
1 Implications of continuity

Continuity for functions is a valued property which carries implications. In this section we
discuss two: the intermediate value theorem and the extreme value theorem. These two
theorems speak to some fundamental applications of calculus: finding zeros of a function
and finding extrema of a function.

1.1 Intermediate Value Theorem

The intermediate value theorem: If f is continuous on [a, b] with, say, f(a) < f(b),
then for any y with f(a) < y < f(b) there exists a c in [a, b] with f(c) = y.

XXX can not include ‘.gif‘ file here
In the early years of calculus, the intermediate value theorem was intricately connected with
the definition of continuity, now it is a consequence.
The basic proof starts with a set of points in [a, b]: C = {x in [a, b] with f(x) ≤ y}. The
set is not empty (as a is in C) so it must have a largest value, call it c (this requires
the completeness property of the real numbers). By continuity of f , it can be shown that
limx→c− f(x) = f(c) ≤ y and limy→c+ f(x) = f(c) ≥ y, which forces f(c) = y.

1.1.1 Bolzano and the bisection method

Suppose we have a continuous function f(x) on [a, b] with f(a) < 0 and f(b) > 0. Then
as f(a) < 0 < f(b), the intermediate value theorem guarantees the existence of a c in [a, b]
with f(c) = 0. This was a special case of the intermediate value theorem proved by Bolzano
first. Such c are called zeros of the function f .
We use this fact when a building a ”sign chart” of a continous function. Between any two
consecutive zeros the function can not change sign. (Why?) So a ”test point” can be used
to determine the sign of the function over an entire interval.
Here, we use the Bolzano theorem to give an algorithm - the bisection method - to locate the
value c under the assumption f is continous on [a, b] and changes sign between a and b.
XXX can not include ‘.gif‘ file here
Call [a, b] a bracketing interval if f(a) and f(b) have different signs. We remark that having
different signs can be expressed mathematically as f(a) · f(b) < 0.
We can narrow down where a zero is in [a, b] by following this recipe:

• Pick a midpoint of the interval, for concreteness c = (a + b)/2.

• If f(c) = 0 we are done, having found a zero in [a, b].

• Otherwise if must be that either f(a) · f(c) < 0 or f(c) · f(b) < 0. If f(a) · f(c) < 0,
then let b = c and repeat the above. Otherwise, let a = c and repeat the above.

At each step the bracketing interval is narrowed, indeed split in half as defined, or a zero is
found.

1

For the real numbers this algorithm never stops unless a zero is found. A ”limiting” process
is used to say that if it doesn’t stop, it will converge to some value.
However, using floating point numbers leads to differences from the real-number situation.
In this case, due to the ultimate granularity of the approximation of floating point values
to the real numbers, the bracketing interval eventually can’t be subdivided, that is no c is
found over the floating point numbers with a < c < b. So there is a natural stopping criteria:
stop when there is an exact zero, or when the bracketing interval gets too small.
We can write a relatively simple program to implement this algorithm:

function bisection(f, a, b)
if f(a) == 0 return(a) end
if f(b) == 0 return(b) end
if f(a) * f(b) > 0 error("[a,b] is not a bracketing interval") end

tol = 1e-14 # small number (but should depend on size of a, b)
c = a/2 + b/2

while abs(b-a) > tol
if f(c) == 0 return(c) end

if f(a) * f(c) < 0
a, b = a, c

else
a, b = c, b

end

c = a/2 + b/2

end
c

end

bisection (generic function with 1 method)

This function uses a while loop to repeat the process of subdividing [a, b]. A while loop
will repeat until the condition is no longer true. The above will stop for reasonably sized
floating point values (within (−100, 100), say). The value c returned need not be an exact
zero. Let’s see:

c = bisection(sin, 3, 4)

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3
This value of c is a floating-point approximation to π, but is not quite a zero:

sin(c)

1 . 2 2 4 6 4 6 7 9 9 1 4 7 3 5 3 2 e - 1 6
(Even pi itself is not a ”zero” due to floating point issues.)

2

1.1.2 The find_zero function.

The Roots package has a function find_zero that implements the bisection method when
called as find_zero(f, (a, b)) where [a, b] is a bracket. Its use is similar to bisection
above. This package is loaded when CalculusWithJulia is. We illlustrate the usage of
find_zero in the following:

using CalculusWithJulia # loads `Roots`
using Plots
find_zero(sin, (3, 4)) # use a tuple, (a, b), to specify the bracketing interval

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 6

Notice, the call find_zero(sin, (3,4)) again fits the template action(function,
args...) that we see repeatedly. The find_zero function can also be called through
fzero.

This function utilizes some facts about floating point values to guarantee that the answer
will be a zero or the product of the function value at the floating point values just to the left
and right will be negative. No specification of a tolerance is needed.

Example The polynomial f(x) = x5 − x + 1 has a zero between −2 and −1. Find it.

f(x) = x^5 - x + 1
c = find_zero(f, (-2, -1))
(c, f(c))

(-1.1673039782614185, 1.3322676295501878e-15)

We see, as before, that f(c) is not quite 0. (But you can check that f(prevfloat(c)) is
negative, while f(c) is seen to be positive.)

Example The function f(x) = ex − x4 has a zero between 5 and 10, as this graph shows:

f(x) = exp(x) - x^4
plot(f, 5, 10)

Plot{Plots.PlotlyBackend() n=1}

Find the zero numerically. The plot shows f(5) < 0 < f(10), so [5, 10] is a bracket. We thus
have:

find_zero(f, (5, 10))

8 . 6 1 3 1 6 9 4 5 6 4 4 1 4

3

Example Find all real zeros of f(x) = x3 − x + 1 using the bisection method.
A plot will show us a bracketing interval:

f(x) = x^3 - x + 1
plot(f, -3, 3)

Plot{Plots.PlotlyBackend() n=1}

It appears (and a plot over [0, 1] verifies) that there is one zero between −2 and −1. It is
found with:

find_zero(f, (-2, -1))

- 1 . 3 2 4 7 1 7 9 5 7 2 4 4 7 4 5 8

Example The equation cos(x) = x has just one solution, as can be seen in this plot:

f(x) = cos(x)
g(x) = x
plot(f, -pi, pi)
plot!(g)

Plot{Plots.PlotlyBackend() n=2}

Find it.
We see from the graph that it is clearly between 0 and 2, so all we need is a function. (We
have two.) The trick is to observe that solving f(x) = g(x) is the same problem as solving
for x where f(x) − g(x) = 0. So we define the difference and use that:

h(x) = f(x) - g(x)
find_zero(h, (0, 2))

0 . 7 3 9 0 8 5 1 3 3 2 1 5 1 6 0 7

Example We wish to compare two trash collection plans

• Plan 1: You pay 47.49 plus 0.77 per bag.

• Plan 2: You pay 30.00 plus 2.00 per bag.

There are some cases where plan 1 is cheaper and some where plan 2 is. Categorize them.
Both plans are linear models and may be written in slope-intercept form:

4

plan1(x) = 47.49 + 0.77x
plan2(x) = 30.00 + 2.00x

plan2 (generic function with 1 method)

Assuming this is a realistic problem and an average American household might produce 10-20
bags of trash a month (yes, that seems too much!) we plot in that range:

plot(plan1, 10, 20)
plot!(plan2)

Plot{Plots.PlotlyBackend() n=2}

We can see the intersection point is around 14 and that if a family generates between 0-14
bags of trash per month that plan 2 would be cheaper.
Let’s get a numeric value, using a simple bracket and an anonymous function:

find_zero(x -> plan1(x) - plan2(x), (10, 20))

1 4 . 2 1 9 5 1 2 1 9 5 1 2 1 9 5

Example, the flight of an arrow The flight of an arrow can be modeled using various
functions, depending on assumptions. Suppose an arrow is launched in the air from a height
of 0 feet above the ground at an angle of θ = π/4. With a suitable choice for the initial
velocity, a model without wind resistance for the height of the arrow at a distance x units
away may be:

j(x) = tan(θ)x − (1//2) · g(x

v0 cos θ
)2.

In julia we have, taking v0 = 200:

j(x; theta=pi/4, g=32, v0=200) = tan(theta)*x - (1/2)*g*(x/(v0*cos(theta)))^2

j (generic function with 1 method)

With a velocity-dependent wind resistance given by γ, again with some units, a similar
equation can be constructed. It takes a different form:

y(x) = (g

γv0 cos(θ)
+ tan(θ)) · x + g

γ2 log(v0 cos(θ) − γx

v0 cos(θ)
)

Again, v0 is the initial velocity and is taken to be 200 and γ a resistance, which we take to
be 1. With this, we have the following julia definition (with a slight reworking of γ):

5

function y(x; theta=pi/4, g=32, v0=200, gamma=1)
a = gamma * v0 * cos(theta)
(g/a + tan(theta)) * x + g/gamma^2 * log((a-gamma^2 * x)/a)

end

y (generic function with 1 method)

For each model, we wish to find the value of x after launching where the height is modeled
to be 0. That is how far will the arrow travel before touching the ground?
For the model without wind resistance, we can graph the function easily enough. Let’s guess
the distance is no more than 500 feet:

plot(j, 0, 500)

Plot{Plots.PlotlyBackend() n=1}

Well, we haven’t even seen the peak yet. Better to do a little spade work first. This is a
quadratic function, so we can use roots from SymPy to find the roots:

@vars x
roots(j(x))

Dict{Any,Any} with 2 entries:
0 => 1
1250.00000000000 => 1

We see that 1250 is the largest root. So we plot over this domain to visualize the flight:

plot(j, 0, 1250)

Plot{Plots.PlotlyBackend() n=1}

As for the model with wind resistance, a quick plot over the same interval, [0, 1250] yields:

plot(y, 0, 1250)

Plot{Plots.PlotlyBackend() n=1}

Oh, ”Domain Error.” Of course, when the argument to the logarithm is negative we will have
issues. We don’t have the simplicity of using poly_roots to find out the answer, so we solve
for when a − γ2x is 0:

6

gamma = 1
a = 200 * cos(pi/4)
b = a/gamma^2

1 4 1 . 4 2 1 3 5 6 2 3 7 3 0 9 5
We try on the reduced interval avoiding the obvious asymptote at b by subtracting 1:

plot(y, 0, b - 1)

Plot{Plots.PlotlyBackend() n=1}

Now we can see the zero is around 140. A simple bracket will be [b/2, b−1], so we cam solve:

x1 = find_zero(y, (b/2, b-1/10))

1 4 0 . 7 7 9 2 9 3 3 8 0 2 3 0 6
The answer is approximately 140.7

Finally, we plot both graphs at once to see that it was a very windy day indeed.

plot(j, 0, 1250)
plot!(y, 0, x1)

Plot{Plots.PlotlyBackend() n=2}

Example: bisection and non-continuity The Bolzano theorem assumes a continuous
function f , and when applicable, yields an algorithm to find a guaranteed zero. However,
the algorithm itself does not know that the function is continuous or not, only that the
function changes sign. As such, it can produce answers that are not ”zeros” when used
with discontinuous functions. However, this can still be fruitful, as the algorithm will yield
information about crossing values of 0, possibly at discontinuities.
For example, let f(x) = 1/x. Clearly the interval [−1, 1] is a ”bracketing” interval as f(x)
changes sign between a and b. What does the algorithm yield:

f(x) = 1/x
x0 = find_zero(f, (-1, 1))

0 . 0
The function is not defined at the answer, but we do have the fact that just to the left of the
answer (prevfloat) and just to the right of the answer (nextfloat) the function changes
sign:

sign(f(prevfloat(x0))), sign(f(nextfloat(x0)))

7

(-1.0, 1.0)

So, the ”bisection method” applied here finds a point where the function crosses 0, either by
continuity or by jumping over the 0. (A jump discontinuity at x = c is defined by the left
and right limits of f at c existing but being unequal. The algorithm can find c when this
type of function jumps over 0.)

1.1.3 The find_zeros function

The bisection method suggests a naive means to search for all zeros within an interval (a, b):
split the interval into many small intervals and for each that is a bracketing interval find
a zero. This simple description has three flaws: it might miss values where the function
doesn’t’t actually cross the x axis; it might miss values where the function just dips to the
other side; and it might miss multiple values in the same small interval.
Still, with some engineering, this can be a useful approach, save the caveats. This idea is
implemented in the find_zeros function of the Roots package. The function is called via
find_zeros(f, a, b) but here the interval [a, b] is not necessarily a bracketing interval.
To see, we have:

f(x) = cos(10*pi*x)
find_zeros(f, 0, 1)

10-element Array{Float64,1}:
0.05
0.15
0.25
0.35
0.45
0.5499999999999999
0.6499999999999999
0.75
0.85
0.95

Or for a polynomial:

f(x) = x^5 - x^4 + x^3 - x^2 + 1
find_zeros(f, -10, 10)

1-element Array{Float64,1}:
-0.6518234538234416

(Here −10 and 10 were arbitrarily chosen. Cauchy’s method could be used to be more
systematic.)

8

