1 Calculus plots with Makie

The Makie.jl webpage says

From the Jpanese word Maki-e, which is a technique to sprinkle lacquer with
gold and silver powder. Data is basically the gold and silver of our age, so let’s
spread it out beautifully on the screen!

Makie itself is a metapackage for a rich ecosystem. We show how to use the interface
provided by AbstractPlotting and the GLMakie backend to produce the familiar graphics
of calculus. We do not discuss the MakieLayout package which provides a means to layout
multiple graphics and add widgets, such as sliders and buttons, to a layout. We do not
discuss MakieRecipes. For Plots, there are "recipes” that make some of the plots more
straightforward. We do not discuss the Algebra0fGraphics which presents an interface for
the familiar graphics of statistics. The MakieGallery shows many exmaples of the use of
Makie.

1.1 Scenes

Makie draws graphics onto a canvas termed a ”scene” in the Makie documentation. There
are GLMakie, WGLMakie, and CairoMakie backends for different types of canvases. In the
following, we have used GLMakie. WGLMakie is useful for incorporating Makie plots into
web-based technologies.

We begin by loading our two packages:

using AbstractPlotting
using GLMakie

The Makie developers have workarounds for the delayed time to first plot, but without
utilizing these the time to load the package is lengthy.

A scene is produced with Scene() or through a plotting primitive:

‘scene = Scene()

We see next how to move beyond the blank canvas.

1.2 Points (scatter)

The task of plotting the points, say (1,2), (2,3), (3,2) can be done different ways. Most
plotting packages, and Makie is no exception, allow the following: form vectors of the x and
y values then plot those with scatter:

https://github.com/JuliaPlots/Makie.jl
https://github.com/JuliaPlots/AlgebraOfGraphics.jl
https://github.com/JuliaPlots/MakieGallery.jl

xs = [1,2,3]
ys = [2,3,2]
scatter(xs, ys)

The scatter function creates and returns a Scene object, which when displayed shows the
plot.

The more generic plot function can also be used for this task.

1.2.1 Point2, Point3

When learning about points on the Cartesian plane, a "t”-chart is often produced:

x|y
112
213
312

The scatter usage above used the columns. The rows are associated with the points, and
these too can be used to produce the same graphic. Rather than make vectors of z and y (and
optionally z) coordinates, it is more idiomatic to create a vector of "points.” Makie utilizes
a Point type to store a 2 or 3 dimensional point. The Point2 and Point3 constructors will
be utilized.

Makie uses a GPU, when present, to accelerate the graphic rendering. GPUs employ 32-bit
numbers. Julia uses an £0 to indicate 32-bit floating points. Hence the alternate types
Point2f0 to store 2D points as 32-bit numbers and Points3£0 to store 3D points as 32-bit
numbers are seen in the documentation for Makie.

We can plot vector of points in as direct manner as vectors of their coordinates:

pts = [Point2(1,2), Point2(2,3), Point2(3,2)]
scatter(pts)

A typical usage is to generate points from some vector-valued function. Say we have a
parameterized function r taking R into R? defined by:

‘r(t) = [sin(t), cos(t)]

‘r (generic function with 1 method)

Then broadcasting values gives a vector of vectors, each identified with a point:

ts = [1,2,3]
r.(ts)

3-element Array{Array{Float64,1},1}:
[0.8414709848078965, 0.5403023058681398]
[0.9092974268256817, -0.4161468365471424]
[0.1411200080598672, -0.9899924966004454]

We can broadcast Point2 over this to create a vector of Point objects:

‘pts = Point2. (r. (ts))

3-element Array{GeometryBasics.Point{2,Float64},1}:
[0.8414709848078965, 0.5403023058681398]
[0.9092974268256817, -0.4161468365471424]
[0.1411200080598672, -0.9899924966004454]

These then can be plotted directly:

‘scatter(pts)

The ploting of points in three dimesions is essentially the same, save the use of Point3
instead of Point?2.

r(t) = [sin(t), cos(t), t]

ts = range(0, 4pi, length=100)
pts = Point3. (r. (ts))
scatter(pts)

To plot points generated in terms of vectors of coordinates, the component vectors must be
created. The "t”-table shows how, simply loop over each column and add the corresponding
x or y (or z) value. This utility function does exactly that, returning the vectors in a tuple.

‘unzip(vs) = Tuple([vs[j][i] for j in eachindex(vs)] for i in eachindex(vs[1]))

‘unzip (generic function with 1 method)

(The functionality is essentially a reverse of the zip function, hence the name.)

We might have then:

‘scatter(unzip(r.(ts))...)

where splatting is used to specify the xs, ys, and zs to scatter.

(Compare to scatter (Point3. (r.(ts))) or scatter (Point3or). (ts)).)

1.2.2 Attributes

A point is drawn with a "marker” with a certain size and color. These attributes can be
adjusted, as in the following;:

‘scatter(xs, ys, marker=[:x,:cross, :circle], markersize=25, color=:blue)

Marker attributes include
« marker a symbol, shape. A single value will be repeated. A vector of values of a
matching size will specify a marker for each point.
» marker offset offset coordinates

» markersize size (radius pixels) of marker

1.2.3 Text (text)
Text can be placed at a point, as a marker is. To place text the desired text and a position
need to be specified.

For example:

pts = Point2.(1:5, 1:5)

scene = scatter(pts)

[text!(scene, "text", position=pt, textsize=1/i, rotation=2pi/i) for (i,pt) in
enumerate (pts)]

scene

The graphic shows that position positions the text, textsize adjusts the displayed size,
and rotation adjusts the orientation.

Attributes for text include:

e position to indicate the position. Either a Point object, as above, or a tuple

e align Specify the text alignment through (:pos, :pos), where :pos can be :left,
:center, or :right.

e rotation to indicate how the text is to be rotated
o textsize the font point size for the text

e font to indicate the desired font

1.3 Curves

1.3.1 Plots of univariate functions

The basic plot of univariate calculus is the graph of a function f over an interval [a,b]. This
is implemented using a familiar strategy: produce a series of representative values between
a and b; produce the corresponding f(x) values; plot these as points and connect the points
with straight lines. The lines function of AbstractPlotting will do the last step.

By taking a sufficient number of points within [a, b] the connect-the-dot figure will appear
curved, when the function is.

To create regular values between a and b either the range function, the related LinRange
function, or the range operator (a:h:b) are employed.

For example:

f(x) = sin(x)

a, b =0, 2pi

xs = range(a, b, length=250)
lines(xs, f.(xs))

Or

f(x) = cos(x)

a, b -pi, pi
xs = a:pi/100:Db
lines(xs, f.(xs))

As with scatter, lines returns a Scene object that produces a graphic when displayed.

As with scatter, lines can can also be drawn using a vector of points:
lines([Point2(x, fx) for (x,fx) in zip(xs, f.(xs))])

(Though the advantage isn’t clear here, this will be useful when the points are more naturally
generated.)

When a y value is NaN or infinite, the connecting lines are not drawn:

xs = 1:5
ys [1,2,NaN, 4, 5]
lines(xs, ys)

As with other plotting packages, this is useful to represent discontinuous functions, such as
what occurs at a vertical asymptote.

Adding to a scene (lines!, scatter!, ...) To add or modify a scene can be done using
a mutating version of a plotting primitive, such as lines! or scatter!. The names follow
Julia’s convention of using an ! to indicate that a function modifies an argument, in this
case the scene.

Here is one way to show two plots at once:

xs = range(0, 2pi, length=100)
scene = lines(xs, sin. (xs))
lines!(scene, xs, cos.(xs))

We will see soon how to modify the line attributes so that the curves can be distinguished.

The following shows the construction details in the graphic, and that the initial scene argu-
ment is implicitly assumed:

xs = range(0, 2pi, length=10)
lines(xs, sin.(xs))
scatter!(xs, sin.(xs), markersize=10)

The current scene will have data limits that can be of interest. The following indicates how
they can be manipulated to get the limits of the displayed x values.

xs = range(0, 2pi, length=200)

scene = plot(xs, sin.(xs))

rect = scene.data_limits[]

a, b = rect.origin[1], rect.origin[1] + rect.widths[1]

‘(-O.9633175f0, 6.2831855£0)

In the output it can be discerned that the values are 32-bit floating point numbers and yield
a slightly larger interval than specified in xs.

As an example, this shows how to add the tangent line to a graph. The slope of the tangent
line being computed by ForwardDiff.derivative.

using ForwardDiff

f(x) = x7x
a, b= 0, 2
c =0.5

xs = range(a, b, length=200)

t1(x) f(c) + ForwardDiff.derivative(f, c) * (x-c)

scene = lines(xs, f.(xs))
lines!(scene, xs, tl.(xs), color=:blue)

Attributes In the last example, we added the argument color=:blue to the lines! call.
This set an attribute for the line being drawn. Lines have other attributes that allow different
ones to be distinguished, as above where colors indicate the different graphs.

Other attributes can be seen from the help page for lines, and include:

e color set with a symbol, as above, or a string

e linestyle available styles are set by a symbol, one of :dash, :dot, :dashdot, or
:dashdotdot.

e linewidth width of line

« transparency the alpha value, a number between 0 and 1, smaller numbers for more
transparent.

A legend can also be used to help identify different curves on the same graphic, though this
is not illustrated. There are examples in the Makie gallery.

Scene attributes Attributes of the scene include any titles and labels, the limits that
define the coordinates being displayed, the presentation of tick marks, etc.

The title function can be used to add a title to a scene. The calling syntax is title(scene,
text).

To set the labels of the graph, there are "shorthand” functions xlabel!, ylabel!, and
zlabel!. The calling pattern would follow xlabel! (scene, "x-axis").

The plotting ticks and their labels are returned by the unexported functions tickranges and
ticklabels. The unexported xtickrange, ytickrange, and ztickrange; and xticklabels,
yticklabels, and zticklabels return these for the indicated axes.

These can be dynamically adjusted using xticks!, yticks!, or zticks!.

pts = [Point2(1,2), Point2(2,3), Point2(3,2)]

scene = scatter(pts)

title(scene, "3 points")

ylabel! (scene, "y values")

xticks! (scene, xtickrange=[1,2,3], xticklabels=["a", "b", "c"])

To set the limits of the graph there are shorthand functions xlims!, ylims!, and zlims!.
This might prove useful if vertical asymptotes are encountered, as in this example:

f(x) = 1/x

a,b = -1, 1

xs = range(-1, 1, length=200)
scene = lines(xs, f.(xs))
ylims! (scene, (=10, 10))
center! (scene)

1.3.2 Plots of parametric functions

A space curve is a plot of a function f: R> — Ror f: R* — R.

To construct a curve from a set of points, we have a similar pattern in both 2 and 3 dimen-
sions:

r(t) = [sin(2t), cos(3t)]

ts = range(0, 2pi, length=200)
pts = Point2.(r. (ts))
lines(pts)

Or

r(t) = [sin(2t), cos(3t), t]
ts = range(0, 2pi, length=200)
pts = Point3. (r. (ts))
lines(pts)

Alternatively, vectors of the z, y, and z components can be produced and then plotted using
the pattern lines(xs, ys) or lines(xs, ys, zs). For example, using unzip, as above,
we might have done the prior example with:

Xs, ys, zs = unzip(r.(ts))
lines(xs, ys, zs)

Tangent vectors (arrows) A tangent vector along a curve can be drawn quite easily
using the arrows function. There are different interfaces for arrows, but we show the one
which uses a vector of positions and a vector of "vectors”. For the latter, we utilize the
derivative function from ForwardDiff:

using ForwardDiff

r(t) = [sin(t), cos(t)]

ts = range(0, 4pi, length=200)

scene = Scene()

lines! (scene, Point2. (r.(ts)))

nts = O:pi/4:2pi

us = r.(nts)

dus = ForwardDiff.derivative.(r, nts)

arrows! (scene, Point2.(us), Point2.(dus))

In 3 dimensions the differences are minor:

r(t) = [sin(t), cos(t), tl

ts = range(0, 4pi, length=200)

scene = Scene()

lines! (scene, Point3. (r.(ts)))

nts = pi:pi/4:3pi

us = r.(ats)

dus = ForwardDiff.derivative.(r, nts)

arrows! (scene, Point3.(us), Point3.(dus))

Attributes Attributes for arrows include

o arrowsize to adjust the size
« lengthscale to scale the size
e arrowcolor to set the color

o arrowhead to adjust the head

e arrowtail to adjust the tail

1.3.3 Implicit equations (2D)

The graph of an equation is the collection of all (z,y) values satisfying the equation. This is
more general than the graph of a function, which can be viewed as the graph of the equation

y = f(z). An equation in z-y can be graphed if the set of solutions to a related equation
f(z,y) = 0 can be identified, as one can move all terms to one side of an equation and define
f as the rule of the side with the terms.

The MDBM (Multi-Dimensional Bisection Method) package can be used for the task of
characterizing when f(z,y) = 0. (Also IntervalConstraintProgramming can be used.)
We first wrap its interface and then define a "plot” recipe (through method overloading,
not through MakieRecipes).

‘using MDBM
function implicit_equation(f, axes...; iteration::Int=4, constraint=nothing)
axes = [axes...]
if constraint == nothing
prob = MDBM_Problem(f, axes)
else

prob = MDBM_Problem(f, axes, constraint=constraint)
end

solve! (prob, iteration)

prob
end

‘implicit_equation (generic function with 1 method)

The implicit_equation function is just a simplified wrapper for the MDBM_Problem interface.
It creates an object to be plotted in a manner akin to:

f(x,y) = x"3 + x72 + x + 1 - x*y
ie = implicit_equation(f, -5:5, -10:10)

MDBM.MDBM_Problem{MDBM.MemF{typeof (Main. ##WeaveSandBox#1565.f) ,MDBM. var"#17
#19" ,Float64,Bool,Tuple{Float64,Float64}},2,1,1,StaticArrays.SArray{Tuple{4
},StaticArrays.SArray{Tuple{2},Bool,1,2},1,4},StaticArrays.SArray{Tuple{3,4
},Float64,2,12},Int64,Float64,Tuple{MDBM. Axis{Float64},MDBM. Axis{Float64}}}
(MDBM.MemF{typeof (Main. ##WeaveSandBox#1565.f) ,MDBM.var"#17#19" ,Float64,Bool
,Tuple{Float64,Float64}} (Main.##WeaveSandBox#1565.f, MDBM.var"#17#19"(), MD
BM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}} [MDBM.MDBMcontainer{F1
0at64,Bool,Tuple{Float64,Float64}}(-154.0, true, (-5.0, -10.0)), MDBM.MDBMc
ontainer{Float64,Bool,Tuple{Float64,Float64}}(-149.0, true, (-5.0, -9.0)),

MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}(-144.0, true, (-5.0
, =8.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}(-139.0, t
rue, (-5.0, -7.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}
(-134.0, true, (-5.0, -6.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64
,Float64}}(-129.0, true, (-5.0, -5.0)), MDBM.MDBMcontainer{Float64,Bool,Tup
le{Float64,Float64}}(-124.0, true, (-5.0, -4.0)), MDBM.MDBMcontainer{Float6
4,Bool,Tuple{Float64,Float64}}(-119.0, true, (-5.0, -3.0)), MDBM.MDBMcontai
ner{Float64,Bool,Tuple{Float64,Float64}}(-114.0, true, (-5.0, -2.0)), MDBM.

https://github.com/bachrathyd/MDBM.jl

MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}(-109.0, true, (-5.0, -1.
0)) ...0x(MDBM.MDBMcontainer (*@{Float64,Bool,Tuple{Float64,Float64}}(151.0, true
, (6.0, 1.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}(146.
0, true, (5.0, 2.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64
}}(141.0, true, (5.0, 3.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{Float64,
Float64}}(136.0, true, (5.0, 4.0)), MDBM.MDBMcontainer{Float64,Bool,Tuple{F
loat64,Float64}}(131.0, true, (5.0, 5.0)), MDBM.MDBMcontainer{Float64,Bool,
Tuple{Float64,Float64}}(126.0, true, (5.0, 6.0)), MDBM.MDBMcontainer{Float6
4,Bool,Tuple{Float64,Float64}}(121.0, true, (5.0, 7.0)), MDBM.MDBMcontainer
{Float64,Bool,Tuple{Float64,Float64}}(116.0, true, (5.0, 8.0)), MDBM.MDBMco
ntainer{Float64,Bool,Tuple{Float64,Float64}}(111.0, true, (5.0, 9.0)), MDBM
.MDBMcontainer{Float64,Bool,Tuple{Float64,Float64}}(106.0, true, (5.0, 10.0
))1, [18892]1), MDBM.Axes{2,Tuple{MDBM.Axis{Float64},MDBM.Axis{Float64}}} (([
-5.0, -4.9375, -4.875, -4.8125, -4.75, -4.6875, -4.625, -4.5625, -4.5, -4.4
375 ...ex(4.4375, 4.5, 4.5625, 4.625, 4.6875, 4.75, 4.8125, 4.875, 4.9375, 5.0], [-10.0,
-9.9375, -9.875, -9.8125, -9.75, -9.6875, -9.625, -9.5625, -9.5, -9.4375 (*0@...0%(9.4375,
9.5, 9.5625, 9.625, 9.6875, 9.75, 9.8125, 9.875, 9.9375, 10.0]1)),
MDBM.NCube (¥@{Int64,Float64,2} [MDBM.NCube{Int64,Float64,2}([23, 3
161, [1, 11, [1.6063732892989169, 0.25275584507525284], true), MDBM.NCube{I
nt64,Float64,2}([23, 317], [1, 1], [1.3026770110598742, 0.205532987510733],
true), MDBM.NCube{Int64,Float64,2}([23, 318], [1, 1], [0.9973904105883838,
0.15779865481363942] , true), MDBM.NCube{Int64,Float64,2}([23, 319], [1, 1]
, [0.6905013026761199, 0.10954668019693573], true), MDBM.NCube{Int64,Float6
4,2}3([23, 320], [1, 1], [0.3819973811799878, 0.06077080938709818], true), M
DBM.NCube{Int64,Float64,2}([24, 310], [1, 1], [1.5730148223057674, 0.252441
93136240256] , true), MDBM.NCube{Int64,Float64,2}([24, 311], [1, 1], [1.2635
163443540753, 0.2033503249592459], true), MDBM.NCube{Int64,Float64,2}([24,
3121, [1, 11, [0.9523386316264015, 0.15370721710235083], true), MDBM.NCube{
Int64,Float64,2}([24, 313], [1, 1], [0.6394683680980245, 0.1035057125802353
], true), MDBM.NCube{Int64,Float64,2}([24, 314], [1, 1], [0.324892101175531
, 0.05273881477153529], true) ...@*(MDBM.NCube(*@{Int64,Float64,2}([119, 316], [
1, 1], [0.5737847603815756, -0.10253884896868308], true), MDBM.NCube{Int64,
Float64,2}([119, 317], [1, 1], [0.9241595306873377, -0.16592313346062373],
true), MDBM.NCube{Int64,Float64,2}([119, 318], [1, 1], [1.2776102439518204,
-0.23045619627359337], true), MDBM.NCube{Int64,Float64,2}([119, 319], [1,
1], [1.6341761101488126, -0.2961613662405615], true), MDBM.NCube{Int64,Floa
t64,2}([120, 315], [1, 1], [-1.6639239167933426, 0.28200587702155877], true
), MDBM.NCube{Int64,Float64,2}([120, 316], [1, 1], [-1.3398508634660045, 0.
22805972144102202], true), MDBM.NCube{Int64,Float64,2}([120, 317], [1, 1],
[-1.013129945313339, 0.17319397496295114], true), MDBM.NCube{Int64,Float64,
2}([120, 3181, [1, 1], [-0.6837296229134533, 0.11739123110059835], true), M
DBM.NCube{Int64,Float64,2}([120, 319], [1, 1], [-0.35161787289425867, 0.060
633695953389216], true), MDBM.NCube{Int64,Float64,2}([120, 3201, [1, 1], [-
0.01676217906067428, 0.002903178176581569], true)], StaticArrays.SArray{Tup
le{2},Bool,1,2}[[0, 0], [1, o1, [0, 11, [1, 111, [-0.25 0.25 -0.25 0.25; -0
.25 -0.25 0.25 0.25; -0.25 -0.25 -0.25 -0.25])

The function definition is straightforward. The limits for x and y are specified in the above
using ranges. This specifies the initial grid of points for the apdaptive algorithm used by
MDBM to identify solutions.

To visualize the output, we make a new method for plot and plot!. There is a distinc-
tion between 2 and 3 dimensions. Below in two dimensions curve(s) are drawn. In three
dimensions, scaled cubes are used to indicate the surface.

AbstractPlotting.plot(m: :MDBM_Problem; kwargs...) = plot!(Scene(), m; kwargs...)
AbstractPlotting.plot! (m: :MDBM_Problem; kwargs...) =
plot! (AbstractPlotting.current_scene(), m; kwargs...)

10

AbstractPlotting.plot! (scene: :AbstractPlotting.Scene, m::MDBM_Problem; kwargs...) =
plot!(Val(_dim(m)), scene, m; kwargs...)

_dim(m: :MDBM.MDBM_Problem{a,N,b,c,d,e,f,g,h}) where {a,N,b,c,d,e,f,g,h} = N

‘_dim (generic function with 1 method)

Dispatch is used for the two different dimesions, identified through _dim, defined above.

2D plot
function AbstractPlotting.plot!(::Val{2}, scene::AbstractPlotting.Scene,
m: :MDBM_Problem; color=:black, kwargs...)

mdt=MDBM. connect (m)
for i in 1:length(mdt)
dt=mdt [i]
Pl=getinterpolatedsolution(m.ncubes[dt[1]], m)
P2=getinterpolatedsolution(m.ncubes[dt[2]], m)
lines! (scene, [P1[1],P2[1]1],[P1[2],P2[2]], color=color, kwargs...)
end

scene
end

3D plot
function AbstractPlotting.plot!(::Val{3}, scene::AbstractPlotting.Scene,
m: :MDBM_Problem; color=:black, kwargs...)

positions = Point{3, Float32}[]
scales = Vec3[]

mdt=MDBM. connect (m)

for i in 1:length(mdt)
dt=mdt [i]
Pl=getinterpolatedsolution(m.ncubes[dt[1]], m)
P2=getinterpolatedsolution(m.ncubes[dt[2]], m)

a, b = Vec3(P1), Vec3(P2)
push! (positions, Point3(P1))
push! (scales, b-a)

end

cube = Rect{3, Float32}(Vec3(-0.5, -0.5, -0.5), Vec3(1, 1, 1))
meshscatter! (scene, positions, marker=cube, scale = scales, color=color,
transparency=true, kwargs...)

scene

end

We see that the equation ie has two pieces. (This is known as Newton’s trident, as Newton
was interested in this form of equation.)

| plot(ie)

11

1.4 Surfaces

Plots of surfaces in 3 dimensions are useful to help understand the behavior of multivariate
functions.

Surfaces defined through z = f(x,y) The "peaks” function generates the logo for MAT-
LAB. Here we see how it can be plotted over the region [—5,5] x [=5, 5].

peaks(x,y) = 3x(1-x) "2*%exp(-x"2 - (y+1)72) - 10(x/5-x"3-y 5)*exp(-x"2-y~2)-
1/3%exp (- (x+1)"2-y~2)

xs = ys = range(-5, 5, length=25)

surface(xs, ys, peaks)

The calling pattern surface(xs, ys, f) implies a rectangular grid over the x-y plane de-
fined by xs and ys with z values given by f(z,y).

Alternatively a "matrix” of z values can be specified. For a function £, this is conveniently
generated by the pattern f.(xs, ys'), the ' being important to get a matrix of all x-y
pairs through Julia’s broadcasting syntax.

zs = peaks.(xs, ys')
surface(xs, ys, zs)

To see how this graph is constructed, the points (x,y, f(x,y)) are plotted over the grid and
displayed.

Here we downsample to illutrate

xs = ys = range(-5, 5, length=5)
pts = [Point3(x, y, peaks(x,y)) for x in xs for y in ys]
scatter(pts, markersize=25)

These points are connected. The wireframe function illustrates just the frame

‘wireframe(xs, ys, peaks.(xs, ys'), linewidth=5)

The surface call triangulates the frame and fills in the shading:

‘surface!(xs, ys, peaks.(xs, ys'))

Implicitly defined surfaces, F'(x,y,2) =0 The set of points (x, y, z) satisfying F'(z,y, z) =
0 will form a surface that can be visualized using the MDBM package. We illustrate showing
two nested surfaces.

r 2(x,y,2) - "2 + 272 - 5/4
r_4(x,y,2)
XS = ys = zs

12

m2,m4 = implicit_equation(r_2, xs, ys, zs), implicit_equation(r_4, xs, ys, zs)

plot(m4, color=:yellow)
plot! (m2, color=:red)

Parametrically defined surfaces A surface may be parametrically defined through a
function r(u,v) = (z(u,v),y(u,v), z(u,v)). For example, the surface generated by z = f(z,y)
is of the form with r(u,v) = (u,v, f(u,v)).

The surface function and the wireframe function can be used to display such surfaces. In
previous usages, the x and y values were vectors from which a 2-dimensional grid is formed.
For parametric surfaces, a grid for the x and y values must be generated. This function will
do so:

function parametric_grid(us, vs, r)
n,m = length(us), length(vs)
xs, ys, 2zs = zeros(n,m), zeros(n,m), zeros(n,m)
for (i, u_i) in enumerate(us)
for (j, v_j) in enumerate(vs)
x,y,z = r(u_i, v_j)
xs[i,j] = x
ysli,jl =y
zsl[i,jl = =z
end
end
(xs, ys, zs)
end

‘parametric_grid (generic function with 1 method)

With the data suitably massaged, we can directly plot either a surface or wireframe plot.

For example, a sphere can be parameterized by r(u,v) = (sin(u) cos(v), sin(u) sin(v), cos(u))
and visualized through:

r(u,v) = [sin(u)*cos(v), sin(u)*sin(v), cos(u)]
us = range(0, pi, length=25)

vs = range(0, pi/2, length=25)

XS, ys, 2zs = parametric_grid(us, vs, r)

scene = Scene()
surface! (scene, xs, ys, zs)
wireframe! (scene, xs, ys, zs)

A surface of revolution for g(u) revolved about the z axis can be visualized through:

g(u) = u™2 * exp(-u)

r(u,v) = (g(w*sin(v), g *cos(v), w)
us = range(0, 3, length=10)

vs = range(0, 2pi, length=10)

XS, ys, 2zs = parametric_grid(us, vs, r)

13

