1 Functions

A mathematical function is defined abstractly by

Function: A function is a relation which assigns to each element in the domain
a single element in the range. A relation is a set of ordered pairs, (z,y). The
set of first coordinates is the domain, the set of second coordinates the range of
the relation.

That is, a function gives a correspondence between values in its domain with values in its
range.

This definition is abstract, as functions can be very general. With single-variable calculus,
we generally specialize to real-valued functions of a single variable (univariate functions).
These typically have the correspondence given by a rule, such as f(z) = z? or f(z) = /.
The function’s domain may be implicit (as in all x for which the rule is defined) or may be
explicitly given as part of the rule. The function’s range is then the image of its domain, or
the set of all f(z) for each  in the domain ({f(x) : x € domain}).

Some examples of mathematical functions are:

-1 <0
1 x>0

f(2) = cos(@), g(x)=a®—x, h(z) =i, s(af{

For these examples, the domain of both f(x) and g(z) is all real values of x, where as for
h(x) it is implicitly just the set of non-negative numbers, [0,00). Finally, for s(x), we can
see that the domain is defined for every x but 0.

In general the range is harder to identify than the domain, and this is the case for these
functions too. For f(z) we know the cos function is trapped in [—1, 1] and it is intuitively
clear than all values in that set are possible. The function h(z) would have range [0, 00).
The s(x) function is either —1 or 1, so only has two possible values in its range. What about
g(x)? Tt is a parabola that opens upward, so any y values below the y value of its vertex
will not appear in the range. In this case, the symmetry indicates that the vertex will be at
(1/2,—1/4), so the range is [—1/4, 00).

Thanks to Euler (1707-1783): The formal idea of a function is a relatively modern
concept in mathematics. According to Dunham, Euler defined a function as an "analytic
expression composed in any way whatsoever of the variable quantity and numbers or
constant quantities.” He goes on to indicate that as Euler matured, so did his notion of
function, ending up closer to the modern idea of a correspondence not necessarily tied
to a particular formula or “analytic expression.” He finishes by saying: "It is fair to say
that we now study functions in analysis because of him.”

We will see that defining functions within Julia can be as simple a concept as Euler started
with, but that the more abstract concept has a great advantage that is exploited in the
design of the language.


http://en.wikipedia.org/wiki/Function_(mathematics)
http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/dunham1.pdf

1.1 Defining simple mathematical functions

The notation Julia uses to define simple mathematical functions could not be more closely
related to how they are written mathematically. For example, the functions f(z), g(z), and
h(z) above may be defined by:

f(x) = cos(x)
g(x) = x72 - x
h(x) = sqrt(x)

‘h (generic function with 1 method)

The left-hand sign of the equals sign is still an assignment, though in this case an assignment
to a function object which has a name and a specification of an argument, x in each case
above, though other dummy variables could be used. The right hand side is simply Julia
code to compute the rule corresponding to the function.

Calling the function also follows standard math notation:

| £(pi), g(2), h(4)

| (1.0, 2, 2.0)

For typical cases like the three above, there isn’t really much new to learn.

The equals sign in the definition of a function above is an assignment. Assignment
restricts the expressions available on the left-hand side to a) a variable name, b) an
indexing assignment, as in xs[1], or c¢) a function assignment following this form
function_name(args...). Whereas function definitions and usage in Julia mirrors
standard math notation; equations in math are not so mirrored in Julia. In mathemati-
cal equations, the left-hand of an equation is typically a complicated algebraic expression.
Not so with Julia, where the left hand side of the equals sign is prescribed and quite
limited.

1.1.1 The domain of a function

Functions in Julia have an implicit domain, just as they do mathematically. In the case of
f(x) and g(x), the right-hand side is defined for all real values of z, so the domain is all z.
For h(z) this isn’t the case, of course. Trying to call h(z) when x < 0 will give an error:

\h(—1)

Error: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. T
ry sqrt(Complex(x)).



The DomainError is one of many different error types Julia has, in this case it is quite apt:
the value —1 is not in the domain of the function.

1.1.2 Equations, functions, calling a function
Mathematically we tend to blur the distinction between the equation

y=5/9-(xr—32)

and the function

f(2) =5/9- (x — 32)

In fact, the graph of a function f(z) is simply defined as the graph of the equation y = f(z).
There is a distinction in Julia as a command such as

-40
5/9 * (x - 32)

X
y

-40.0

will evaluate the righthand side with the value of x bound at the time of assignment to y,
whereas assignment to a function

f(x) = 5/9 * (x - 32)
£(72)

22.22222222222222

will create a function object which is called with a value of x at a later time - the time the
function is called. So the value of x defined when the function is created is not important
here (as the value of x used by f is passed in as an argument).

Within Julia, we make note of the distinction between a function object versus a function
call. In the definition f(x)=cos(x), the variable f refers to a function object, whereas the
expression f (pi) is a function call. This mirrors the math notation where an f is used when
properties of a function are being emphasized (such as f o g for composition) and f(z) is
used when the values related to the function are being emphasized (such as saying “the plot
of the equation y = f(x)).

Distinguishing these three related but different concepts (equations, function objects, and
function calls) is important when modeling on the computer.

1.1.3 Cases

The definition of s(z) above has two cases:



We learn to read this as ”If s is less than 0, then the answer is —1. If s is greater than 0 the
answer is 1.” Often - but not in this example - there is an "otherwise” case to catch those
values of x that are not explicitly mentioned. As there is no such “otherwise” case here, we
can see that this function has no definition when x = 0. This function is often called the
”sign” function and is also defined by |z|/z. (Julia’s sign function actually defines sign(0)
to be 0.)

How do we create conditional statements in Julia? Programming languages generally have
"if-then-else” constructs to handle conditional evaluation. In Julia, the following code will
handle the above condition:

if x <0
-1
elseif x > 0
1
end

The "otherwise” case would be caught with an else addition. So, for example, this would
implement Julia’s definition of sign (which also assigns 0 to 0):

if x <0
-1
elseif x > 0
1
else
0
end

The conditions for the if statements are expressions that evaluate to either true or false,
such as generated by the Boolean operators <, <=, == - >= and >.

Y

If familiar with if conditions, they are natural to use. However, for simpler cases of "if-else”
Julia provides the more convenient ternary operator: cond ? if_true : if_false. (The
name comes from the fact that there are three arguments specified.) The ternary operator
checks the condition and if true returns the first expression, whereas if the condition is
false the second condition is returned. Both expressions are evaluated. (The short-circuit
operators can be used to avoid both evaluations.)

For example, here is one way to define an absolute value function:

‘f(x) =x> 07 x : -x

‘f (generic function with 1 method)

The condition is x >= 0 - or is x non-negative? If so, the value x is used, otherwise -x is
used.

Here is a means to implement a function which takes the larger of x or 10:

\f(x) =x>10 ? x : 10.0


http://julia.readthedocs.org/en/latest/manual/control-flow/#short-circuit-evaluation

‘f (generic function with 1 method)

(This could also utilize the max function: f(x) = max(x, 10.0).)

Or similarly, a function to represent a cell phone plan where the first 500 minutes are 20
dollars and every additional minute is 5 cents:

|cellplan(x) = x < 500 ? 20.0 : 20.0 + 0.05 * (x-500)

‘cellplan (generic function with 1 method)

Type stability. These last two definitions used 10.0 and 20.0 instead of the integers 10
and 20 for the answer. Why the extra typing? When Julia can predict the type of the
output from the type of inputs, it can be more efficient. So when possible, we help out
and ensure the output is always the same type.

Example The ternary operator can be used to define an explicit domain. For example,
a falling body might have height given by h(t) = 10 — 16¢2. This model only applies for

non-negative ¢t and non-negative h values. So, in particular 0 < ¢t < /10/16. To implement
this function we might have:

‘h(t) = 0 <= t <= sqrt(10/16) ? 10.0 - 16t"2 : error("t is not in the domain")

‘h (generic function with 1 method)
We might also have used NaN instead of an error, or 0, as the falling body would come to

rest when it hits the ground.

Nesting ternary operators The function s(x) isn’t quite so easy to implement, as there
isn’t an "otherwise” case. We could use an if statement, but instead illustrate using a
second, nested ternary operator:

‘s(x) =x<07?7-1:(x>071: error("0 is not in the domain"))

‘s (generic function with 1 method)

With nested ternary operators, the advantage over the if condition is not very compelling,
but for simple cases the ternary operator is quite useful. (The extra parentheses around the
expression when x<0 is not true are actually unnecessary, though added here for clarity.)



1.2 Functions defined with the ”function” keyword

For more complicated functions, say one with a few steps to compute, an alternate form for
defining a function can be used:

function function_name(function_arguments)
...function_body...
end

The last value computed is returned unless the function_body contains an explicit return
statement.

For example, the following is a more verbose way to define f(z) = z*:

function f(x)
return x"2
end

‘f (generic function with 1 method)

The line return x~2, could have just been x~2 as it is the last (and) only line evaluated.

The return keyword is not a function, so is not called with parentheses. An emtpy
return statement will return a value of nothing.

Example Imagine we have the following complicated function related to the trajectory of
a projectile with wind resistance:

flz) = (k;vocgos(Q) + tan(@)) T+ <1 - W’;@x)

Here g is the gravitational constant 9.8 and vy, € and k parameters, which we take to be 200,
45 degrees and 1/2 respectively. With these values, the above function can be computed
when z = 100 with:

function f(x)
g, v0, theta, k = 9.8, 200, 45, 1/2
a = vO0 * cosd(theta)

(g/(k*a) + tand(theta))* x + (g/k™2) * log(l - k/a*x)
end
£(100)

96.75771791632161

By using a multi-line function our work is much easier to look over for errors.


http://www.researchgate.net/publication/230963032_On_the_trajectories_of_projectiles_depicted_in_early_ballistic_woodcuts

1.3 Parameters, function context (scope), keyword arguments

Consider two functions implementing the slope-intercept form and point-slope form of a line:

f@)=m-z+b, g(x)=yo+m-(zr—x0).

Both functions use the variable x, but there is no confusion, as we learn that this is just
a dummy variable to be substituted for and so could have any name. Both also share a
variable m for a slope. Where does that value come from? In practice, there is a context
that gives an answer. Despite the same name, there is no expectation that the slope will be
the same for each function if the context is different. So when parameters are involved, a
function involves a rule and a context to give specific values to the parameters.

Something similar is also true with Julia. Consider the example of writing a function to
model a linear equation with slope m = 2 and y-intercept 3. A typical means to do this
would be to define constants, and then use the familiar formula:

m, b
f(x)

2, 3
m*x + b

‘f (generic function with 1 method)

This will work as expected. For example, f(0) will be b and f(2) will be 7:

|£(0), £(2)

|3, T

All fine, but what if somewhere later the values for m and b were redefined:

Im, b =3, 2

| (3, 2)

Now what happens with f(0)? When f was defined b was 3, but now if we were to call £, b
is 2. Which value will we get? More generally, when f is being evaluated in what context
does Julia look up the bindings for the variables it encounters? It could be that the values
are assigned when the function is defined, or it could be that the values for the parameters
are resolved when the function is called. If the latter, what context will be used?

Before discussing this, let’s just see in this case:

|£(0)

2



So the b is found from the currently stored value. This fact can be exploited. we can write
template-like functions, such as f (x)=mx+b and reuse them just by updating the parameters
separately.

How Julia resolves what a variable refers to is described in detail in the manual page Scope
of Variables. In this case, the function definition finds variables in the context of where
the function was defined, the main workspace. As seen, this context can be modified after
the function definition and prior to the function call. It is only when b is needed, that
the context is consulted, so the most recent binding is retrieved. Contexts (more formally
known as environments) allow the user to repurpose variable names without there being name
collision. For example, we typically use x as a function argument, and different contexts allow
this x to refer to different values.

Mostly this works as expected, but at times it can be complicated to reason about. In our
example, definitions of the parameters can be forgotten, or the same variable name may have
been used for some other purpose. The potential issue is with the parameters, the value for x
is straightforward, as it is passed into the function. However, we can also pass the parameters,
such as m and b, as arguments. For parameters, we suggest using keyword arguments. These
allow the specification of parameters, but also give a default value. This can make usage
explicit, yet still convenient. For example, here is an alternate way of defining a line with
parameters m and b:

‘f(x; m=1, b=0) = m*x + b

‘f (generic function with 1 method)

The right-hand side is identical to before, but the left hand side is different. Arguments
defined after a semicolon are keyword arguments. They are specified as var=value (or
var: :Type=value to restrict the type) where the value is used as the default, should a value
not be specified when the function is called.

Calling a function with keyword arguments can be identical to before:

| £(0)

0

During this call, values for m and b are found from how the function is called, not the main
workspace. In this case, nothing is specified so the defaults of m = 1 and b = 0 are used.
Whereas, this call will use the user-specified values for m and b:

|£(0, m=3, b=2)

2

Keywords are used to mark the parameters whose values are to be changed from the default.
Though one can use positional arguments for parameters - and there are good reasons to do
so - using keyword arguments is a good practice if performance isn’t paramount, as their
usage is more explicit yet the defaults mean that a minimum amount of typing needs to be
done.


http://julia.readthedocs.org/en/latest/manual/variables-and-scoping/
http://julia.readthedocs.org/en/latest/manual/variables-and-scoping/
http://julia.readthedocs.org/en/latest/manual/functions/#keyword-arguments

Example In the example for multi-line functions we hard coded many variables inside the
body of the function. In practice it can be better to pass these in as parameters along the
lines of:

function f(x; g = 9.8, vO = 200, theta = 45, k = 1/2)
a = vO0 * cosd(theta)
(g/(k*a) + tand(theta))* x + (g/k™2) * log(l - k/a*x)
end

‘f (generic function with 1 method)

1.4 Multiple dispatch

The concept of a function is of much more general use than its restriction to mathematical
functions of single real variable. A natural application comes from describing basic properties
of geometric objects. The following function definitions likely will cause no great concern
when skimmed over:

Area(w, h) = w * h
Volume(r, h) = pi * r"2 * h
SurfaceArea(r, h) = pi * r * (r + sqrt(h™2 + r~2))

‘SurfaceArea (generic function with 1 method)

The right-hand sides may or may not be familiar, but it should be reasonable to believe that
if push came to shove, the formulas could be looked up. However, the left-hand sides are
subtly different - they have two arguments, not one. In Julia it is trivial to define functions
with multiple arguments - we just did.

Earlier we saw the 1log function can use a second argument to express the base. This function
is basically defined by log(b,x)=1log(x)/log(b). The log(x) value is the natural log, and
this definition just uses the change-of-base formula for logarithms.

But not so fast, on the left side is a function with two arguments and on the right side the
functions have one argument - yet they share the same name. How does Julia know which
to use? Julia uses the number, order, and type of the arguments passed to a function to
determine which function definition to use. This is technically known as multiple dispatch
or polymorphism. As a feature of the language, it can be used to greatly simplify the
number of functions the user must learn. The basic idea is that many functions are "generic’
in that they will work for many different scenarios.

Y

Multiple dispatch is very common in mathematics. For example, we learn different ways
to add: integers (fingers, carrying), real numbers (align the decimal points), rational
numbers (common denominators), complex numbers (add components), vectors (add


http://en.wikipedia.org/wiki/Multiple_dispatch

