’s functions can be said to be “wide-band.” If
this approach is pursued, it makes sense to choose 𝑢 relatively small, so that the convergence
of the modal series is enhanced, since these will have to be evaluated at each frequency while
the spatial series will be evaluated only once.



Chapter 5

Green’s Functions for Multiply Stratified Medium

In the previous chapter, a method was derived to efficiently evaluate the potential Green’s func-
tions for a geometry consisting of the abutment of two half-spaces under quasi-periodic boundary
conditions. This chapter extends the results to handle an arbitrary number of dielectric slabs.

The structure for which the potential Green’s functions are desired consists of 𝑁 layers, as shown
in Figure 5.1. The structure is laterally invariant, with each dielectric layer being homogeneous and

Layer
1

(𝜇1, 𝜖1)

𝑧1

Junction 1

Layer
2

(𝜇2, 𝜖2)

𝑧2

Junction 2

ℎ (2)

Layer
3

(𝜇3, 𝜖3)

𝑧3

Junction 3

ℎ (3)

· · ·

𝑧𝑁−3

Junction 𝑁 − 3

Layer
𝑁 − 2

(𝜇𝑁−2, 𝜖𝑁−2)

𝑧𝑁−2

Junction 𝑁 − 2

ℎ (𝑁−2)

Layer
𝑁 − 1

(𝜇𝑁−1, 𝜖𝑁−1)

𝑧𝑁−1

Junction 𝑁 − 1

ℎ (𝑁−1)

Layer
𝑁

(𝜇𝑁 , 𝜖𝑁 )

Figure 5.1 The structure under consideration is a stack of 𝑁 ≥ 2 dielectric layers. Layers 1 and 𝑁 are semi-
infinite in extent. For 2 ≤ 𝑖 ≤ 𝑁 − 1, layer 𝑖 lies in the region 𝑧𝑖−1 < 𝑧 < 𝑧𝑖 , is of thickness ℎ (𝑖) = 𝑧𝑖 − 𝑧𝑖−1,
and is characterized by permeability 𝜇𝑖 and permittivity 𝜖𝑖 .

isotropic. Each layer 𝑖 = 1, 2, . . . , 𝑁 is characterized by a complex permittivity 𝜖𝑖 and permeability
𝜇𝑖 , each of which lies either in the fourth quadrant of the complex plane, or on the real axis. The
medium intrinsic wavenumbers are 𝑘𝑖 = 𝜔

√
𝜇𝑖𝜖𝑖 .

We will conntinue the use of the shorthand notation
∑
𝑚,𝑛

to denote the double sum
∞∑

𝑚=−∞

∞∑
𝑛=−∞

.

36
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As in Chapter 4 we are interested in determining the potential Green’s functions 𝐺𝐴
𝑥𝑥 (𝝆 −

𝝆′, 𝑧, 𝑧′), 𝐺𝐹
𝑥𝑥 (𝝆− 𝝆′, 𝑧, 𝑧′), 𝐺Φ(𝝆− 𝝆′, 𝑧, 𝑧′), and𝐺Ψ (𝝆− 𝝆′, 𝑧, 𝑧′) evaluated for both observation

point 𝑧 and source point 𝑧′ located at one of the interface planes: 𝑧 = 𝑧′ = 𝑧𝑠, 𝑠 = 1, 2, . . . , 𝑁 −1. To
accomplish this task we will make use of the transmission line Green’s function (TLGF) formalism
of [18]. Therefore, we must first determine the relationship between the quasi-periodic Green’s
functions and those discussed in [18]. We investigate this relationship in the next section.

5.1 The Discrete Spectrum of Quasi-Periodic Functions

Let us suppose that we are given the complex-valued function 𝑓 : R2 → C and its two-dimensional
Fourier transform 𝑓 : R2 → C. They are obtained from each other by the transform relations

𝑓 (𝒌) =
∬
R2
𝑓 (𝝆)𝑒 𝑗𝒌 ·𝝆 d𝑥 d𝑦, 𝑓 (𝝆) = 1

4𝜋2

∬
R2
𝑓 (𝒌)𝑒− 𝑗𝒌 ·𝝆 d𝑘𝑥 d𝑘𝑦 , (5.1)

where 𝝆 = 𝒙̂𝑥 + 𝒚̂𝑦 and 𝒌 = 𝒙̂𝑘𝑥 + 𝒚̂𝑘𝑦 . We now define a quasi-periodic1 function 𝑓𝑝 as

𝑓𝑝 (𝝆) =
∑
𝑚,𝑛

𝑓 (𝝆 − 𝑚𝒔1 − 𝑛𝒔2)𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) (5.2)

with Fourier transform 𝑓𝑝. We are interested in determining the relationship between 𝑓𝑝 and 𝑓 .
Applying the transform integral to 𝑓𝑝 and interchanging the order of summation and integration

we obtain

𝑓𝑝 (𝒌) =
∑
𝑚,𝑛

∬
R2
𝑓 (𝝆 − 𝑚𝒔1 − 𝑛𝒔2)𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝑒 𝑗𝒌 ·𝝆 d𝑥 d𝑦

=
∑
𝑚,𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)
∬
R2
𝑓 (𝝆)𝑒 𝑗𝒌 ·(𝝆+𝑚𝒔1+𝑛𝒔2) d𝑥 d𝑦

=
∑
𝑚,𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝑒 𝑗𝒌 ·(𝑚𝒔1+𝑛𝒔2)
∬
R2
𝑓 (𝝆)𝑒 𝑗𝒌 ·𝝆 d𝑥 d𝑦

= 𝑓 (𝒌)
∑
𝑚,𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝑒 𝑗𝒌 ·(𝑚𝒔1+𝑛𝒔2) . (5.3)

We now recall the reciprocal lattice vectors

𝜷1 =
2𝜋
𝐴
𝒔2 × 𝒛, 𝜷2 =

2𝜋
𝐴
𝒛 × 𝒔1, (5.4)

where 𝐴 = ∥𝒔1 × 𝒔2∥ is the unit cell area, and make use of the property 𝜷𝑝 · 𝒔𝑞 = 2𝜋𝛿𝑝𝑞 , 𝑝, 𝑞 ∈
{1, 2}. We also introduce the change of variables 𝒌 = 𝜉𝜷1 + 𝜂𝜷2 + 𝜷00, where

𝜷00 = 𝜷1
𝜓1

2𝜋
+ 𝜷2

𝜓2

2𝜋
(5.5)

1“Quasi-periodic” because of the incremental phase shifts 𝜓1 and 𝜓2 applied to the otherwise periodic function.
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so that (5.3) becomes

𝑓𝑝 (𝜉𝜷1 + 𝜂𝜷2 + 𝜷00) = 𝑓 (𝜉𝜷1 + 𝜂𝜷2 + 𝜷00)
∑
𝑚,𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝑒 𝑗 ( 𝜉𝜷1+𝜂𝜷2+𝜷00) ·(𝑚𝒔1+𝑛𝒔2)

= 𝑓 (𝜉𝜷1 + 𝜂𝜷2 + 𝜷00)
∑
𝑚,𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2)𝑒 𝑗 [𝑚(2𝜋 𝜉+𝜓1)+𝑛(2𝜋𝜂+𝜓2) ]

= 𝑓 (𝜉𝜷1 + 𝜂𝜷2 + 𝜷00)
∑
𝑚,𝑛

𝑒 𝑗2𝜋 (𝑚𝜉+𝑛𝜂)

= 𝑓 (𝜉𝜷1 + 𝜂𝜷2 + 𝜷00)
∑
𝑚,𝑛

𝛿(𝜉 − 𝑚) 𝛿(𝜂 − 𝑛)

=
∑
𝑚,𝑛

𝑓 (𝑚𝜷1 + 𝑛𝜷2 + 𝜷00)𝛿(𝜉 − 𝑚) 𝛿(𝜂 − 𝑛)

=
∑
𝑚,𝑛

𝑓 (𝜷𝑚𝑛)𝛿(𝜉 − 𝑚) 𝛿(𝜂 − 𝑛) (5.6)

where we have used the well-known Fourier series representation of a train of delta functions and
defined 𝜷𝑚𝑛 = 𝑚𝜷1 + 𝑛𝜷2 + 𝜷00.

The area element in the spectral domain is

d𝑘𝑥 d𝑘𝑦 = d𝜉 d𝜂 ∥𝜷1 × 𝜷2∥ =
4𝜋2

𝐴
d𝜉 d𝜂 (5.7)

and the inversion integral applied to (5.6) becomes

𝑓𝑝 (𝝆) =
1

4𝜋2

∬
R2
𝑓𝑝 (𝒌)𝑒− 𝑗𝒌 ·𝝆 d𝑘𝑥 d𝑘𝑦

=
1
𝐴

∬
R2

∑
𝑚,𝑛

𝑓 (𝜷𝑚𝑛)𝛿(𝜉 − 𝑚) 𝛿(𝜂 − 𝑛)𝑒− 𝑗 ( 𝜉𝜷1+𝜂𝜷2+𝜷00) ·𝝆 d𝜉 d𝜂

=
1
𝐴

∑
𝑚,𝑛

𝑓 (𝜷𝑚𝑛)𝑒− 𝑗𝜷𝑚𝑛 ·𝝆 . (5.8)

Equation (5.8) is the important, well-known result that the quasi-periodic function 𝑓𝑝 can be recov-
ered by sampling the spectrum of the corresponding “isolated” function 𝑓 at locations determined
by the reciprocal lattice and impressed phasing. It allows us to find the potential Green’s func-
tions for the quasi-periodic array of point sources in the multilayered structure from the spectral
representations of the isolated-source Green’s functions presented in [18].
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5.2 Potential Green’s Functions (Electric Sources)

5.2.1 Magnetic Vector Potential

According to [18] the Fourier transform of the magnetic vector potential Green’s function (for an
isolated source at 𝝆′ = 0) is

𝐺̃𝐴
𝑥𝑥 (𝒌, 𝑧, 𝑧′) =

1
𝑗𝜔
𝑉TE

i (𝒌, 𝑧, 𝑧′) (5.9)

where we have multiplied their result by 𝜇0 to be consistent with our definition of the potential
Green’s function, and 𝑉TE

i (𝒌, 𝑧, 𝑧′) is the TE transmission line Green’s function (TLGF) for the
voltage observed at 𝑧 due to a unit current source at 𝑧′, using an equivalent circuit appropriate for
a plane wave whose dependence on the transverse spatial variables 𝑥 and 𝑦 is of the form 𝑒− 𝑗𝒌 ·𝝆.
From Equation (5.8) we then find that

𝐺𝐴
𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) =

1
𝑗𝜔𝐴

∑
𝑚,𝑛

𝑉TE
i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠)𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) . (5.10)

5.2.2 Scalar Electric Potential

According to [18] the Fourier transform of the so-called “scalar potential kernel” (for an isolated
point charge associated with a horizontal current source at 𝝆′ = 0) is

𝐾̃Φ(𝒌, 𝑧, 𝑧′) = − 𝑗𝜔𝜖0
𝒌 · 𝒌

[
𝑉TE

i (𝒌, 𝑧, 𝑧′) −𝑉TM
i (𝒌, 𝑧, 𝑧′)

]
(5.11)

where 𝑉TM
i (𝒌, 𝑧, 𝑧′) is the TM transmission line Green’s function (TLGF) for the voltage observed

at 𝑧 due to a unit current source at 𝑧′. Dividing by 𝜖0 to be consistent with our definition of the
potential Green’s function and using Equation (5.8) we obtain

𝐺Φ(𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) =
− 𝑗𝜔
𝐴

∑
𝑚,𝑛

𝑉TE
i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) −𝑉TM

i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠)
𝛽2
𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) . (5.12)

5.2.3 Evaluation of Transmission Line Green’s Functions

Referring to Equations (5.10) and (5.12) we see that the problem is reduced to evaluating the
TLGFs 𝑉TE

i and 𝑉TM
i . The equivalent transmission line circuit needed to accomplish this task is

shown in Figure 5.2. The equivalent circuit consists of a series of cascaded transmission lines, each
characterized by its modal characteristic impedance 𝑍 (𝑖)𝑝𝑚𝑛 and complex attenuation constant 𝛾 (𝑖)𝑚𝑛.
The termination impedances at the ends of the structure are equal to the characteristic impedances
of the respective semi-infinite lines, and the entire structure is excited by a unit current generator
located at 𝑧 = 𝑧𝑠. To calculate 𝑉TE

i , the modal impedances of the TE Floquet modes are used in
the equivalent circuit; for 𝑉TM

i we employ the TM modal impedances. The desired quantity is the
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𝑍
(1)
𝑝𝑚𝑛

𝑧1

𝑍
(2)
𝑝𝑚𝑛

𝛾
(2)
𝑚𝑛

ℎ (2)

𝑧2

𝑍
(3)
𝑝𝑚𝑛

𝛾
(3)
𝑚𝑛

ℎ (3)

𝑍
(𝑠)
𝑝𝑚𝑛

𝛾
(𝑠)
𝑚𝑛

ℎ (𝑠)

𝑧𝑠

1 A 𝑍
(𝑠+1)
𝑝𝑚𝑛

𝛾
(𝑠+1)
𝑚𝑛

ℎ (𝑠+1)

𝑍
(𝑁−1)
𝑝𝑚𝑛

𝛾
(𝑁−1)
𝑚𝑛

ℎ (𝑁−1)

𝑍
(𝑁 )
𝑝𝑚𝑛

𝑧𝑁−1

· · ·

· · ·

· · ·

· · ·

Figure 5.2 Equivalent transmission line circuit used to find transmission line Green’s functions. We set 𝑝 = 1
when evaluating 𝑉TE

i and 𝑝 = 2 for 𝑉TM
i . Superscripted quantities in parentheses are region designators. 𝑚

and 𝑛 are modal indices associated with the transverse variation of the modal fields.

voltage across the structure at 𝑧 = 𝑧𝑠. Since we have a unit current generator at 𝑧 = 𝑧𝑠 the voltage
there is equal to the total impedance at that point:

𝑉 𝑝
i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) = 𝑍 tot

𝑝𝑚𝑛 (𝑧𝑠) =
1

1
←
𝑍 𝑝𝑚𝑛 (𝑧𝑠)

+ 1
→
𝑍 𝑝𝑚𝑛 (𝑧𝑠)

=

←
𝑍 𝑝𝑚𝑛 (𝑧𝑠)

→
𝑍 𝑝𝑚𝑛 (𝑧𝑠)

←
𝑍 𝑝𝑚𝑛 (𝑧𝑠) +

→
𝑍 𝑝𝑚𝑛 (𝑧𝑠)

, (5.13)

where 𝑝 takes on the value 1 (TE) or 2 (TM), and
←
𝑍 𝑝𝑚𝑛 (𝑧𝑠) and

→
𝑍 𝑝𝑚𝑛 (𝑧𝑠) are the impedances seen

looking to the left and right, respectively, at 𝑧 = 𝑧𝑠. These latter quantities are easily determined
using the following recursive formulas derived from elementary transmission line theory:

←
𝑍 𝑝𝑚𝑛 (𝑧1) = 𝑍 (1)𝑝𝑚𝑛 (5.14a)

←
𝑍 𝑝𝑚𝑛 (𝑧𝑖) = 𝑍 (𝑖)𝑝𝑚𝑛

←
𝑍 𝑝𝑚𝑛 (𝑧𝑖−1) + 𝑍 (𝑖)𝑝𝑚𝑛 tanh(𝛾 (𝑖)𝑚𝑛ℎ

(𝑖) )

𝑍 (𝑖)𝑝𝑚𝑛 +
←
𝑍 𝑝𝑚𝑛 (𝑧𝑖−1) tanh(𝛾 (𝑖)𝑚𝑛ℎ (𝑖) )

, 𝑖 = 2, 3, . . . , 𝑠 (5.14b)

→
𝑍 𝑝𝑚𝑛 (𝑧𝑁−1) = 𝑍 (𝑁 )𝑝𝑚𝑛 (5.14c)

→
𝑍 𝑝𝑚𝑛 (𝑧𝑖) = 𝑍 (𝑖+1)𝑝𝑚𝑛

→
𝑍 𝑝𝑚𝑛 (𝑧𝑖+1) + 𝑍 (𝑖+1)𝑝𝑚𝑛 tanh(𝛾 (𝑖+1)𝑚𝑛 ℎ (𝑖+1) )

𝑍 (𝑖+1)𝑝𝑚𝑛 +
→
𝑍 𝑝𝑚𝑛 (𝑧𝑖+1) tanh(𝛾 (𝑖+1)𝑚𝑛 ℎ (𝑖+1) )

,

𝑖 = 𝑁 − 2, 𝑁 − 3, . . . , 𝑠. (5.14d)

5.2.4 Series Acceleration

At this point, we have expressed the Green’s functions for the magnetic vector potential and electric
scalar potential as a pair of modal series, as given in Equations (5.10) and (5.12). In order to
accelerate the convergence of these series we need to examine their asymptotic behavior. Note
that the summands for both 𝑉TE

i and 𝑉TM
i involve

←
𝑍 𝑝𝑚𝑛 (𝑧𝑠) and

→
𝑍 𝑝𝑚𝑛 (𝑧𝑠), both of which are of a
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similar form:
←
𝑍 𝑝𝑚𝑛 (𝑧𝑠) = 𝑍 (𝑠)𝑝𝑚𝑛

←
𝑍 𝑝𝑚𝑛 (𝑧𝑠−1) + 𝑍 (𝑖)𝑝𝑚𝑛 tanh(𝛾 (𝑖)𝑚𝑛ℎ

(𝑠) )

𝑍 (𝑠)𝑝𝑚𝑛 +
←
𝑍 𝑝𝑚𝑛 (𝑧𝑠−1) tanh(𝛾 (𝑠)𝑚𝑛ℎ (𝑠) )

(5.15)

The behavior of this quantity for large values of the spectral variables 𝑚 and 𝑛 is determined by
examining the following asymptotic representation of the hyperbolic tangent function:

tanh 𝑥 =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥 ∼ (1 − 𝑒
−2𝑥) × (1 − 𝑒−2𝑥 + 𝑒−4𝑥 − 𝑒−6𝑥 + · · · )

= 1 − 2𝑒−2𝑥 + 2𝑒−4𝑥 − 2𝑒−6𝑥 + · · · (5.16)

from which we see that the hyperbolic tangent function rapidly approaches unity for large arguments.
In fact, one can approximate tanh 𝑥 ≈ 1 for 𝑥 > 7 with an error less than 2 × 10−6. Therefore, the
large argument approximation to the transmission line Green’s function (assuming that the layers
on each side of the source plane are of nonvanishing thickness) is

𝑉 𝑝
i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) ∼

𝑍 (𝑠)𝑝𝑚𝑛 𝑍
(𝑠+1)
𝑝𝑚𝑛

𝑍 (𝑠)𝑝𝑚𝑛 + 𝑍 (𝑠+1)𝑝𝑚𝑛

(5.17)

which, when substituted into Equations (5.10) and (5.12) results in exactly the same formulas
as presented for the two-layer Green’s functions of Chapter 4. We conclude that the asymptotic
behavior for the Green’s functions is exactly the same as for a two-layer structure consisting of the
regions on either side of the source plane, infinitely extended. The acceleration technique is thus
the same as that presented in Chapter 4.

The source-plane potential Green’s functions can now be written in their final, accelerated form
as

𝐺𝐴
𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) = 𝜇̃

{
Σ𝑚1 +

𝑢

4𝜋

[
Σ𝑆1 +

𝑐3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)
𝑢2 Σ𝑆2

]}
(5.18a)

𝐺Φ(𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) =
1
𝜖

{
Σ𝑚2 +

𝑢

4𝜋

[
Σ𝑆1 +

𝑑3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)
𝑢2 Σ𝑆2

]}
(5.18b)

where

Σ𝑚1 =
1

2𝐴

∑
𝑚,𝑛

[
2𝑉TE

i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠)
𝑗𝜔𝜇̃

− 1
𝜅𝑚𝑛
− 𝑐3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝜅3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (5.19a)

Σ𝑚2 =
1

2𝐴

∑
𝑚,𝑛

(
2 𝑗𝜔𝜖

𝑉TM
i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) −𝑉TE

i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠)
𝛽2
𝑚𝑛

− 1
𝜅𝑚𝑛
− 𝑑3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝜅3
𝑚𝑛

)
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (5.19b)
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and
𝜇̃ =

2𝜇𝑠𝜇𝑠+1
𝜇𝑠 + 𝜇𝑠+1

, 𝜖 =
𝜖𝑠 + 𝜖𝑠+1

2
. (5.20)

The symbols 𝑐3 and 𝑑3 used above are defined in Equations 4.30 and 4.33.

5.3 Potential Green’s Functions (Magnetic Sources)

5.3.1 Electric Vector Potential

Using the definitions from Chapter 1, we can obtain the expression for the electric vector potential
via duality from that of the magnetic vector potential:

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′, 𝑧, 𝑧′) = −1

𝑗𝜔𝐴

∑
𝑚,𝑛

𝐼TM
v (𝜷𝑚𝑛, 𝑧, 𝑧

′)𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) . (5.21)

where 𝐼TM
v (𝜷𝑚𝑛, 𝑧, 𝑧

′) is the transmission line current at 𝑧′ due to a unit series voltage source located
at 𝑧′ for the TM equivalent circuit.

5.3.2 Scalar Magnetic Potential

Using duality to transform the scalar electric potential we obtain

𝐺Ψ (𝝆 − 𝝆′, 𝑧, 𝑧′) = − 𝑗𝜔
𝐴

∑
𝑚,𝑛

𝐼TM
v (𝜷𝑚𝑛, 𝑧, 𝑧

′) − 𝐼TE
v (𝜷𝑚𝑛, 𝑧, 𝑧

′)
𝛽2
𝑚𝑛

𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) . (5.22)

5.3.3 Evaluation of Transmission Line Green’s Functions

The equivalent circuit for the magnetic source Green’s function differs from that of the electric
sources. In the integral equation formulation, it is assumed that a perfectly conducting wall is
inserted at 𝑧 = 𝑧𝑠, with the sources impressed at both 𝑧−𝑠 and 𝑧+𝑠 . Therefore, we will require two
pairs of potential Green’s functions, denoted as

←
𝐺𝐹

𝑥𝑥 ,
←
𝐺Ψ,

→
𝐺𝐹

𝑥𝑥 , and
→
𝐺Ψ. The former two are due

to sources impressed at 𝑧−𝑠 (to the left of the ground plane) and the latter two are for sources at 𝑧+𝑠
(to the right of the ground plane.) The equivalent circuits for the left- and right-looking sources
are shown in Figure 5.3. Since we have unit voltage sources driving each equivalent circuit, it is
apparent that the source currents are just admittances, so that

←
𝐼 𝑝v (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) =

←
𝑌𝑝𝑚𝑛 (𝑧𝑠),

→
𝐼𝑝v (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠) =

→
𝑌𝑝𝑚𝑛 (𝑧𝑠). (5.23)
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𝑌
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1 V 𝑌

(𝑠+1)
𝑞

𝛾
(𝑠+1)
𝑚𝑛

ℎ (𝑠+1)

𝑌
(𝑁−1)
𝑞

𝛾
(𝑁−1)
𝑚𝑛

ℎ (𝑁−1)

𝑌
(𝑁 )
𝑞

𝑧𝑁−1

· · ·

· · ·

· · ·

· · ·
Figure 5.3 Equivalent transmission line circuits used to find magnetic source transmission line Green’s
functions. We set 𝑝 = 1 when evaluating 𝐼TE

v and 𝑝 = 2 for 𝐼TM
v .

These admittances are easily found using the following recursive formulas derived from elementary
transmission line theory:

→
𝑌𝑝𝑚𝑛 (𝑧𝑁−1) = 𝑌 (𝑁 )𝑝𝑚𝑛 (5.24a)

→
𝑌𝑝𝑚𝑛 (𝑧𝑖) = 𝑌 (𝑖+1)𝑝𝑚𝑛

→
𝑌𝑝𝑚𝑛 (𝑧𝑖+1) + 𝑌 (𝑖+1)𝑝𝑚𝑛 tanh(𝛾 (𝑖+1)𝑚𝑛 ℎ (𝑖+1) )
𝑌 (𝑖+1)𝑝𝑚𝑛 +

→
𝑌𝑝𝑚𝑛 (𝑧𝑖+1) tanh(𝛾 (𝑖+1)𝑚𝑛 ℎ (𝑖+1) )

,

𝑖 = 𝑁 − 2, 𝑁 − 3, . . . , 𝑠. (5.24b)

←
𝑌𝑝𝑚𝑛 (𝑧1) = 𝑌 (1)𝑝𝑚𝑛, (5.24c)

←
𝑌𝑝𝑚𝑛 (𝑧𝑖) = 𝑌 (𝑖)𝑝𝑚𝑛

←
𝑌𝑝𝑚𝑛 (𝑧𝑖−1) + 𝑌 (𝑖)𝑝𝑚𝑛 tanh(𝛾 (𝑖)𝑚𝑛ℎ

(𝑖) )
𝑌 (𝑖)𝑝𝑚𝑛 +

←
𝑌𝑝𝑚𝑛 (𝑧𝑖−1) tanh(𝛾 (𝑖)𝑚𝑛ℎ (𝑖) )

,

𝑖 = 2, 3, . . . , 𝑠. (5.24d)

5.3.4 Series Acceleration

The asymptotic form of the magnetic source Green’s functions summands are equal to twice
the summand for a similar source radiating in a homogeneous medium, with permittivity and
permeability equal to either Region 𝑠 (for left-looking sources) or Region 𝑠 + 1 (for right-looking
sources.) Applying the acceleration techniques of Chapter 4 then results in the final formulas

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) ≡

←
𝐺𝐹

𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) +
→
𝐺𝐹

𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠)

= −𝜖0

[
Σ′𝑚1 +

𝑢𝜖

𝜋𝜖0
Σ𝑠1 +

𝑐 (𝑠)3 𝜖𝑠 + 𝑐 (𝑠+1)3 𝜖𝑠+1

2𝜋𝑢𝜖0
Σ𝑠2

]
(5.25a)

𝐺Ψ (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) =
←
𝐺Ψ (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) +

→
𝐺Ψ (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠)

=
1
𝜇0

[
Σ′𝑚2 +

𝑢𝜇0

𝜋𝜇̃
Σ𝑠1 +

𝜇0

2𝜋𝑢

(
𝑑 (𝑠)3
𝜇𝑠
+
𝑑 (𝑠+1)3
𝜇𝑠+1

)
Σ𝑠2

]
(5.25b)
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where

Σ′𝑚1 =

1
𝐴

∑
𝑚,𝑛

[←
𝑌2𝑚𝑛 (𝑧𝑠) +

→
𝑌2𝑚𝑛 (𝑧𝑠)

𝑗𝜔𝜖0
− 2𝜖
𝜖0
𝜅−1
𝑚𝑛 −

𝜖𝑠𝑐
(𝑠)
3 + 𝜖𝑠+1𝑐

(𝑠+1)
3

𝜖0
𝜅−3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (5.26a)

Σ′𝑚2 =

1
𝐴

∑
𝑚,𝑛

{(←
𝑌2𝑚𝑛 (𝑧𝑠) +

→
𝑌2𝑚𝑛 (𝑧𝑠)

𝑗𝜔𝜖0
𝑘2

0 + 𝑗𝜔𝜇0 [
←
𝑌1𝑚𝑛 (𝑧𝑠) +

→
𝑌1𝑚𝑛 (𝑧𝑠)]

) /
𝛽2
𝑚𝑛

− 2𝜇0

𝜇̃
𝜅−1
𝑚𝑛 − 𝜇0

(
𝑑 (𝑠)3
𝜇𝑠
+
𝑑 (𝑠+1)3
𝜇𝑠+1

)
𝜅−3
𝑚𝑛

}
𝑒− 𝑗𝜷𝑚𝑛 ·(𝝆−𝝆′) (5.26b)

and
𝑐 (𝑖)3 = 𝑐3(𝜖𝑖 , 𝜇𝑖 , 𝜖𝑖 , 𝜇𝑖), 𝑑 (𝑖)3 = 𝑑3(𝜖𝑖 , 𝜇𝑖 , 𝜖𝑖 , 𝜇𝑖). (5.27)

5.4 FFT Evaluation of the Modal Difference Series

The modal series in (4.35), (4.36), (5.18), (5.19), and (5.26) represent extremely smooth functions
of 𝝆 − 𝝆′, since their singularities have been subtracted out. Therefore, an efficient and accurate
method of evaluating them is to tabulate and then interpolate using a low-order bivariate polynomial
interpolation scheme, such as [19, Eq. 25.2.7]. Here we consider a method of rapidly tabulating the
functions over the unit cell using the Fast Fourier Transform (FFT).

The modal series are all of the form

𝑓 (𝝆 − 𝝆′) =
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓(𝑚,𝑛)𝑒
− 𝑗 (𝜷00+𝑚𝜷1+𝑛𝜷2) ·(𝝆−𝝆′) . (5.28)

We introduce the change of variables

𝝆 − 𝝆′ = 𝜉1𝒔1 + 𝜉2𝒔2. (5.29)

It is clear that for any points 𝝆 and 𝝆′ in the unit cell, the difference vector 𝝆− 𝝆′ can be represented
by Equation (5.29) with −1 ≤ 𝜉1, 𝜉2 < 1. We can further restrict evaluation of the series to the
range 0 ≤ 𝜉1, 𝜉2 < 1 by making use of the translational formula

𝑓 ((𝜉1 + 𝑚)𝒔1 + (𝜉2 + 𝑛)𝒔2) = 𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) 𝑓 (𝜉1𝒔1 + 𝜉2𝒔2) (5.30)

which holds for any integers 𝑚 and 𝑛. Given 𝝆 − 𝝆′ one can easily determine 𝜉1 and 𝜉2 using

𝜉𝑖 =
1

2𝜋
𝜷𝑖 · (𝝆 − 𝝆′), 𝑖 = 1, 2. (5.31)
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With (5.29), the series in (5.28) becomes

𝑓 (𝜉1𝒔1 + 𝜉2𝒔2) = 𝑒− 𝑗 ( 𝜉1𝜓1+𝜉2𝜓2)
∞∑

𝑚=−∞

∞∑
𝑛=−∞

𝑓(𝑚,𝑛)𝑒
− 𝑗2𝜋 (𝑚𝜉1+𝑛𝜉2) . (5.32)

We now assume that the summand is nonzero only for −𝑀
2 ≤ 𝑚 ≤

𝑀
2 − 1 and −𝑁

2 ≤ 𝑛 ≤
𝑁
2 − 1,

where 𝑀 and 𝑁 are some convenient integer powers of 2. Then

𝑓 (𝜉1𝒔1 + 𝜉2𝒔2) = 𝑒− 𝑗 ( 𝜉1𝜓1+𝜉2𝜓2)
𝑀
2 −1∑

𝑚=−𝑀
2

𝑁
2 −1∑

𝑛=− 𝑁
2

𝑓(𝑚,𝑛)𝑒
− 𝑗2𝜋 (𝑚𝜉1+𝑛𝜉2)

= 𝑒− 𝑗 ( 𝜉1𝜓1+𝜉2𝜓2)
𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑓(𝑚−𝑀
2 ,𝑛− 𝑁

2 )
𝑒− 𝑗2𝜋 [ (𝑚−

𝑀
2 ) 𝜉1+(𝑛− 𝑁

2 ) 𝜉2 ]

= 𝑒− 𝑗 [𝜉1 (𝜓1−𝑀𝜋)+𝜉2 (𝜓2−𝑁 𝜋) ]
𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑓(𝑚−𝑀
2 ,𝑛− 𝑁

2 )
𝑒− 𝑗2𝜋 (𝑚𝜉1+𝑛𝜉2) . (5.33)

Finally, we restrict evaluation to the set of points

𝜉1 = 𝑝/𝑀, 𝑝 = 0, 1, 2, . . . , 𝑀 − 1, 𝜉2 = 𝑞/𝑁, 𝑞 = 0, 1, 2, . . . , 𝑁 − 1

so that the expression for the sum becomes

𝑓
( 𝑝
𝑀

𝒔1 +
𝑞

𝑁
𝒔2

)
=

𝑒 𝑗 [𝑝 (𝜋−𝜓1/𝑀 )+𝑞 (𝜋−𝜓2/𝑁 ) ]
𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑓(𝑚−𝑀
2 ,𝑛− 𝑁

2 )
𝑒− 𝑗2𝜋 (𝑚𝑝/𝑀+𝑛𝑞/𝑁 ) ,

𝑝 = 0, 1, 2, . . . , 𝑀 − 1, 𝑞 = 0, 1, 2, . . . , 𝑁 − 1. (5.34)

The double sum in (5.34) constitutes a two-dimensional discrete Fourier transform (DFT). It can be
evaluated efficiently for all desired 𝑝 and 𝑞 values via a single application of the two-dimensional
fast Fourier transform (FFT) using the facilities built into Julia.



Chapter 6

Calculation of Incident Fields and GSM Entries

6.1 Introduction

In Chapter 5 a method was presented to efficiently evaluate the potential Green’s functions for a
multiply stratified medium under quasi-periodic boundary conditions. In order to make use of the
Green’s functions in a periodic moment method procedure, it is also necessary to compute the
incident fields and pick off the scattering matrix entries for the multiply stratified medium. This
chapter provides the framework for these tasks.

We will assume that the single FSS sheet is located at interface number 𝑠, located between
layers 𝑠 and 𝑠 + 1, where 1 ≤ 𝑠 < 𝑁.

6.2 Electric Current Unknowns

6.2.1 Calculation of Incident Fields

In this case the incident field is the field that would exist in the structure in the absence of the
unknown electric currents (and the metalization which they represent). That is, the incident field
is the field present in the pure radome case, with primary excitation from an incoming normalized
Floquet mode with unit excitation coefficient.

There are two cases to consider. In the first case, the primary excitation is a Region 1 Floquet
mode propagating in the +𝑧 direction. In the second case, the exciting wave is a Region 𝑁 Floquet
mode propagating in the −𝑧 direction.

Region 1 Incidence

The primary excitation is a plane wave incident from Region 1 with transverse electric field given
by

𝒆 (1)𝑞 (𝑥, 𝑦)𝑒−𝛾
(1) (𝑧−𝑧1) (6.1)

46
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Figure 6.1 Equivalent transmission line circuit used to find incident electric field for a plane wave incident
from Region 1.

where 𝑞 is the modal triple index 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞). The transmission line equivalent circuit for
determining the incident field present at any desired junction plane is shown in Figure 6.1. We
choose the generator voltage 𝑉𝑔 = 2 to supply a unit incoming voltage wave. The total incident
(both incoming and reflected) electric field at 𝑧 = 𝑧1 is then

𝑰𝑧 · 𝑬inc(𝑥, 𝑦, 𝑧1) = 𝑉 (𝑧1)𝒆 (1)𝑞 (𝑥, 𝑦) =
𝑉𝑔

2
(1 + 𝑆11

𝑞𝑞)𝒆
(1)
𝑞 (𝑥, 𝑦) (6.2)

where 𝑆11
𝑞𝑞 is the partial GSM entry due to the incident fields. We can find 𝑉 (𝑧1) using the

transmission line equivalent circuit. The voltage and current at the junction plane 𝑧 = 𝑧1 are

𝑉 (𝑧1) =
𝑉𝑔
→
𝑍 (𝑧1)

→
𝑍 (𝑧1) + 𝑍 (1)𝑞

, 𝐼 (𝑧1) =
𝑉𝑔

→
𝑍 (𝑧1) + 𝑍 (1)𝑞

(6.3)

where
→
𝑍 (𝑧𝑖) is the impedance seen looking to the right at 𝑧 = 𝑧𝑖 . The right-looking impedances

seen at the junction planes are easily determined using the following recursive formulas derived
from elementary transmission line theory:

→
𝑍 (𝑧𝑁−1) = 𝑍 (𝑁 )𝑞 (6.4a)

→
𝑍 (𝑧𝑖) = 𝑍 (𝑖+1)𝑞

→
𝑍 (𝑧𝑖+1) + 𝑍 (𝑖+1)𝑞 tanh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) )

𝑍 (𝑖+1)𝑞 +
→
𝑍 (𝑧𝑖+1) tanh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) )

,

𝑖 = 𝑁 − 2, 𝑁 − 3, . . . , 1. (6.4b)

A similar recursive procedure can be used to calculate the equivalent circuit voltages and currents
at each of the remaining junction planes:

𝑉 (𝑧𝑖) = 𝑉 (𝑧𝑖−1) cosh(𝛾 (𝑖)𝑞 ℎ (𝑖) ) − 𝑍 (𝑖)𝑞 𝐼 (𝑧𝑖−1) sinh(𝛾 (𝑖)𝑞 ℎ (𝑖) ), 𝐼 (𝑧𝑖) =
𝑉 (𝑧𝑖)
→
𝑍 (𝑧𝑖)
𝑖 = 2, 3, . . . , 𝑁 − 1. (6.5)
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Figure 6.2 Equivalent transmission line circuit used to find incident electric field for a plane wave incident
from Region 𝑁 .

The total incident (both incoming and reflected) electric field at 𝑧 = 𝑧𝑠 is then

𝑰𝑧 · 𝑬inc(𝑥, 𝑦, 𝑧𝑠) = 𝑉 (𝑧𝑠)𝒆 (1)𝑞 (𝑥, 𝑦) = 𝑉 (𝑧𝑠)
𝑐 (1)𝑞

𝑐 (𝑠)𝑞

𝒆 (𝑠)𝑞 (𝑥, 𝑦), (6.6)

where we used the fact that 𝒆 (1)𝑞 /𝑐 (1)𝑞 = 𝒆 (𝑠)𝑞 /𝑐 (𝑠)𝑞 .
The partial transmission scattering parameter (due to the incident field) 𝑆21

𝑞𝑞 is obtained from
the equivalent circuit voltage at 𝑧 = 𝑧𝑁−1:

𝑰 · 𝑬inc(𝑥, 𝑦, 𝑧𝑁−1) = 𝑉 (𝑧𝑁−1)𝒆 (1)𝑞 (𝑥, 𝑦) = 𝑆21
𝑞𝑞𝒆

(𝑁 )
𝑞 (𝑥, 𝑦). (6.7)

Since 𝒆 (1)𝑞 /𝑐 (1)𝑞 = 𝒆 (𝑁 )𝑞 /𝑐 (𝑁 )𝑞 we find that

𝑆21
𝑞𝑞 = 𝑉 (𝑧𝑁−1)

𝑐 (1)𝑞

𝑐 (𝑁 )𝑞

. (6.8)

Region 𝑁 Incidence

The primary excitation is a plane wave incident from Region 𝑁 with transverse electric field given
by

𝒆 (𝑁 )𝑞 (𝑥, 𝑦)𝑒𝛾 (1) (𝑧−𝑧𝑁−1) (6.9)

where 𝑞 is the modal triple index 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞). The transmission line equivalent circuit for
determining the incident field present at any desired junction plane is shown in Figure 6.2. We
choose the generator voltage 𝑉𝑔 = 2 to supply a unit incoming voltage wave. The total incident
(both incoming and reflected) electric field at 𝑧 = 𝑧𝑁−1 is

𝑰𝑧 · 𝑬inc(𝑥, 𝑦, 𝑧𝑁−1) = 𝑉 (𝑧𝑁−1)𝒆 (𝑁 )𝑞 (𝑥, 𝑦) = (1 + 𝑆22
𝑞𝑞)𝒆

(𝑁 )
𝑞 (𝑥, 𝑦) (6.10)
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where 𝑆22
𝑞𝑞 is the partial GSM entry due to the incident fields. We can find 𝑉 (𝑧𝑁−1) using the

transmission line equivalent circuit. The voltage and current at the junction plane 𝑧 = 𝑧𝑁−1 are

𝑉 (𝑧𝑁−1) =
𝑉𝑔
←
𝑍 (𝑧𝑁−1)

←
𝑍 (𝑧𝑁−1) + 𝑍 (𝑁 )𝑞

, 𝐼 (𝑧𝑁−1) =
−𝑉𝑔

←
𝑍 (𝑧𝑁−1) + 𝑍 (𝑁 )𝑞

(6.11)

where
←
𝑍 (𝑧𝑖) is the impedance seen looking to the left at 𝑧 = 𝑧𝑖 . The left-looking impedances seen

at the junction planes are easily determined using the following recursive formulas derived from
elementary transmission line theory:

←
𝑍 (𝑧1) = 𝑍 (1)𝑞 (6.12a)

←
𝑍 (𝑧𝑖) = 𝑍 (𝑖)𝑞

←
𝑍 (𝑧𝑖−1) + 𝑍 (𝑖)𝑞 tanh(𝛾 (𝑖)𝑞 ℎ (𝑖) )

𝑍 (𝑖)𝑞 +
←
𝑍 (𝑧𝑖−1) tanh(𝛾 (𝑖)𝑞 ℎ (𝑖) )

,

𝑖 = 2, 3, . . . , 𝑁 − 1. (6.12b)

A similar recursive procedure can be used to calculate the equivalent circuit voltages and currents
at each of the remaining junction planes:{

𝑉 (𝑧𝑖) = 𝑉 (𝑧𝑖+1) cosh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) ) + 𝑍 (𝑖+1)𝑞 𝐼 (𝑧𝑖+1) sinh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) ),
𝐼 (𝑧𝑖) = −𝑉 (𝑧𝑖)/

←
𝑍 (𝑧𝑖)

𝑖 = 𝑁 − 2, 𝑁 − 3 . . . , 1. (6.13)

The total incident (both incoming and reflected) electric field at 𝑧 = 𝑧𝑠 is then

𝑰𝑧 · 𝑬inc(𝑥, 𝑦, 𝑧𝑠) = 𝑉 (𝑧𝑠)𝒆 (𝑁 )𝑞 (𝑥, 𝑦) = 𝑉 (𝑧𝑠)
𝑐 (𝑁 )𝑞

𝑐 (𝑠+1)𝑞

𝒆 (𝑠+1)𝑞 (𝑥, 𝑦), (6.14)

where we used the fact that 𝒆 (𝑁 )𝑞 /𝑐 (𝑁 )𝑞 = 𝒆 (𝑠+1)𝑞 /𝑐 (𝑠+1)𝑞 .
The partial transmission scattering parameter (due to the incident field) 𝑆12

𝑞𝑞 is obtained from
the equivalent circuit voltage at 𝑧 = 𝑧1:

𝑰 · 𝑬inc(𝑥, 𝑦, 𝑧1) = 𝑉 (𝑧1)𝒆 (𝑁 )𝑞 (𝑥, 𝑦) = 𝑆12
𝑞𝑞𝒆

(1)
𝑞 (𝑥, 𝑦). (6.15)

Since 𝒆 (𝑁 )𝑞 /𝑐 (𝑁 )𝑞 = 𝒆 (1)𝑞 /𝑐 (1)𝑞 we find that

𝑆12
𝑞𝑞 = 𝑉 (𝑧1)

𝑐 (𝑁 )𝑞

𝑐 (1)𝑞

. (6.16)
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Figure 6.3 Equivalent transmission line circuit used to find scattered fields. We set 𝑝 = 1 when evaluating
𝑉TE

i and 𝑝 = 2 for 𝑉TM
i . Superscripted quantities in parentheses are region designators.

6.2.2 Calculation of (scattered) GSM entries

We now assume that the electric surface currents 𝑱s on the FSS sheet located at 𝑧 = 𝑧𝑠 have been
obtained using the method of moments. We seek expressions for the outgoing wave coefficients
{𝑏 (1)𝑞 } and {𝑏 (𝑁 )𝑞 } in the scattered field expansions

𝑬sc(𝑥, 𝑦, 𝑧) =


∑
𝑞

𝑏 (1)𝑞 𝒆 (1)𝑞 (𝑥, 𝑦)𝑒 𝑗𝛾
(1)
𝑞 (𝑧−𝑧1) (𝑧 < 𝑧1)∑

𝑞

𝑏 (𝑁 )𝑞 𝒆 (𝑁 )𝑞 (𝑥, 𝑦)𝑒− 𝑗𝛾
(𝑁 )
𝑞 (𝑧−𝑧𝑁−1) (𝑧 > 𝑧𝑁−1).

(6.17)

These coefficients are the partial GSM entries due to the scattered (radiated by the induced surface
currents) fields. Using the results of [18] we find that they are given by

𝑏 (1)𝑞 = −𝒕𝑞 · 𝑱s(𝜷𝑚𝑞 ,𝑛𝑞 )
𝑉

𝑝𝑞
𝑖 (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧1, 𝑧𝑠)

𝐴𝑐 (1)𝑞

(6.18a)

𝑏 (𝑁 )𝑞 = −𝒕𝑞 · 𝑱s(𝜷𝑚𝑞 ,𝑛𝑞 )
𝑉

𝑝𝑞
𝑖 (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧𝑁−1, 𝑧𝑠)

𝐴𝑐 (𝑁 )𝑞

(6.18b)

where 𝒕𝑞 is the modal polarization vector defined in (7.38), and 𝑉 𝑝
𝑖 is the transmission line Green’s

function for the voltage due to a unit current source for either the TE (𝑝 = 1) or TM (𝑝 = 2)
equivalent circuit, shown in Figure 6.3. Since we have a unit current source at 𝑧 = 𝑧𝑠 the voltage



6.3 Magnetic Current Unknowns 51

there is equal to the total impedance at that point:

𝑉 𝑝
i (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧𝑠, 𝑧𝑠) = 𝑍

tot(𝑧𝑠) =
1

1
←
𝑍 (𝑧𝑠)

+ 1
→
𝑍 (𝑧𝑠)

=

←
𝑍 (𝑧𝑠)

→
𝑍 (𝑧𝑠)

←
𝑍 (𝑧𝑠) +

→
𝑍 (𝑧𝑠)

, (6.19a)

𝐼 𝑝i (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧
+
𝑠 , 𝑧𝑠) =

𝑉 𝑝
i (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧𝑠, 𝑧𝑠)

→
𝑍 (𝑧𝑠)

, (6.19b)

𝐼 𝑝i (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧
−
𝑠 , 𝑧𝑠) =

−𝑉 𝑝
i (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧𝑠, 𝑧𝑠)

←
𝑍 (𝑧𝑠)

. (6.19c)

With the voltage and current known at 𝑧𝑠, one can apply (6.13) for 𝑖 = 𝑠 − 1, 𝑠 − 2, . . . , 1 and
(6.5) for 𝑖 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑁 − 1 to determine Green’s function voltages needed to evaluate
Equations (6.18).

6.3 Magnetic Current Unknowns

6.3.1 Calculation of Incident Fields

In this case the incident field is the field that would exist in the structure in the absence of the
unknown magnetic currents, but in the presence of the unperforated ground plane at 𝑧 = 𝑧𝑠 . That
is, the incident field is the sum of the incoming and reflected (due to the ground plane) waves, with
primary excitation from an incoming normalized Floquet mode with unit excitation coefficient.

There are two cases to consider. In the first case, the primary excitation is a Region 1 Floquet
mode propagating in the +𝑧 direction. In the second case, the exciting wave is a Region 𝑁 Floquet
mode propagating in the −𝑧 direction.

Region 1 Incidence

The primary excitation is a plane wave incident from Region 1 with transverse magnetic field given
by

𝒉 (1)𝑞 (𝑥, 𝑦)𝑒−𝛾
(1) (𝑧−𝑧1) (6.20)

where 𝑞 is the modal triple index 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞). The transmission line equivalent circuit for
determining the incident magnetic field present at any desired junction plane is shown in Figure 6.4.
We choose the generator current 𝐼𝑔 = 2 to supply a unit incoming current wave. The total incident
(both incoming and reflected) magnetic field at 𝑧 = 𝑧1 is then

𝑰𝑧 · 𝑯inc(𝑥, 𝑦, 𝑧1) = 𝐼 (𝑧1)𝒉 (1)𝑞 (𝑥, 𝑦) =
𝐼𝑔

2
(1 − 𝑆11

𝑞𝑞)𝒉
(1)
𝑞 (𝑥, 𝑦) (6.21)
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Figure 6.4 Equivalent transmission line circuit used to find incident magnetic field at 𝑧 = 𝑧𝑠 for a plane wave
incident from Region 1.

where 𝑆11
𝑞𝑞 is the partial GSM entry due to the incident fields. We can find 𝐼 (𝑧1) using the

transmission line equivalent circuit. The current and voltage at the junction plane 𝑧 = 𝑧1 are

𝐼 (𝑧1) =
𝐼𝑔

1 +
→
𝑍 (𝑧1)𝑌 (1)𝑞

, 𝑉 (𝑧1) =
𝐼𝑔
→
𝑍 (𝑧1)

1 +
→
𝑍 (𝑧1)𝑌 (1)𝑞

, (6.22)

where
→
𝑍 (𝑧𝑖) is the impedance seen looking to the right at 𝑧 = 𝑧𝑖 . The right-looking impedances

seen at the junction planes are easily determined using the following recursive formulas derived
from elementary transmission line theory:

→
𝑍 (𝑧𝑠−1) = 𝑍 (𝑠)𝑞 tanh(𝛾 (𝑠)𝑞 ℎ (𝑠) ) (6.23a)

→
𝑍 (𝑧𝑖) = 𝑍 (𝑖+1)𝑞

→
𝑍 (𝑧𝑖+1) + 𝑍 (𝑖+1)𝑞 tanh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) )

𝑍 (𝑖+1)𝑞 +
→
𝑍 (𝑧𝑖+1) tanh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) )

,

𝑖 = 𝑠 − 2, 𝑠 − 3, . . . , 1. (6.23b)

A similar recursive procedure can be used to calculate the equivalent circuit currents and voltages
at each of the remaining junction planes:

𝐼 (𝑧𝑖) = 𝐼 (𝑧𝑖−1) cosh(𝛾 (𝑖)𝑞 ℎ (𝑖) ) − 𝑌 (𝑖)𝑞 𝑉 (𝑧𝑖−1) sinh(𝛾 (𝑖)𝑞 ℎ (𝑖) ), 𝑉 (𝑧𝑖) = 𝐼 (𝑧𝑖)
→
𝑍 (𝑧𝑖)

𝑖 = 2, 3, . . . , 𝑠. (6.24)

The total incident (both incoming and reflected) magnetic field at 𝑧 = 𝑧𝑠 is then

𝑰𝑧 · 𝑯inc(𝑥, 𝑦, 𝑧𝑠) = 𝐼 (𝑧𝑠)𝒉 (1)𝑞 (𝑥, 𝑦) = 𝐼 (𝑧𝑠)
𝑐 (𝑠)𝑞

𝑐 (1)𝑞

𝒉 (𝑠)𝑞 (𝑥, 𝑦), (6.25)

where we used the fact that 𝑐 (1)𝑞 𝒉 (1)𝑞 = 𝑐 (𝑠)𝑞 𝒉 (𝑠)𝑞 .
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Figure 6.5 Equivalent transmission line circuit used to find incident electric field for a plane wave incident
from Region 𝑁 .

The partial reflection scattering parameter (due to the incident field) 𝑆11
𝑞𝑞 is obtained from the

equivalent circuit current at 𝑧 = 𝑧1:

𝑰 · 𝑯inc(𝑥, 𝑦, 𝑧1) = 𝐼 (𝑧1)𝒉 (1)𝑞 (𝑥, 𝑦) = (1 − 𝑆11
𝑞𝑞)𝒉

(1)
𝑞 (𝑥, 𝑦), (6.26)

so that
𝑆11
𝑞𝑞 = 1 − 𝐼 (𝑧1). (6.27)

Region 𝑁 Incidence

The primary excitation is a plane wave incident from Region 𝑁 with transverse magnetic field given
by

− 𝒉 (𝑁 )𝑞 (𝑥, 𝑦)𝑒𝛾 (1) (𝑧−𝑧𝑁−1) (6.28)

where 𝑞 is the modal triple index 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞). The transmission line equivalent circuit for
determining the incident field present at any desired junction plane is shown in Figure 6.5. We
choose the generator current 𝐼𝑔 = 2 to supply a unit incoming current wave. The total incident
(both incoming and reflected) magnetic field at 𝑧 = 𝑧𝑁−1 is

𝑰𝑧 · 𝑯inc(𝑥, 𝑦, 𝑧𝑁−1) = 𝐼 (𝑧𝑁−1)𝒉 (𝑁 )𝑞 (𝑥, 𝑦) = (𝑆22
𝑞𝑞 − 1)𝒉 (𝑁 )𝑞 (𝑥, 𝑦) (6.29)

where 𝑆22
𝑞𝑞 is the partial GSM entry due to the incident fields. We can find 𝑉 (𝑧𝑁−1) using the

transmission line equivalent circuit. The current and voltage at the junction plane 𝑧 = 𝑧𝑁−1 are

𝐼 (𝑧𝑁−1) =
−𝐼𝑔

1 +
←
𝑍 (𝑧𝑁−1)𝑌 (𝑁 )𝑞

, 𝑉 (𝑧𝑁−1) =
−𝐼𝑔

←
𝑍 (𝑧𝑁−1)

1 +
←
𝑍 (𝑧𝑁−1)𝑌 (𝑁 )𝑞

(6.30)

where
←
𝑍 (𝑧𝑖) is the impedance seen looking to the left at 𝑧 = 𝑧𝑖 . The left-looking impedances seen

at the junction planes are easily determined using the following recursive formulas derived from
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elementary transmission line theory:

←
𝑍 (𝑧𝑠+1) = 𝑍 (𝑠+1)𝑞 tanh(𝛾 (𝑠+1)𝑞 ℎ (𝑠+1) ) (6.31a)

←
𝑍 (𝑧𝑖) = 𝑍 (𝑖)𝑞

←
𝑍 (𝑧𝑖−1) + 𝑍 (𝑖)𝑞 tanh(𝛾 (𝑖)𝑞 ℎ (𝑖) )

𝑍 (𝑖)𝑞 +
←
𝑍 (𝑧𝑖−1) tanh(𝛾 (𝑖)𝑞 ℎ (𝑖) )

, 𝑖 = 𝑠 + 2, 𝑠 + 3, . . . , 𝑁 − 1. (6.31b)

A similar recursive procedure can be used to calculate the equivalent circuit currents and voltages
at each of the remaining junction planes:{

𝐼 (𝑧𝑖) = 𝐼 (𝑧𝑖+1) cosh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) ) + 𝑌 (𝑖+1)𝑞 𝑉 (𝑧𝑖+1) sinh(𝛾 (𝑖+1)𝑞 ℎ (𝑖+1) ),
𝑉 (𝑧𝑖) = −𝐼 (𝑧𝑖)

←
𝑍 (𝑧𝑖)

𝑖 = 𝑁 − 2, 𝑁 − 3 . . . , 𝑠. (6.32)

The total incident (both incoming and reflected) magnetic field at 𝑧 = 𝑧𝑠 is then

𝑰𝑧 · 𝑯inc(𝑥, 𝑦, 𝑧𝑠) = 𝐼 (𝑧𝑠)𝒉 (𝑁 )𝑞 (𝑥, 𝑦) = 𝐼 (𝑧𝑠)
𝑐 (𝑠+1)𝑞

𝑐 (𝑁 )𝑞

𝒉 (𝑠+1)𝑞 (𝑥, 𝑦), (6.33)

where we used the fact that 𝑐 (𝑁 )𝑞 𝒉 (𝑁 )𝑞 = 𝑐 (𝑠+1)𝑞 𝒉 (𝑠+1)𝑞 .
The partial reflection scattering parameter (due to the incident field) 𝑆22

𝑞𝑞 is obtained from the
equivalent circuit current at 𝑧 = 𝑧𝑁−1:

𝑰 · 𝑯inc(𝑥, 𝑦, 𝑧𝑁−1) = 𝐼 (𝑧𝑁−1)𝒉 (𝑁 )𝑞 (𝑥, 𝑦) = (𝑆22
𝑞𝑞 − 1)𝒉 (𝑁 )𝑞 (𝑥, 𝑦), (6.34)

so that
𝑆22
𝑞𝑞 = 𝐼 (𝑧𝑁−1) + 1. (6.35)

6.3.2 Calculation of (scattered) GSM entries

We now assume that the magnetic surface currents 𝜎𝑴s at 𝑧 = 𝑧𝑠 − 0 and −𝜎𝑴s at 𝑧 = 𝑧𝑠 + 0
have been numerically determined, where 𝜎 = 1 for a primary wave incident from Region 1 and
𝜎 = −1 for a primary wave incident from Region 𝑁 . We seek expressions for the outgoing wave
coefficients {𝑏 (1)𝑞 } and {𝑏 (𝑁 )𝑞 } in the scattered field expansions

𝑯sc(𝑥, 𝑦, 𝑧) =


∑
𝑞

−𝑏 (1)𝑞 𝒉 (1)𝑞 (𝑥, 𝑦)𝑒 𝑗𝛾
(1)
𝑞 (𝑧−𝑧1) (𝑧 < 𝑧1)∑

𝑞

𝑏 (𝑁 )𝑞 𝒉 (𝑁 )𝑞 (𝑥, 𝑦)𝑒− 𝑗𝛾
(𝑁 )
𝑞 (𝑧−𝑧𝑁−1) (𝑧 > 𝑧𝑁−1).

(6.36)
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Figure 6.6 Equivalent transmission line circuits used to find scattered fields. We set 𝑝 = 1 when evaluating
𝐼TE
v and 𝑝 = 2 for 𝐼TM

v . Superscripted quantities in parentheses are region designators.

These coefficients are the partial GSM entries due to the scattered (radiated by the induced surface
currents) fields. Using the results of [18] we find that they are

𝑏 (1)𝑞 = 𝒛 × 𝒕𝑞 · 𝑴̃s(𝜷𝑚𝑞 ,𝑛𝑞 )
𝜎𝑐 (1)𝑞 𝐼

𝑝𝑞
𝑣 (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧1, 𝑧𝑠)

𝑃0
(6.37a)

𝑏 (𝑁 )𝑞 = 𝒛 × 𝒕𝑞 · 𝑴̃s(𝜷𝑚𝑞 ,𝑛𝑞 )
𝜎𝑐 (𝑁 )𝑞 𝐼

𝑝𝑞
𝑣 (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧𝑁−1, 𝑧𝑠)

𝑃0
(6.37b)

where 𝐼 𝑝𝑞𝑣 is the transmission line Green’s function for the current due to a unit voltage source for
either the TE (𝑝𝑞 = 1) or TM (𝑝𝑞 = 2) equivalent circuit, as shown in Figure 6.6, and 𝑃0 ≡ 1 W.
For either the left-looking or right-looking equivalent circuit, we have a unit voltage source at 𝑧 = 𝑧𝑠
so that the current there is equal to the admittance seen at that point:

𝑉 𝑝
v (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧

−
𝑠 , 𝑧𝑠) = −1, 𝐼 𝑝v (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧

−
𝑠 , 𝑧𝑠) =

←
𝑌 (𝑧−𝑠 ) = 1/

←
𝑍 (𝑧−𝑠 ), (6.38a)

𝑉 𝑝
v (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧

+
𝑠 , 𝑧𝑠) = 1, 𝐼 𝑝v (𝜷𝑚𝑞 ,𝑛𝑞 , 𝑧

+
𝑠 , 𝑧𝑠) =

→
𝑌 (𝑧+𝑠 ) = 1/

→
𝑍 (𝑧+𝑠 ). (6.38b)

With the voltage and current known at 𝑧𝑠, one can apply (6.32) for 𝑖 = 𝑠 − 1, 𝑠 − 2, . . . , 1 and
(6.24) for 𝑖 = 𝑠 + 1, 𝑠 + 2, . . . , 𝑁 − 1 to determine Green’s function currents needed to evaluate
Equations (6.37).



Chapter 7

Moment Method Formulation

In this chapter we describe a procedure for determining the induced electric or magnetic surface
currents on a single-sheet FSS (frequency selective surface) located at one of the junction planes in
a multiply stratified medium, when excited by an incident plane wave. The analysis is performed
using the method of moments, employing a space-domain formulation of the potential Green’s
functions, which are described in previous chapters. Once the equivalent induced surface currents
have been determined, the single-sheet scattering parameters can be extracted using the formulas
presented in Chapter 6. Scattering parameters of more complicated structures consisting of several
cascaded FSS sheets interlaced with dielectric layers can be determined from the individual sheet
scattering parameters using the results of Chapter 3. The following novel features are incorporated
in this analysis:

• The use of a wide-band expansion of the stratified medium periodic Green’s functions has
been incorporated into the moment method procedure, greatly reducing the time needed to
compute the elements of the interaction matrices. This technique was first reported in [14].

• Modifications have been introduced into the triangle subdomain basis functions of Rao,
Wilton, and Glisson [2] to enable representation of currents that cross unit cell boundaries.
This work was previously reported in [20].

The FSS is located in the interface plane 𝑧 = 𝑧𝑠 of the multiple layered structure shown in
Figure 7.1. The structure is laterally invariant, with each dielectric layer being homogeneous and
isotropic. Each layer 𝑖 = 1, 2, . . . , 𝑁 is characterized by a complex permittivity 𝜖𝑖 and permeability
𝜇𝑖 , each of which lies either in the fourth quadrant of the complex plane, or on the real axis. The
medium intrinsic wavenumbers are 𝑘𝑖 = 𝜔

√
𝜇𝑖𝜖𝑖 . We will assume that the single FSS sheet is

located at interface number 𝑠, located between layers 𝑠 and 𝑠 + 1, where 1 ≤ 𝑠 < 𝑁.
In general, we can model a zero-thickness, perfectly conducting FSS using either electric or

magnetic currents as the unknowns. In the former case, the metalization is removed, and the
support1of the unknown electric surface current consists of the region previously occupied by the

1The support of a function is defined as the closure of the set of points where the function takes nonzero values.

56
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Figure 7.1 The structure under consideration is a stack of 𝑁 ≥ 2 dielectric layers. Layers 1 and 𝑁 are semi-
infinite in extent. For 2 ≤ 𝑖 ≤ 𝑁 − 1, layer 𝑖 lies in the region 𝑧𝑖−1 < 𝑧 < 𝑧𝑖 , is of thickness ℎ (𝑖) = 𝑧𝑖 − 𝑧𝑖−1,
and is characterized by permeability 𝜇𝑖 and permittivity 𝜖𝑖 .

metalization. In the latter case, the entire interface plane 𝑧 = 0 is replaced with a zero-thickness
PEC (perfect electric conductor) and the support of the magnetic current is the portion of the plane
formerly not occupied by the PEC.

One generally chooses the type of equivalent currents employed in a given problem so as to
minimize the area of the currents’ support, and thus the number of unknowns to be solved for in the
MoM problem. For aperture-type elements magnetic currents are usually selected; for wire-type
elements electric currents are the natural choice. In the case where an FSS is constructed of lossy
material, we are forced to use electric currents as the unknowns.

7.1 Electric Current Mixed Potential Integral Equation

In this section we consider an FSS that is modeled using equivalent electric surface current. This
choice is convenient when less than half of the unit cell area is occupied by metal or when the FSS
is etched onto a sheet of lossy material.

The boundary value problem to be solved is [21]

𝑍𝑠 (𝝆)𝑱s(𝝆) − 𝑰𝑧 · 𝑬sc(𝝆) = 𝑰𝑧 · 𝑬inc(𝝆), (𝝆 ∈ 𝑆) (7.1)

where 𝑬sc is the scattered electric field due to the equivalent currents flowing on the surface 𝑆 of the
FSS, 𝑬inc is the incident electric field (the plane wave, including incident, reflected, and transmitted
components, that would exist in the absence of the FSS), 𝑍𝑠 is the surface resistance of the FSS
sheet material, and 𝑰𝑧 = 𝒙̂𝒙̂ + 𝒚̂ 𝒚̂ is the unit surface dyadic. In terms of potentials this becomes

𝑍𝑠 (𝝆)𝑱s(𝝆) + [ 𝑗𝜔𝑨(𝝆) + ∇Φ(𝝆)] · 𝑰𝑧 = 𝑬inc(𝝆) · 𝑰𝑧 , (𝝆 ∈ 𝑆) (7.2)
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where the potentials can be expressed as superposition integrals using appropriately defined Green’s
functions (Chapter 5) 𝐺𝐴

𝑥𝑥 and 𝐺Φ:

𝑰𝑧 · 𝑨(𝝆) =
∬

𝐺𝐴
𝑥𝑥 (𝝆 − 𝝆′) · 𝑱s(𝝆′) d𝑆′, (7.3)

Φ(𝝆) =
∬

𝐺Φ(𝝆 − 𝝆′) · 𝑞e(𝝆′) d𝑆′. (7.4)

In (7.3) and (7.4), 𝑱s and 𝑞e are the unknown induced electric surface current and surface charge
densities, respectively, which will be determined by enforcing Equation (7.2) in an approximate
manner using the method of moments. We use the triangle subdomain basis functions of Rao,
Wilton and Glisson [2], suitably modified so as to accommodate the periodic boundary conditions
encountered in the unit cell analysis.

7.1.1 Basis Functions

We now enunciate a few important definitions and and properties of the basis functions in order to
establish notation. The support of 𝑱s is first partitioned into a number of triangles. In [2] a basis
function is defined over each pair of triangles which share a common edge. In this work, we include
not only these adjacent pairs of triangles, but also those pairs of triangles which would be adjacent
if one of the pair were translated by 𝒔1 or 𝒔2 from its actual position.

Consider first a typical pair of adjacent triangles; their common edge is not on the boundary of
the unit cell. Figure 7.2 shows two such triangles, 𝑇+𝑚 and 𝑇−𝑚, which comprise the support of the
𝑚th basis function and which share an interior edge of the triangulated surface. Points in 𝑇+𝑚 may
be designated by either the position vector 𝒓 which locates them with respect to the global origin, or
by 𝝆+𝑚, which is defined with respect to the free vertex of 𝑇+𝑚. The vector 𝝆−𝑚 is defined similarly for
points in 𝑇−𝑚, except that it is directed towards the free vertex of 𝑇−𝑚. Which of the two triangles is
designated “plus” and which is “minus” depends on an arbitrary choice of positive current reference
direction for the 𝑚th basis function. Positive reference current flows across the edge from 𝑇+𝑚 to 𝑇−𝑚.
The basis function associated with the 𝑚th edge is then defined as

𝒇𝑚(𝒓) =



𝑙𝑚𝑒
𝑗 𝜃+𝑚

2𝐴+𝑚
𝝆+𝑚 if 𝒓 ∈ 𝑇+𝑚

𝑙𝑚𝑒
𝑗 𝜃−𝑚

2𝐴−𝑚
𝝆−𝑚 if 𝒓 ∈ 𝑇−𝑚

0 otherwise,

(7.5)

where 𝑙𝑚 is the length of the common edge, 𝐴±𝑚 is the area of triangle 𝑇±𝑚, and 𝜃+𝑚 = 𝜃−𝑚 = 0 in this
case. A few facts about the basis functions should be kept in mind. First, the basis functions are
unitless. Units are carried by the expansion coefficients associated with the basis functions. Second,
the support of a single basis function is limited to two, typically adjacent triangles. Third, the total
current density in any given triangle is the vector sum of contributions from up to three distinct
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𝒓

𝑙 𝑚
Figure 7.2 Triangular basis function geometry showing two triangles with a common edge. The superscript
“c” denotes the centroid of the triangle.

basis functions whose common support includes that triangle. Fourth, any current flow normal to
an edge is due entirely to the basis function associated with that edge. Finally, the basis functions
are normalized so that the normal component of current density crossing the defining edge is unity2
at any point of the edge. This means that the expansion coefficients {I𝑚} defined below can be
interpreted as the total current crossing the associated edge(s) of the triangulated surface.

This definition is identical to that of [2] except for the introduction of the factors containing 𝜃±𝑛 .
To see why these are necessary, consider the situation shown in Figure 7.3. Points within the unit
cell are parameterized using

𝝆 = 𝜉𝒔1 + 𝜂𝒔2, 0 ≤ 𝜉 < 1, 0 ≤ 𝜂 < 1. (7.6)

Unit cell boundaries are located at 𝜉 = 0, 𝜉 = 1, 𝜂 = 0, and 𝜂 = 1. In order to preserve the
periodicity of the computed currents we agree to triangulate the unit cell in such a way that the
number and location of the resulting edges along the 𝜉 = 0 and 𝜉 = 1 boundaries are identical, and
similarly for the 𝜂 = 0 and 𝜂 = 1 boundaries. A pair of triangles 𝑇+𝑚 and 𝑇−𝑚 with edges at the 𝜉 = 0
and 𝜉 = 1 boundaries, respectively, are shown in the figure. These edges both span the same range
of 𝜂 and so are parallel and congruent. A basis function is defined for each such pair of triangles
on the 𝜉 = constant or 𝜂 = constant boundaries. We focus attention upon the basis function 𝒇𝑚
whose support is the union of the two triangle faces shown in the figure. Because of the boundary

2It is easy to see that the normal current density crossing an edge is constant by recalling that the equation of a plane
in space is 𝒏̂ · 𝒓 = constant. Similarly, the equation of the line containing the defining edge for the 𝑚th basis function is
𝒏̂ · 𝝆±𝑚 = constant. In fact, the normalization for the basis functions is selected so that this constant is unity in magnitude.
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Figure 7.3 Triangular basis function geometry showing a pair of triangles located at the 𝜉 = constant unit
cell boundaries.

condition
𝑉 (𝒓 + 𝑚𝒔1 + 𝑛𝒔2) = 𝑉 (𝒓)𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) , ∀𝑚, 𝑛 ∈ Z (7.7)

enforced on all currents and fields in the unit cell, it must be true that the normal current density
crossing the edge at 𝜉 = 1 is equal to that crossing the 𝜉 = 0 edge multiplied by the factor 𝑒− 𝑗𝜓1 .
Therefore, we must insist that

𝜃−𝑚 = 𝜃+𝑚 − 𝜓1. (7.8)

We will establish the convention that 𝜃±𝑚 = 0 for all edges except those along the 𝜉 = 1 and 𝜂 = 1 unit
cell boundaries. Therefore, for the situation shown in Figure 7.3 we have 𝜃−𝑚 = −𝜓1 and similarly
for all other triangles with one edge located on the 𝜉 = 1 boundary. For triangles with an edge on
the 𝜂 = 1 boundary we set the corresponding phase to −𝜓2.

We now expand the unknown electric surface current density in a series of these basis functions:

𝑱s(𝝆) =
𝑁𝐽∑
𝑛=1

I𝑛

𝑙𝑛
𝒇 𝑛 (𝝆). (7.9)

The number of basis functions 𝑁𝐽 is equal to the number of interior edges of the triangulated surface
in the 𝑧 = 0 plane of the unit cell plus the number of edges along the 𝜉 = 0 and 𝜂 = 0 borders of the
unit cell. Note that I𝑛 has units of A.
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7.1.2 Impedance Matrix

Reduction to Matrix Equation

Having expanded the unknown current in a series of suitable basis functions, it is now desired to
determine the coefficients in a way that satisfies Equation (7.2) as closely as possible. The method
of moments transforms the functional Equation (7.2) to a matrix equation by enforcing it in an
average manner. This is accomplished by first defining an inner product which maps a pair of
functions to a single complex number, and then repeatedly testing the equation by taking the inner
product of both sides with a number of testing or weighting functions.

The inner product used in testing Equation (7.2) is

⟨ 𝒇 , 𝒈⟩ =
∬

𝒇 · 𝒈∗ d𝑆. (7.10)

The asterisk denotes complex conjugation and the integration is performed over the portion of the
𝑧 = 0 plane containing the common support of the two functions 𝒇 and 𝒈. We choose our testing
functions to be the same as our basis functions (Galerkin’s method). Then taking the inner product
of (7.2) with each of the functions 𝒇𝑚/𝑙𝑚 for 𝑚 = 1, 2, . . . , 𝑁𝐽 yields

𝑗𝜔
〈
𝑨, 𝒇𝑚/𝑙𝑚

〉
+

〈
∇Φ, 𝒇𝑚/𝑙𝑚

〉
+

〈
𝑍𝑠𝑱s, 𝒇𝑚/𝑙𝑚

〉
=

〈
𝑬inc, 𝒇𝑚/𝑙𝑚

〉
,

𝑚 = 1, 2, . . . , 𝑁𝐽 . (7.11)

Following [2] we can approximate the second term of (7.11) by〈
∇Φ, 𝒇𝑚/𝑙𝑚

〉
≈ 𝑒− 𝑗 𝜃−𝑚Φ(𝒓c−

𝑚 ) − 𝑒− 𝑗 𝜃
+
𝑚Φ(𝒓c+

𝑚 ) (7.12)

where 𝒓c±
𝑚 is the centroid of triangle 𝑇±𝑚. The first term is also approximated as in the reference:〈

𝑨, 𝒇𝑚/𝑙𝑚
〉
≈ 1

2

[
𝑨(𝒓c+

𝑚 ) · 𝝆c+
𝑚 𝑒
− 𝑗 𝜃+𝑚 + 𝑨(𝒓c−

𝑚 ) · 𝝆c−
𝑚 𝑒
− 𝑗 𝜃−𝑚

]
. (7.13)

𝝆c±
𝑚 is the vector 𝝆±𝑚 evaluated at the centroid of the corresponding triangle.

Substituting the expansion of the current (7.9) into (7.11) yields the desired matrix equation.

ZI= V, (7.14)

where Z = [Z𝑚𝑛] is the so-called generalized impedance matrix, a square matrix of order 𝑁𝐽

with units of Ω. I = [I𝑚] is the column matrix of unknown current coefficients with units of A.
V = [V𝑚] is the excitation vector (or generalized voltage vector) with units of V. The elements of
the generalized impedance matrix are

Z𝑚𝑛 =
〈
𝑍𝑠 𝒇 𝑛/𝑙𝑛, 𝒇𝑚/𝑙𝑚

〉
+ 𝑗𝜔

(
𝑨+𝑚𝑛 ·

𝝆c+
𝑚

2
𝑒− 𝑗 𝜃

+
𝑚 + 𝑨−𝑚𝑛 ·

𝝆c−
𝑚

2
𝑒− 𝑗 𝜃

−
𝑚

)
+Φ−𝑚𝑛𝑒

− 𝑗 𝜃−𝑚 −Φ+𝑚𝑛𝑒
− 𝑗 𝜃+𝑚 (7.15)
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where

𝑨±𝑚𝑛 ≡
1
𝑙𝑛

∬
𝐺𝐴

𝑥𝑥 (𝒓c±
𝑚 ; 𝒓 ′) 𝒇 𝑛 (𝒓 ′) d𝑆′

=
𝑒 𝑗 𝜃

+
𝑛

2𝐴+𝑛

∬
𝑇 +𝑛

𝐺𝐴
𝑥𝑥 (𝒓c±

𝑚 ; 𝒓 ′) 𝝆+𝑛 d𝑆′ + 𝑒
𝑗 𝜃−𝑛

2𝐴−𝑛

∬
𝑇 −𝑛

𝐺𝐴
𝑥𝑥 (𝒓c±

𝑚 ; 𝒓 ′) 𝝆−𝑛 d𝑆′ (7.16)

and

Φ±𝑚𝑛 ≡
𝑗

𝜔𝑙𝑛

∬
𝐺Φ(𝒓c±

𝑚 ; 𝒓 ′)∇′𝑠 · 𝒇 𝑛 (𝒓 ′) d𝑆′

=
𝑗

𝜔

[
𝑒 𝑗 𝜃

+
𝑛

𝐴+𝑛

∬
𝑇 +𝑛

𝐺Φ(𝒓c±
𝑚 ; 𝒓 ′) d𝑆′ − 𝑒

𝑗 𝜃−𝑛

𝐴−𝑛

∬
𝑇 −𝑛

𝐺Φ(𝒓c±
𝑚 ; 𝒓 ′) d𝑆′

]
(7.17)

and we have used the fact [2] that

∇𝑠 · 𝒇 𝑛 (𝒓) =


𝑙𝑛
𝐴+𝑛
𝑒 𝑗 𝜃

+
𝑛 if 𝒓 ∈ 𝑇+𝑛

− 𝑙𝑛
𝐴−𝑛

𝑒 𝑗 𝜃
−
𝑛 if 𝒓 ∈ 𝑇−𝑛

0 otherwise

(7.18)

which holds true for a basis function consisting of a pair of adjacent triangles. For basis functions
defined on nonadjacent pairs, the expression for the surface divergence includes a pair of line
singularities whose contributions to (7.17) can be shown to cancel.

Efficient Evaluation of the Generalized Impedance Matrix

The authors of [2] discuss the way in which redundant calculations can be avoided by considering
face-pair contributions to Z rather than the edge-pair contributions used in the definitions of (7.16)
and (7.17). Here we apply the same technique using our potential Green’s functions specific to this
problem. In addition, we individually track the contributions to the impedance matrix exhibiting
distinct frequency dependence, thus allowing a wide-band implementation.

Vector Potential Contributions Consider first a typical vector integral needed to evaluate Z𝑚𝑛.
The quantity

𝑨𝑢𝑣
𝑖 =

𝑒 𝑗 𝜃
±
𝑖

2𝐴𝑣

∬
𝑇 𝑣
𝐺𝐴

𝑥𝑥 (𝒓c𝑢; 𝒓 ′) 𝝆𝑖 d𝑆′ (7.19)

represents the magnetic vector potential at the centroid 𝒓c𝑢 of triangle 𝑇𝑢 due to the 𝑖th basis
function defined on triangle 𝑇 𝑣 . In (7.19) we have temporarily assumed a local numbering scheme
on the source triangle, with vertices at 𝒓1, 𝒓2, and 𝒓3, and where

𝝆𝑖 = ±(𝒓 ′ − 𝒓𝑖), 𝑖 = 1, 2, 3. (7.20)



7.1 Electric Current Mixed Potential Integral Equation 63

The plus sign is selected in (7.19) and (7.20) if the associated basis function defines positive current
to flow out through the 𝑖th edge of the triangle, which lies opposite the 𝑖th vertex. Using the
expressions for the magnetic vector potential Green’s function given in Chapter 5, Equation (7.19)
can be written as the sum of a frequency dependent term arising from the modal difference series,
added to several contributions arising from the spatial series:

𝑨𝑢𝑣
𝑖 =

𝜇̃

4𝜋
𝑒 𝑗 𝜃

±
𝑖

[
4𝜋𝑰𝑢𝑣1𝑖 +

1
2𝐴𝑣

∬
𝑇 𝑣

𝝆𝑖

𝜌c𝑢
00

d𝑆′ + 𝑢𝑱𝑢𝑣𝑖 +
𝑐3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝑢
𝑲𝑢𝑣
𝑖

]
(7.21)

where

𝑰𝑢𝑣1𝑖 =
1

2𝐴𝑣

∬
𝑇 𝑣
Σ𝑀1(𝒓c𝑢; 𝒓 ′) 𝝆𝑖 d𝑆′, (7.22a)

Σ𝑀1(𝒓c𝑢; 𝒓 ′) = 1
2𝐴

∑
𝑚,𝑛

[
2𝑉TE

i (𝜷𝑚𝑛, 𝑧𝑠, 𝑧𝑠)
𝑗𝜔𝜇̃

− 1
𝜅𝑚𝑛
− 𝑐3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝜅3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝒓c𝑢−𝒓′) , (7.22b)

𝑱𝑢𝑣𝑖 =
1

2𝐴𝑣

∬
𝑇 𝑣
𝝆𝑖

∑
𝑚,𝑛

𝑒−𝑢𝜌
c𝑢
𝑚𝑛 − 𝛿𝑚0𝛿𝑛0

𝑢𝜌c𝑢
𝑚𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) d𝑆′, (7.22c)

𝑲𝑢𝑣
𝑖 =

1
2𝐴𝑣

∬
𝑇 𝑣
𝝆𝑖

∑
𝑚,𝑛

𝑒−𝑢𝜌
c𝑢
𝑚𝑛𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) d𝑆′, (7.22d)

and 𝜌c𝑢
𝑚𝑛 = ∥𝒓c𝑢 − 𝒓 ′ − 𝑚𝒔1 − 𝑛𝒔2∥. Note that the only frequency dependence in (7.21) occurs in

the terms 𝑰𝑢𝑣1𝑖 and 𝑐3. Therefore, the contrubutions due to the singular integral, 𝑱𝑢𝑣𝑖 and 𝑲𝑢𝑣
𝑖 can be

computed once, stored, and combined appropriately at each new analysis frequency. Although 𝑰𝑢𝑣1𝑖
must be computed anew at each frequency, the modal difference series occurring in its integrand
can be very rapidly evaluated by simple interpolation into a two-dimensional table obtained from
the FFT (Section 5.4).

Calculation of the singular integral in (7.21) is discussed in Appendix B. Efficient evaluation of
the remaining integrals is discussed next.

Each of the integrals 𝑰𝑢𝑣1𝑖 , 𝑱𝑢𝑣𝑖 , and 𝑲𝑢𝑣
𝑖 is of the form

𝑳𝑖 = 𝒙̂𝐿𝑖𝑥 + 𝒚̂𝐿𝑖𝑦 =
1

2𝐴𝑣

∬
𝑇 𝑣
𝝆𝑖 𝑓 (𝒓; 𝒓 ′) d𝑆′. (7.23)

Each involves a bounded, well-behaved integrand which can be integrated numerically using a
low-order Gaussian scheme designed especially for surface integration (cubature) over triangular
domains [22]. However, it is advantageous to first express them in terms of integrals which do
not depend on the particular basis function index 𝑖. To accomplish this, we employ the so-called
normalized area coordinates (𝜉, 𝜂, 𝜁).3 The source point can be written in terms of area coordinates
as

𝒓 ′ = 𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3 (7.24)
3In this section “𝜂” is used to mean one of the normalized area coordinates. Elsewhere in these notes the same

symbol may be used to represent the intrinsic impedance of a dielectric medium.
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so that
𝝆𝑖 = ±(𝒓 ′ − 𝒓𝑖) = ± (𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3 − 𝒓𝑖) . (7.25)

where the {𝒓𝑖} are the vertices of the source triangle 𝑇 𝑣 having area 𝐴𝑣 . Only two of the three
(nonnegative) coordinates can be independently specified since 𝜉 + 𝜂 + 𝜁 = 1 for points in the
triangle. The area element in normalized area coordinates is d𝑆′ = 2𝐴𝑣 d𝜉 d𝜂.

The desired integral 𝑳𝑖 can be expressed in terms of scalar integrals over normalized area
coordinates which are independent of 𝑖 in the following way.

𝑳𝑖 = ±
[
𝒓1𝐿 𝜉 + 𝒓2𝐿𝜂 + 𝒓3𝐿𝜁 − 𝒓𝑖𝐿

]
(7.26)

where

𝐿 𝜉 =
∫ 1

0

∫ 1−𝜂

0
𝜉 𝑓 (𝒓c𝑢; 𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3) d𝜉 d𝜂 (7.27a)

𝐿𝜂 =
∫ 1

0

∫ 1−𝜂

0
𝜂 𝑓 (𝒓𝑐𝑢; 𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3) d𝜉 d𝜂 (7.27b)

𝐿𝜁 =
∫ 1

0

∫ 1−𝜂

0
𝜁 𝑓 (𝒓𝑐𝑢; 𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3) d𝜉 d𝜂 (7.27c)

𝐿 =
∫ 1

0

∫ 1−𝜂

0
𝑓 (𝒓𝑐𝑢; 𝜉 𝒓1 + 𝜂𝒓2 + 𝜁 𝒓3) d𝜉 d𝜂. (7.27d)

It is important to note that the above integrals are not all independent. We also have that

𝐿 = 𝐿 𝜉 + 𝐿𝜂 + 𝐿𝜁 (7.28)

so that in general there are three integrals to be numerically evaluated for each observation point
/ source triangle pair. These integrals, when weighted according to Equation (7.26) contribute to
as many as nine entries of Z, depending on the number of basis functions defined in each triangle.
They are computed using the seven-point cubature formula found in, e.g., [22] or [23].∫ 1

0

∫ 1−𝜂

0
𝑓 (𝜉, 𝜂) d𝜉 d𝜂 ≈

7∑
𝑘=1

𝑤𝑘 𝑓 (𝜉𝑘 , 𝜂𝑘). (7.29)

The sample points and weights are given in Table 7.1.

Scalar Potential Contributions In addition to the vector integrals just discussed, it is also
necessary to calculate scalar integrals of the form

Φ𝑢𝑣
𝑖 = ± 𝑗 𝑒

𝑗 𝜃±𝑖

𝜔𝐴𝑣

∬
𝑇 𝑣
𝐺Φ(𝒓𝑐𝑢; 𝒓 ′) d𝑆′. (7.30)

Φ𝑢𝑣
𝑖 is the electric scalar potential at the centroid of triangle 𝑇𝑢 due to the surface electric charge

density associated with the 𝑖th basis function defined on triangle 𝑇 𝑣 . As before, the sign is taken
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𝒌 𝝃𝒌 𝜼𝒌 𝒘𝒌

1 0.33333333333333333 0.33333333333333333 0.11250000000000000
2 0.10128650732345633 0.79742698535308730 0.06296959027241358
3 0.79742698535308730 0.10128650732345633 0.06296959027241358
4 0.10128650732345633 0.10128650732345633 0.06296959027241358
5 0.47014206410511505 0.05971587178976989 0.06619707639425308
6 0.05971587178976989 0.47014206410511505 0.06619707639425308
7 0.47014206410511505 0.47014206410511505 0.06619707639425308

Table 7.1 Sample points and weights for seven point triangular cubature.

to be positive if the basis function in question defines positive reference current to flow out of 𝑇 𝑣

through the 𝑖th edge. We proceed as before, using the results in Chapter 5 for the electric scalar
potential Green’s function to write the above integral as

Φ𝑢𝑣
𝑖 =

± 𝑗 𝑒 𝑗 𝜃±𝑖
2𝜋𝜔𝜖

[
4𝜋𝐼𝑢𝑣2 +

1
2𝐴𝑣

∬
𝑇 𝑣

d𝑆′

𝜌c𝑢
00
+ 𝑢𝐽𝑢𝑣 + 𝑑3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝑢
𝐾𝑢𝑣

]
(7.31)

where

𝐼𝑢𝑣2 =
1

2𝐴𝑣

∬
𝑇 𝑣
Σ𝑀2(𝒓c𝑢; 𝒓 ′) d𝑆′, (7.32a)

Σ𝑀2(𝒓c𝑢; 𝒓 ′) = 1
2𝐴

∑
𝑚,𝑛

[
2 𝑗𝜔𝜖 (𝑉TM

i −𝑉TE
i )

𝛽2
𝑚𝑛

− 1
𝜅𝑚𝑛
− 𝑑3(𝜇𝑠 , 𝜖𝑠 ,𝜇𝑠+1, 𝜖𝑠+1)

𝜅3
𝑚𝑛

]
𝑒− 𝑗𝜷𝑚𝑛 ·(𝒓c𝑢−𝒓′) , (7.32b)

𝐽𝑢𝑣 =
1

2𝐴𝑣

∬
𝑇 𝑣

∑
𝑚,𝑛

𝑒−𝑢𝜌
c𝑢
𝑚𝑛 − 𝛿𝑚0𝛿𝑛0

𝑢𝜌c𝑢
𝑚𝑛

𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) d𝑆′, (7.32c)

𝐾𝑢𝑣 =
1

2𝐴𝑣

∬
𝑇 𝑣

∑
𝑚,𝑛

𝑒−𝑢𝜌
c𝑢
𝑚𝑛𝑒− 𝑗 (𝑚𝜓1+𝑛𝜓2) d𝑆′. (7.32d)

Note that 𝐽𝑢𝑣 and 𝐾𝑢𝑣 have already been computed as scalar portions of the corresponding vector
integrals 𝑱𝑢𝑣𝑖 and 𝑲𝑢𝑣

𝑖 , respectively (see Equation 7.27d). The only new quantities to be computed
are 𝐼𝑢𝑣2 and the singular integral. The integral 𝐼𝑢𝑣2 can be computed in exactly the same manner
as 𝐼𝑢𝑣1 using the FFT. Evaluation of the singular integral is discussed in Appendix B. Note that the
only frequency dependence in (7.31) occurs in the factor 𝜔 and the terms 𝐼𝑢𝑣2 and 𝑑3.

Surface Impedance Contributions The contribution to the generalized impedance matrix due
to finite surface impedance of the conducting layer is given by the inner product〈

𝑍𝑠 𝒇 𝑛/𝑙𝑛, 𝒇𝑚/𝑙𝑚
〉
. (7.33)
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Note that in most cases basis functions 𝑚 and 𝑛 do not share any common support and the inner
product yields zero. Otherwise, two cases remain. Either 𝑛 = 𝑚, or 𝑛 ≠ 𝑚 with edges 𝑛 and 𝑚
common to a single triangle. The formulas for the inner product in these cases, assuming that the
surface impedance is constant on each triangle face, are derived in Appendix C. For 𝑛 = 𝑚 the
result is 〈

𝑍𝑠 𝒇 𝑛/𝑙𝑛, 𝒇 𝑛/𝑙𝑚
〉
=

𝑍+𝑠
48𝐴+𝑛

(3𝑙+𝑎
2 + 3𝑙+𝑏

2 − 𝑙2𝑛) +
𝑍−𝑠

48𝐴−𝑛
(3𝑙−𝑎2 + 3𝑙−𝑏

2 − 𝑙2𝑛) (7.34)

where the plus and minus signs refer to triangles 𝑇+𝑛 and 𝑇−𝑛 , respectively, and 𝑙±𝑎 and 𝑙±𝑏 are the
lengths of the two other edges on these triangles. For 𝑛 ≠ 𝑚 the result is〈

𝑍𝑠 𝒇 𝑛/𝑙𝑛, 𝒇𝑚/𝑙𝑚
〉
= ±𝑒 𝑗 (𝜃𝑛−𝜃𝑚) 𝑍

𝑚𝑛
𝑠

48𝐴𝑚𝑛
(𝑙2𝑚 + 𝑙2𝑛 − 3𝑙2𝑝) (7.35)

where the double superscript 𝑚𝑛 refers to the triangle common to basis functions 𝑚 and 𝑛 and 𝑙𝑝 is
the length of the third edge. The minus sign is taken if one of the basis functions 𝒇𝑚 and 𝒇 𝑛 define
positive current flow out of the triangle while the other basis function defines positive current flow
into the triangle. If the two basis functions agree in this respect the plus sign is used.

7.1.3 Generalized Voltage Vector

The elements of the generalized voltage vector are defined as

V𝑚 =
〈
𝑬inc, 𝒇𝑚/𝑙𝑚

〉
=

1
𝑙𝑚

∬
𝑬inc · 𝒇 ∗𝑚 d𝑆, 𝑚 = 1, 2, . . . , 𝑁𝐽 . (7.36)

The incident field 𝑬inc is the field that would exist in the absence of the FSS metalization due to
an incoming, normalized Floquet mode from Region 1 or 𝑁 with unit amplitude coefficient. This
scenario was treated in Chapter 6 and we use the results derived there. Let 𝑖 ∈ {1, 𝑁} be the region
index designating the source of the incoming Floquet mode. The mode index is 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞)
where 𝑝𝑞 = 1 for TE modes and 𝑝𝑞 = 2 for TM modes. The transverse portion of the incident
electric field evaluated in the 𝑧 = 𝑧𝑠 plane is:

𝑰𝑧 · 𝑬inc(𝝆) = 𝑉 (𝑧𝑠)𝒆 (𝑖)𝑞 (𝝆) = 𝑉 (𝑧𝑠)𝑐 (𝑖)𝑞 𝒕𝑞𝑒
− 𝑗𝜷𝑚𝑞𝑛𝑞 ·𝝆 (7.37)

where the modal polarization vector 𝒕𝑞 is defined as

𝒕𝑞 =

{
𝒛 × 𝜷̂𝑚𝑛 𝑝𝑞 = 1 (TE modes),
𝜷̂𝑚𝑛 𝑝𝑞 = 2 (TM modes),

(7.38)

and𝑉 (𝑧𝑠) is the equivalent transmission line voltage evaluated at 𝑧 = 𝑧𝑠 using the formulas presented
in Chapter 6.
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Upon substituting the incident field of (7.37) into (7.36) we find that

V𝑚 =
𝑉 (𝑧𝑠)𝑐 (𝑖)𝑞

𝑙𝑚
𝒕𝑞 ·

∬
𝒇 ∗𝑚(𝝆)𝑒

− 𝑗𝜷𝑚𝑞𝑛𝑞 ·𝝆 d𝑆

=
𝑉 (𝑧𝑠)𝑐 (𝑖)𝑞

𝑙𝑚
𝒕𝑞 · 𝒇

∗
𝑚(𝜷𝑚𝑞𝑛𝑞 ), 𝑚 = 1, 2, . . . , 𝑁𝐽 , (7.39)

where
𝒇𝑚(𝒌) =

∬
𝒇𝑚(𝝆) 𝑒 𝑗𝒌 ·𝝆 d𝑆 (7.40)

is the Fourier transform of the𝑚th basis function evaluated at 𝒌 = 𝒙̂𝑘𝑥 + 𝒚̂𝑘𝑦 . The Fourier transform
is numerically evaluated using the formulas of [24].

7.2 Magnetic Current Mixed Potential Integral Equation

In this section we consider an FSS that is modeled using equivalent magnetic surface current. This
choice is convenient when more than half of the unit cell area is occupied by perfectly conducting
metal.

We assume that the primary excitation is an incoming Floquet mode with unit amplitude,
incident upon the multilayered structure from either Region 1 or 𝑁.

Using the equivalence principle, the FSS aperture 𝑆 is filled in with PEC and an unknown
magnetic surface current (𝑴 on the incident side, and −𝑴 on the far side) is impressed just outside
the metal surface, so as to reproduce the scattered field exactly in all regions. The incident field
is thus the field that would exist in the structure with an unperforated ground plane at 𝑧 = 𝑧𝑠. It
includes reflections from the ground plane on the incident side of 𝑧𝑠 and is zero on the far or
transmitted side.

In the case where the incoming wave is incident from Region 1, the boundary value problem to
be solved is

𝑰𝑧 · [𝑯inc(𝑥, 𝑦, 𝑧𝑠) + 𝑯 (𝑠) {𝑴}(𝑥, 𝑦, 𝑧𝑠)] = 𝑰𝑧 · 𝑯 (𝑠+1) {−𝑴}(𝑥, 𝑦, 𝑧𝑠), (𝝆 ∈ 𝑆) (7.41)

where 𝐻inc is the total “incident” magnetic field in the presence of the unperforated PEC plane at
𝑧 = 0, 𝑯 (𝑠) {𝑴}(𝒓) is the magnetic field evaluated at point 𝒓 ∈ {𝑧 < 𝑧𝑠} that would be radiated
by the periodic magnetic surface current 𝑴 impressed on the groundplane at 𝑧 = 𝑧𝑠 − 0, and
𝑯 (𝑠+1) {𝑴}(𝒓) is the magnetic field evaluated at point 𝒓 ∈ {𝑧 > 𝑧𝑠} that would be radiated by the
periodic magnetic surface current 𝑴 impressed on the groundplane at 𝑧 = 𝑧𝑠 + 0. In the case where
the incoming wave is incident from Region 𝑁 , the boundary value problem to be solved is

𝑰𝑧 · 𝑯 (𝑠) {−𝑴}(𝑥, 𝑦, 𝑧𝑠) = 𝑰𝑧 · [𝑯inc(𝑥, 𝑦, 𝑧𝑠) + 𝑯 (𝑠+1) {𝑴}(𝑥, 𝑦, 𝑧𝑠)], (𝝆 ∈ 𝑆) (7.42)

Using the linearity of the magnetic field operator allows us to rewrite the both integral equations
in a unified form:

− 𝑰𝑧 · [𝑯 (𝑠) {𝑴}(𝝆) + 𝑯 (𝑠+1) {𝑴}(𝝆)] = 𝑰𝑧 · 𝑯inc(𝝆), (𝝆 ∈ 𝑆) (7.43)
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where it is to be understood that 𝝆 represents a point in the plane 𝑧 = 𝑧𝑠 . In terms of potentials the
boundary value problem becomes

[− 𝑗𝜔𝑭(𝝆) + ∇Ψ(𝝆)] · 𝑰𝑧 = 𝑯inc(𝝆) · 𝑰𝑧 , (𝝆 ∈ 𝑆) (7.44)

where the potentials can be expressed as superposition integrals

𝑰𝑧 · 𝑭(𝝆) =
∬

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′) · 𝑴 (𝝆′) d𝑆′, (7.45)

Ψ(𝝆) =
∬

𝐺Ψ (𝝆 − 𝝆′) · 𝑞m(𝝆′) d𝑆′. (7.46)

In (7.45) and (7.46), 𝑴 and 𝑞m are the unknown induced magnetic surface current and surface charge
densities, respectively, which will be determined by enforcing Equation (7.44) in an approximate
manner using the method of moments. The functions 𝐺𝐹

𝑥𝑥 and 𝐺Ψ are the sum of the left-looking
and right-looking Green’s functions as defined in Chapter 5:

𝐺𝐹
𝑥𝑥 (𝝆 − 𝝆′) =

←
𝐺𝐹

𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) +
→
𝐺𝐹

𝑥𝑥 (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) (7.47a)
𝐺Ψ (𝝆 − 𝝆′) =

←
𝐺Ψ (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠) +

→
𝐺Ψ (𝝆 − 𝝆′, 𝑧𝑠, 𝑧𝑠). (7.47b)

We again employ the triangle subdomain basis functions that were described in Section 7.1.1.
We now expand the unknown magnetic surface current density in a series of triangle-pair basis

functions:

𝑴 (𝝆) =
𝑁𝑀∑
𝑛=1

V𝑛

𝑙𝑛
𝒇 𝑛 (𝝆). (7.48)

The number of basis functions 𝑁𝑀 is equal to the number of interior edges of the triangulated
aperture in the 𝑧 = 0 plane of the unit cell plus the number of edges along the 𝜉 = 0 and 𝜂 = 0
borders of the unit cell. Note that V𝑛 has units of V.

7.2.1 Admittance Matrix

Reduction to Matrix Equation

Having expanded the unknown magnetic surface current in a series of suitable basis functions, it
is now desired to determine the coefficients in a way that satisfies Equation (7.44) as closely as
possible.

We choose our testing functions to be the same as our basis functions (Galerkin’s method).
Then taking the inner product of (7.44) with each of the functions 𝒇𝑚/𝑙𝑚 for 𝑚 = 1, 2, . . . , 𝑁𝑀

yields

− 𝑗𝜔
〈
𝑭, 𝒇𝑚/𝑙𝑚

〉
+

〈
∇Ψ, 𝒇𝑚/𝑙𝑚

〉
=

〈
𝑯inc, 𝒇𝑚/𝑙𝑚

〉
, 𝑚 = 1, 2, . . . , 𝑁𝑀 . (7.49)

We approximate the inner products in the same manner as was done for the case of electric sources:〈
∇Ψ, 𝒇𝑚/𝑙𝑚

〉
≈ 𝑒− 𝑗 𝜃−𝑚Ψ(𝒓c−

𝑚 ) − 𝑒− 𝑗 𝜃
+
𝑚Ψ(𝒓c+

𝑚 ) (7.50)
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where 𝒓c±
𝑚 is the centroid of triangle 𝑇±𝑚. Also, we use〈

𝑭, 𝒇𝑚/𝑙𝑚
〉
≈ 1

2

[
𝑭(𝒓c+

𝑚 ) · 𝝆c+
𝑚 𝑒
− 𝑗 𝜃+𝑚 + 𝑭(𝒓c−

𝑚 ) · 𝝆c−
𝑚 𝑒
− 𝑗 𝜃−𝑚

]
. (7.51)

𝝆c±
𝑚 is the vector 𝝆±𝑚 evaluated at the centroid of the corresponding triangle.

Substituting the expansion of the current (7.48) into (7.49) yields the desired matrix equation.

YV = I, (7.52)

where Y = [Y𝑚𝑛] is the so-called generalized admittance matrix, a square matrix of order 𝑁𝑀

with units of S. V = [V𝑚] is the column matrix of unknown magnetic current coefficients with
units of V. I= [I𝑚] is the excitation vector (or generalized current vector) with units of A. The
elements of the generalized admittance matrix are

Y𝑚𝑛 = − 𝑗𝜔
(
𝑭+𝑚𝑛 ·

𝝆c+
𝑚

2
𝑒− 𝑗 𝜃

+
𝑚 + 𝑭−𝑚𝑛 ·

𝝆c−
𝑚

2
𝑒− 𝑗 𝜃

−
𝑚

)
+ Ψ−𝑚𝑛𝑒

− 𝑗 𝜃−𝑚 − Ψ+𝑚𝑛𝑒
− 𝑗 𝜃+𝑚 (7.53)

where

𝑭±𝑚𝑛 ≡
1
𝑙𝑛

∬
𝐺𝐹

𝑥𝑥 (𝒓c±
𝑚 ; 𝒓 ′) 𝒇 𝑛 (𝒓 ′) d𝑆′

=
𝑒 𝑗 𝜃

+
𝑛

2𝐴+𝑛

∬
𝑇 +𝑛

𝐺𝐹
𝑥𝑥 (𝒓c±

𝑚 ; 𝒓 ′) 𝝆+𝑛 d𝑆′ + 𝑒
𝑗 𝜃−𝑛

2𝐴−𝑛

∬
𝑇 −𝑛

𝐺𝐹
𝑥𝑥 (𝒓c±

𝑚 ; 𝒓 ′) 𝝆−𝑛 d𝑆′ (7.54)

and

Ψ±𝑚𝑛 ≡
𝑗

𝜔𝑙𝑛

∬
𝐺Ψ (𝒓c±

𝑚 ; 𝒓 ′)∇′𝑠 · 𝒇 𝑛 (𝒓 ′) d𝑆′

=
𝑗

𝜔

[
𝑒 𝑗 𝜃

+
𝑛

𝐴+𝑛

∬
𝑇 +𝑛

𝐺Ψ (𝒓c±
𝑚 ; 𝒓 ′) d𝑆′ − 𝑒

𝑗 𝜃−𝑛

𝐴−𝑛

∬
𝑇 −𝑛

𝐺Ψ (𝒓c±
𝑚 ; 𝒓 ′) d𝑆′

]
(7.55)

Efficient Evaluation of the Generalized Admittance Matrix

Vector Potential Contributions Consider first a typical vector integral needed to evaluate Y𝑚𝑛.
The quantity

𝑭𝑢𝑣
𝑖 =

𝑒 𝑗 𝜃
±
𝑖

2𝐴𝑣

∬
𝑇 𝑣
𝐺𝐹

𝑥𝑥 (𝒓c𝑢; 𝒓 ′) 𝝆𝑖 d𝑆′ (7.56)

represents the electric vector potential at the centroid 𝒓c𝑢 of triangle 𝑇𝑢 due to the 𝑖th basis function
defined on triangle 𝑇 𝑣 . In (7.56) we have temporarily assumed a local numbering scheme on the
source triangle, with vertices at 𝒓1, 𝒓2, and 𝒓3, and where 𝝆𝑖 is defined in Equation (7.20). Using
the expressions for the electric vector potential Green’s function given in Chapter 5, Equation (7.56)
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can be written as the sum of a frequency dependent term arising from the modal difference series,
added to several contributions arising from the spatial series:

𝑭𝑢𝑣
𝑖 = − 𝜖

𝜋
𝑒 𝑗 𝜃

±
𝑖

[
𝜋𝜖0
𝜖

𝑰
′𝑢𝑣
1𝑖 +

1
2𝐴𝑣

∬
𝑇 𝑣

𝝆𝑖

𝜌c𝑢
00

d𝑆′ + 𝑢𝑱𝑢𝑣𝑖 +
𝑐 (𝑠)3 𝜖𝑠 + 𝑐 (𝑠+1)3 𝜖𝑠+1

2𝜖𝑢
𝑲𝑢𝑣
𝑖

]
(7.57)

where
𝑰
′𝑢𝑣
1𝑖 =

1
2𝐴𝑣

∬
𝑇 𝑣
Σ′𝑀1(𝒓c𝑢; 𝒓 ′) 𝝆𝑖 d𝑆′ (7.58)

and Σ′𝑀1 is defined in Equation (5.26). Note that the only frequency dependence in (7.57) occurs
in the terms 𝑰𝑢𝑣1𝑖 and 𝑐3. Therefore, the contrubutions due to the singular integral, 𝑱𝑢𝑣𝑖 and 𝑲𝑢𝑣

𝑖 can
be computed once, stored, and combined appropriately at each new analysis frequency. Although
the value of 𝑰′𝑢𝑣1𝑖 must be computed anew at each frequency, the modal difference series occurring
in its integrand can be very rapidly evaluated by simple interpolation into a two-dimensional table
obtained from the FFT (Section 5.4).

Scalar Potential Contributions In addition to the vector integrals just discussed, it is also
necessary to calculate scalar integrals of the form

Ψ𝑢𝑣
𝑖 = ± 𝑗 𝑒

𝑗 𝜃±𝑖

𝜔𝐴𝑣

∬
𝑇 𝑣
𝐺Ψ (𝒓𝑐𝑢; 𝒓 ′) d𝑆′. (7.59)

Ψ𝑢𝑣
𝑖 is the magnetic scalar potential evaluated at the centroid of triangle 𝑇𝑢 due to the surface

magnetic charge density associated with the 𝑖th basis function defined on triangle 𝑇 𝑣 . As before,
the sign is taken to be positive if the basis function in question defines positive reference current to
flow out of 𝑇 𝑣 through the 𝑖th edge. We proceed as before, using the results of Chapter 5 for the
magnetic scalar potential Green’s function to write the above integral as

Ψ𝑢𝑣
𝑖 =

±2 𝑗𝑒 𝑗 𝜃±𝑖
𝜋𝜔𝜇̃

[
𝜋𝜇̃

𝜇0
𝐼
′𝑢𝑣
2 + 1

2𝐴𝑣

∬
𝑇 𝑣

d𝑆′

𝜌c𝑢
00
+ 𝑢𝐽𝑢𝑣𝑖 +

𝜇̃

2𝑢

(
𝑑 (𝑠)3
𝜇𝑠
+
𝑑 (𝑠+1)3
𝜇𝑠+1

)
𝐾𝑢𝑣
𝑖

]
(7.60)

where
𝐼
′𝑢𝑣
2 =

1
2𝐴𝑣

∬
𝑇 𝑣
Σ′𝑀2(𝒓c𝑢; 𝒓 ′) d𝑆′ (7.61)

and Σ′𝑀2 is defined in Equation (5.26).
All of the integrals in (7.60) have been previously discussed. Note that the only frequency

dependence (apart from the leading factor of 1/𝜔) occurs in the terms 𝐼 ′𝑢𝑣2 and 𝑑3.

7.2.2 Generalized Current Vector

The elements of the generalized current vector are defined as

I𝑚 =
〈
𝑯inc, 𝒇𝑚/𝑙𝑚

〉
=

1
𝑙𝑚

∬
𝑯inc · 𝒇 ∗𝑚 d𝑆, 𝑚 = 1, 2, . . . , 𝑁𝐽 . (7.62)
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The incident field 𝑯inc is the field that would exist in the presence of the unperforated FSS
metalization due to an incoming, normalized Floquet mode from Region 1 or 𝑁 with unit amplitude
coefficient. This scenario was treated in Chapter 6 and we use the results derived there. Let
𝑖 ∈ {1, 𝑁} be the region index designating the source of the incoming Floquet mode. The mode
index is 𝑞 = (𝑝𝑞, 𝑚𝑞, 𝑛𝑞) where 𝑝𝑞 = 1 for TE modes and 𝑝𝑞 = 2 for TM modes. The transverse
portion of the incident magnetic field evaluated in the 𝑧 = 𝑧𝑠 plane is:

𝑰𝑧 · 𝑯inc(𝝆) = 𝐼 (𝑧𝑠)𝒉 (𝑖)𝑞 (𝝆) = 𝐼 (𝑧𝑠)𝑌 (𝑖)𝑞 𝑐 (𝑖)𝑞 𝒛 × 𝒕𝑞𝑒
− 𝑗𝜷𝑚𝑞𝑛𝑞 ·𝝆 (7.63)

where the modal polarization vector 𝒕𝑞 was defined in (7.38) and 𝐼 (𝑧𝑠) is the equivalent transmission
line current evaluated at 𝑧 = 𝑧𝑠 using the formulas presented in Chapter 6.

Upon substituting the incident field of (7.63) into (7.62) we find that

I𝑚 =
𝐼 (𝑧𝑠)𝑌 (𝑖)𝑞 𝑐 (𝑖)𝑞

𝑙𝑚
𝒛 × 𝒕𝑞 ·

∬
𝒇 ∗𝑚(𝝆)𝑒

− 𝑗𝜷𝑚𝑞𝑛𝑞 ·𝝆 d𝑆

=
𝐼 (𝑧𝑠)𝑌 (𝑖)𝑞 𝑐 (𝑖)𝑞

𝑙𝑚
𝒛 × 𝒕𝑞 · 𝒇

∗
𝑚(𝜷𝑚𝑞𝑛𝑞 ), 𝑚 = 1, 2, . . . , 𝑁𝑀 , (7.64)

where
𝒇𝑚(𝒌) =

∬
𝒇𝑚(𝝆) 𝑒 𝑗𝒌 ·𝝆 d𝑆 (7.65)

is the Fourier transform of the𝑚th basis function evaluated at 𝒌 = 𝒙̂𝑘𝑥 + 𝒚̂𝑘𝑦 . The Fourier transform
is numerically evaluated using the formulas of [24].



Chapter 8

Calculation of Performance Parameters

8.1 Introduction

Although knowledge of the magnitude and phase of the generalized scattering matrix (GSM)
elements provides a complete description of the frequency/polarization selective surface (FSS/PSS),
it is often more convenient for the user to examine other performance parameters. This chapter
defines a number of user-oriented performance parameters and describes how they are calculated
from elements of the GSM.

We are concerned here with only the two fundamental propagating modes in layers 1 and 𝑁:
the principal (𝑚 = 𝑛 = 0) TE and TM modes. We assume that these two regions are lossless, so
that their wavenumbers 𝑘1 and 𝑘𝑁 and intrinsic impedances 𝜂1 and 𝜂𝑁 are all positive numbers.
The scattering relation for the incident and reflected components of the dominant TE/TM modes is
determined from the GSM:

𝑏 (1)100
𝑏 (1)200
𝑏 (𝑁 )100
𝑏 (𝑁 )200


=

[
S11 S12

S21 S22

] 
𝑎 (1)100
𝑎 (1)200
𝑎 (𝑁 )100
𝑎 (𝑁 )200


=


S11

11 S11
12 S12

11 S12
12

S11
21 S11

22 S12
21 S12

22
S21

11 S21
12 S22

11 S22
12

S21
21 S21

22 S22
21 S22

22



𝑎 (1)100
𝑎 (1)200
𝑎 (𝑁 )100
𝑎 (𝑁 )200


. (8.1)

8.2 Horizontal and Vertical Polarization

The GSM relates the incident and scattered fields using a TE/TM plane wave decomposition. It
is sometimes more convenient (say, when analyzing a meanderline polarizer in other than the
principal planes) to consider scattering and reflection using a basis consisting of vertical and
horizontal polarization.

We need to define four sets of horizontal and vertical unit vectors. These are ( 𝒉̂inc
1 , 𝒗̂inc

1 ),
( 𝒉̂ref

1 , 𝒗̂
ref
1 ), ( 𝒉̂

inc
𝑁 , 𝒗̂

inc
𝑁 ), and ( 𝒉̂ref

𝑁 , 𝒗̂
ref
𝑁 ), which correspond respectively to Region 1 incident and

reflected waves and Region 𝑁 incident and reflected waves. These can be conveniently defined by
employing the so-called “Ludwig 3” (or “L3”) unit vectors defined in [25]. Following the cited
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reference, we define the horizontal and vertical unit vectors 𝒉̂ and 𝒗̂ in terms of their “look angles”
𝜃 and 𝜙 as

𝒉̂(𝜃, 𝜙) = 𝜽 (𝜃, 𝜙) cos 𝜙 − 𝝓(𝜃, 𝜙) sin 𝜙, (8.2a)
𝒗̂(𝜃, 𝜙) = 𝜽 (𝜃, 𝜙) sin 𝜙 + 𝝓(𝜃, 𝜙) cos 𝜙, (8.2b)

where

𝒓 (𝜃, 𝜙) = 𝒙̂ sin 𝜃 cos 𝜙 + 𝒚̂ sin 𝜃 sin 𝜙 + 𝒛 cos 𝜃, (8.3a)
𝜽 (𝜃, 𝜙) = 𝒙̂ cos 𝜃 cos 𝜙 + 𝒚̂ cos 𝜃 sin 𝜙 − 𝒛 sin 𝜃, (8.3b)
𝝓(𝜃, 𝜙) = −𝒙̂ sin 𝜙 + 𝒚̂ cos 𝜙. (8.3c)

We now define appropriate look angles for Regions 1 and 𝑁 for both incident and reflected waves.

FSS/PSS
Region 1
𝑘1, 𝜂1

𝑧 = 𝑧1 𝑧 = 𝑧𝑁−1

Region 𝑁
𝑘𝑁 , 𝜂𝑁

𝑧−𝑧

𝒌 inc
𝑁

𝒌ref
𝑁

𝒌 inc
1

𝒌ref
1

𝜃inc
1

𝜃ref
1

𝜃inc
𝑁

𝜃ref
𝑁

Figure 8.1 Incident and reflected wave vectors in Regions 1 and 𝑁 .

We begin by defining incident and reflected wave vectors in both regions as shown in Figure 8.1.

𝒌 inc
1 = 𝜷00 − 𝒛 𝑗𝛾 (1)00 , 𝒌ref

1 = 𝜷00 + 𝒛 𝑗𝛾
(1)
00 (8.4a)

𝒌 inc
𝑁 = 𝜷00 + 𝒛 𝑗𝛾

(𝑁 )
00 , 𝒌ref

𝑁 = 𝜷00 − 𝒛 𝑗𝛾 (𝑁 )00 . (8.4b)

Recall that for the assumed propagating modes, both 𝛾 (1)00 and 𝛾 (𝑁 )00 lie on the positive imaginary axis
of the complex plane. Also, note that the tangential components of the wave vectors are identical
for all four cases, as they must be due to the continuity (“phase match”) boundary condition at each
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interface. The look angles are now defined via

cos 𝜃inc
1 =

𝒛 · 𝒌 inc
1

𝑘1
=
− 𝑗𝛾 (1)00
𝑘1

=
|𝛾 (1)00 |
𝑘1

, sin 𝜃inc
1 =

𝛽00

𝑘1
(8.5a)

cos 𝜙inc
1 = 𝒙̂ · 𝜷00

𝛽00
=
𝛽00𝑥

𝛽00
, sin 𝜙inc

1 = 𝒚̂ · 𝜷00
𝛽00

=
𝛽00𝑦

𝛽00
(8.5b)

𝜃ref
1 = 𝜃inc

1 , 𝜙ref
1 = 𝜙inc

1 + 𝜋 (8.5c)

cos 𝜃ref
𝑁 =

𝒛 · 𝒌ref
𝑁

𝑘𝑁
=
− 𝑗𝛾 (𝑁 )00
𝑘𝑁

=
|𝛾 (𝑁 )00 |
𝑘𝑁

, sin 𝜃ref
𝑁 =

𝛽00

𝑘𝑁
(8.5d)

𝜙ref
𝑁 = 𝜙inc

1 , (8.5e)
𝜃inc
𝑁 = 𝜃ref

𝑁 , 𝜙inc
𝑁 = 𝜙ref

𝑁 + 𝜋 = 𝜙ref
1 (8.5f)

We then choose(
𝒉̂inc

1 , 𝒗̂inc
1

)
=

(
𝒉̂(𝜃inc

1 , 𝜙inc
1 ), 𝒗̂(𝜃

inc
1 , 𝜙inc

1 )
)
,

(
𝒉̂ref

1 , 𝒗̂
ref
1

)
=

(
𝒉̂(𝜃ref

1 , 𝜙
ref
1 ), 𝒗̂(𝜃

ref
1 , 𝜙

ref
1 )

)
, (8.6)(

𝒉̂inc
𝑁 , 𝒗̂

inc
𝑁

)
=

(
𝒉̂(𝜃inc

𝑁 , 𝜙
inc
𝑁 ), 𝒗̂(𝜃inc

𝑁 , 𝜙
inc
𝑁 )

)
,

(
𝒉̂ref
𝑁 , 𝒗̂

ref
𝑁

)
=

(
𝒉̂(𝜃ref

𝑁 , 𝜙
ref
𝑁 ), 𝒗̂(𝜃ref

𝑁 , 𝜙
ref
𝑁 )

)
. (8.7)

These choices imply that the tangential components of incident and reflected horizontal L3 vectors
of a given region are equal, as are the tangential components of the vertical vectors. In fact, if 𝑘_1
and 𝑘𝑁 are equal, then these statements are true considering both regions together.

8.3 Circular Polarization

The circular polarization basis vectors are defined in terms of the Ludwig 3 vectors as

𝑳̂
inc
1 =

√
2

2
( 𝒉̂inc

1 + 𝑗 𝒗̂
inc
1 ), 𝑹̂

inc
1 =

√
2

2
( 𝒉̂inc

1 − 𝑗 𝒗̂
inc
1 ), (8.8a)

𝑳̂
ref
1 =

√
2

2
( 𝒉̂ref

1 − 𝑗 𝒗̂
ref
1 ), 𝑹̂

ref
1 =

√
2

2
( 𝒉̂ref

1 + 𝑗 𝒗̂
ref
1 ), (8.8b)

𝑳̂
inc
𝑁 =

√
2

2
( 𝒉̂inc

𝑁 − 𝑗 𝒗̂inc
𝑁 ), 𝑹̂

inc
𝑁 =

√
2

2
( 𝒉̂inc

𝑁 + 𝑗 𝒗̂inc
𝑁 ), (8.8c)

𝑳̂
ref
𝑁 =

√
2

2
( 𝒉̂ref

𝑁 + 𝑗 𝒗̂ref
𝑁 ), 𝑹̂

ref
𝑁 =

√
2

2
( 𝒉̂ref

𝑁 − 𝑗 𝒗̂ref
𝑁 ), (8.8d)

(8.8e)

8.4 Scattering Relations for Alternate Basis Vectors

The GSM computed by PSSFSS defines the scattering relationship for fields decomposed into
principal (zero-order) TE and TM Floquet modes. It is also desired to determine the scattering
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between fields expressed as components along the four basis vectors 𝑳̂, 𝑹̂, 𝒉̂, and 𝒗̂. For example, it
is of interest to determine the Region 𝑁 transmitted LHCP and RHCP (left and right-hand circular
polarization) components for a horizontally polarized wave incident from Region 1 onto a PSS
composed of a meanderline polarizer.

8.4.1 Incident Fields

Region 1 Incidence

Consider a plane wave incident upon the FSS from Region 1:

𝑬inc = 𝐸 inc
1 𝝉̂𝑒− 𝑗𝒌

inc
1 ·(𝒓−𝒛𝑧1) , 𝑧 < 𝑧1 (8.9)

where 𝝉̂inc
1 is any of the Region 1 incidence unitary basis vectors previously introduced, and

𝐸 inc
1 =

√
𝑃0𝜂1

𝐴 cos 𝜃inc
1

=

√
𝑃0𝑘1𝜂1

|𝛾 (1)00 |𝐴
(8.10)

is chosen to ensure that the incident field is normalized to 𝑃0 = 1 w incident on the unit cell of area
𝐴. In order to find the fields scattered from the FSS by the incident field in (8.9), we express the
incident field as the sum of a TE and TM wave:

(𝒙̂𝒙̂ + 𝒚̂ 𝒚̂) · 𝑬inc = 𝑎 (1)100𝒆
(1)
100 + 𝑎

(1)
200𝒆

(1)
200 (8.11)

where it will be recalled that a subscript of (100) denotes the principal TE mode and (200) denotes
the principal TM mode. The expansion coefficients in (8.11) are determined by equating the
tangential components of (8.9) with (8.11) and invoking the orthogonality of the Floquet modes.
First for the TE mode:∬

𝑈 ′

(
𝑎 (1)100𝒆

(1)
100 + 𝑎

(1)
200𝒆

(1)
200

)
× (𝒉 (1)100)

∗ · 𝒛 d𝐴 =
∬

𝑈 ′
𝐸 inc

1 (𝝉̂
inc
1 − 𝒛𝒛 · 𝝉̂inc

1 )𝑒
− 𝑗𝒌 inc

1 ·𝝆 ×
(
𝒉 (1)100

)∗ · 𝒛 d𝐴

𝑎 (1)100 =
1
𝑃 (1)100

∬
𝑈 ′
𝐸 inc

1 (𝝉̂
inc
1 − 𝒛𝒛 · 𝝉̂inc

1 ) ×
[ (
𝑌 (1)100

)∗
𝒛 ×

(
𝑐 (1)100

)∗
𝒕100)

]
· 𝒛 d𝐴

=
𝐸 inc

1 𝑌 (1)100𝑐
(1)
100𝐴

𝑃0
𝝉̂inc

1 · 𝒕100 (8.12)

where we used the facts that 𝑃 (𝑖)𝑝𝑚𝑛 = 𝑃0 and the mode normalization constant and modal admittance
are positive for propagating modes. Using Equations (2.25), (2.15), and (8.10) this result can be
further simplified:

𝑎 (1)100 =
𝐴

𝑃0

√
𝑃0𝑘1𝜂1

|𝛾 (1)00 |𝐴
|𝛾 (1)00 |
𝑘1𝜂1

√
𝑘1𝜂1𝑃0

𝐴|𝛾 (1)00 |
𝝉̂inc

1 · 𝒕100 = 𝝉̂inc
1 · 𝒕100. (8.13)
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A similar derivation for determining the TM travelling wave coefficient results in

𝑎 (1)200 =
𝝉̂inc

1 · 𝒕200

cos 𝜃inc
1

. (8.14)

Region 𝑵 Incidence

Consider a plane wave incident upon the FSS from Region 𝑁:

𝑬inc = 𝐸 inc
𝑁 𝝉̂𝑒− 𝑗𝒌

inc
𝑁 ·(𝒓−𝒛𝑧𝑁 ) , 𝑧 > 𝑧𝑁 (8.15)

where 𝝉̂inc is any of the Region 𝑁 incidence unitary basis vectors previously introduced, and

𝐸 inc
𝑁 =

√
𝑃0𝑘𝑁 𝜂𝑁

|𝛾 (𝑁 )00 |𝐴
. (8.16)

Peforming a similar derivation to that done for the Region 1 incidence case results in similar
formulas for the travelling wave coefficients:

𝑎 (𝑁 )100 = 𝝉̂inc
𝑁 · 𝒕100, 𝑎 (𝑁 )200 =

𝝉̂inc
𝑁 · 𝒕200

cos 𝜃inc
𝑁

. (8.17)

8.4.2 Scattered Fields

Region 1 Scattered Fields

The electric fields scattered by the FSS into Region 1 and evaluated in the 𝑧 = 𝑧1 plane are

𝑬sc(0, 0, 𝑧1) = 𝑏 (1)100𝒆
(1)
100 + 𝑏

(1)
200

(
𝒆 (1)200 + 𝑗 𝒛𝑐

(1)
200𝛽00/𝛾 (1)00

)
(8.18)

where 𝑏 (1)100 and 𝑏 (1)200 are determined from the scattering relation (8.1).
Suppose now that we wish to determine the components of the Region 1 scattered electric field

along basis vectors 𝝉̂ref
1 , and 𝝈̂ref

1 , where (𝝉̂ref
1 , 𝝈̂ref

1 ) is either ( 𝒉̂ref
1 , 𝒗̂

ref
1 or ( 𝑳̂ref

1 , 𝑹̂
ref
1 ):

𝑬sc(0, 0, 𝑧1) = 𝐸 inc
1

(
𝑏 (1)𝜏 𝝉̂ref

1 + 𝑏
(1)
𝜎 𝝈̂ref

1
)
. (8.19)

Since the bases are unitary vectors, the coefficients are easily found by dotting the complex conjugate
of the basis vector with the given electric field. Performing this operation and solving for the basis
vector coefficient, we find that

𝑏 (1)𝜏 = 𝑏 (1)100
(
𝝉̂ref

1
)∗ · 𝒕100 + 𝑏 (1)200

(
𝝉̂ref

1
)∗ · (𝒕200 +

𝛽00

|𝛾 (1)00 |
𝒛

)
, (8.20a)

𝑏 (1)𝜎 = 𝑏 (1)100
(
𝝈̂ref

1
)∗ · 𝒕100 + 𝑏 (1)200

(
𝝈̂ref

1
)∗ · (𝒕200 +

𝛽00

|𝛾 (1)00 |
𝒛

)
(8.20b)
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Region 𝑵 Scattered Fields

The derivation to determine the scattered field coefficients for Ludwig 3 or circular polarization
basis vectors goes through exactly the same as for Region 1, except for a change in the sign of the
𝑧-component of TM electric field. The resulting formulas are

𝑏 (𝑁 )𝜏 = 𝑏 (𝑁 )100
(
𝝉̂ref
𝑁

)∗ · 𝒕100 + 𝑏 (𝑁 )200
(
𝝉̂ref
𝑁

)∗ · (𝒕200 −
𝛽00

|𝛾 (𝑁 )00 |
𝒛

)
, (8.21a)

𝑏 (𝑁 )𝜎 = 𝑏 (𝑁 )100
(
𝝈̂ref

𝑁

)∗ · 𝒕100 + 𝑏 (𝑁 )200
(
𝝈̂ref

𝑁

)∗ · (𝒕200 −
𝛽00

|𝛾 (𝑁 )00 |
𝒛

)
(8.21b)



Appendix A

Orthogonality of Floquet Modes

We wish to show that the Floquet modes are orthogonal in the following sense:∬
𝑈 ′

𝒆𝑝𝑚𝑛 × 𝒉∗𝑝′𝑚′𝑛′ · 𝒛 d𝐴 = 𝛿𝑝𝑝′𝛿𝑚𝑚′𝛿𝑛𝑛′𝑃𝑝𝑚𝑛 (A.1)

where 𝑈 ′ is the restriction of the unit cell to the plane 𝑧 = 0, 𝒆𝑝𝑚𝑛 and 𝒉𝑝′𝑚′𝑛′ are defined in
Equations (2.19), 𝛿𝑘𝑙 is the Kronecker delta, and 𝑃𝑝𝑚𝑛 is given in Equation (2.22). Verification of
Equation (A.1) is treated in two cases:

A.1 Both Modes Share Common Wave Vector

We consider here the case with 𝜷𝑚𝑛 = 𝜷𝑚′𝑛′ which implies that

𝑚𝜷1 + 𝑛𝜷2 = 𝑚′𝜷1 + 𝑛′𝜷2. (A.2)

Taking the cross product of each side of (A.2) with 𝜷1 shows that 𝑛 = 𝑛′, and similarly, crossing
both sides with 𝜷2 shows that 𝑚 = 𝑚′. It remains to show orthogonality when 𝑝 ≠ 𝑝′ and also that
the normalization given in Equation (A.1) is correct when 𝑝 = 𝑝′. These both follow immediately
from examining Equations (2.19), after noting that

• The cross product 𝒆𝑝𝑚𝑛 × 𝒉∗𝑝′𝑚𝑛 is identically zero for 𝑝 ≠ 𝑝′ at all points in the unit cell
due to colinearity of the two vectors, and

• The phase variation of the two factors in the cross product perfectly cancel.

A.2 Distinct Wave Vectors

Here we assume that the two wave vectors 𝜷𝑚𝑛 and 𝜷𝑚′𝑛′ are distinct. Orthogonality then depends
on the value of the integral

𝐼𝑚𝑛𝑚′𝑛′ ≡
∬

𝑈 ′
𝑒− 𝑗 (𝜷𝑚𝑛−𝜷𝑚′𝑛′ ) ·𝝆 d𝐴 =

∬
𝑈 ′
𝑒− 𝑗 [ (𝑚−𝑚

′)𝜷1+(𝑛−𝑛′)𝜷2 ] ·𝝆 d𝐴. (A.3)
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We introduce the change of variables 𝝆 = 𝜉1𝒔1 + 𝜉2𝒔2 so that the area element is d𝐴 = 𝐴 d𝜉1 d𝜉2,
where 𝐴 = 𝒛 · 𝒔1 × 𝒔2 is the transverse area of the unit cell. The integral in (A.3) then becomes

𝐼𝑚𝑛𝑚′𝑛′ = 𝐴
∫ 1

𝜉1=0

∫ 1

𝜉2=0
𝑒− 𝑗 [ (𝑚−𝑚

′)𝜷1+(𝑛−𝑛′)𝜷2 ] ·( 𝜉1𝒔1+𝜉2𝒔2) d𝜉1 d𝜉2 (A.4)

We now employ the properties of the direct and reciprocal lattice vectors:

𝜷1 · 𝒔1 = 2𝜋, 𝜷1 · 𝒔2 = 0 (A.5a)
𝜷2 · 𝒔2 = 2𝜋, 𝜷2 · 𝒔1 = 0. (A.5b)

The integral then becomes

𝐼𝑚𝑛𝑚′𝑛′ = 𝐴
∫ 1

𝜉1=0

∫ 1

𝜉2=0
𝑒− 𝑗2𝜋 [ (𝑚−𝑚

′) 𝜉1+(𝑛−𝑛′) 𝜉2 ] d𝜉1 d𝜉2

= 𝐴𝑒− 𝑗 (𝑚−𝑚
′) 𝜋𝑒− 𝑗 (𝑛−𝑛

′) 𝜋 𝑗0 [(𝑚 − 𝑚′)𝜋] 𝑗0 [(𝑛 − 𝑛′)𝜋]
= 𝐴𝑒− 𝑗 (𝑚−𝑚

′) 𝜋𝑒− 𝑗 (𝑛−𝑛
′) 𝜋𝛿𝑚𝑚′𝛿𝑛𝑛′

= 𝐴𝛿𝑚𝑚′𝛿𝑛𝑛′, (A.6)

where we have used the identity ∫ 1

0
𝑒− 𝑗2𝜋𝛼𝑥d𝑥 = 𝑒− 𝑗 𝛼𝜋 𝑗0(𝛼𝜋), (A.7)

𝑗0 being the spherical Bessel function of the first kind of order zero:

𝑗0(𝑥) =
{

sin 𝑥
𝑥 if 𝑥 ≠ 0

1 if 𝑥 = 0.
(A.8)

This completes the orthogonality proof.



Appendix B

Evaluation of Singular Integrals

This Appendix is concerned with evaluating the singular integrals that occur in Equations (7.21)
and (7.31). Since we are concerned only with strictly planar structures, both integrals can be simply
evaluated by specializing the formulas of [10] to the case where the observation point is in the plane
of the source triangle.

The two integrals of interest are∬
𝑇 𝑣

d𝑆′

∥𝒓 ′ − 𝒓𝑐𝑢 ∥ and
∬

𝑇 𝑣

𝒓 ′ − 𝒓𝑖
∥𝒓 ′ − 𝒓𝑐𝑢 ∥ d𝑆′ (B.1)

where 𝑇 𝑣 is the source triangle, and 𝒓𝑐𝑢 is the centroid of the observation triangle. For the purposes
of this Appendix we adopt a local numbering scheme 𝒓𝑖 ∈ {𝒓1, 𝒓2, 𝒓3} for the source triangle
vertices. For convenience in the formulas presented below, we also define 𝒓4 ≡ 𝒓1.

The second, vector, integral in (B.1) can be written∬
𝑇 𝑣

𝒓 ′ − 𝒓𝑖
∥𝒓 ′ − 𝒓𝑐𝑢 ∥ d𝑆′ =

∬
𝑇 𝑣

𝒓 ′ − 𝒓𝑐𝑢

∥𝒓 ′ − 𝒓𝑐𝑢 ∥ d𝑆′ + (𝒓𝑐𝑢 − 𝒓𝑖)
∬

𝑇 𝑣

d𝑆′

∥𝒓 ′ − 𝒓𝑐𝑢 ∥ (B.2)

which is a more convenient representation, because it is now expressed in terms of the two integrals
directly treated in [10]. We thus have the two formulas∬

𝑇 𝑣

d𝑆′

∥𝒓 ′ − 𝒓𝑐𝑢 ∥ =
3∑
𝑖=1

𝑷0
𝑖 · 𝒖̂𝑖 ln

𝑃+𝑖 + 𝑙+𝑖
𝑃−𝑖 + 𝑙−𝑖

(B.3a)∬
𝑇 𝑣

𝒓 ′ − 𝒓𝑐𝑢

∥𝒓 ′ − 𝒓𝑐𝑢 ∥ d𝑆′ =
1
2

3∑
𝑖=1

𝒖̂𝑖

[(
𝑃0
𝑖

)2
ln
𝑃+𝑖 + 𝑙+𝑖
𝑃−𝑖 + 𝑙−𝑖

+ 𝑙+𝑖 𝑃+𝑖 − 𝑙−𝑖 𝑃−𝑖
]

(B.3b)

which are the specializations of Equations (5) and (6), respectively, of [10] to the case when the
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variable 𝑑 defined in [10] is zero. The additional variables needed to evaluate (B.3) are

𝒍 𝑖 = 𝒓𝑖+1 − 𝒓𝑖 , 𝑙𝑖 = ∥ 𝒍 𝑖 ∥ , 𝒍 𝑖 = 𝒍 𝑖/𝑙𝑖 , (B.4a)

𝑙+𝑖 = (𝒓𝑖+1 − 𝒓𝑐𝑢) · 𝒍 𝑖 , 𝑙−𝑖 = (𝒓𝑖 − 𝒓𝑐𝑢) · 𝒍 𝑖 , 𝒖̂𝑖 = 𝒍 𝑖 × 𝒏̂, (B.4b)

𝒏̂ =
(𝒓3 − 𝒓2) × (𝒓1 − 𝒓2)

2𝐴𝑣
, 𝑷0

𝑖 = (𝒓𝑖 − 𝒓𝑐𝑢) − 𝑙−𝑖 𝒍, 𝑃0
𝑖 =



𝑷0
𝑖



 , (B.4c)

𝑃+𝑖 = ∥𝒓𝑖+1 − 𝒓𝑐𝑢 ∥ , 𝑃−𝑖 = ∥𝒓𝑖 − 𝒓𝑐𝑢 ∥ (B.4d)



Appendix C

Basis Function Inner Products

This appendix is concerned with computing the inner product of two basis functions
〈
𝒇 𝑛, 𝒇𝑚

〉
.

Clearly, the inner product is nonzero only when the support of basis functions 𝑚 and 𝑛 are common
to at least a single triangle. The two cases to be treated are when 𝑚 = 𝑛, or 𝑚 ≠ 𝑛.

C.0.1 Basis Function Self Inner Product

Using the definition of Equation (7.5) we have〈
𝒇 𝑛, 𝒇 𝑛

〉
= 𝐵+ + 𝐵− (C.1)

where

𝐵± =
𝑙2𝑛

4𝐴±𝑛2

∬
𝑇 ±𝑛

𝝆±𝑛 · 𝝆±𝑛 𝑑𝑆. (C.2)

As shown in Figure C.1 let 𝒍+𝑎 and 𝒍+𝑏 be vectors drawn from the free vertex (i.e. the vertex which

-�
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�
�
�
�
���

HHHHHHHHj

��������*

𝑇+𝑛

𝑇−𝑛

𝒍+𝑎

𝒍−𝑎

𝒍+𝑏

𝒍−𝑏

𝑙𝑛

Figure C.1 Geometry for calculating self-term inner product.

is not incident upon edge 𝑙𝑛) of triangle 𝑇+𝑛 to the nodes of edge 𝑛. Vectors 𝒍−𝑎 and 𝒍−𝑏 are defined
similarly for triangle 𝑇−𝑛 except that they are directed towards the free vertex. Using normalized
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area coordinates we can then write 𝝆±𝑛 as

𝝆±𝑛 = 𝜉 𝒍±𝑎 + 𝜂𝒍±𝑏 . (C.3)

Equation (C.2) can now be evaluated as

𝐵± =
𝑙2𝑛

4𝐴±𝑛2

∫ 1

0

∫ 1−𝜂

0
(𝜉 𝒍±𝑎 + 𝜂𝒍±𝑏) · (𝜉 𝒍±𝑎 + 𝜂𝒍±𝑏) (2𝐴±𝑛 d𝜉 d𝜂)

=
𝑙2𝑛

2𝐴±𝑛

∫ 1

0

∫ 1−𝜂

0
(𝜉2𝑙±𝑎

2 + 𝜂2𝑙±𝑏
2 + 2𝜉𝜂𝒍±𝑎 · 𝒍±𝑏) d𝜉 d𝜂

=
𝑙2𝑛

24𝐴±𝑛
(𝑙±𝑎

2 + 𝑙±𝑏
2 + 𝒍±𝑎 · 𝒍±𝑏)

=
𝑙2𝑛

48𝐴±𝑛
(3𝑙±𝑎

2 + 3𝑙±𝑏
2 − 𝑙2𝑛). (C.4)

The final equality above follows from the Law of Cosines:

𝒍±𝑎 · 𝒍±𝑏 =
1
2
(𝑙±𝑎

2 + 𝑙±𝑏
2 − 𝑙2𝑛). (C.5)

Although the above result assumed that the two triangles comprising the support of 𝒇 𝑛 are adjacent,
the derivation is identical in the case where they are separated.

C.0.2 Inner Product of Distinct Basis Functions

We denote the triangle common to basis functions 𝑚 and 𝑛 as 𝑇𝑚𝑛. The vertices are denoted by 𝒓𝑎,
𝒓𝑏, and 𝒓𝑐 , where without loss of generality we assume, as shown in Figure C.2, that 𝒓𝑎 is opposite
the center edge of basis function 𝑚 and 𝒓𝑏 is opposite the center edge of basis function 𝑛. We also

�
�

��@
@

@@

𝒓𝑎

𝒓𝑏 𝒓𝑐𝑚

𝑛
𝑇𝑚𝑛r
r

r

Figure C.2 Geometry for calculating inner product of distinct basis functions.

define 𝒍 𝑖 𝑗 = 𝒓𝑖 − 𝒓 𝑗 , for 𝑖, 𝑗 ∈ {𝑎, 𝑏, 𝑐}. Then〈
𝒇 𝑛, 𝒇𝑚

〉
= ± 𝑙𝑎𝑐𝑙𝑏𝑐

4(𝐴𝑚𝑛)2
𝑒 𝑗 (𝜃𝑛−𝜃𝑚)

∬
𝑇𝑚𝑛
(𝒓 − 𝒓𝑏) · (𝒓 − 𝒓𝑎) d𝑆. (C.6)



Appendix C Basis Function Inner Products 84

The negative sign above is used if one of the basis functions 𝒇 𝑛 or 𝒇𝑚 defines positive current
to flow out of the triangle while the other basis function defines positive current to flow into the
triangle. If the two basis functions agree in this respect the positive sign is used. Using normalized
area coordinates the factors in the integral can be written

𝒓 − 𝒓𝑎 = 𝜉 𝒍𝑏𝑎 + 𝜂𝒍𝑐𝑎 (C.7)

𝒓 − 𝒓𝑏 = (𝒓 − 𝒓𝑎) + (𝒓𝑎 − 𝒓𝑏) = 𝜉 𝒍𝑏𝑎 + 𝜂𝒍𝑐𝑎 + 𝒍𝑎𝑏 . (C.8)

The inner product can now be written as the phase factor times the sum of two terms〈
𝒇 𝑛, 𝒇𝑚

〉
= ±(𝐶1 + 𝐶2)𝑒 𝑗 (𝜃𝑛−𝜃𝑚) (C.9)

where

𝐶1 =
𝑙𝑎𝑐𝑙𝑏𝑐
2𝐴𝑚𝑛

∫ 1

0

∫ 1−𝜂

0
(𝜉 𝒍𝑏𝑎 + 𝜂𝒍𝑐𝑎) · (𝜉 𝒍𝑏𝑎 + 𝜂𝒍𝑐𝑎) d𝜉 d𝜂 (C.10)

and

𝐶2 =
𝑙𝑎𝑐𝑙𝑏𝑐
2𝐴𝑚𝑛

∫ 1

0

∫ 1−𝜂

0
𝒍𝑎𝑏 · (𝜉 𝒍𝑏𝑎 + 𝜂𝒍𝑐𝑎) d𝜉 d𝜂 (C.11)

𝐶1 is easily found using the results of Section C.0.1:

𝐶1 =
𝑙𝑎𝑐𝑙𝑏𝑐
48𝐴𝑚𝑛

(3𝑙2𝑎𝑏 + 3𝑙2𝑎𝑐 − 𝑙2𝑏𝑐). (C.12)

An expression for 𝐶2 is also obtained with a bit of algebra:

𝐶2 =
𝑙𝑎𝑐𝑙𝑏𝑐
2𝐴𝑚𝑛

∫ 1

0

∫ 1−𝜂

0
(−𝜉𝑙2𝑎𝑏 + 𝜂𝒍𝑎𝑏 · 𝒍𝑐𝑎) d𝜉 d𝜂

=
𝑙𝑎𝑐𝑙𝑏𝑐
12𝐴𝑚𝑛

( 𝒍𝑎𝑏 · 𝒍𝑐𝑎 − 𝑙2𝑎𝑏)

=
𝑙𝑎𝑐𝑙𝑏𝑐
24𝐴𝑚𝑛

(𝑙2𝑏𝑐 − 3𝑙2𝑎𝑏 − 𝑙2𝑎𝑐) (C.13)

where the last equality follows from the Law of Cosines.
Combining the expressions for 𝐶1 and 𝐶2 yields〈

𝒇 𝑛, 𝒇𝑚
〉
= ±𝑒 𝑗 (𝜃𝑛−𝜃𝑚) 𝑙𝑎𝑐𝑙𝑏𝑐

48𝐴𝑚𝑛
(𝑙2𝑎𝑐 + 𝑙2𝑏𝑐 − 3𝑙2𝑎𝑏) (C.14)

which is the desired formula.
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