1 Fundamental Theorem or Calculus

We refer to the example the section on transformations where two operators on functions
were defined:

D(f)(k) = f(k) = f(k=1), S(f)(k) = f(1)+ f(2) + -+ f(F).
It was remarked that these relationships hold: D(S(f))(k) = f(k) and S(D(f))(k) = f(k)—
f(0). These being a consequence of the inverse relationship between addition and subtraction.
These two relationships are examples of a more general pair of relationships known as the
Fundamental Theorem of Calculus or FTC.

The FTC details the interconnectivity between the operations of integration and differenti-
ation.

For example:

What is the definite integral of the derivative? That is, what is A = [ f/(x)dx?
(Assume f’ is continuous.)

To investigate, we begin with the right Riemann sum using h = (b — a)/n:

n

AxS,=> f'(a+ih)-h.

i=1
But the Mean Value Theorem says that for small h we have f'(z) = (f(z) — f(z — h))/h.
Using this approximation with z = a + th gives:

A= i(f(a—l—z’h) — fla+ (1 —=1)h)).

If we let g(i) = f(a+ih), then the summand above is just g(i) — g(i — 1) = D(g)(¢) and the
above then is just the sum of the D(g)(i)s, or:

A= 5(D(9))(n) = g(n) — ¢(0).

But g(n) — ¢g(0) = f(a +nh) — f(a+ 0h) = f(b) — f(a). That is we expect that if ~ in the
limit becomes = then:

This is indeed the case.

The other question would be

What is the derivative of the integral? That is, can we find the derivative of

Jo J(u)du?

Let’s look first at the integral using the right-Riemann sum, again using h = (b — a)/n:
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/abf(u)du ~ f(a+ 1h)h+ f(a+2h)h + - f(a+ nh)h = S(g)(n),

where we define ¢g(i) = f(a + ih)h. In the above, n relates to b, but we could have stopped
accumulating at any value. The analog for S(g)(k) would be [” f(u)du where x = a + kh.
That is we can make a function out of integration by considering the mapping (z, [ f(u)du).
This might be written as F\(z) = [ f(u)du. With this definition, can we take a derivative
in x?

Again, we fix a large n and let h = (b — a)/n. And suppose x = a + Mh for some M. Then
writing out the approximations to both the definite integral and derivative we have

Fa) = [ fu)du
@)= F(e—h) _ [ f(u)du— [7" f(uw)du

h ha
_(fla+1h)h+ fla+2h)h +---+ fla+ (M — 1)h)h + f(a+ Mh)h) ~ (f(a+1h)h+ f(a+

~ -

h
If g(i) = f(a + ih), then the above becomes

~

That is F'(z) = f(z).

In the limit, then, we would expect that

[ fydn = 7).

With these heuristics, we now have:

The Fundamental Theorem of Calculus

Part 1: Let f be a continuous function on a closed interval [a,b] and define
F(z) = [ f(u)du for a < x < b. Then F is continuous on [a, b], differentiable
on (a,b) and moreover, F'(z) = f(x).

Part 2: Now suppose f is any integrable function on a closed interval [a, b] and
F(z) is any differentiable function on [a, b] with F'(z) = f(x). Then [’ f(x)dz =
F(b) — F(a).

In Part 1, the integral F'(x) = [V f(u)du is defined for any Riemann integrable function,
f. If the function is not continuous, then it is true the F' will be continuous, but it need
not be true that it is differentiable at all points in (a,b). Forming F' from f is a form
of smoothing. It makes a continuous function out of an integrable one, a differentiable
function from a continuous one, and a k + 1-times differentiable function from a k-times
differentiable one.




1.1 Using the Fundamental Theorem of Calculus to evaluate defi-
nite integrals

The major use of the FTC is the computation of ff f(z)dz. Rather then resort to Riemann
sums or geometric arguments, there is an alternative - find a function F' with F'(x) = f(x)
and compute F(b) — F(a).

Some examples:

« Consider the problem of Archimedes, f; 22dz. Clearly, we have with f(z) = 2 that
F(z) = 2*/3 will satisfy the assumptions of the FTC, so that:

1 13 03 1
dr = F(1) - F(0) = — — — = —.
| atde = F) = FO) = 5 -5 = 5

« More generally, we know if n # —1 that if f(x) = 2", that

F(z) =a""/(n+1)
will satisfy F'(x) = f(x), so that

b bn—l—l _an—i-l
"dr = ———, —1.
/a z"dx T n #

(Well almost! We must be careful to know that a - b > 0, as otherwise we will encounter a
place where f(x) may not be integrable.)

We note that the above includes the case of a constant, or n = 0: [1dr = z'/1 = z.

What about the case n = —1, or f(z) = 1/x, that is not covered by the above? For this
special case, it is known that F'(z) = log(z) (natural log) will have F'(x) = 1/x. This gives
for 0 < a < b:

b1
—dz = log(b) — log(a).
T

a

o Let f(x) = cos(x). How much area is between —m/2 and 7/2? We have that F(z) =
sin(z) will have F'(z) = f(x), so:

/”/2 cos(z)dz = F(r/2) — F(—r/2) =1 — (—1) = 2.

—m/2

1.1.1 An alternate notation for F'(b) — F'(a)
The expression F'(b) — F'(a) is often written in this more compact form:

b b
, Or just expr

r=a r=a

[ F(w)dr = () - Fla) = F()




The vertical bar is used for the evaluation step, in this case the a and b mirror that of the
definite integral. This notation lends itself to working inline, as we illustrate with this next
problem where we "know” a function ”F'”, so just express it "inline”:

m/4 9 w/4
/ sec”(z)dxr = tan(z) ,=1-0=1
0 r=
A consequence of this notation is:
b a
F(x) T —F(x) o

This says nothing more than F(b) — F(a) = —F(a) — (—F (b)), though more compactly.

1.2 The indefinite integral

A function F(z) with F'(z) = f(x) is known as an antiderivative of f. For a given f, there
are infinitely many antiderivatives: if F'(z) is one, then so is G(x) = F(z) + C. But - due to
the mean value theorem - all antiderivatives for f differ at most by a constant.

The indefinite integral of f(z) is denoted by:

(There are no limits of integration.) There are two possible definitions: this refers to the set
of all antiderivatives, or is just one of the set of all antiderivatives for f. The former gives
rise to expressions such as

3
/x%xz%—l—c

where C' is the constant of integration and isn’t really a fixed constant, but any possible
constant. These notes will follow the lead of SymPy and not give a C' in the expression, but
instead rely on the reader to understand that there could be many other possible expressions
given, though all differ by no more than a constant. This means, that [ f(x)dx refers to an
antiderivative, not the antiderivative.

SymPy provides the integrate function to perform integration. There are two usages:

« integrate(ex, var) to find an indefinite integral. For a univariate function f this is
shortened to integrate(f),

o integrate(ex, (var, a, b)) tofind the definite integral. This integrates the expres-
sion in the variable var from a to b. For a univariate function f this can also be short-
ened to integrate(f, a, b), which matches our usual template of action(function,
args...).

To illustrate, we have, this call finds an antiderivative:

using CalculusWithJulia
using Plots
integrate(sin)



—cos ()

Whereas this call computes the "area” under f(z) between a and b:

| integrate(sin, 0, pi)

2.0

In the last two example, function objects were integrated. We can also integrate expressions,
though in this usage we must specify the variable:

Ovars x n real=true
integrate(x”n, x)

log () otherwise

l.n+1
{ e forn # —1
For a definite integral we have

‘integrate(acos(l—x), (x, 0, 2))

1.3 Rules of integration
The integrate function includes an implementation of the Risch algorithm. This algorithm
is implemented for elementary functions and operations involving these functions, such as

addition, multiplication, division and composition. There are some "rules” of integration
that allow this to work.

o The integral of a constant times a function:

/c‘f(a:)da::c-/f(:c)dx.

This follows as if F'(z) is an antiderivative of f(z), then [cF(z)] = ¢f(z) by rules of deriva-
tives.

o The integral of a sum of functions:

/(f(:z:) + g(x))dx = /f(a:)dw+/g(x)dx.

This follows immediately as if F'(z) and G(x) are antiderivatives of f(z) and g(z), then
[F(z) 4+ G(x)]' = f(x) + g(x), so the right hand side will have a derivative of f(z) + g(x).
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In fact, this more general form where ¢ and d are constants covers both cases:

/(cf(x) + dg(x))dx = c/f(x)dx + d/g(x)dx.

This statement is nothing more than the derivative formula [cf(z)+dg(x)] = cf'(z) +dg' (x).
The product rule gives rise to a technique called integration by parts and the chain rule gives
rise to a technique of integration by substitution, but we defer those discussions to other
sections.

Examples

« The antiderivative of the polynomial p(z) = a,x™+- - - a;x+ag follows from the linearity
of the integral and the general power rule:

/(anx"+---@1x+ao)d:v = /anx"dx—l—---/alxdx—l—/aodx (1)
:an/a:”da:+---+a1/a:dm+ag/dx (2)

"t x? T
:ann+1+~-+a1?+a0? (3)

e More generally, a Laurent polynomial allows for terms with negative powers. These
too can be handled by the above. For example

2 2
/(—+2+2x)d1}:/fdx+/2d:c+/2xd:c (4)
x x
1
:Z/de%—Q/d:I:—l—Z/xdx (5)
72
= 2log(z) +2x—|—2?. (6)

o Consider this integral:

/07r 100 sin(z)dz = F(r) — F(0),

where F'(x) is an antiderivative of 100sin(x). But:
/100 sin(x)dx = 100/Sin(a7)da7 = 100(— cos(z)).
So the answer to the question is
/7T 100 sin(z)dz = (100(— cos(7))) — (100(— cos(0))) = (100(—(—1))) — (100(—1)) = 200.
0
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This seems like a lot of work, and indeed it is more than is needed. The following would be
more typical once the rules are learned:

/07r 100 sin(x)dir = ~100( cos(x)) || = 100 cos(x)| = 100(1) — 100(~1) = 200.

s

1.4 The derivative of the integral

The relationship that [[ f(u)du) = f(z) is a bit harder to appreciate, as it doesn’t help
answer many ready made questions. Here we give some examples of its use.

First, the expression defining an antiderivative, or indefinite integral, is given in term of a
definite integral:

The value of a does not matter, as long as the integral is defined.
XXX can not include ‘gif‘ file here

The picture for this, for non-negative f, is of accumulating area as x increases. It can be
used to give insight into some formulas:

For any function, we know that F'(b) — F'(¢c) + F(c) — F(a) = F(b) — F(a). For this specific
function, this translates into this property of the integral:

b c b
/a f(z)dx = /a f(x)dx +/c f(x)dz.
Similarly, [ f(x)dz = F(a) — F(a) = 0 follows.

To see that the value of a does not matter, consider ag < a;. Then we have with

T

Fla)= | :fw)du, G) = [ f(u)du.

0
That F(x) = G(x) + [, f(u)du. The additional part may look complicated, but the point
is that as far as x is involved, it is a constant. Hence both F' and G are antiderivatives if
either one is.

Example In probability theory, for a positive, continuous random variable, the probability
that the random value is less than a is given by P(X < a) = F(a) = [y f(z)dz. (Positive
means the integral starts at 0, whereas in general it could be —oo, a minor complication that
we haven’t yet discussed.)

For example, the exponential distribution with rate 1 has f(z) = e~*. Compute F'(z).

This is just F(z) = [ e “du = —e™ z =1—e"
The "uniform” distribution on [a, b] has
0 r<a
Flr) =% a<z<b
1 x>b



Find f(z). There are some subtleties here. If we assume that F(z) = [ f(u)du then we
know if f(z) is continuous that F'(z) = f(z). Differentiating we get

0 r<a
fla)=9:% a<z<b
0 x>b

However, the function f is not continuous on [a, b] and F'(z) is not differentiable on (a,b). It
is true that f is integrable, and where F' is differentiable F" = f. So f is determined except
possibly at the points x = a and x = b.

Example The error function is defined by erf(z) = 2/y/7 [ e **du. It is implemented in
Julia through erf. Suppose, we were to ask where it takes on it’s maximum value, what
would we find?

The answer will either be at a critical point, at 0 or as x goes to co. We can differentiate to
find critical points:

lerf(x)] = g6_3”2.

T
Oh, this is never 0, so there are no critical points. The maximum occurs at 0 or as x goes
to co. Clearly at 0, we have erf(0) = 0, so the answer will be as = goes to co.

In retrospect, this is a silly question. As f(xz) > 0 for all z, we must have that F(z) is
strictly increasing, so never gets to a local maximum.

Example The Dawson function is

22 [T 2
F(z)=e e’ dt
0
Characterize any local maxima or minima.

For this we need to consider the product rule. The fundamental theorem of calculus will
help with the right-hand side. We have:

/ —x2 z 2 _x2 22
F'(z) = (—2x)e / edt +e " e" = —2aF(x)+1
0
We need to figure out when this is 0. For that, we use some numeric math.
F(x) = exp(-x72) * quadgk(t -> exp(t~2), 0, x)[1]

Fp(x) = —-2x*F(x) + 1
cps = find_zeros(Fp, -4,4)

2-element Array{Float64,1}:
-0.9241388730045916
0.9241388730045916

We could take a second derivative to characterize. For that we use F"(z) = [-22F(z)+1] =
—2F (z) + —2x(—2zF(x) + 1), so
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Fpp(x) = -2F(x) + 4x72*F(x) - 2x
Fpp. (cps)

2-element Array{Float64,1}:
1.0820884492703637
-1.0820884492703637

The first value being positive says there is a relative minimum at —0.924139, at 0.924139
there is a relative maximum.

Example From the familiar formula rate x time = distance, we "know,” for example, that
a car traveling 60 miles an hour for one hour will have traveled 60 miles. This allows us
to translate statements about the speed (or more generally velocity) into statements about
position at a given time. If the speed is not constant, we don’t have such an easy conversion.

Suppose our velocity at time t is v(t), and always positive. We want to find the position
at time t, x(t). Let’s assume x(0) = 0. Let h be some small time step, say h = (t — 0)/n
for some large n > 0. Then we can approzimate v(t) between [ih, (i + 1)h) by v(ih). This
is a constant so the change in position over the time interval [ih, (i + 1)h) would simply be
v(ih) - h, and ignoring the accumulated errors, the approximate position at time ¢ would be
found by adding this pieces together: x(t) ~ v(0h) - h + v(1h) - h+v(2h) - h+ - - -+ v(nh)h.
But we recognize this (as did Beeckman in 1618) as nothing more than an approximation
for the Riemann sum of v over the interval [0, ¢]. That is, we expect:

x(t) = /Otv(u)du.

Hopefully this makes sense: our position is the result of accumulating our change in position
over small units of time. The old one-foot-in-front-of-another approach to walking out the
door.

The above was simplified by the assumption that x(0) = 0. What if 2(0) = xy for some
non-zero value. Then the above is not exactly correct, as [y v(u)du = 0. So instead, we
might write this more concretely as:

x(t) = xo + /Ot v(u)du.

There is a similar relationship between velocity and acceleration, but let’s think about it
formally. If we know that the acceleration is the rate of change of velocity, then we have
a(t) = v'(t). By the FTC, then

/Ot a(u)du = /Ot V(1) = v(t) — v(0).

Rewriting gives a similar statement as before:

v(t) = vy + /Ot a(u)du.
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Example A junior engineer at Treadmills.com is tasked with updating the display of
calories burned for an older-model treadmill. The old display involved a sequence of LED
"dots” that updated each minute. The last 10 minutes were displayed. Each dot corresponded
to one calorie burned, so the total number of calories burned in the past 10 minutes was the
number of dots displayed, or the sum of each column of dots. An example might be:

* %k
kkkk
kkskoskok
%k >k >k >k %k %k %k k
>k >k >k %k %k %k 5k 5k 5k k

In this example display there was 1 calorie burned in the first minute, then 2, then 5, 5, 4,
3,2, 2, 1. The total is 24.

In her work the junior engineer found this old function for updating the display

function cnew = update(Cnew, Cold)
cnew = Cnew - Cold
end

She discovered that the function was written awhile ago, and in MATLAB. The function
receives the values Cnew and Cold which indicate the total number of calories burned up until
that time frame. The value cnew is the number of calories burned in the minute. (Some
other engineer has cleverly figured out how many calories have been burned during the time
on the machine.)

The new display will have twice as many dots, so the display can be updated every 30 seconds
and still display 10 minutes worth of data. What should the update function now look like?

Her first attempt was simply to rewrite the function in Julia:

function update(Cnew, Cold)
cnew = Cnew - Cold
end

‘update (generic function with 1 method)

This has the advantage that each "dot” still represents a calorie burned, so that a user can
still count the dots to see the total burned in the past 10 minutes.

* %
kkkkkk ok
kokokskokokokkokkkkk >k
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Sadly though, users didn’t like it. Instead of a set of dots being, say, 5 high, they were now
3 high and 2 high. It "looked” like they were doing less work! What to do?

The users actually were not responding to the number of dots, which hadn’t changed, but
rather the area that they represented - and this shrank in half. (It is much easier to visualize
area than count dots when tired.) How to adjust for that?

Well our engineer knew - double the dots and count each as half a calorie. This makes the
"area” constant. She also generalized letting n be the number of updates per minute, in
anticipation of even further improvements in the display technology:

function update(Cnew, Cold, n)
cnew = (Cnew - Cold) * n
end

‘update (generic function with 2 methods)

Then the ”area” represented by the dots stays fixed over this time frame.

The engineer then thought a bit more, as the form of her answer seemed familiar. She decides
to parameterize it in terms of ¢ and found with h = 1/n: c(t) = (C(t) - C(t-h))/h. Ahh
- the derivative approximation. But then what is the "area”? It is no longer just the sum
of the dots, but in terms of the functions she finds that each column represents c(t) - h, and
the sum is just c(t1)h + c(ta)h + - - - ¢(t,)h which looks like an approximate integral.

If the display were to reach the modern age and replace LED ”dots” with a higher-pixel
display, then the function to display would be ¢(t) = C’(t) and the area displayed would be
fttfl(] c(u)du.

Thinking a bit harder, she knows that her update function is getting C(¢), and displaying

the rate of calorie burn leads to the area displayed being interpretable as the total calories
burned between ¢ and ¢t — 10 (or C(t) — C(t —10)) by the Fundamental Theorem of Calculus.

1.5 Questions

® Question

If F(z) = e®” is an antiderivative for f, find f02 f(z)dz.
® Question

If sin(x) — x cos(x) is an antiderivative for x sin(z), find the following integral [ x sin(x)dx.
® Question

Find an antiderivative then evaluate [} z(1 — z)dz.

® Question

Use the fact that [e*]’ = e” to evaluate [j(e* — 1)dz.
® Question

Find the value of [} (1 —22/2 + 2*/24)dz.

® Question

Using SymPy, what is an antiderivative for 2% sin(x)?

11



—z?% cos()
2.
—2? cos(x) + 2 sin(z)
3.
—2? cos(z) + 27 sin(x) + 2 cos(z)
® Question

Using SymPy, what is an antiderivative for ze™*?

1.
_e_z
2.
—xe *
3.
—(1+2x)e™™
4.
—(14+z+2%)e™™
® Question

Using SymPy, integrate the function [;™ e® - sin(z)dz.

® Question
A particle has velocity v(t) = 2t? — ¢ between 0 and 1. If 2(0) = 0, find the position z(1).

® Question
A particle has acceleration given by sin(t) between 0 and 7. If the initial velocity is v(0) = 0,

find v(7/2).

® Question
The position of a particle is given by z(t) = [i g(u)du, where x(0) = 0 and g(u) is given by
this piecewise linear graph:

‘ Plot{Plots.PlotlyBackend() n=1}

o The velocity of the particle is positive over:

1. It is always positive
2. It is always negative
3. Between 0 and 1

4. Between 1 and 5

o The position of the particle is 0 at t = 0 and:
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t=1
2.

t=2
3.

t=3
4.

t=4

o The position of the particle at time ¢ = 5 is?
e On the interval |2, 3]:

1. The position, z(t), stays constant

t), increases quadratically from —1/2 to 1

(2)
2. The position, z(t), increases with a slope of 1
3. The position, x(t)

(2)

4. The position, z(t), increases quadratically from 0 to 1

® Question
Let F(z) = [ |, f(u)du for f(u) a positive, continuous function. What is F’(t)?

1.
f(t)
2.
—f(t —10)
3.
f(t) = f(t—10)
® Question

Suppose f(z) > 0 and F(z) = [§ f(u)du. F(x) is continuous and so has a maximum value
on the interval [0, 1] taken at some ¢ in [0,1]. It is
1. At a critical point
2. At the endpoint 0
3. At the endpoint 1
® Question
Suppose f(x) is monotonically decreasing with f(0) = 1, f(1/2) = 0 and f(1) = —1. Let

F(z) = [y f(u)du. F(x) is continuous and so has a maximum value on the interval [0, 1]
taken at some c in [0,1]. It is
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1. At a critical point, either 0 or 1
2. At a critical point, 1/2
3. At the endpoint 0

4. At the endpoint 1

® Question
Barrow presented a version of the Fundamental Theorem of Calculus in a 1670 volume edited
by Newton, Barrow’s student (cf. Wagner). His version can be stated as follows (cf. Jardine):

Consider the following figure where f is a strictly increasing function with f(0) = 0. and
x > 0. The function A(z) = [§ f(u)du is also plotted. The point @ is f(z), and the point
P is A(z). The point T is chosen to so that the length between 7" and x times the length
between () and x equals the length from P to z. (|Tz|-|Qz| = |Px|.) Barrow showed that
the line segment PT is tangent to the graph of A(z). This figure illustrates the labeling for
some function:

| Plot{Plots.PlotlyBackend() n=5}

The fact that |Tz| - |Qz| = |Pz| says what in terms of f(z), A(z) and A’(x)?

1.
Tl - f(x) = A(z)
2.
A(z)/|Tx| = A'(x)
3.

Ax) - A(x) = f(x)

The fact that |PT| is tangent says what in terms of f(z), A(z) and A'(x)?

1.

Tal- f(z) = Alx)
2.

A(x)/|Te| = A'(x)
3.

A(z) - Al(x) = f(x)

Solving, we get:

Alw) = A%(z)/ f(x)


http://www.maa.org/sites/default/files/0746834234133.di020795.02p0640b.pdf
http://www.maa.org/publications/ebooks/mathematical-time-capsules

® Question
According to Bressoud "Newton observes that the rate of change of an accumulated quantity

is the rate at which that quantity is accumulating”. Which part of the FTC does this refer
to:

1. Part 1: [[7 f(u)du] = f
2. Part 2: [? f(u)du = F(b) — F(a).
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