
1 Taylor Polynomials and other Approximating Poly-
nomials

The tangent line was seen to be the ”best” linear approximation to a function at a point c.
Approximating a function by a linear function gives an easier to use approximation at the
expense of accuracy. It suggests a tradeoff between ease and accuracy. Is there a way to
gain more accuracy at the expense of ease?
Quadratic functions are still fairly easy to work with. Is it possible to find the best ”quadratic”
approximation to a function at a point c.
More generally, for a given n, what would be the best polynomial of degree n to approximate
f(x) at c?
We will see in this section how the Taylor polynomial answers these questions, and is the
appropriate generalization of the tangent line approximation.
XXX can not include ‘.gif‘ file here

1.1 The secant line and the tangent line

To motivate, we have two related formulas. Suppose we have a function f(x) which is defined
in a neighborhood of c and has as many derivatives as we care to take at c.
The secant line connecting (c, f(c)) and (c + h, f(c + h)) for a value of h > 0 is given in
point-slope form by

sl(x) = f(c) + (f(c + h) − f(c))
h

· (x − c).

The slope is the familiar approximation to the derivative: (f(c + h) − f(c))/h.
The tangent line to the graph of f(x) at x = c is described by the function

tl(x) = f(c) + f ′(c) · (x − c).

The secant line is important here, as it approximates the tangent line, which in turn is
important, as it is the linear function that best approximates the function at the point
(c, f(c)). This is quantified by the Mean Value Theorem which states that there exists some
ξ between x and c for which:

f(x) − tl(x) = f ′′(ξ)
2

· (x − c)2.

(The term ”best” is deserved, as any other straight line will differ at least in an (x − c) term,
which in general is larger than an (x − c)2 term for x ”near” c.)
The secant line also has an interpretation that will generalize - it is the smallest order
polynomial that goes through the points (c, f(c)) and (c + h, f(c + h)). This is obvious from
the construction - as this is how the slope is derived - but from the formula itself requires
showing tl(c) = f(c) and tl(c + h) = f(c + h). The former is straightforward, as (c − c) = 0,
so clearly tl(c) = f(c). The latter requires a bit of algebra.

1

Now, we take a small detour to define some notation. Instead of writing our two points as
c and c + h, let’s use x0 and x1. For any set of points x0, x1, . . . , xn, define the divided
differences of f inductively, as follows:

f [x0] = f(x0) (1)

f [x0, x1] = f [x1] − f [x0]
x1 − x0

(2)

· · · (3)

f [x0, x1, x2, . . . , xn] = f [x1, . . . , xn] − f [x0, x1, x2, . . . , xn−1]
xn − x0

. (4)

We see the first two values look familiar, and to generate more we just take certain ratios
akin to those formed when finding a secant line.
With this notation the secant line can be re-expressed as:

sl(x) = f [c] + f [c, c + h] · (x − c)

If we think of f [c, c+h] as an approximate first derivative, we have an even stronger parallel
between a secant line x = c and the tangent line at x = c.
To see that this isn’t far-fetched, we investigate with SymPy. First we create a recursive
function to compute the divided differences:

divided_differences(f, x) = f(x)
function divided_differences(f, x, xs...)

xs = sort(vcat(x, xs...))
(divided_differences(f, xs[2:end]...) - divided_differences(f, xs[1:end-1]...)) /

(xs[end] - xs[1])
end

divided_differences (generic function with 2 methods)

With SymPy we have, using u in place of f :

using CalculusWithJulia # loads `SymPy`, `ForwardDiff`
using Plots
@vars x c real=true
@vars h positive=true
u = SymFunction("u")

ex = divided_differences(u, c, c+h)

−u(c) + u(c + h)
h

We can take a limit and see the familiar (yet differently represented) value of u′(c):

2

limit(ex, h => 0)

d

dξ1
u(ξ1)

∣∣∣∣∣
ξ1=c

Now, let’s look at:

ex = divided_differences(u, c, c+h, c+2h)
simplify(ex)

u(c) − 2u(c + h) + u(c + 2h)
2h2

Not so bad after simplification. The limit shows this to be an approximation to the second
derivative divided by 2:

limit(ex, h => 0)

d2

dξ2
1
u(ξ1)

∣∣∣
ξ1=c

2

(The expression is, up to a divisor of 2, the second order forward difference equation, a
well-known approximation to f ′′.)
This relationship between higher-order divided differences and higher-order derivatives gen-
eralizes. This is expressed in this theorem:

Suppose m = x0 < x1 < x2 < · · · < xn = M are distinct points. If f has n
continuous derivatives then there exists a value ξ where m < ξ < M satisfying:

f [x0, x1, . . . , xn] = 1
n!

· f (n)(ξ).

This immediately applies to the above, where we parameterized by h: x0 = c, x1 = c+h, x2 =
c + 2h. For then, as h goes to 0, it must be that m, M → c, and so the limit of the divided
differences must converge to (1/2!) · f (2)(c), as f (2)(ξ) converges to f (2)(c).
A proof based on Rolle’s theorem appears in the appendix.

1.2 Quadratic approximations

Why the fuss? The answer comes from a result of Newton on interpolating polynomials.
Consider a function f and n + 1 points x0, x1, . . . , xn. Then an interpolating polynomial is
the polynomial of least degree that goes through each point (xi, f(xi)). The Newton form of
such a polynomial can be written as:

f [x0]+f [x0, x1]·(x−x0)+f [x0, x1, x2]·(x−x0)·(x−x1)+· · ·+f [x0, x1, . . . , xn]·(x−x0)·· · ··(x−xn−1).

3

http://tinyurl.com/n4235xy
http://tinyurl.com/zjogv83
https://en.wikipedia.org/wiki/Newton_polynomial

The case n = 0 gives the value f [x0] = f(c), which can be interpreted as the slope-0 line
that goes through the point (c, f(c)).
We are familiar with the case n = 1, with x0 = c and x1 = c+h, this becomes our secant-line
formula:

f [c] + f [c, c + h](x − c).
As mentioned, we can verify directly that it interpolates the points (c, f(c)) and (c + h, f(c +
h)). He we let SymPy do the algebra:

p = divided_differences(u, c) + divided_differences(u, c, c+h) * (x-c)
p(x => c) - u(c)

0

and

p(x => c+h) - u(c+h)

0

Now for something new. Take the n = 2 case with x0 = c, x1 = c + h, and x2 = c + 2h.
Then the interpolating polynomial is:

f [c] + f [c, c + h](x − c) + f [c, c + h, c + 2h](x − c)(x − (c + h)).
We add the next term to our previous polynomial and simplify

p = p + divided_differences(u, c, c+h, c+2h)*(x-c)*(x-(c+h))
simplify(p)

h2u(c) + h (c − x) (u(c) − u(c + h)) + (c−x)(c+h−x)(u(c)−2u(c+h)+u(c+2h))
2

h2

We can check that this interpolates the three points. Notice that at x0 = c and x1 = c + h,
the last term, f [x0, x1, x2] · (x − x0)(x − x1), vanishes, so we already have the polynomial
interpolating there. Only value x2 = c + 2h remains to be checked:

p(x => c+2h) - u(c+2h)

h

(
−−u(c) + u(c + h)

h
+ −u(c + h) + u(c + 2h)

h

)
− u(c) + 2u(c + h) − u(c + 2h)

Hmm, doesn’t seem correct - that was supposed to be 0. The issue isn’t the math, it is that
SymPy needs to be encouraged to simplify:

4

simplify(p(x => c+2h) - u(c+2h))

0

By contrast, at the point x = c+3h we have no guarantee of interpolation, and indeed don’t,
as this expression is non-zero:

simplify(p(x => c+3h) - u(c+3h))

u(c) − 3u(c + h) + 3u(c + 2h) − u(c + 3h)

Interpolating polynomials are of interest in their own right, but for now we want to use
them as motivation for the best polynomial approximation of a certain degree for a function.
Motivated by how the secant line leads to the tangent line, we note that coefficients of the
quadratic interpolating polynomial above have limits as h goes to 0, leaving this polynomial:

f(c) + f ′(c) · (x − c) + 1
2!

· f ′′(c)(x − c)2.

This is clearly related to the tangent line approximation of f(x) at x = c, but carrying an
extra quadratic term.
Here we visualize the approximations with the function f(x) = cos(x) at c = 0.

f(x) = cos(x)
a, b = -pi/2, pi/2
c = 0
h = 1/4

fp = -sin(c) # by hand, or use diff(f), ...
fpp = -cos(c)

p = plot(f, a, b, linewidth=5, legend=false, color=:blue)
plot!(p, x->f(c) + fp*(x-c), a, b; color=:green, alpha=0.25, linewidth=5)

tangent line is flat
plot!(p, x->f(c) + fp*(x-c) + (1/2)*fpp*(x-c)^2, a, b; color=:green, alpha=0.25,
linewidth=5) # a parabola
p

Plot{Plots.PlotlyBackend() n=3}

This graph illustrates that the extra quadratic term can track the curvature of the func-
tion, whereas the tangent line itself can’t. So, we have a polynomial which is a ”better”
approximation, is it the best approximation?
The mean value theorem, as in the case of the tangent line, will guarantee the existence of
ξ between c and x, for which

f(x) −
(
f(c) + f ′(c) · (x − c) + (1/2) · f ′′(c) · (x − c)2

)
= 1

3!
f ′′′(ξ) · (x − c)3.

5

In this sense, the above quadratic polynomial, called the Taylor Polynomial of degree 2, is
the best quadratic approximation to f , as the difference goes to 0.
The graphs of the secant line and approximating parabola for h = 1/4 are similar:

x0, x1, x2 = c-h, c, c+h
f0 = divided_differences(f, x0)
fd = divided_differences(f, x0, x1)
fdd = divided_differences(f, x0, x1, x2)

plot(f, a, b, color=:blue, linewidth=5, legend=false)
plot!(x -> f0 + fd*(x-x0), a, b, color=:green, alpha=0.25, linewidth=5);
plot!(x -> f0 + fd*(x-x0) + fdd * (x-x0)*(x-x1), a,b, color=:green, alpha=0.25,
linewidth=5);

Plot{Plots.PlotlyBackend() n=3}

Though similar, the graphs aren’t identical, as the interpolating polynomials aren’t the best
approximations. For example, in the tangent-line graph the parabola only intersects the
cosine graph at x = 0, whereas for the secant-line graph - by definition - the parabola
intersects the graph at least 2 times and the interpolating polynomial 3 times (at x0, x1, and
x2).

Example Consider the function f(t) = log(1 + t). We have mentioned that for t small,
the value t is a good approximation. A better one becomes:

f(0) + f ′(0) · t + 1
2

· f ′′(0) · t2 = 0 + 1t − t2

2
A graph shows the difference:

f(t) = log(1 + t)
a, b = -1/2, 1
plot(f, a, b, legend=false, linewidth=5)
plot!(t -> t, a, b)
plot!(t -> t - t^2/2, a, b)

Plot{Plots.PlotlyBackend() n=3}

Though we can see that the tangent line is a good approximation, the quadratic polynomial
tracks the logarithm better farther from c = 0.

Example A wire is bent in the form of a half circle with radius R centered at (0, R), so
the bottom of the wire is at the origin. A bead is released on the wire at angle θ. As time
evolves, the bead will slide back and forth. How? (Ignoring friction.)
Let U be the potential energy, U = mgh = mgR · (1 − cos(θ)). The velocity of the object
will depend on θ - it will be 0 at the high point, and largest in magnitude at the bottom -

6

and is given by v(θ) = R · dθ/dt. (The bead moves along the wire so its distance traveled is
R · ∆θ, this, then, is just the time derivative of distance.)
By ignoring friction, the total energy is conserved giving:

K = 1
2

mv2 + mgR · (1 − cos(θ) = 1
2

mR2(dθ

dt
)2 + mgR · (1 − cos(θ)).

The value of 1 − cos(θ) inhibits further work which would be possible were there an easier
formula there. In fact, we could try the excellent approximation 1 − θ2/2 from the quadratic
approximation. Then we have:

K ≈ 1
2

mR2(dθ

dt
)2 + mgR · (1 − θ2/2).

Assuming equality and differentiating in t gives by the chain rule:

0 = 1
2

mR22dθ

dt
· d2θ

dt2 − mgRθ · dθ

dt
.

This can be solved to give this relationship:

d2θ

dt2 = − g

R
θ.

The solution to this ”equation” can be written (in some parameterization) as θ(t) = A cos (ωt + ϕ).
This motion is the well-studied simple harmonic oscillator, a model for a simple pendulum.

1.3 The Taylor polynomial of degree n

Starting with the Newton form of the interpolating polynomial of smallest degree:

f [x0]+f [x0, x1]·(x−x0)+f [x0, x1, x2]·(x−x0)·(x−x1)+· · ·+f [x0, x1, . . . , xn]·(x−x0)·· · ··(x−xn−1).

and taking xi = c + i · h, for a given n, we have in the limit as h > 0 goes to zero that
coefficients of this polynomial converge to the coefficients of the Taylor Polynomial of degree
n:

f(c) + f ′(c) · (x − c) + f ′′(c)
2!

(x − c)2 + · · · + f (n)(c)
n!

(x − c)n

This polynomial will be a good approximation to the function f , near c. The error will be
given - again by an application of the Mean Value Theorem - by (1/(n+1)!)·f (n+1)(ξ)·(x−c)n

for some ξ between c and x.
The Taylor polynomial for f about c of degree n can be computed by taking n derivatives.
For such a task, the computer is very helpful. In SymPy the series function will compute
the Taylor polynomial for a given n. For example, here is the series expansion to 10 terms
of the function log(1 + x) about c = 0:

7

https://en.wikipedia.org/wiki/Harmonic_oscillator

@vars x
c, n = 0, 10
l = series(log(1 + x), x, c, n+1)

x − x2

2
+ x3

3
− x4

4
+ x5

5
− x6

6
+ x7

7
− x8

8
+ x9

9
− x10

10
+ O

(
x11
)

A pattern can be observed.
Using series, we can see Taylor polynomials for several familiar functions:

series(1/(1-x), x, 0, 10) # sum x^i for i in 0:n

1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + O
(
x10
)

series(exp(x), x, 0, 10) # sum x^i/i! for i in 0:n

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

5040
+ x8

40320
+ x9

362880
+ O

(
x10
)

series(sin(x), x, 0, 10) # sum (-1)^i * x^(2i+1) / (2i+1)! for i in 0:n

x − x3

6
+ x5

120
− x7

5040
+ x9

362880
+ O

(
x10
)

series(cos(x), x, 0, 10) # sum (-1)^i * x^(2i) / (2i)! for i in 0:n

1 − x2

2
+ x4

24
− x6

720
+ x8

40320
+ O

(
x10
)

Each of these last three have a pattern that can be expressed quite succinctly if the denom-
inator is recognized as n!.
The output of series includes a big ”Oh” term, which identifies the scale of the error, but
also gets in the way of using the output. SymPy provides the removeO method to strip this.
(It is called as object.removeO(), as it is a method of an object in SymPy.)
However, we will define our own function to compute Taylor polynomials from a function.
The following returns a function, not a symbolic object, using D, from CalculusWithJulia,
which is based on ForwardDiff.derivative, to find higher-order derivatives:

function taylor_poly(f, c=0, n=2)
x -> f(c) + sum(D(f, i)(c) * (x-c)^i / factorial(i) for i in 1:n)

end

8

taylor_poly (generic function with 3 methods)

With a function, we can compare values. For example, here we see the difference between
the Taylor polynomial and the answer for a small value of x:

a = .1
f(x) = log(1+x)
Tn = taylor_poly(f, 0, 5)
Tn(a) - f(a)

1 . 5 3 5 2 9 0 0 8 4 0 9 2 5 8 8 7 e - 7

1.3.1 Plotting

Let’s now visualize a function and the two approximations - the Taylor polynomial and the
interpolating polynomial. We use this function to generate the interpolating polynomial as
a function:

function newton_form(f, xs)
x -> begin

tot = divided_differences(f, xs[1])
for i in 2:length(xs)

tot += divided_differences(f, xs[1:i]...) * prod([x-xs[j] for j in 1:(i-1)])
end
tot

end
end

newton_form (generic function with 1 method)

To see a plot, we have

f(x) = sin(x)
c, h, n = 0, 1/4, 4
int_poly = newton_form(f, [c + i*h for i in 0:n])
tp = taylor_poly(f, c, n)
a, b = -pi, pi
plot(sin, a, b; linewidth=5)
plot!(int_poly, a, b, color=:green)
plot!(tp, a, b, color=:red)

Plot{Plots.PlotlyBackend() n=3}

To get a better sense, we plot the residual differences here:

d1(x) = f(x) - int_poly(x)
d2(x) = f(x) - tp(x)
a, b = -pi, pi
plot(d1, a, b, color=:blue)
plot!(d2, a, b, color=:green)

9

Plot{Plots.PlotlyBackend() n=2}

The graph should be 0 at each of the the points in xs, which we can verify in the graph
above. Plotting over a wider region shows a common phenomenon that these polynomials
approximate the function near the values, but quickly deviate away:
In this graph we make a plot of the Taylor polynomial for different sizes of n:

f(x) = 1 - cos(x)
a, b = -pi, pi
plot(f, a, b, linewidth=5)
plot!(taylor_poly(f, 0, 2), a, b)
plot!(taylor_poly(f, 0, 4), a, b)
plot!(taylor_poly(f, 0, 6), a, b)

Plot{Plots.PlotlyBackend() n=4}

Though all are good approximations near c = 0, as more terms are included, the Taylor
polynomial becomes a better approximation over a wider range of values.

Example: Period of an orbiting satellite Kepler’s third law of planetary motion states:

The square of the orbital period of a planet is directly proportional to the cube
of the semi-major axis of its orbit.

In formulas, P 2 = a3 · (4π2)/(G · (M + m)), where M and m are the respective masses.
Suppose a satellite is in low earth orbit with a constant height, a. Use a Taylor polynomial
to approximate the period using Kepler’s third law to relate the quantities.
Suppose R is the radius of the earth and h the height above the earth assuming h is much
smaller than R. The mass m of a satellite is negligible to that of the earth, so M + m = M
for this purpose. We have:

P = 2π√
G · M

· (h + R)3/2 = 2π√
G · M

· R3/2 · (1 + h/R)3/2 = P0 · (1 + h/R)3/2,

where P0 collects terms that involve the constants.
We can expand (1 + x)3/2 to fifth order, to get:

(1 + x)3/2 ≈ 1 + 3x

2
+ 3x2

8
− 1x3

16
+ 3x4

128
− 3x5

256
Our approximation becomes:

P ≈ P0 · (1 + 3(h/R)
2

+ 3(h/R)2

8
− (h/R)3

16
+ 3(h/R)4

128
− 3(h/R)5

256
).

Typically, if h is much smaller than R the first term is enough giving a formula like P ≈
P0 · (1 + 3h

2R
).

10

http://tinyurl.com/y7oa4x2g

A satellite phone utilizes low orbit satellites to relay phone communications. The Iridium
system uses satellites with an elevation h = 780km. The radius of the earth is 3, 959 miles,
the mass of the earth is 5.972 × 1024kg, and the gravitational constant, G is 6.67408 · 10−11

m3/(kg · s2).
Compare the approximate value with 1 term to the exact value.

G = 6.67408e-11
h = 780 * 1000
R = 3959 * 1609.34 # 1609 meters per mile
M = 5.972e24
P0, hR = (2pi)/sqrt(G*M) * R^(3/2), h/R

Preal = P0 * (1 + hR)^(3/2)
P1 = P0 * (1 + 3*hR/2)
Preal, P1

(6018.78431252517, 5990.893153415102)

With terms out to the fifth power, we get a better approximation:

P5 = P0 * (1 + 3*hR/2 + 3*hR^2/8 - hR^3/16 + 3*hR^4/128 - 3*hR^5/256)

6 0 1 8 . 7 8 4 2 0 4 5 0 5 9 2 3
The units of the period above are in seconds. That answer here is about 100 minutes:

Preal/60

1 0 0 . 3 1 3 0 7 1 8 7 5 4 1 9 5 1
When h is much smaller than R the approximation with 5th order is really good, and
serviceable with just 1 term. Next we check if this is the same when h is larger than R.

The height of a GPS satellite is about 12, 550 miles. Compute the period of a circular orbit
and compare with the estimates.

h = 12250 * 1609.34 # 1609 meters per mile
hR = h/R

Preal = P0 * (1 + hR)^(3/2)
P1 = P0 * (1 + 3*hR/2)
P5 = P0 * (1 + 3*hR/2 + 3*hR^2/8 - hR^3/16 + 3*hR^4/128 - 3*hR^5/256)

Preal, P1, P5

(41930.52564789311, 28553.22950490504, 31404.73066617854)

We see the Taylor polynomial underestimates badly in this case. A reminder that these
approximations are locally good, but may not be good on all scales. Here h ≈ 3R. We can

11

http://www.kddi.com/english/business/cloud-network-voice/satellite/iridium/mobile/
https://en.wikipedia.org/wiki/Gravitational_constant
http://www.gps.gov/systems/gps/space/

see from this graph of (1 + x)3/2 and its 5th degree Taylor polynomial T5 that it is a bad
approximation when x > 2.

Plot{Plots.PlotlyBackend() n=2}

Finally, we show how to use the Unitful package to work with the units. This package allows
us to define different units, carry these units through computations, and convert between
similar units with uconvert. In this example, we define several units, then show how they
can then be used as constants.

using Unitful
m, mi, kg, s, hr = u"m", u"mi", u"kg", u"s", u"hr"

G = 6.67408e-11 * m^3 / kg / s^2
h = uconvert(m, 12250 * mi) # unit convert miles to meter
R = uconvert(m, 3959 * mi)
M = 5.972e24 * kg

P0, hR = (2pi)/sqrt(G*M) * R^(3/2), h/R
Preal = P0 * (1 + hR)^(3/2) # in seconds

41930.68197490307 s

We see Preal has the right units - the units of mass and distance cancel leaving a measure of
time - but it is hard to sense how long this is. Converting to hours, helps us see the satellite
orbits about twice per day:

uconvert(hr, Preal) # ≈ 11.65 hours

11.647411659695297 hr

Example Computing log(x) Where exactly does the value assigned to log(5) come from?
The value needs to be computed. At some level, many questions resolve down to the basic
operations of addition, subtraction, multiplication, and division. Preferably not the latter, as
division is slow. Polynomials then should be fast to compute, and so computing logarithms
using a polynomial becomes desirable.
But how? One can see details of a possible way here.
First, there is usually a reduction stage. In this phase, the problem is transformed in a
manner to one involving only a fixed interval of values. For this function values of k and m
are found so that x = 2k · (1 + m) and

√
2/2 < 1 + m <

√
2. If these are found, then log(x)

can be computed with k · log(2) + log(1 + m). The first value - a multiplication - can easily
be computed using pre-computed value of log(2), the second then reduces the problem to an
interval.

12

https://github.com/musm/Amal.jl/blob/master/src/log.jl

Now, for this problem a further trick is utilized, writing s = f/(2 + f) so that log(1 + m) =
log(1 + s) − log(1 − s). log(1 + s) − log(1 − s) for some small range of s values then makes
it possible to compute log(x) for any real x.
To compute log(1 ± s), we can find a Taylor series. Let’s go out to degree 19 and use SymPy
to do the work:

@vars s
a = series(log(1 + s), s, 0, 19)
b = series(log(1 - s), s, 0, 19)
a_b = (a - b).removeO() # remove"Oh" not remove"zero"

2s17

17
+ 2s15

15
+ 2s13

13
+ 2s11

11
+ 2s9

9
+ 2s7

7
+ 2s5

5
+ 2s3

3
+ 2s

This is re-expressed as 2s + s · p with p given by:

p = cancel(a_b - 2s/s)

2s17

17
+ 2s15

15
+ 2s13

13
+ 2s11

11
+ 2s9

9
+ 2s7

7
+ 2s5

5
+ 2s3

3
+ 2s − 2

Now, 2s = m − s · m, so the above can be reworked to be log(1 + m) = m − s · (m − p).
(For larger values of m, a similar, but different approximation, can be used to minimize
floating point errors.)
How big can the error be between this approximations and log(1 + m)? We plot to see how
big s can be:

@vars u
plot(u/(2+u), sqrt(2)/2 - 1, sqrt(2)-1)

Plot{Plots.PlotlyBackend() n=1}

This shows, s is as big as

M = (u/(2+u))(u => sqrt(2) - 1)

0.17157287525381

The error term is like 2/19 · ξ19 which is largest at this value of M . Large is relative - it is
really small:

(2/19)*M^19

13

2.99778410043418 · 10−16

Basically that is machine precision. Which means, that as far as can be told on the computer,
the value produced by 2s + s · p is as accurate as can be done.
To try this out to compute log(5). We have 5 = 22(1 + 0.25), so k = 2 and m = 0.25.

k, m = 2, 0.25
s = m / (2+m)
p = 2 * sum(s^(2i)/(2i+1) for i in 1:8) # where the polynomial approximates the
logarithm...

log(1 + m), m - s*(m-p), log(1 + m) - (m - s*(m-p))

(0.22314355131420976, 0.22314355131420976, 0.0)

The two values differ by less than 10−16 as advertised. Re-assembling then, we compare the
computed values:

k * log(2) + (m - s*(m-p)), log(5)

(1.6094379124341003, 1.6094379124341003)

The actual code is different, as the Taylor polynomial isn’t used. The Taylor polynomial
is a great approximation near a point, but there might be better approximations for all
values in an interval. In this case there is, and that is used in the production setting. This
makes things a bit more efficient, but the basic idea remains - for a prescribed accuracy, a
polynomial approximation can be found over a given interval, which can be cleverly utilized
to solve for all applicable values.

1.4 Questions

⊛ Question
Compute the Taylor polynomial of degree 10 for sin(x) about c = 0 using SymPy. Based on
the form, which formula seems appropriate:

1.
10∑

k=0
xk

2.
10∑

k=1
(−1)n+1xn/n

3.
4∑

k=0
(−1)k/(2k + 1)! · x2k+1

14

4.
10∑

k=0
xn/n!

⊛ Question
Compute the Taylor polynomial of degree 10 for ex about c = 0 using SymPy. Based on the
form, which formula seems appropriate:

1.
10∑

k=0
xn/n!

2.
10∑

k=1
(−1)n+1xn/n

3.
4∑

k=0
(−1)k/(2k + 1)! · x2k+1

4.
10∑

k=0
xk

⊛ Question
Compute the Taylor polynomial of degree 10 for 1/(1 − x) about c = 0 using SymPy. Based
on the form, which formula seems appropriate:

1.
10∑

k=0
xk

2.
10∑

k=1
(−1)n+1xn/n

3.
10∑

k=0
xn/n!

4.
4∑

k=0
(−1)k/(2k + 1)! · x2k+1

⊛ Question
Let T5(x) be the Taylor polynomial of degree 5 for the function

√
1 + x about x = 0. What

is the coefficient of the x5 term?

1.
2/15

15

2.
1/5!

3.
7/256

4.
−5/128

⊛ Question
The 5th order Taylor polynomial for sin(x) about c = 0 is: x − x3/3! + x5/5!. Use this to
find the first 3 terms of the Taylor polynomial of sin(x2) about c = 0.
They are:

1.
x2

2.
x2 − x6/3! + x10/5!

3.
x2 · (x − x3/3! + x5/5!)

⊛ Question
A more direct derivation of the form of the Taylor polynomial (here taken about c = 0) is
to assume a polynomial form that matches f :

f(x) = a + bx + cx2 + dx3 + ex4 + · · ·

If this is true, then formally evaluating at x = 0 gives f(0) = a, so a is determined. Similarly,
formally differentiating and evaluating at 0 gives f ′(0) = b. What is the result of formally
differentiating 4 times and evaluating at 0:

1.
f ′′′′(0) = e

2.
f ′′′′(0) = 4 · 3 · 2e

3.
f ′′′′(0) = 0

⊛ Question
How big an error is there in approximating ex by its 5th degree Taylor polynomial about
c = 0, 1 + x + x2/2! + x3/3! + x4/4! + x5/5!?, over [−1, 1].
The error is known to be (f (6)(ξ)/6!) · x6 for some ξ in [−1, 1].

• The 6th derivative of ex is still ex:

16

1. Yes

2. No

• Which is true about the function ex:

1. It is increasing

2. It is decreasing

3. It both increases and decreases

• The maximum value of ex over [−1, 1] occurs at

1. A critical point

2. An end point

• Which theorem tells you that for a continuous function over closed interval, a maximum
value will exist?

1. The mean value theorem

2. The extreme value theorem

3. The intermediate value theorem

• What is the largest possible value of the error:

1.
1/6! · e1 · 16

2.
16 · 1 · 16

⊛ Question
The error in using Tk(x) to approximate ex over the interval [−1/2, 1/2] is (1/(k +1)!)eξxk+1,
for some ξ in the interval. This is less than 1/((k + 1)!)e1/2(1/2)k+1.

• Why?

1. The function is monotonic in k, so achieves its maximum at k + 1

2. The function ex is increasing, so takes on its largest value at the endpoint and the
function |xn| ≤ |x|n ≤ (1/2)n

3. The function has a critical point at x = 1/2

Assuming the above is right, find the smallest value k guaranteeing a error no more than
10−16.

17

• The function f(x) = (1 − x + x2) · ex has a Taylor polynomial about 0 such that all
coefficients are rational numbers. Is it true that the numerators are all either 1 or
prime? (From the 2014 Putnam exam.)

Here is one way to get all the values bigger than 1:

@vars x
ex = (1 - x + x^2)*exp(x)
Tn = series(ex, x, 0, 100).removeO()
ps = sympy.Poly(Tn, x).coeffs()
qs = numer.(ps)
qs[qs .> 1] |> Tuple # format better for output

(97, 89, 83, 79, 73, 71, 67, 61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17
, 13, 11, 7, 5, 2, 3, 2)

Verify by hand that each of the remaining values is a prime number to answer the question
(Or you can use sympy.isprime.(qs)).
Are they all prime or 1?

1. Yes

2. No

1.5 Appendix

We mentioned two facts that could use a proof: the Newton form of the interpolating polyno-
mial and the mean value theorem for divided differences. Our explanation tries to emphasize
a parallel with the secant line’s relationship with the tangent line. The standard way to dis-
cuss the Taylor polynomial is different and so these two proofs are not in most calculus
texts.
A proof of the Newton form can be done knowing that the interpolating polynomial is unique
and can be expressed either as g(x) = a0+a1(x−x0)+· · ·+an(x−x0)·· · ··(x−xn−1) or in this
reversed form h(x) = b0+b1(x−xn)+b2(x−xn)(x−xn−1)+· · ·+bn(x−xn)(x−xn−1)·· · ··(x−x1).
These two polynomials are of degree n at most and have u(x) = h(x) − g(x) = 0, by
uniqueness. So the coefficients of u(x) are 0. We have that the coefficient of xn must be
an − bn so an = bn. Our goal is to express an in terms of an−1 and bn−1. Focusing on the
xn−1 term, we have:

bn(x−xn)(x−xn−1)·· · ··(x−x1)−an·(x−x0)·· · ··(x−xn−1) = an[(x−x1)·· · ··(x−xn−1)][(x−xn)−(x−x0)] = −an·(xn−x0)xn−1+pn−2,

where pn−2 is a polynomial of at most degree n−2. (The expansion of (x−x1)·· · ··(x−xn−1))
leaves xn−1 plus some lower degree polynomial.) Similarly, we have an−1(x − x0) · · · · · (x −
xn−2) = an−1x

n−1 + qn−2 and bn−1(x − xn) · · · · · (x − x2) = bn−1x
n−1 + rn−2. Combining, we

get that the xn−1 term of u(x) is

18

http://kskedlaya.org/putnam-archive/2014.pdf
https://www.math.uh.edu/~jingqiu/math4364/interpolation.pdf

(bn−1 − an−1) − an(xn − x0) = 0.

On rearranging, this yields an = (bn−1 − an−1)/(xn − x0). By induction - that ai =
f [x0, x1, . . . , xi] and bi = f [xn, xn−1, . . . , xn−i] (which has trivial base case) - this is (f [x1, . . . , xn]−
f [x0, . . . xn−1])/(xn − x0).
Now, assuming the Newton form is correct, a proof of the mean value theorem for divided
differences comes down to Rolle’s theorem. Starting from the Newton form of the polynomial
and expanding in terms of 1, x, . . . , xn we see that g(x) = pn−1(x) + f [x0, x1, . . . , xn] · xn,
where now pn−1(x) is a polynomial of degree at most n − 1. That is, the coefficient of xn is
f [x0, x1, . . . , xn]. Consider the function h(x) = f(x) − g(x). It has zeros x0, x1, . . . , xn.
By Rolle’s theorem, between any two such zeros xi, xi+1, 0 ≤ i < n there must be a zero of
the derivative of h(x), say ξ1

i . So h′(x) has zeros ξ1
0 < ξ1

1 < · · · < ξ1
n−1.

We visualize this with f(x) = sin(x) and xi = i for i = 0, 1, 2, 3, The xi values are indicated
with circles, the ξ1

i values indicated with squares:

Plot{Plots.PlotlyBackend() n=3}

Again by Rolle’s theorem, between any pair of adjacent zeros ξ1
i , ξ1

i+1 there must be a zero
ξ2

i of h′′(x). So there are n − 1 zeros of h′′(x). Continuing, we see that there will be n + 1 − 3
zeros of h(3)(x), n + 1 − 4 zeros of h4(x), . . . , n + 1 − (n − 1) zeros of hn−1(x), and finally
n + 1 − n (1) zero of h(n)(x). Call this last zero ξ. It satisfies x0 ≤ ξ ≤ xn. Further,
0 = h(n)(ξ) = f (n)(ξ) − g(n)(ξ). But g is a degree n polynomial, so the nth derivative is the
coefficient of xn times n!. In this case we have 0 = f (n)(ξ) − f [x0, . . . , xn]n!. Rearranging
yields the result.

19

http://tinyurl.com/zjogv83

	Taylor Polynomials and other Approximating Polynomials
	The secant line and the tangent line
	Quadratic approximations
	The Taylor polynomial of degree n
	Plotting

	Questions
	Appendix

