
1 Exponential and logarithmic functions

The family of exponential functions is used to model growth and decay. The family of
logarithmic functions is defined here as the inverse of the exponential functions, but have
reach far outside of that.

1.1 Exponential functions

The family of exponential functions is defined by f(x) = ax, −∞ < x < ∞ and a > 0. For
0 < a < 1 these functions decay or decrease, for a > 1 the functions grow or increase, and if
a = 1 the function is constantly 1.
For a given a, defining an for positive integers is straightforward, as it means multiplying n
copies of a. From this, the key properties of exponents: ax · ay = ax+y, and (ax)y = ax·y are
immediate consequences. For a ̸= 0, a0 is defined to be 1. For positive, integer values of n,
we have a−n = 1/an. For n a positive integer, we can define a1/n to be the unique positive
solution to xn = a. And using the key properties of exponents extend this to a definition of
ax for any rational x.
Defining ax for any real number requires some more sophisticated mathematics. One method
is to use a theorem that says a bounded monotonically increasing sequence will converge.
Then for a > 1 we have if qn is a sequence of rational numbers increasing to x, then aqn will
be a bounded sequence of increasing numbers, so will converge to a number defined to be ax.
Something similar is possible for the 0 < a < 1 case.
This definition can be done to ensure the rules of exponents hold for a > 0:

ax+y = ax · ay, (ax)y = ax·y.

In Julia these functions are implemented using ^ or for a base of e through exp(x). Here
are some representative graphs:

using CalculusWithJulia
using Plots
f1(x) = (1/2)^x
f2(x) = 1^x
f3(x) = 2^x
f4(x) = exp(x)
a,b = -2, 2
p = plot(f1, a, b, legend=false)
plot!(f2, a, b); plot!(f3, a, b); plot!(f4, a, b)

Plot{Plots.PlotlyBackend() n=4}

We see examples of some general properties:

• The domain is all real x and the range is all positive y (provided a ̸= 1).

• For 0 < a < 1 the functions are monotonically decreasing.

• For a > 1 the functions are monotonically increasing.
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• If 1 < a < b the and x > 0 we have ax < bx.

Example Continuously compounded interest allows an initial amount P0 to grow over time
according to P (t) = P0e

rt. Investigate the difference between investing 1, 000 dollars in an
account which earns 2% as opposed to an account which earns 8% over 20 years.
The r in the formula is the interest rate, so r = 0.02 or r = 0.08. To compare the differences
we have:

r2, r8 = 0.02, 0.08
P0 = 1000
t = 20
P0 * exp(r2*t), P0 * exp(r8*t)

(1491.8246976412704, 4953.0324243951145)

As can be seen, there is quite a bit of difference.
In 1494, Pacioli gave the ”Rule of 72”, stating that to find the number of years it takes an
investment to double when continuously compounded one should divide the interest rate
into 72.
This formula is not quite precise, but a rule of thumb, the number is closer to 69, but 72 has
many divisors which makes this an easy to compute approximation. Let’s see how accurate
it is:

t2, t8 = 72/2, 72/8
exp(r2*t2), exp(r8*t8)

(2.0544332106438876, 2.0544332106438876)

So fairly close - after 72/r years the amount is 2.05... times more than the initial amount.

Example Bacterial growth (to Wikipedia) is the asexual reproduction, or cell division,
of a bacterium into two daughter cells, in a process called binary fission. During the log
phase ”the number of new bacteria appearing per unit time is proportional to the present
population.” The article states that ”Under controlled conditions, cyanobacteria can double
their population four times a day...”
Suppose an initial population of P0 bacteria, a formula for the number after n hours is
P (n) = P02n/6 where 6 = 24/4.
After two days what multiple of the initial amount is present if conditions are appropriate?

n = 2 * 24
2^(n/6)

2 5 6 . 0
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That would be an enormous growth. Don’t worry: ”Exponential growth cannot continue
indefinitely, however, because the medium is soon depleted of nutrients and enriched with
wastes.”

Example The famous Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, . . . , where Fn+1 = Fn+Fn−1.
These numbers increase. To see how fast, if we guess that the growth is evenually exponential
and assume Fn ≈ c · an, then our equation is approximately an+1 = an + an−1 which has
solutions a satisfying a2 − a − 1 = 0. The positve solution is (1 +

√
5)/2 ≈ 1.618

That is evidence that the Fn ≈ 1.618n. (See Relation to golden ratio for a related, but more
explicit exact formula.

Example In the previous example, the exponential family of functions is used to describe
growth. Polynomial functions also increase. Could these be used instead? If so that would
be great, as they are easier to reason about.
The key fact is that exponential growth is much greater than polynomial growth. That is
for large enough x and for any fixed a > 1 and positive integer n it is true that ax ≫ xn.
Later we will see an easy way to certify this statement.

1.2 Logarithmic functions: the inverse of exponential functions

As the exponential functions are strictly decreasing when 0 < a < 1 and strictly increasing
when a > 1, in both cases an inverse function will exist. (When a = 1 the function is a
constant and is not one-to-one.) The domain of an exponential function is all real x and the
range is all positive x, so these are switched around for the inverse function.
The inverse function will solve for x in the equation ax = y. The answer, formally, is the
logarithm base a, written loga(x).
That is aloga(x) = x and loga(ax) = x when defined.
To see how a logarithm is mathematically defined will have to wait, though the family of
functions - one for each a > 0 - are implemented in Julia through the function log(a,x).
There are special cases requiring just one argument: log(x) will compute the natural log,
base e - the inverse of f(x) = ex; log2(x) will compute the log base 2 - the inverse of
f(x) = 2x; and log10(x) will compute the log base 10 - the inverse of f(x) = 10x.
To see this in an example, we plot for base 2 the exponential function f(x) = 2x, its inverse,
and the logarithm function with base 2:

f(x) = 2^x
xs = range(-2, stop=2, length=100)
ys = f.(xs)
plot(xs, ys, color=:blue, legend=false) # plot f
plot!(ys, xs, color=:red) # plot f^(-1)
xs = range(1/4, stop=4, length=100)
plot!(xs, log2.(xs), color=:green) # plot log2

Plot{Plots.PlotlyBackend() n=3}
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Though we made three graphs, only two are seen, as the graph of log2 matches that of the
inverse function.
Note that we needed a bit of care to plot the inverse function directly, as the domain of f is
not the domain of f−1. Again, in this case the domain of f is all x, but the domain of f−1

is only all positive x values.
Knowing that log2 implements an inverse function allows us to solve many problems involv-
ing doubling.

Example An old story about doubling is couched in terms of doubling grains of wheat.
To simplify the story, suppose each day an amount of grain is doubled. How many days of
doubling will it take 1 grain to become 1 million grains?
The number of grains after one day is 2, two days is 4, three days is 8 and so after n days
the number of grains is 2n. To answer the question, we need to solve 2x = 1, 000, 000. The
logarithm function yields 20 days (after rounding up):

log2(1_000_000)

1 9 . 9 3 1 5 6 8 5 6 9 3 2 4 1 7 4

Example The half-life of a radioactive material is the time it takes for half the material
to decay. Different materials have quite different half lives with some quite long, and others
quite short. See half lives for some details.
The carbon 14 isotope is a naturally occurring isotope on Earth, appearing in trace amounts.
Unlike Carbon 12 and 13 it decays, in this case with a half life of 5730 years (plus or minus
40 years). In a technique due to Libby, measuring the amount of Carbon 14 present in
an organic item can indicate the time since death. The amount of Carbon 14 at death is
essentially that of the atmosphere, and this amount decays over time. If roughly half the
carbon 14 remains, then the death occurred about 5730 years ago.
A formula for the amount of carbon 14 remaining t years after death would be P (t) =
P0 · 2−t/5730.
If 1/10 of the original carbon 14 remains, how old is the item? This amounts to solving
2−t/5730 = 1/10. We have: −t/5730 = log2(1/10) or:

-5730 * log2(1/10)

1 9 0 3 4 . 6 4 7 9 8 3 7 0 4 5 8 4

(Historically) Libby and James Arnold proceeded to test the radiocarbon dating theory
by analyzing samples with known ages. For example, two samples taken from the tombs
of two Egyptian kings, Zoser and Sneferu, independently dated to 2625 BC plus or
minus 75 years, were dated by radiocarbon measurement to an average of 2800 BC plus
or minus 250 years. These results were published in Science in 1949. Within 11 years
of their announcement, more than 20 radiocarbon dating laboratories had been set up
worldwide. Source: Wikipedia.
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1.2.1 Properties of logarithms

The basic graphs of logarithms (a > 1) are all similar, though as we see larger bases lead to
slower growing functions, though all satisfy loga(1) = 0:

plot(log2, 1/2, 10) # base 2
plot!(log, 1/2, 10) # base e
plot!(log10, 1/2, 10) # base 10

Plot{Plots.PlotlyBackend() n=3}

Now, what do the properties of exponents imply about logarithms?
Consider the sum loga(u) + loga(v). If we raise a to this power, we have using the powers of
exponents and the inverse nature of ax and loga(x) that:

aloga(u)+loga(v) = aloga(u) · aloga(v) = u · v.

Taking loga of both sides yields loga(u) + loga(v) = loga(u · v). That is logarithms turn
products into sums (of logs).
Similarly, the relation (ax)y = ax·y, a > 0s can be used to see that loga(bx) = x · loga(b). This
follows, as applying ax to each side yields the same answer.
Due to inverse relationship between ax and loga(x) we have:

aloga(bx) = bx.

Due to the rules of exponents, we have:

ax loga(b) = aloga(b)·x = (aloga(b))x = bx.

Finally, since ax is one-to-one (when a > 0 and a ̸= 1), if aloga(bx) = ax loga(b) it must be that
loga(bx) = x loga(b). That is, logarithms turn powers into products.
Finally, we use the inverse property of logarithms and powers to show that logarithms can
be defined for any base. Say a, b > 0. Then loga(x) = logb(x)/ logb(a). Again, to verify this
we apply ax to both sides to see we get the same answer:

aloga(x) = x,

this by the inverse property. Whereas, by expressing a = blogb(a) we have:

a(logb(x)/ logb(b)) = (blogb(a))(logb(x)/ logb(a)) = blogb(a)·logb(x)/ logb(a) = blogb(x) = x.

In short we have these three properties of logarithmic functions:

if a, b are positive bases; u, v are positive numbers; and x is any real number
then: 1) loga(uv) = loga(u) + loga(v), 2) loga(ux) = x loga(u), and 3) loga(u) =
logb(u)/ logb(a).
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Example Before the ubiquity of electonic calculating devices, the need to compute was
still present. Ancient civilizations had abacuses to make addition easier. For multiplication
and powers a slide rule rule could be used. It is easy to represent addition physically with
two straight pieces of wood - just represent a number with a distance and align the two pieces
so that the distances are sequentially arranged. To multiply then was as easy: represent the
logarithm of a number with a distance then add the logarithms. The sum of the logarithms
is the logarithm of the product of the original two values. Converting back to a number
answers the question. The conversion back and forth is done by simply labeling the wood
using a logartithmic scale. The slide rule was invented soon after Napier’s initial publication
on the logarithm in 1614.

Example Returning to the Rule of 72, what should the exact number be?
The amount of time to double an investment that grows according to P0e

rt solves P0e
rt = 2P0

or rt = log2(2). So we get t = log2(2)/r. As log2(2) is

log(2, 2)

1 . 0
We get the actual rule should be the ”Rule of 69.314...”.

1.3 Questions

⊛ Question
Suppose ever 4 days, a population doubles. If the population starts with 2 individuals, what
is its size after 4 weeks?
⊛ Question
A bouncing ball rebounds to a height of 5/6 of the previous peak height. If the ball is droppet
at a height of 3 feet, how high will it bounce after 5 bounces?
⊛ Question
Which is bigger e2 or 2e?

1.
e2

2.
2e

⊛ Question
Which is bigger log8(9) or log9(10)?

1.
log8(9)

2.
log9(10)
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⊛ Question
If x, y, and z satisfy 2x = 3y and 4y = 5z, what is the ratio x/z?

1.
log(5) log(4)
log(3) log(2)

2.
log(2) log(3)
log(5) log(4)

3.
2/5

⊛ Question
Does 12 satisfy log2(x) + log3(x) = log4(x)?

1. Yes

2. No

⊛ Question
The Richter magnitude is determined from the logarithm of the amplitude of waves recorded
by seismographs (Wikipedia). The formula is M = log(A) − log(A0) where A0 depends on
the epicenter distance. Suppose an event has A = 100 and A0 = 1/100. What is M?
If the magnitude of one earthquake is 9 and the magnitude of another earthquake is 7, how
many times stronger is A if A0 is the same for each?

1. 1000 times

2. 100 times

3. 10 times

4. the same

⊛ Question
The Loudest band can possibly be measured in decibels. In 1976 the Who recorded 126 db
and in 1986 Motorhead recorded 130 db. Suppose both measurements record power through
the formula db = 10 log1 0(P ). What is the ratio of the Motorhead P to the P for the Who?
⊛ Question
Based on this graph:

plot(log, 1/4, 4)
f(x) = x - 1
plot!(f, 1/4, 4)

Plot{Plots.PlotlyBackend() n=2}
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Which statement appears to be true?

1.
x ≥ 1 + log(x)

2.
x ≤ 1 + log(x)

⊛ Question
Consider this graph:

f(x) = log(1-x)
g(x) = -x - x^2/2
plot(f, -3, 3/4)
plot!(g, -3, 3/4)

Plot{Plots.PlotlyBackend() n=2}

What statement appears to be true?

1.
log(1 − x) ≥ −x − x2/2

2.
log(1 − x) ≤ −x − x2/2

⊛ Question
Suppose a > 1. If loga(x) = y what is log1/a(x)? (The reciprocal property of exponents,
a−x = (1/a)x, is at play here.)

1.
−1/y

2.
−y

3.
1/y

Based on this, the graph of log1/a(x) is the graph of loga(x) under which transformation?

1. Flipped over the line y = x

2. Flipped over the x axis

3. Flipped over the y axis
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⊛ Question
Suppose x < y. Then for a > 0, ay − ax is equal to:

1.
ay−x

2.
ay−x · (ax − 1)

3.
ax · (ay−x − 1)

Using a > 1 we have:

1. as ay−x > 1 and y − x > 0, ay > ax

2. as ax > 1, ay > ax

3.
ay−x > 0

If a < 1 then:

1. as ax < 1, ay < ax

2. as ay−x < 1 as y − x > 0, ay < ax

3.
ay−x < 0
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