2/11/2021

In [1]:
In [2]:
In [3]:

mapping_variables - Jupyter Notebook

NMFk example: Mapping variables

A problem demonstrating how NMFk can be applied to learn mapping between variables.

The test problem is related to predicting pressure transients observed in wells based on various
attributes (e.g., well-logs, fracking stages, proppant mass, etc.) associated with the well
construction.

The machine-lerning problem described here relates to clasical history matching problems.

If NMFK is not installed, first execute import Pkg; Pkg.add("NMFk"); Pkg.add("Mads") .

We start by loading the necessary Julia modules:
import NMFk

Unable to load WeblO. Please make sure WeblO works for your Jupyter client. For
troubleshooting, please see the WeblO/IJulia documentation
(https://juliagizmos.github.io/WeblO.jl/latest/providers/ijulia/).

[Info: Installing pyqt package to avoid buggy tkagg backend.
@ PyPlot /Users/vvv/.julia/packages/PyPlot/XHEGO/src/init.j1:118

import Mads
import Statistics

Load test matrices A, B, X, Y and 2z that will be applied for the ML analyses presented
below:

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb

1/6

https://juliagizmos.github.io/WebIO.jl/latest/providers/ijulia/

2/11/2021

mapping_variables - Jupyter Notebook

In [5]: A = permutedims([0.168427 0.049914 0.031383
0.959030 0.203276 0.095674 0.043699
0.208403 0.064995 0.039014 0.019713
0.948621 0.217649 0.101904 0.049093

B = permutedims([0.654060 0.142989 0.043485
1.000000 0.090943 0.048150 0.018898
0.076188 0.020636 0.011489 0.006166
0.378206 0.098391 0.041083 0.009261
0.055413 0.021730 0.010460 0.004788

X = permutedims([0.500 0.002 0.667 0.40
0.800 0.200 0.667 0.76
0.800 0.100 0.400 0.80
0.600 0.010 1.000 0.407])

Y = permutedims([1.000 0.600 0.267 1.00
0.700 0.020 0.333 0.60
1.000 0.020 0.200 0.72
0.700 1.000 0.233 0.60
1.000 0.060 0.133 0.807])

Z = permutedims([0.800 0.400 0.100 0.601]);

A : pressure transients over time observed in a group of 5 wells

B : pressure transients over time observed in a group of 4 wells

X : 4 attributes representing well properties of the group of 4 wells

Y : 4 attributes representing well properties of the group of 5 wells

0.020747
0.00
0.00
0.02

0.000000
0.00
0.00
0.00
0.00

Z : 4 attributes representing well properties of a new well which does not have any transient

production data observed yet
Pressure matrix A is associated with attribute matrix Y .

Pressure matrix B is associated with attribute matrix X .

Pressure transients over time observed in the group of 5 wells (matrix A) are:

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb

2/6

2/11/2021 mapping_variables - Jupyter Notebook

In [6]: Mads.plotseries(A; name="Well", logy=true, title="Well Group A (matrix A)")

Well Group A (matrix A)

100
10°1
» Well1
e Well2
® Well3
Wall 4
102
0 2 4

Pressure transients over time observed in the group of 4 wells (matrix B) are:

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb 3/6

2/11/2021 mapping_variables - Jupyter Notebook

In [7]: Mads.plotseries(B; name="Well", logy=true, title="Well Group B (matrix B)")

Well Group B (matrix B)

100

101
e Weall1
& Weall 2
& Well3

10_2 Wall 4
e Walls

103

0 2 4 6 8

Well attributes for the group of 5 wells (matrix Y) are:

In [27]: NMFk.plotmatrix(Y; title="Attribute matrix Y (Well Group A)", xticks=["W$i"

Out[27]: W1 W2W3W4W51.00.50.0 h,j,k,l,arrows,drag to pan i,0,+,-,scroll,shift-drag to zoom r,dbl-click
to reset ¢ for coordinates ? for help ? Atiribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute matrix
Y (Well Group A)

Well attributes for the group of 4 wells (matrix X) are:

In [28]: NMFk.plotmatrix(X; title="Attribute matrix X (Well Group B)", xticks=["WS$i"

Out[28]: W1 W2W3W41.00.50.0 h,j,k,l,arrows,drag to pan i,0,+,-,scroll,shift-drag to zoom r,dbl-click to
reset ¢ for coordinates ? for help ? Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute matrix X
(Well Group B)

We learn how the well attributes associated with the 2 well groups are related.
We achieve this by discovering how the X and Y matrices are mapped.

After that we can apply the discovered mapping betweent the X and Y matrices (i.e., well
attributes) to predict the transients.

The ML analyses is performed as follows:

In [10]: W, H, of, sil, aic = NMFk.mapping(X, Y, A, B; method=:ipopt, save=false);
[Info: Mapping matrix size: 4 x 5

@ NMFk /Users/vvv/.julia/dev/NMFk/src/NMFkMapping.jl:51

The extracted mapping betweenn the X and Y matrices is encoded in H .

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb 4/6

2/11/2021

mapping_variables - Jupyter Notebook

We use now the mapping H and known transients of wells in group A (matrix A) to predict
transients of the well in group B .

In this case, we assume that none of the transinets of well in group are known; this is completely

blind prediction.

The prediction error is:

In [11]: NMFk.normnan(B .- (A * H))

Out[1l1]: 1.032261490452482

Blind predictions of the transients for the 5 wells (Group B) based on the transinets of the 4 wells

(Group A) are:

In [14]: Mads.plotseries(A * H; logy=true, name="Well",

100
-~
N
o
. S
107 SR
==
10-2
103
0 2

linestyle=:dash)

® Well1
& Well 2
& Well3

Well 4
& Well5

Blind predictions of the transients for the 5 wells (dashed lines) are compared against the true

values (solid lines):

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb

5/6

2/11/2021

mapping_variables - Jupyter Notebook

In [18]: series(A * H; linestyle=:dash, name="Well (est.)", logy=true, gl=Mads.plotse

100

1071

102

103

localhost:8892/notebooks/NMFk/notebooks/mapping_variables.ipynb

Wall {true) 1
Wall (true) 2
Wall {trua) 3
Wall (true) 4
Wall (trua) &

Wall (est.) 1
Wall (est) 2
Wall (est.) 3
Well (est.) 4
Well (est.) 5

6/6

