
1 The Gradient, Divergence, and Curl

The gradient of a scalar function f : Rn → R is a vector field of partial derivatives. In R2,
we have:

∇f = ⟨∂f

∂x
,
∂f

∂y
⟩.

It has the interpretation of pointing out the direction of greatest ascent for the surface
z = f(x, y).
We move now to two other operations, the divergence and the curl, which combine to give a
language to describe vector fields in R3.

using CalculusWithJulia
using Plots

1.1 The divergence

Let F : R3 → R3 = ⟨Fx, Fy, Fz⟩ be a vector field. Consider now a small box-like region, R,
with surface, S, on the cartesian grid, with sides of length ∆x, ∆y, and ∆z with (x, y, z)
being one corner. The outward pointing unit normals are ±î, ±ĵ, and ±k̂.
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Consider the sides with outward normal î. The contribution to the surface integral,
∮

S(F ·
N̂)dS, could be approximated by

(
F (x + ∆x, y, z) · î

)
∆y∆z,
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whereas, the contribution for the face with outward normal −î could be approximated by:

(
F (x, y, z) · (−î)

)
∆y∆z.

The functions are being evaluated at a point on the face of the surface. For Riemann
integrable functions, any point in a partition may be chosen, so our choice will not restrict
the generality.
The total contribution of the two would be:

(
F (x + ∆x, y, z) · î

)
∆y∆z+

(
F (x, y, z) · (−î)

)
∆y∆z = (Fx(x + ∆x, y, z) − Fx(x, y, z)) ∆y∆z,

as F · î = Fx.
Were we to divide by ∆V = ∆x∆y∆z and take a limit as the volume shrinks, the limit would
be ∂F/∂x.
If this is repeated for the other two pair of matching faces, we get a definition for the
divergence:

The divergence of a vector field F : R3 → R3 is given by divergence(F ) =
lim 1

∆V

∮
S F · N̂dS = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
.

The limit expression for the divergence will hold for any smooth closed surface, S, converging
on (x, y, z), not just box-like ones.

1.1.1 General n

The derivation of the divergence is done for n = 3, but could also have easily been done for
two dimensions (n = 2) or higher dimensions n > 3. The formula in general would be: for
F (x1, x2, . . . , xn) : Rn → Rn:

divergence(F ) =
n∑

i=1

∂Fi

∂xi

.

In Julia, the divergence can be implemented different ways depending on how the problem
is presented. Here are two functions from the CalculusWithJulia package for when the
problem is symbolic or numeric:

divergence(F::Vector{Sym}, vars) = sum(diff.(F, vars))
divergence(F::Function, pt) = sum(diag(ForwardDiff.jacobian(F, pt)))

The latter being a bit inefficient, as all n2 partial derivatives are found, but only the n
diagonal ones are used.

1.2 The curl

Before considering the curl for n = 3, we derive a related quantity in n = 2. The ”curl”
will be a measure of the microscopic circulation of a vector field. To that end we consider a
microscopic box-region in R2:
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Let F = ⟨Fx, Fy⟩. For small enough values of ∆x and ∆y the line integral,
∮

C F · dr⃗ can be
approximated by 4 terms:

(
F (x, y) · î

)
∆x +

(
F (x + ∆x, y) · ĵ

)
∆y +

(
F (x, y + ∆y) · (−î)

)
∆x +

(
F (x, y) · (−ĵ)

)
∆x

(1)
= Fx(x, y)∆x + Fy(x + ∆x, y)∆y + Fx(x, y + ∆y)(−∆x) + Fy(x, y)(−∆y)

(2)
= (Fy(x + ∆x, y) − Fy(x, y))∆y − (Fx(x, y + ∆y) − Fx(x, y))∆x. (3)

The Riemann approximation allows a choice of evaluation point for Riemann integrable
functions, and the choice here lends itself to further analysis. Were the above divided by
∆x∆y, the area of the box, and a limit taken, partial derivatives appear to suggest this
formula:

lim 1
∆x∆y

∮
C

F · dr⃗ = ∂Fy

∂x
− ∂Fx

∂y
.

The scalar function on the right hand side is called the (two-dimensional) curl of F and
the left-hand side lends itself as a measure of the microscopic circulation of the vector field,
F : R2 → R2.

Consider now a similar scenario for the n = 3 case. Let F = ⟨Fx, Fy, Fz⟩ be a vector field
and S a box-like region with side lengths ∆x, ∆y, and ∆z, anchored at (x, y, z).
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The box-like volume in space with the top area, with normal k̂, designated as S1. The
curve C1 traces around S1 in a counter clockwise manner, consistent with the right-hand
rule pointing in the outward normal direction. The face S1 with unit normal k̂ looks like:
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T = i T = i

T = j

T = j

(x,y,z+ z)

(x+ x,y,z+ z)

(x,y+ y,z+ z)

S

Now we compute the line integral. Consider the top face, S1, connecting (x, y, z + ∆z), (x +
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∆x, y, z + ∆z), (x + ∆x, y + ∆y, z + ∆z), (x, y + ∆y, z + ∆z), Using the right hand rule,
parameterize the boundary curve, C1, in a counter clockwise direction so the right hand rule
yields the outward pointing normal (k̂). Then the integral

∮
C1

F · T̂ ds is approximated by
the following Riemann sum of 4 terms:

F (x, y, z+∆z)·̂i∆x+F (x+∆x, y, z+∆z)·ĵ∆y+F (x, y+∆y, z+∆z)·(−î)∆x+F (x, y, z+∆z)·(−ĵ)∆y.

(The points ci are chosen from the endpoints of the line segments.)

∮
C1

F ·T̂ ds ≈ (Fy(x+∆x, y, z+∆z)−Fy(x, y, z+∆z))∆y−(Fx(x, y+∆y, z+∆z)−Fx(x, y, z+∆z))∆x

As before, were this divided by the area of the surface, we have after rearranging and can-
cellation:

1
∆S1

∮
C1

F ·T̂ ds ≈ Fy(x + ∆x, y, z + ∆z) − Fy(x, y, z + ∆z)
∆x

−Fx(x, y + ∆y, z + ∆z) − Fx(x, y, z + ∆z)
∆y

.

In the limit, as ∆S → 0, this will converge to ∂Fy/∂x − ∂Fx/∂y.
Had the bottom of the box been used, a similar result would be found, up to a minus sign.
Unlike the two dimensional case, there are other directions to consider and here the other
sides will yield different answers. Consider now the face connecting (x, y, z), (x+∆x, y, z), (x+
∆x, y, z + ∆z), and $ (x,y,z+\Delta{z})$ with outward pointing normal −ĵ. Let S2 denote
this face and C2 describe its boundary. Orient this curve so that the right hand rule points
in the −ĵ direction (the outward pointing normal). Then, as before, we can approximate:

∮
C2

F · T̂ ds ≈ F (x, y, z) · î∆x + F (x + ∆x, y, z) · k̂∆z + F (x, y, z + ∆z) · (−î)∆x + F (x, y, z) · (−k̂)∆z

(4)
= (Fz(x + ∆x, y, z) − Fz(x, y, z))∆z − (Fx(x, y, z + ∆z) − F (x, y, z))∆x. (5)

Dividing by ∆S = ∆x∆z and taking a limit will give:

lim 1
∆S

∮
C2

F · T̂ ds = ∂Fz

∂x
− ∂Fx

∂z
.

Had, the opposite face with outward normal ĵ been chosen, the answer would differ by a
factor of −1.
Similarly, let S3 be the face with outward normal î and curve C3 bounding it with parame-
terization chosen so that the right hand rule points in the direction of î. This will give

lim 1
∆S

∮
C3

F · T̂ ds = ∂Fz

∂y
− ∂Fy

∂z
.

In short, depending on the face chosen, a different answer is given, but all have the same
type.
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