
1 Rational functions

A rational expression is the ratio of two polynomial expressions. Such expressions arise in
many modeling situations. As well, as many facts are known about polynomial expressions,
much can be determined about rational expressions. This section covers some additional
details that arise when graphing such expressions.

1.1 Rational functions

The rational numbers are simply ratios of integers, of the form p/q for non-zero q. A rational
function is a ratio of polynomial functions of the form p(x)/q(x), again q is non-zero, but
may have zeros.
We know that polynomials have nice behaviors due to the following facts:

• Behaviors at −∞, ∞ are known just from the leading term.

• There are possible wiggles up and down, the exact behavior depends on intermediate
terms, but there can be no more than n − 1 wiggles.

• The number of zeros is no more than n, the degree of the polynomial.

Rational functions are not quite so nice:

• behavior at −∞ and ∞ can be like a polynomial of any degree, including constants

• behaviour at any value x can blow up due to division by 0 - rational functions, unlike
polynomials, are not always defined

• The function may or may not cross zero, even if the range includes every other point,
as the graph of f(x) = 1/x will show.

Here, as with our discussion on polynomials, we are interested for now in just a few properties:

• What happens to f(x) when x gets really big or really small (towards ∞ or −∞)?

• What happens near the values where q(x) = 0?

• When is f(x) = 0?

These questions can often be answered with a graph, but with rational functions we will see
that care must be take when producing a useful graph.
For example, consider this graph generated from a simple rational function:

f(x) = (x − 1)2 · (x − 2)
(x + 3) · (x − 3)

.
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using CalculusWithJulia # loads the `SymPy` package
using Plots
f(x) = (x-1)^2 * (x-2) / ((x+3)*(x-3) )
plot(f, -10, 10)

10 5 0 5 10

2000

1000

0

1000

2000

3000

4000 y1

We would be hard pressed to answer any of the three questions above from the graph, though,
on inspection, we might think the strange spikes have something to do with x values where
q(x) = 0.
The question of big or small x is not answered well with this graph, as the spikes dominate
the scale of the y-axis. Setting a much larger viewing window illuminates this question:

plot(f, -100, 100)
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We can see from this, that the function eventually looks like a slanted straight line. The
eventual shape of the graph is something that can be determined just from the two leading
terms.
The spikes haven’t vanished completely. It is just that with only a few hundred points to
make the graph, there aren’t any values near enough to the problem to make a large spike.
The spikes happen because the function has a vertical asymptote at these values. Though
not quite right, it is reasonable to think of the graph graph being made by selecting a few
hundred points in the specified domain, computing the corresponding y values, plotting
the pairs, and finally connecting the points with straight line segments. Near a vertical
asymptote the function values can be arbitrarily large in absolute values, though at the
vertical asymptote the function is undefined. This graph doesn’t show such detail.
The spikes will be related to the points where q(x) = 0, though not necessarily, as not all
such points will produce a vertical asymptote.
Where the function crosses 0 is very hard to tell from these two graphs. As well, other finer
features, such as local peaks or valleys, when present, can be hard to identify as the y-scale
is set to accommodate the asymptotes. Working around the asymptotes requires some extra
effort. Strategies are discussed herein.

1.2 Asymptotes

Formally, an asymptote of a curve is a line such that the distance between the curve and the
line approaches 0 as they tend to infinity. Tending to infinity can happen as x → ±∞ or
y → ±∞, the former being related to horizontal asymptotes or slant asymptotes, the latter
being related to vertical asymptotes.
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1.2.1 Behaviour as x → ∞ or x → −∞.

Let’s look more closely at our example rational function using symbolic math.
In particular, let’s rewrite the expression in terms of its numerator and denominator:

@vars x real=true
a = (x-1)^2 * (x-2)
b = (x+3)*(x-3)

(x − 3) (x + 3)

Euclid’s division algorithm can be used for polynomials a(x) and b(x) to produce q(x) and
r(x) with a = b · q + r and the degree of r(x) is less than the degree of b(x). This is in direct
analogy to the division algorithm of integers, only there the value of the remainder, r(x),
satisfies 0 ≤ r < b. Given q(x) and r(x) as above, we can reexpress the rational function

a(x)
b(x)

= q(x) + r(x)
b(x)

.

The rational expression on the right-hand side has larger degree in the denominator.
The division algorithm is implemented in Julia generically through the divrem method:

q, r = divrem(a, b)

(floor((x - 2)*(x - 1)^2/((x - 3)*(x + 3))), -(x - 3)*(x + 3)*floor((x - 2)
*(x - 1)^2/((x - 3)*(x + 3))) + (x - 2)*(x - 1)^2)

This yield the decomposition of a/b:

q + r/b

⌊
(x − 2) (x − 1)2

(x − 3) (x + 3)

⌋
+

− (x − 3) (x + 3)
⌊

(x−2)(x−1)2

(x−3)(x+3)

⌋
+ (x − 2) (x − 1)2

(x − 3) (x + 3)

A similar result can be found using the apart function, which can be easier to use if the
expression is not given in terms of a separate numerator and denominator.

f(x) = (x-1)^2 * (x-2) / ((x+3)*(x-3)) # as a function
p = f(x) # a symbolic expression
apart(p)

x − 4 + 40
3 (x + 3)

+ 2
3 (x − 3)
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This decomposition breaks the rational expression into two pieces: x − 4 and 40/(3x + 9) +
2/(3x − 9). The first piece would have a graph that is the line with slope 1 and y-intercept
4. As x goes to ∞, the second piece will clearly go towards 0, as this simple graph shows:

plot(apart(p) - (x - 4), 10, 100)
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Similarly, a plot over [−100, −10] would show decay towards 0, though in that case from
below. Combining these two facts then, it is now no surprise that the graph of the rational
function f(x) should approach a straight line, in this case y = x − 4 as x → ±∞.
We can easily do most of this analysis without needing a computer or algebra. First, we
should know that the graph of y = mx is a line with slope m, the graph of y = c is a constant
line at height c, and the graph of y = c/xm, m > 0 will decay towards 0 as x → ±∞. The
latter should be clear, as xm gets big, so its reciprocal goes towards 0.
The factored form, as p is presented, is a bit hard to work with, rather we use the expanded
form, which we get through the cancel function

cancel(p)

x3 − 4x2 + 5x − 2
x2 − 9

We can see that numerator is of degree 3 and the denominator of degree 2. The leading
terms are x3 and x2 respectively. If we were to pull those out we would get:
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x3 · (1 − 4/x + 5/x2 − 2/x3)
x2 · (1 − 9/x2)

.

The terms (1 − 4/x + 5/x2 − 2/x3) and (1 − 9/x2) go towards 1 as x → ±∞, as each term
with x goes towards 0. So the dominant terms comes from the ratio of the leading terms, x3

and x2. This ratio is x, so their will be an asymptote of a line with slope 1. (The fact that
the asymptote is y = x − 4 takes a bit more work, as a division step is needed.)
Just by looking at the ratio of the two leading terms, the behaviour as x → ±∞ can be
discerned. If this ratio is of:

• the form cxm with m > 1 then the shape will follow the polynomial growth of of the
monomial cxm.

• the form cxm with m = 1 then there will be a line with slope c as a slant asymptote.

• the form cx0 with m = 0 (or just c) then there will be a horizontal asymptote y = c.

• the form c/xm with m > 0 then there will be a horizontal asymptote y = 0, or the y
axis.

To expand on the first points where the degree of the numerator is greater than that of the
denominator, we have from the division algorithm that if a(x) is the numerator and b(x) the
denominator, then a(x)/b(x) = q(x) + r(x)/b(x) where the degree of b(x) is greater than the
degree of r(x), so the rightmost term will have a horizontal asymptote of 0. This says that
the graph will eventually approach the graph of q(x), giving more detail than just saying it
follows the shape of the leading term of q(x), at the expense of the work required to find
q(x).

Examples Consider the rational expression

17x5 − 300x4 − 1/2
x5 − 2x4 + 3x3 − 4x2 + 5

.

The leading term of the numerator is 17x5 and the leading term of the denominator is x5.
The ratio is 17 (or 17x0 = 17x5−5). As such, we would have a horizontal asymptote y = 17.

If we consider instead this rational expression:

x5 − 2x4 + 3x3 − 4x2 + 5
5x4 + 4x3 + 3x2 + 2x + 1

Then we can see that the ratio of the leading terms is x5/(5x4) = (1/5)x. We expect a slant
asymptote with slope 1/5, though we would need to divide to see the exact intercept. This
is found with

p = (x^5 - 2x^4 + 3x^3 - 4x^2 + 5) / (5x^4 + 4x^3 + 3x^2 + 2x + 1)
apart(p)
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x

5
+ 116x3 − 68x2 + 23x + 139

25 (5x4 + 4x3 + 3x2 + 2x + 1)
− 14

25

The rational function

5x3 + 6x2 + 2
x − 1

has decomposition 5x2 + 11x + 11 + 13/(x − 1):

a = 5x^3 + 6x^2 +2
b = x-1
q, r = divrem(a, b)

(floor((5*x^3 + 6*x^2 + 2)/(x - 1)), 5*x^3 + 6*x^2 - (x - 1)*floor((5*x^3 +
6*x^2 + 2)/(x - 1)) + 2)

The graph of a/b has nothing in common with the graph of g for small x

plot(a/b, -3, 3)
plot!(q, -3, 3)
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But the graphs do match for large x:
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plot(a/b, 5, 10)
plot!(q, 5, 10)
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Finally, consider this rational expression in factored form:

(x − 2)3 · (x − 4) · (x − 3)
(x − 5)4 · (x − 6)2 .

By looking at the powers we can see that the leading term of the numerator will the x5 and
the leading term of the denominator x6. The ratio is 1/x1. As such, we expect the y-axis as
a horizontal asymptote:

Partial fractions The apart function was useful to express a rational function in terms
of a polynomial plus additional rational functions whose horizontal asymptotes are 0. This
function computes the partial fraction decomposition of a rational function. Outside of the
initial polynomial, this decomposition is a reexpression of a rational function into a sum of
rational functions, where the denominators are irreducible, or unable to be further factored
(non-trivially) and the numerators have lower degree than the denominator. Hence the
horizontal asymptotes of 0.
To see another example we have:

x = symbols("x")
p = (x-1)*(x-2)
q = (x-3)^3 * (x^2 - x - 1)
apart(p/q)
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2x − 1
25 (x2 − x − 1)

− 2
25 (x − 3)

+ 1
5 (x − 3)2 + 2

5 (x − 3)3

The denominator, q, has factors x − 3 and x2 − x − 1, each irreducible. The answer is
expressed in terms of a sum of rational functions each with a denominator coming from one
of these factors, possibly with a power.

1.2.2 Vertical asymptotes

As just discussed, the graph of 1/x will have a horizontal asymptote. However it will also
show a spike at 0:

plot(1/x, -1, 1)
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Again, this spike is an artifact of the plotting algorithm. The y values for x-values just
smaller than 0 are large negative values and the x values just larger than 0 produce large,
positive y values. The two points with x components closest to 0 are connected with a line,
though that is misleading.
The line x = 0 is a vertical asymptote for the graph of 1/x. As x values get close to 0 from
the right, the y values go towards ∞ and as the x values get close to 0 on the left, the y
values go towards −∞.
This has everything to do with the fact that 0 is a root of the denominator.
For a rational function p(x)/q(x), the roots of q(x) may or may not be asymptotes. For a
root c if p(c) is not zero then the line x = c will be a vertical asymptote. If c is a root of
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both p(x) and q(x), then we can rewrite the expression as:

p(x)
q(x)

= (x − c)mr(x)
(x − c)ns(x)

,

where both r(c) and s(c) are non zero. Knowing m and n (the multiplicities of the root c)
allows the following to be said:

• If m < n then x = c will be a vertical asymptote.

• If m ≥ n then x = c will not be vertical asymptote. (The value c will be known
as a removable singularity). In this case, the graph of p(x)/q(x) and the graph of
(x − c)m−nr(x)/s(x) will differ, as the latter will include a value for x = c, whereas
x = c is not in the domain of p(x)/q(x).

Finding the multiplicity may or may not be hard, but there is a quick check that is often
correct. With Julia, if you have a rational function that has f(c) evaluate to Inf or -Inf
then there will be a vertical asymptote. If the expression evaluates to NaN, more analysis is
needed. (The value of 0/0 is NaN, where as 1/0 is Inf.)
For example, the function f(x) = ((x−1)2 ·(x−2))/((x+3) ·(x−3)) has vertical asymptotes
at −3 and 3, as its graph illustrated. Without the graph we could see this as well:

f(x) = (x-1)^2 * (x-2) / ((x+3)*(x-3) )
f(3), f(-3)

(Inf, -Inf)

Graphing with vertical asymptotes As seen in several graphs, the basic plotting algo-
rithm does a poor job with vertical asymptotes. For example, it may erroneously connect
their values with a steep vertical line, or the y-axis scale can get so large as to make reading
the rest of the graph impossible. There are some trick to work around this.
Consider again the function f(x) = ((x − 1)2 · (x − 2))/((x + 3) · (x − 3)). Without much
work, we can see that x = 3 and x = −3 will be vertical asymptotes and there will be a slant
asymptote with slope 1. How to graph this?
We can avoid the vertical asymptotes in our viewing window. For example we could look at
the area between the vertical asymptotes, by plotting over (−2.9, 2.9), say:

f(x) = (x-1)^2 * (x-2) / ((x+3)*(x-3) )
plot(f, -2.9, 2.9)
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This backs off by δ = 0.1. As we have that 2.9 − 3 is δ and 1/δ is 10, the y axis won’t get
too large, and indeed it doesn’t.
This graph doesn’t show well the two zeros at x = 1 and x = 2, for that a narrower viewing
window is needed. By successively panning throughout the interesting part of the graph, we
can get a view of the function.
We can also clip the y axis. The plot function can be passed an argument ylims=(lo, hi)
to limit which values are plotted. With this, we can have:

plot(f, -5, 5, ylims=(-20, 20))
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This isn’t ideal, as the large values are still computed, just the viewing window is clipped.
This leaves the vertical asymptotes still effecting the graph.
There is another way, we could ask Julia to not plot y values that get too large. This is not
a big request. If instead of the value of f(x) - when it is large - -we use NaN instead, then
the connect-the-dots algorithm will skip those values.
This is actually quite easy to implement, if we operate on the function object. Here is a
possible trimplot function:

function trimplot(f, a, b, c=20; kwargs...)
fn = x -> abs(f(x)) < c ? f(x) : NaN
plot(fn, a, b; kwargs...)

end

As before, the x -> of the function indicates that this will return an anonymous function,
which does what we want: replace large values with NaN.
A more robust version of such a function is in the CalculusWithJulia package, so the above
definition need not be used.
Now to graph:

trimplot(f, -25, 25, 30)

We can see the general shape of 3 curves broken up by the vertical asymptotes. The two
on the side heading off towards the line x − 4 and the one in the middle. We still can’t
see the precise location of the zeros, but that wouldn’t be the case with most graphs that
show asymptotic behaviors. However, we can clearly tell where to ”zoom in” were those of
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interest.

1.2.3 Sign charts

When sketching graphs of rational functions by hand, it is useful to use sign charts. A sign
chart of a function indicates when the function is positive, negative, 0, or undefined. It
typically is represented along the lines of this one for f(x) = x3 − x:

- 0 + 0 - 0 +
< ----- -1 ----- 0 ----- 1 ----- >

The usual recipe for construction follows these steps:

• Identify when the function is 0 or undefined. Place those values on a number line.

• Identify ”test points” within each implied interval (these are (−∞, −1), (−1, 0), (0, 1),
and (1, ∞) in the example) and check for the sign of f(x) at these test points. Write in
-, +, 0, or *, as appropriate. The value comes from the fact that ”continuous” functions
may only change sign when they cross 0 or are undefined.

With the computer, where it is convenient to draw a graph, it might be better to emphasize
the sign on the graph of the function. This helper function will do so, plotting the function
and then coloring it different colors based on the sign of f(x):

function signchart(f, a, b)
xs = range(a, stop=b, length=200)
ys = f.(xs)
cols = [fx < 0 ? :red : :blue for fx in ys]
plot(xs, ys, color=cols, linewidth=5, legend=false)
plot!(zero, a, b)
end

(The function is defined in CalculusWithJulia, so need not be typed in.)

f(x) = x^3 - x
signchart(f, -3/2, 3/2)

1.3 Pade approximate

One area where rational functions are employed is in approximating functions. Later, the
Taylor polynomial will be seen to be a polynomial that approximates well a function (where
”well” will be described later). The Pade approximation is similar, though uses a rational
function for the form p(x)/q(x), where q(0) = 1 is customary.
Some example approximations are

sin(x) ≈ x − 7/60 · x3

1 + 1/20 · x2
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and

tan(x) ≈ x − 1/15 · x3

1 − 2/5 · x2

We can look graphically at these approximations:

sin_p(x) = (x - (7/60)*x^3) / (1 + (1/20)*x^2)
tan_p(x) = (x - (1/15)*x^3) / (1 - (2/5)*x^2)
plot(sin, -pi, pi)
plot!(sin_p, -pi, pi)
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plot(tan, -pi/2 + 0.2, pi/2 - 0.2)
plot!(tan_p, -pi/2 + 0.2, pi/2 - 0.2)
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1.4 Questions

⊛ Question
The rational expression (x3 − 2x + 3)/(x2 − x + 1) would have

1. A horizontal asymptote y = 0

2. A horizontal asymptote y = 1

3. A slant asymptote with slope m = 1

⊛ Question
The rational expression (x2 − x + 1)/(x3 − 2x + 3) would have

1. A horizontal asymptote y = 0

2. A horizontal asymptote y = 1

3. A slant asymptote with slope m = 1

⊛ Question
The rational expression (x2 − x + 1)/(x2 − 3x + 3) would have

1. A slant asymptote with slope m = 1

2. A horizontal asymptote y = 1
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3. A horizontal asymptote y = 0

⊛ Question
The rational expression

(x − 1) · (x − 2) · (x − 3)
(x − 4) · (x − 5) · (x − 6)

would have

1. A slant asymptote with slope m = 1

2. A horizontal asymptote y = 1

3. A horizontal asymptote y = 0

⊛ Question
The rational expression

(x − 1) · (x − 2) · (x − 3)
(x − 4) · (x − 5) · (x − 6)

would have

1. A vertical asymptote x = 1

2. A vertical asymptote x = 5

3. A slant asymptote with slope m = 1

⊛ Question
The rational expression

x3 − 3x2 + 2x

3x2 − 6x + 2
has a slant asymptote. What is the equation of that line?

1.
y = (1/3)x − (1/3)

2.
y = 3x

3.
y = (1/3)x
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⊛ Question
Look at the graph of the function f(x) = ((x − 1) · (x − 2))/((x − 3) · (x − 4))
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Is the following common conception true: ”The graph of a function never crosses its asymp-
totes.”

1. No, the graph clearly crosses the drawn asymptote

2. Yes, this is true

(The wikipedia page indicates that the term ”asymptote” was introduced by Apollonius of
Perga in his work on conic sections, but in contrast to its modern meaning, he used it to
mean any line that does not intersect the given curve. It can sometimes take a while to
change perception.)
⊛ Question
Consider the two graphs of f(x) = 1/x over [10, 20] and [100, 200]:
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The two shapes are basically identical and do not look like straight lines. How does this
reconcile with the fact that f(x) = 1/x has a horizontal asymptote y = 0?

1. The horizontal asymptote is not a straight line.

2. The graph is always decreasing, hence it will eventually reach −∞.
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3. The y-axis scale shows that indeed the y values are getting close to 0.

⊛ Question
The amount of drug in a bloodstream after t hours is modeled by the rational function

r(t) = 50t2

t3 + 20
, t ≥ 0.

What is the amount of the drug after 1 hour?
What is the amount of drug in the bloodstream after 24 hours?
What is more accurate: the peak amount is

1. between 16 and 24 hours

2. after one day

3. between 8 and 16 hours

4. between 0 and 8 hours

This graph has

1. a vertical asymptote with x = 201/3

2. a horizontal asymptote y = 20

3. a horizontal asymptote y = 0

4. a slant asymptote with slope 50

⊛ Question
The (low-order) Pade approximation for sin(x) was seen to be (x − 7/60 · x3)/(1 + 1/20 · x2).
The graph showed that this approximation was fairly close over [−π, π]. Without graphing
would you expect the behaviour of the function and its approximation to be similar for large
values of x?

1. Yes

2. No

Why?

1. The sin(x) oscillates, but the rational function has a slant asymptote

2. The sin(x) oscillates, but the rational function has a horizontal asymptote of 0

3. The sin(x) oscillates, but the rational function eventually follows 7/60 · x3

4. The sin(x) oscillates, but the rational function has a non-zero horizontal asymptote
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