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ABSTRACT

In this paper, we present RayTracer.jl, a renderer in Julia that is
fully differentiable using source-to-source Automatic Differentia-
tion (AD). This means that RayTracer not only renders 2D im-
ages from 3D scene parameters, but it can be used to optimize for
model parameters that generate a target image in a Differentiable
Programming (DP) pipeline. Our renderer is a complete general
purpose renderer, which means that unlike most previous work,
we do not make any changes to the renderer to make it differen-
tiable. Additionally, we interface our renderer with the deep learn-
ing framework Flux for use in combination with neural networks.
In this paper, we also demonstrate the use of this differentiable ren-
derer in rendering tasks and in solving inverse graphics problems
using gradients.
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1. Introduction

Rendering is a technique of generating photo-realistic or non-
photo-realistic 2D projections from 3D objects. As such, there are
several algorithms for rendering complex scenes. One of the most
popular techniques for photo-realistic rendering is ray tracing [2].
For real-time rendering we use techniques like rasterization [13]
are used.

Ray Tracing is a technique in computer graphics for rendering
3D graphics with complex light interactions. In this technique, rays
are traced backward from the eye/camera to the light source(s). The
ray can undergo reflection and refraction due to interactions with
the objects in its path. This technique, however, is very computa-
tionally expensive and hence difficult to do in real-time.

Since ray tracing leverages the properties of the materials of
the objects in the scene, a natural extension to the rendering prob-
lem would be to extract the exact properties of the materials, light-
ing, and so on, given an image of a scene. This task is known as

inverse rendering. Calculating analytic gradients for every single
parameter of the scene is a very tedious process and prone to errors.
This has made it a difficult task to present a general gradient-based
inverse rendering method. As such, there is only one framework in
our knowledge, redner [10], which has been able to do so by us-
ing analytic gradients. However, we bypass this problem by using
AD. There have also been attempts at making rasterization differ-
entiable [11]; however, this involves making changes in the core
technique which is against our design principles.

Rendering is a computationally expensive technique, and so
it is generally done in static languages like C++. Developing soft-
ware in such languages are incredibly time-consuming. Also, most
languages lack the support of the state of the art automatic differ-
entiation tools like Zygote [4], Jax [6], which are generally imple-
mented for high-level languages like Julia and Python. As such, itis
challenging to develop differentiable renderers in those languages
and then interface with popular deep learning software. Most of the
other existing AD softwares, which the authors are familiar with,
like CasADi [1] does not seamlessly integrate with packages, which
means one needs to rewrite the software to use specific AD tools.

In this paper, we explore the idea of differentiability through
a renderer, by leveraging the AD in Julia [3]. We present a fully
general renderer capable of handling complex scenes and able to
differentiate through them. We do not rely on analytic gradients but
use source-to-source AD to generate efficient gradient code in the
backward pass. Our renderer contains very little code for integra-
tion with Zygote, and hence, in theory, we can plug in any other
AD software written in Julia.

2. Differentiable Ray Tracing

There are several photo-realistic renderers available which con-
tain a vast amount of implicit knowledge. Differentiation allows
such renderers to make use of gradients to learn the inverse map-
ping from an image to its parameter space. However, as usual, it
is challenging to compute efficient derivatives from a production-
ready renderer, typically written in a performance language like
C++. This provides the primary motivation for the development of
RayTracer.jl. We develop an entire general-purpose ray tracer in a
high-level numerical computation language. The presence of strong
automatic differentiation libraries like Zygote.jl makes it trivial to
compute efficient derivatives from the renderer. We present the per-
formance gains we get on using Zygote as compared to Central
Differencing in Section 5.2.
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Fig. 1: Utah Teapot Render from three different views. The camera definition shown in Listing 1 can be easily modified to generate all these

views.

RayTracer.jl [12] is a package for Differentiable Ray Tracing
written to solve this particular issue. It relies heavily on the source-
to-source automatic differentiation package, Zygote, for computing
gradients with respect to arbitrary scene parameters. This package
allows the user to configure the location of objects, lights, and a
camera in the scene. This scene is then interpreted by the renderer
to generate the image. RayTracer.jl is naturally interfaced with the
deep learning library Flux [5], due to the common AD backend, for
use in more complex differentiable pipelines.

Ray Tracing is primarily a non-differentiable operation. As
such, any technique that is used to compute gradients for scene pa-
rameters by backpropagating through a ray tracer would be some
approximation of gradients. In order to make our rendering differ-
entiable, we sample only a single ray for every pixel on the screen.
For better image quality, we should be sampling multiple rays for a
single pixel value, but this would make differentiation a bit tricky.
Since we have only one ray per pixel, it is bound to intersect with
only a single triangle in the 3D scene. The color of a pixel is a
weighted sum of colors of the intersection points. The computa-
tion of point color is a differentiable operation as it is either a
plain color or a texture, calculated using the barycentric coordi-
nates. Also, checking the intersection between a ray and a triangle
involves solving a quadratic equation which is again differentiable.
Since every operation is differentiable, we can easily backpropa-
gate the errors through this. However, in case the ray intersects at a
point close to the intersection of two triangles, the gradients are not
correct. This is because these points in space are non-differentiable.
We discuss this shortcoming in Section 6.

3. Scene Rendering

We first create a general-purpose renderer and then make use of ef-
ficient AD tools to make it completely differentiable. Hence, at its
core, RayTracer is a fully-featured renderer. It contains functional-
ities for both raytracing and rasterization. Unlike most prior work
in differentiable rendering, we do not make performance compro-
mises in the forward pass (rendering) to allow gradient computa-
tion.

RayTracer gives much control to the user over the scene they
want to render. The user controls the lighting in the scene, the
shape, and materials of the objects and the camera configuration.

screen_size = (w = 512, h = 512)

cam = Camera(
lookfrom = Vec3(1.0f0, 10.0f0, -1.0f0),
lookat = Vec3(0.0f0),
vup = Vec3(0.0f0, 1.0f0, 0.0£f0),
vfov = 45.0f0,
focus = 1.0f0,
width = screen_size.w,
height = screen_size.h

)

origin, direction = get_primary_rays (cam)
scene = load_obj("teapot.obj")

light = DistantLight(
color = Vec3(1.0£0),
intensity = 100.0f0,
direction = Vec3(0.0f0, 1.0f0, 0.0f0)

color = raytrace(
origin,
direction,
scene,
light,
origin,
2

Listing 1: Rendering the Utah Teapot Model

In this part, we will demonstrate the general pipeline for defin-
ing a 3D scene using RayTracer.jl and then rendering it. We are
going to render the popular Utah Teapot model. We need to spec-
ify the 3D model in the form of a Vector of Objects. We can do it
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Fig. 2: Comparison between scenes rendered with and without BVH

manually for custom scenes, or we could load it from a wavefront
object (obj) file (MeshlO.jl provides support for additional file for-
mats). Apart from the scene vector, we need to specify the camera
configuration and the configuration of light(s). We summarize the
entire code to render the teapot in Listing 1.

4. Inverse Rendering

The rendering problem is to project 3D scene parameters to form
an image in the 2D plane. Inverse Rendering problem is just the
opposite: generating a mapping from the 2D image back to the pa-
rameters of the 3D scene.

RayTracer.jl can be used to solve a variety of inverse graphics
problems. Since the renderer can be used to compute the gradient
with respect to any arbitrary parameter (as long as it is differen-
tiable), we can then use any gradient-based optimization technique
to optimize on that parameter. This allows us to propose a general-
ized Algorithm 1 which is capable of optimizing any differentiable
parameter.

5. Experiments

In this section we showcase our differentiable renderer in some
benchmarking and toy inverse rendering problems. Using the fol-
lowing experiments we demonstrate the use of gradients obtained
via AD to recover the camera, material and lighting parameters for
a scene. In the inverse rendering experiments we make use of the
Adam optimizer as described in [9]. We interface the raytracer with
Flux to use these optimizers. As an alternative, we have also tested
the functioning of our package with the optimizers present in Op-
tim' [7].

I'We provide an example at examples/optim_compatibility.jl

S - N N

Algorithm 1: Gradient Based Optimization of Scene Parame-
ters
Input: Initial Guess of the Scene Parameters, Maximum
Number of Iterations, Tolerance in Loss
Qutput: Optimized set of Scene Parameters
params < Initial Guess of Scene Parameters
tolerance <— Tolerance in Loss
max_iter <~ Maximum Number of Iterations
converged <« false
iter < 0
while not converged or iter < max_iter do
loss <— mean_squared_loss (render_image (params),
target_img)
gs <+ gradient(loss)
for param in params do
| update! (optimizer, param, gs[param])
end
if loss < tolerance then
| converged « true
end
iter <— iter + 1

end
return params

5.1 Accelerating the Rendering using Acceleration
Structures

To accelerate the rendering process, we support an acceleration
structure, Bounding Volume Hierarchy (BVH)[&]. We follow the
same API for ray tracing using these accelerators. In this case,
instead of passing a Vector of Objects, we wrap it in a Bound-
ingVolumeHierarchy object and pass it. So in order to use this,
we would have to change the scene variable in Listing 1 to
BoundingVolumeHierarchy(load_obj("teapot.obj")).

In this section, we provide a comparison between the perfor-
mance gains and memory allocation benefits of using BVH. We
use a mesh of 137 triangles centered at the origin as the scene. We
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Fig. 3: Comparison between Automatic Differentiation and Numerical Differentiation

increase the screen size and hence increasing the total number of
pixels (and therefore primary rays) in the scene”.

We present the benefits of using BVH in Figure 2. We are
able to get to reduce the total allocations (Figure 2b) and also get
a significant performance boost® (Figure 2a). Note that we only get
exponential benefits in terms of memory and performance when
the number of pixels is of reasonable size, for example in case of
128 x 128 or better resolution images. For smaller images, using
BVH might end up slowing down the rendering process.

5.2 Comparison with Finite Differencing

In this section, we demonstrate the performance gain of using
source-to-source AD backend versus Central Finite Differencing.
We provide a convenience function for finite differencing for gra-
dient testing purposes. The ¢ for calculating derivatives using the

equation % = W is fixed by comparing these values
with the values obtained from Zygote. Through this experiment, we
show that our method is exponentially better than numerical differ-

entiation.

For comparing the two differentiation techniques, we run five
independent trials and present the mean runtimes (with the standard
deviation) in Figure 3. We fix the position of the camera and light
and randomly generate the triangles present in the scene. Every new
triangle added to the scene, adds 20 additional parameters with re-
spect to which we must compute the derivatives. We use the mean
squared loss function to compute the scalar loss and backpropagate.

Figure 3b shows that we get significant speedups for a reason-
able number of parameters. The nature of speedup shown suggests
that it is nearly infeasible to use numerical differentiation when
the number of parameters exceeds 50. In most practical applica-

2Even though it might seem that increasing the number of objects in the
scene would be a better metric for comparison, it is immensely difficult
to make that comparison. This is primarily because the same scene in a
different configuration will have a different render time

3We provide the code for reproducing the experiment in
examples/performance_benchmarks.jl

tions of differentiable mesh rendering involving neural networks,
we will have at least thousands of parameters. In such cases, our
AD-based solution will be able to compute the derivatives in a rea-
sonable time.

5.3 Calibration of Camera Parameters

In this experiment we start with the image of a rectangle (Listing 2)
under some configuration of the Camera model (Listing 3). Since
RayTracer supports only two primitive shapes - Spheres and Trian-
gles, we need to triangulate the rectangle.

scene = [
Triangle (
Vec3( 20.0, 10.0, 0.0),
Vec3( 20.0, -10.0, 0.0),
Vec3(-20.0, 10.0, 0.0),
Material (color_diffuse =
Vec3(0.0, 1.0, 0.0))),
Triangle (
Vec3(-20.0, -10.0, 0.0),
Vec3( 20.0, -10.0, 0.0),
Vec3(-20.0, 10.0, 0.0),
Material (color_diffuse =
Vec3(0.0, 1.0, 0.0)))
]

light = PointLight(
Vec3(1.0, 0.0, 0.0),
100000 .0,
Vec3(0.0, 0.0, -10.0)

Listing 2: Configuration of the Scene for Experiment 5.3
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Fig. 4: Calibration of Camera Parameters to reconstruct Image 4c from Image 4b

camera_target =

Camera (
Vec3(0.0, 0.0, -30.0),
Vec3(0.0, 0.0, 0.0),
Vec3(0.0, 1.0, 0.0),
90 .0,
1.0,

screen_size...

Listing 3: Camera Parameters to be Reconstructed

camera_guess =

Camera (
Vec3(5.0, -4.0, -20.0),
Vec3 (0.0, 0.0, 0.0),
Vec3 (0.0, i@ 4 0.0),
90 .0,
8.0,

screen_size...

Listing 4: Initial Guess of the Camera Parameters

We aim to reconstruct the image of this rectangle (Figure 4c)
by modifying the focus and the location of the camera. We assume
that all the other parameters of the model, like the light configura-
tion (Listing 2) and the position of objects are known apriori. We
use algorithm 1 for optimizing the parameters. We make an initial
guess of the parameters and initialize the camera (Listing 4).

As our loss function, we use the mean squared difference be-
tween rendered and target images, each with 300 x 400 pixels
having fractional RGB values. We minimize loss with the Adam
optimizer, with learning rate 0.1, and declare the optimization to
have converged if loss falls below 100 (where the initial loss is
5705.98). Figure 4 shows the optimization steps. We present the

various learning rates and optimizers we experimented with in Fig-
ure 4a.

5.4 Optimizing the Light Source

In this experiment, we describe our solution to the inverse lighting
problem. This problem involved predicting the configuration of the
light source(s) in the scene given a target image (Figure 5b). We
know the exact geometry and surface properties of the objects, as
well as the camera configuration. Listing 5 describes the known
configurations.

screen_size = (w = 128, h = 128)

camera = Camera (
Vec3(0.0f0, 6.0f0, -10.0f0),

Vec3(0.0f0, 2.0f0, 0.0f0),
Vec3(0.0f0, 1.0f0, 0.0f0),
45 .0f0,
0.5f0,
screen_size...

)

scene = load_obj("tree.obj")

Listing 5: Configuration of the Scene for Experiment 5.4

The object in our scene is a tree. We start with arbitrary light-
ing (Listing 7) condition and then iteratively improve the lighting
using Algorithm 1. We present the loss curve and the images gen-
erated during the optimization process in Figure 5.
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Fig. 5: Optimization of the lighting conditions to reconstruct Image 5b from Image 5c

light_target = PointLight (
Vec3(1.0f0, 1.0f0, 1.0f0),
20000 .0f0,

Vec3(1.0f0, 10.0f0, -50.0£0)

Listing 6: Target Lighting Conditions

light_guess = PointLight (
Vec3(1.0f0, 1.0f0, 1.0f0),
1.0f0,

Vec3(-1.0f0, -10.0f0, -50.0£0)

Listing 7: Initial Guess of Lighting Conditions

5.5 Retrieving Color of Materials

RayTracer.jl can also be used to recover the properties of the mate-
rial of a mesh. For this experiment, we shall use the same tree mesh
from Experiment 5.4. We are going to optimize the diffuse color
of the mesh. We use the position of the camera and the lighting
conditions, as mentioned in Listing 8.

The significant difference of this optimization from the prior
experiments is that the color can only take values between 0.0 and
1.0. After every iteration, we clamp the value of the diffuse color.
Hence, we update our parameters using projected gradient descent.

(a) Image to be reconstructed  (b) Initial Guess of the Materials

n

(c) Image produced after just 1 (d) Image obtained after 35 iter-
iteration ations

Fig. 6: Optimization of the materials of the mesh to reconstruct
Image 6a from Image 6b

We use the sum squared loss function. We minimize the loss
with Adam optimizer, with a learning rate of 0.05. The convergence
of the model is quite fast, and we get a good approximation of the
parameters just after a single optimizer step (Figure 6¢).

screen_size = (w = 400, h = 300)

light = PointLight (
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Vec3(1.0£f0),
1000000 .0f0,
Vec3(0.15f0, 0.5f0, -10.5£f0)

cam = Camera(
Vec3(-2.0f0, 2.0f0, -5.0£f0),
Vec3( 0.0f0, 1.7f0, 0.0£0),
Vec3( 0.0f0, 1.0f0, 0.0£0),
45 .0f0,
1.0f0,
screen_size...

)

scene = load_obj("tree.obj")

Listing 8: Configuration of the Scene for Experiment 5.5

6. Current Limitations

Despite the success of our approach in solving a variety of inverse
graphics problems, we fail to deal with non-differentiable prob-
lems. One such instance would be estimating the proper geometry
of an object given an image. Such problems are non-differentiable
due to a large number of discrete choices in the position of the tri-
angle vertices. Hence, trying to optimize such parameters generally
causes them to diverge. The other cases which we cannot handle
properly are secondary lighting (shadows) and global illumination.
Most of these cases can be dealt with, similar to the way proposed
by [10], but that leads to a significant slowdown to the rendering of
the scene.

7. Conclusion

In conclusion, we have shown how Julia can be leveraged to build
differentiable systems. We have presented which to the best of our
knowledge is the first differentiable renderer which uses source-to-
source AD. We have used a set of toy examples to demonstrate the
ability of our renderer to reconstruct scenes (which are differen-
tiable) from only a single image. This also shows that this renderer
can be used in differentiable programming pipelines which involve
image generation.
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