1 Green’s Theorem, Stokes’ Theorem, and the Diver-
gence Theorem

The fundamental theorem of calculus is a fan favorite, as it reduces a definite integral,
J? f(z)dz, into the evaluation of a related function at two points: F(b) — F(a), where the
relation is F' is an antiderivative of f. It is a favorite as it makes life much easier than the
alternative of computing a limit of a Riemann sum.

This relationship can be generalized. The key is to realize that the interval [a, b] has boundary
{a,b} (a set) and then expressing the theorem as: the integral around some region of f is
the integral, suitably defined, around the boundary of the region for a function related to f.

In an abstract setting, Stokes’ theorem says exactly this with the relationship being the
exterior derivative. Here we are not as abstract, we discuss below:

o Green’s theorem, a 2-dimensional theorem, where the region is a planar region, D, and
the boundary a simple curve

 Stokes’ theorem in 3 dimensions, where the region is an open surface, S, in R? with
boundary, C;

o The Divergence theorem in 3 dimensions, where the region is a volume in three dimen-
sions and the boundary its 2-dimensional closed surface.

The related functions will involve the divergence and the curl, previously discussed.
Many of the the examples in this section come from either Strang or Schey.

Before beginning, we load our usual packages.

using CalculusWithJulia
using Plots

To make the abstract concrete, consider the one dimensional case of finding the definite
integral f; F'(z)dzx. The Riemann sum picture at the microscopic level considers a figure

like:


https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/
https://www.amazon.com/Div-Grad-Curl-All-That/dp/0393925161/
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The total area under the blue curve from a to b, is found by adding the area of each segment
of the figure.

Let’s consider now what an integral over the boundary would mean. The region, or interval,
[z;—1,2;] has a boundary that clearly consists of the two points x;_; and z;. If we orient
the boundary, as we need to for higher dimensional boundaries, using the outward facing
direction, then the oriented boundary at the right-hand end point, x;, would point towards
~+o0o and the left-hand end point, x;_1, would be oriented to point to —oo. An ”integral” on
the boundary of F' would naturally be F'(b) x 1 plus F(a) x —1, or F'(b) — F(a).

With this choice of integral over the boundary, we can see much cancellation arises were we to
compute this integral for each piece, as we would have witha =2 <21 < -+ 2,1 <z, = b:

(F'(21) = F(20)) + (F(w2) = F(1)) +- - -+ (F(2n) = Fan1)) = Fen) = F(zo) = F(b) = F(a).

That is, with this definition for a boundary integral, the interior pieces of the microscopic ap-
proximation cancel and the total is just the integral over the oriented macroscopic boundary

{a,b}.

But each microscopic piece can be reimagined, as

— F($i_1)
Az

The approximation could be exact were the mean value theorem used to identify a point in
the interval, but we don’t pursue that, as the key point is the right hand side is a Riemann
sum approximation for a different integral, in this case the integral f;’ F'(x)dx. Passing from
the microscopic view to an infinitesimal view, the picture gives two interpretations, leading
to the Fundamental Theorem of Calculus:

Flai) — Flai,) = (F (z:) ) Az~ F'(z)Ag.



/ab F'(2)dz = F(b) — F(a).

The three theorems of this section, Green’s theorem, Stokes’ theorem, and the divergence
theorem, can all be seen in this manner: the sum of microscopic boundary integrals leads
to a macroscopic boundary integral of the entire region; whereas, by reinterpretation, the
microscopic boundary integrals are viewed as Riemann sums, which in the limit become
integrals of a related function over the region.

1.1 Green’s theorem

To continue the above analysis for a higher dimension, we consider the following figure hinting
at a decomposition of a macroscopic square into subsequent microscopic sub-squares. The
boundary of each square is oriented so that the right hand rule comes out of the picture.

<€
<€ <€
<€ <€
€ €
€ €

Consider the boundary integral §, F'- Tds around the smallest (green) squares. We have seen
that the curl at a point in a direction is given in terms of the limit. Let the plane be the
x — y plane, and the k direction be the one coming out of the figure. In the derivation of
the curl, we saw that the line integral for circulation around the square satisfies:

1 A oF, OF,
F-Tds="¥_ 2=
AxAy %c ds ox dy

If the green squares are small enough, then the line integrals satisfy:

jl{ F-Tds =~ <6Fy — an> AzAy.
c 0

lim

x oy



We interpret the right hand side as a Riemann sum approximation for the 2 dimensional
integral of the function f(x,y) = 8F = OFy _ curl(F), the two-dimensional curl. Were the
green squares continued to fill out the large blue square, then the sum of these terms would

ox
approximate the integral

[ st ff (5= 5= ) aa= f[ cnrya

However, the microscopic boundary integrals have cancellations that lead to a macroscopic
boundary integral. The sum of §, F -T'ds over the 4 green squares will be equal to ¢, F Tds,
where C, is the red square, as the interior line integral pieces will all cancel off. The sum
of ¢ F - T'ds over the 4 red squares will equal b, F' - T'ds, where Cy is the oriented path
around the blue square, as again the interior line pieces will cancel off. Etc.

This all suggests that the flow integral around the surface of the larger region (the blue
square) is equivalent to the integral of the curl component over the region. This is Green’s
theorem, as stated by Wikipedia:

Green’s theorem: Let C' be a positively oriented, piecewise smooth, simple closed
curve in the plane, and let D be the region bounded by C. If F' = (F,, F}), is a
vector field on an open region containing D having continuous partial derivatives

then: fo F-Tds = [f, (52 — %) dA = [fp, curl(F)dA.

The statement of the theorem applies only to regions whose boundaries are simple closed
curves. Not all simple regions have such boundaries. An annulus for example. This is a
restriction that will be generalized.

1.1.1 Examples

Some examples, following Strang, are:

Computing area Let F(z,y) = (—y,z). Then H¥ — = =2, s0

1 o 1
fjl{F-TdSfo(xdy ydr) = /dA A(D
2Jc 2

This gives a means to compute the area of a region by integrating around its boundary.

To compute the area of an ellipse, we have:

[yXJ

F(x,y) =
= F(v...)

F(v)
r(t) = [a*cos(t),b*sin(t)]

Ovars a b t positive=true
(1//2) * integrate( F(r(t)) - diff.(r(t),t), (t, O, 2PI))

mab


https://en.wikipedia.org/wiki/Green%27s_theorem

To compute the area of the triangle with vertices (0,0), (a,0) and (0,b) we can orient the
boundary counter clockwise. Let A be the line segment from (0, ) to (0,0), B be the line
segment from (0,0) to (a,0), and C be the other. Then

/F Tds = = / —ydr =0 (1)
/F Tds-i/xdy—o (2)

ason A, y=0and dy =0 and on B, x =0 and dz = 0.
On C we have 7(t) = (0,0) + ¢ - (1,—b/a) = (t,b — (bt)/a) from t = a to 0

0 0
/ F- —dt / (—b+ (bt)/a), 1) - (1, —b/a)dt = / —bdt = —bt =
Dividing by 1/2 give the familiar answer A = (1/2)ab

Conservative fields A vector field is conservative if path integrals for work are indepen-
dent of the path. We have seen that a vector field that is the gradient of a scalar field will
be conservative and vice versa. This led to the vanishing identify V x V(f) = 0 for a scalar
field f.

Is the converse true? Namely, if for some vector field F', V x F'is identically 0 is the field
conservative?

The answer is yes if vector field has continuous partial derivatives and the curl is 0 in a
simply connected domain.

For the two dimensional case the curl is a scalar. If F' = (F,, F,) = V f is conservative, then
OF,/0x — OF,/0y = 0.

Now assume 0F,/0x —0F, /0y = 0. Let P and @ be two points in the plane. Take any path,
C; from P to @ and any return path, Cy, from ) to P that do not cross and such that C|,
the concatenation of the two paths, satisfies Green’s theorem. Then, as F' is continuous on
an open interval containing D, we have:

0://DOdA://D((?Fy/ﬁa:—GFx/é?y)dA:]{CF-Tds:/C F-Tds+ [ F-Tds.

Reversing (5 to go from P to ), we see the two work integrals are identical, that is the field
is conservative.

Summarizing;:

o If F =V f then F is conservative.

o If F = (F,, F,) has continuous partial derivatives in a simply connected open region
with OF, /0x—0F, /0y = 0, then in that region F' is conservative and can be represented
as the gradient of a scalar function.

For example, let F(z,y) = (sin(xy), cos(xy)). Is this a conservative vector field?
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We can check by taking partial derivatives. Those of interest are:

O0F,  O(cos(zy))

= oa = sy, (3)
oF, O(sin(zy))
T o = cos(zy)x. (4)

It is not the case that 0F,/0x — 0F, /0y = 0, so this vector field is not conservative.

The conditions of Green’s theorem are important, as this next example shows.
Let D be the unit disc, C' the unit circle parameterized counter clockwise.

Let R(x,y) = (—y,x) be a rotation field and F(x,y) = R(x,y)/(R(z,y) - R(z,y)). Then:

R(x,y)
F(x,y)

[-y,x]
R(x,y)/(R(x,y)R(x,y))

Ovars x y real=true
Fx, Fy = F(x,y)
diff(Fy, x) - diff(Fx, y) |> simplify

Then, [[, (0F,/0x — 0F,y/0y) dA = 0. But,

R R _ R-R 1
R-R R-R (R-R?> R-R

SO ¢ F'- Tds = 27, C being the unit circle so R- R = 1.

F.T=

That is, for this example, Green’s theorem does not apply, as the two integrals are not the
same. What isn’t satisfied in the theorem? F' is not continuous at the origin and our curve
C defining D encircles the origin. So, F' does not have continuous partial derivatives, as is
required for the theorem.

More complicated boundary curves A simple closed curve is one that does not cross
itself. Green’s theorem applies to regions bounded by curves which have finitely many crosses
provided the orientation used is consistent throughout.

Consider the curve y = f(x), a < x < b, assuming f is continuous, f(a) > 0, and f(b) < 0.
We can use Green’s theorem to compute the signed ”area” under under f if we consider the
curve in R? from (b, 0) to (a,0) to (a, f(a)), to (b, f(b)) and back to (b,0) in that orientation.
This will cross at each zero of f.



Let A label the red line, B the green curve, C' the blue line, and D the black line. Then the
area is given from Green’s theorem by considering half of the the line integral of F(z,y) =
(—y,z) or $-(xdy — ydx). To that matter we have:

J (wdy = ydz) = af(a) (5)
| (ady = yda) = b(=f (1)) (6)
| (ady — ydz) =0 (7)

®)

Finally the integral over B, using integration by parts:

[ e Wi = [ ran) -0, o )

_/ dt—/ f'(t)dt (10)
_/ dt—( f) 1 — /abf(t)dt). (11)

Combining, we have after cancellation §(zdy — ydx) = 2 [° f(t)dt, or after dividing by 2
the signed area under the curve.

The region may not be simply connected. A simple case might be the disc: 1 < 22 + y? < 4.
In this figure we introduce a cut to make a simply connected region.
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The cut leads to a counter-clockwise orientation on the outer ring and a clockwise orientation
on the inner ring. If this cut becomes so thin as to vanish, then the line integrals along the
lines introducing the cut will cancel off and we have a boundary consisting of two curves
with opposite orientations. (If we follow either orientation the closed figure is on the left.)

To see that the area integral of F'(z,y) = (1/2)(—y, z) produces the area for this orientation
we have, using 'y as the outer ring, and C5 as the inner ring:

. F.Tds= /0%(1/2)(2)(— sin(t), cos(t)) - (2)(—sin(t),cos(t))dt = (1/2)(2m)4 = 4w (12)

: F.-Tds= /02”(1/2)(sin(t), cos(t)) - (—sin(t), — cos(t))dt (13)
2 =—(1/2)(27) = —7. (14)
(Using 7(t) = 2(cos(t), sin(t)) for the outer ring and 7(t) = 1{(cos(t), —sin(t)) for the inner
ring.)
Adding the two gives 47 — 7 =7 - (b — a?), with b= 2 and a = 1.

Flow not flux Green’s theorem has a complement in terms of flow across C. As C is
positively oriented (so the bounded interior piece is on the left of 7" as the curve is traced),
a normal comes by rotating 90° counterclockwise. That is if 7' = (a, b), then N = (b, —a).

Let F = (F,,F,) and G = (F,,—F,), then G -T = —F - N. The curl formula applied to G
becomes

0G, 9G, _0-F, O(F,) _ (an i aF@/) - V.F

or dy ox dy ox 873/
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Green’s theorem applied to G then gives this formula for F":

]fF Nds = — 75(; Tds = — // ~V - F)dA = //v FdA.

The right hand side integral is the 2-dimensional divergence, so this has the interpretation
that the flux through C' (§. F - Nds) is the integral of the divergence. (The divergence is
defined in terms of a limit of this picture, so this theorem extends the microscopic view to
a bigger view.)

Rather than leave this as an algebraic consequence, we sketch out how this could be intu-
itively argued from a microscopic picture, the reason being similar to that for the curl, where
we considered the small green boxes. In the generalization to dimension 3 both arguments
are needed for our discussion:

Consider now a 2-dimensional region split into microscopic boxes; we focus now on two
adjacent boxes, A and B:

The integrand F'- N for A will differ from that for B by a minus sign, as the field is the same,
but the normal carries an opposite sign. Hence the contribution to the line integral around
A along this part of the box partition will cancel out with that around B. The only part of
the line integral that will not cancel out for such a partition will be the boundary pieces of
the overall shape.

This figure shows in red the parts of the line integrals that will cancel for a more refined
grid.
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Again, the microscopic boundary integrals when added will give a macroscopic boundary
integral due to cancellations.

But, as seen in the derivation of the divergence, only modified for 2 dimensions, we have
V- F =limxg §. F- N, so for each cell

7{ F-N=~(V-F)AzAy,

C;

an approximating Riemann sum for [f, V - FdA. This yields:

]{C(F-N)dA:Z?{G(F-N)dAzZ(V-F)AxAym/[SV-FdA,

the approximations becoming equals signs in the limit.

Example Let F(z,y) = (az,by), and D be the square with side length 2 centered at the
origin. Verify that the flow form of Green’s theorem holds.

We have the divergence is simply a + b so [[p(a+ b)dA = (a+ b)A(D) = 4(a + b).

The integral of the flow across C consists of 4 parts. By symmetry, they all should be
similar. We consider the line segment connecting (1, —1) to (1,1) (which has the proper
counterclockwise orientation):

N 1 1
/F-Nds:/ (Ey, F,) - (0, l)ds:/ by = 2b.
C -1 -1
Integrating across the top will give 2a, along the bottom 2a, and along the left side 2b
totaling 4(a + b).
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Next, let F(x,y) = (—y,z). This field rotates, and we see has no divergence, as 0F,/0x =
d(—y)/0x =0 and 0F,/0y = 0z /0y = 0. As such, the area integral in Green’s theorem is 0.
As well, F is parallel to T so orthogonal to N, hence § F - Nds = § 0ds = 0. For any region
S there is no net flow across the boundary and no source or sink of flow inside.

Example: stream functions Strang compiles the following equivalencies (one implies
the others) for when the total flux is 0 for a vector field with continuous partial derivatives:

j{F.z\?ds:o

o for all curves connecting P to @, [~ F - N has the same value

o There is a stream function g(x,y) for which F, = dg/0y and F,, = —0g/0x. (This says
Vg is orthogonal to F.)

+ the components have zero divergence: 0F,/0x + 0F,/0y = 0.

Strang calls these fields source free as the divergence is 0.

A stream function plays the role of a scalar potential, but note the minus sign and order of
partial derivatives. These are accounted for by saying (F,, Fy,,0) = V x (0,0, g), in Cartesian
coordinates. Streamlines are tangent to the flow of the velocity vector of the flow and in two
dimensions are perpendicular to field lines formed by the gradient of a scalar function.

Potential flow uses a scalar potential function to describe the velocity field through v = V f.
As such, potential flow is irrotational due to the curl of a conservative field being the zero
vector. Restricting to two dimensions, this says the partials satisfy Ov,/dz — 0v,/dy = 0.
For an incompressible flow (like water) the velocity will have 0 divergence too. That is
V-V f =0- f satisfies Laplace’s equation.

By the equivalencies above, an incompressible potential low means in addition to a potential
function, f, there is a stream function g¢ satistying v, = dg/dy and v, = —0g/0x.

The gradient of f = (v,,v,) is orthogonal to the contour lines of f. The gradient of
g = (—vy,v,) is orthogonal to the gradient of f, so are tangents to the contour lines of
f- Reversing, the gradient of f is tangent to the contour lines of g. If the flow follows the
velocity field, then the contour lines of g indicate the flow of the fluid.

As an example consider the following in polar coordinates:

f(r,0) = Ar" cos(nf), g(r,0) = Ar"sin(nf).

The constant A just sets the scale, the parameter n has a qualitative effect on the contour
lines. Consider n = 2 visualized below:

n=2
f(r,theta) = r’n * cos(n*theta)
g(r, theta) = r’n * sin(n*theta)

fv) = f(v...); gv)= g(v...)
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Figure 1: The Jiffy Pop popcorn design has a top surface that is designed to expand to
accommodate the popped popcorn. Viewed as a surface, the surface area grows, but the
boundary - where the surface meets the pan - stays the same. This is an example that many
different surfaces can have the same bounding curve. Stokes’ theorem will relate a surface
integral over the surface to a line integral about the bounding curve.

[sqrt(x~2 + y~2), atan(y,x)]

O(x,y) =
= O(v...)

D (v)

xs = ys = range(-2,2, length=50)
contour(xs, ys, fo®, color=:red, legend=false, aspect_ratio=:equal)
contour!(xs, ys, go®, color=:blue, linewidth=3)

2L
-3 -2 -1 0 1 2 3

The fluid would flow along the blue (stream) lines. The red lines have equal potential along
the line.

1.2 Stokes’ theorem

Were the figure of Jiffy Pop popcorn animated, the surface of foil would slowly expand due
to pressure of popping popcorn until the popcorn was ready. However, the boundary would
remain the same. Many different surfaces can have the same boundary. Take for instance

12



the upper half unit sphere in R? it having the curve 22 + %> = 1 as a boundary curve. This
is the same curve as the surface of the cone z = 1 — (22 + y?) that lies above the z — y plane.
This would also be the same curve as the surface formed by a Mickey Mouse glove if the
collar were scaled and positioned onto the unit circle.

Imagine if instead of the retro labeling, a rectangular grid were drawn on the surface of the
Jiffy Pop popcorn before popping. By Green’s theorem, the integral of the curl of a vector
field F' over this surface reduces to just an accompanying line integral over the boundary, C,
where the orientation of C' is in the k direction. The intuitive derivation being that the curl
integral over the grid will have cancellations due to adjacent cells having shared paths being
traversed in both directions.

Now imagine the popcorn expanding, but rather than worry about burning, focusing instead
on what happens to the integral of the curl in the direction of the normal, we have

) 1 ) 1.
FoN =1 —7{F~Td ~ —F.TAs.
V X lmASc S AS S

This gives the series of approximations:

fFTds =Y ¢ F-Tds~ 3 F-TAs~ 3V x F-NAS~ [[ Vx F-Nds.
C C; S

In terms of our expanding popcorn, the boundary integral - after accounting for cancellations,
as in Green’s theorem - can be seen as a microscopic sum of boundary integrals each of which
is approximated by a term V x F'- NAS which is viewed as a Riemann sum approximation
for the the integral of the curl over the surface. The cancellation depends on a proper choice
of orientation, but with that we have:

Stokes’ theorem. Let S be an orientable smooth surface in R* with boundary
C, C oriented so that the chosen normal for S agrees with the right-hand rule
for C’s orientation. Then if F' has continuous partial derivatives ¢ [ - Tds =
Jfs(V x F)- NdA.

Green’s theorem is an immediate consequence upon viewing the region in R? as a surface in
R3 with normal k.

1.2.1 Examples

Example Our first example involves just an observation. For any simply connected surface
S without boundary (such as a sphere) the integral §V x FdS = 0, as the line integral
around the boundary must be 0, as there is no boundary.

Example Let F(z,y,2) = (2%,0,4%) and C be the circle 2 4 2* = 1 with y = 0. Find

We can use Stoke’s theorem with the surface being just the disc, so that N = 7. This makes
the computation easy:
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Ovars x y z real=true
F(x,y,z) = [x72, 0, y~2]
CurlF = curl(F(x,y,z), [x,y,z])

We have V. x F - N = 0, so the answer is 0.
We could have directly computed this. Let r(t) = (cos(t),0,sin(¢)). Then we have:

Ovars t real=true

r(t) = [cos(t), 0, sin(t)]
rp = diff.(r(t), t)
integrand = F(r(t)...) - rp

—sin (t) cos? (t)

The integrand isn’t obviously going to yield 0 for the integral, but through symmetry:

‘integrate(integrand, (t, 0, 2PI))

Example: Ampere’s circuital law (Schey) Suppose a current I flows along a line and
C is a path encircling the current with orientation such that the right hand rule points in
the direction of the current flow.

Ampere’s circuital law relates the line integral of the magnetic field to the induced current
through:

]f B-Tds = ol
C

The goal here is to re-express this integral law to produce a law at each point of the field.
Let S be a surface with boundary C, Let J be the current density - J = pv, with p the
density of the current (not time-varying) and v the velocity. The current can be re-expressed
as I = [[gJ-ndA. (If the current flows through a wire and S is much bigger than the wire,
this is still valid as p = 0 outside of the wird.)

We then have:

uo//SJ-NdA:,uDI:%CB-Tds://S(VxB)-NdA.

As S and C' are arbitrary, this implies the integrands of the surface integrals are equal, or:
V x B ::/LoJl
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Example: Faraday’s law (Strang) Suppose C' is a wire and there is a time-varying
magnetic field B(t). Then Faraday’s law says the fluz passing within C' through a surface
S with boundary C' of the magnetic field, ¢ = [[ B - NdS, induces an electric field F that

does work:

. 0
j{ E.fds = -2,
c ot
Faraday’s law is an empirical statement. Stokes’ theorem can be used to produce one of
Maxwell’s equations. For any surface S, as above with its boundary being C, we have both:

_//5@1:.1\7>d5:_?;f:j{CE.Tds://S(VxE)dS.

This is true for any capping surface for C'. Shrinking C' to a point means it will hold for
each point in R®. That is:

0B
E=—-"",
V X 5

Example: Conservative fields Green’s theorem gave a characterization of 2-dimensional
conservative fields, Stokes’ theorem provides a characterization for 3 dimensional conservative
fields (with continuous derivatives):

The work ¢ F - Tds = 0 for every closed path

The work [ 19 F-Tds is independent of the path between P and @)

« for a scalar potential function ¢, F' = V¢

o The curl satisfies: V x F =0 (and the domain is simply connected).

Stokes’s theorem can be used to show the first and fourth are equivalent.

First, 0 = ¢, F' - Tds, then by Stokes’ theorem 0 = JsV x FdS for any orientable surface S
with boundary C'. For a given point, letting C' shrink to that point can be used to see that
the cross product must be 0 at that point.

Conversely, if the cross product is zero in a simply connected region, then tke any simple
closed curve, C' in the region. If the region is simply connected then there exists an orientable

surface, S in the region with boundary C' for which: ¢, F' - Nds = [[s(V x F) - NdS =
[fs0-NdS =0.

The construction of a scalar potential function from the field can be done as illustrated in
this next example.

Take F = (yz% 22, 2zyz). Verify F is conservative and find a scalar potential ¢.

To verify that F' is conservative, we find its curl to see that it is 0:

F(x,y,2z) = [y*z72, x*z72, 2*x*y*z]
Ovars x y z real=true
curl(F(x,y,z), [x,y,z])
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0
0
0

We need ¢ with d¢/0x = F, = yz%. To that end, we integrate in x:

o(x,y,2) = /yz?drc = zy2” + g(y, 2),

the function ¢(y, z) is a "constant” of integration (it doesn’t depend on x). That d¢p/0x = F,
is true is easy to verify. Now, consider the partial in y:

99 9y

a—y:xf—i-afy:]’y:xz?

So we have g—g =0or g(y,z) = h(z), some constant in y. Finally, we must have 0¢/0z = F,
or

gi =2xyz + I (2) = F, = 2xyz,

So h/(z) = 0. This value can be any constant, even 0 which we take, so that g(y,z) = 0 and
é(x,y, 2) = wyz? is a scalar potential for F.

Example Let F(x,y,2) = V(zy?z3) = (y?23, 22y23, 3xy?2?). Show that the line integrals
around the unit circle in the x — y plane and the y — 2z planes are 0, as F' is conservative.

Ovars x y z t

Fxyz = V(x*y 2%z"3)

r(t) = [cos(t), sin(t), 0]

rp = diff. (r(t), t)

Ft = subs. (Fxyz, x .=> r(t)[1], y.=> r(t)[2], z .=> r(t)[3])
integrate(Ft - rp, (t, 0, 2PI))

0

(This is trivial, as Ft is 0, as each term as a z factor of 0.)

In the y — 2z plane we have:

r(t) = [0, cos(t), sin(t)]

rp = diff.(x(t), t)

Ft = subs. (Fxyz, x .=> r(t)[1], y.=> r(t)[2], z .=> r(t)[3])
integrate(Ft - rp, (t, 0, 2PI))

0

This is also easy, as Ft has only an x component and rp has only y and z components, so
the two are orthogonal.
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Example In two dimensions the vector field F(x,y) = (—y,z)/(2? + y*) = S(z,y)/||R|?
is irrotational (0 curl) and has 0 divergence, but is not conservative in R?, as with C being
the unit disk we have §, F-T'ds = [Z"(—sin(f), cos(6)) - (—sin(6), cos(0)) /1d0 = 2x. This is
because F' is not continuously differentiable at the origin, so the path C' is not in a simply
connected domain where F' is continuously differentiable. (Were C' to avoid the origin, the
integral would be 0.)

In three dimensions, removing a single point in a domain does change simple connectedness,
but removing an entire line will. So the function F(x,y,z2) = (—y,z,0)/(x? + y?)) will have
0 curl, 0 divergence, but won’t be conservative in a domain that includes the z axis.

However, the function F(z,y,z2) = (z,y,2)/vx> + y*> + 2?2 has curl 0, except at the origin.
However, R? less the origin, as a domain, is simply connected, so F' will be conservative.

1.3 Divergence theorem

The divergence theorem is a consequence of a simple observation. Consider two adjacent
cubic regions that share a common face. The boundary integral, ¢¢ F' -NdA, can be computed
for each cube. The surface integral requires a choice of normal, and the convention is to
use the outward pointing normal. The common face of the two cubes has different outward
pointing normals, the difference being a minus sign. As such, the contribution of the surface
integral over this face for one cube is cancelled out by the contribution of the surface integral
over this face for the adjacent cube. As with Green’s theorem, this means for a cubic partition,
that only the contribution over the boundary is needed to compute the boundary integral.
In formulas, if V' is a 3 dimensional cubic region with boundary S and it is partitioned into
smaller cubic subregions, V; with surfaces S;, we have:

§FP-NaA=Y ) F-NaA.
S Si

If the partition provides a microscopic perspective, then the divergence approximation V-F' =~
(1/AV;) §g. I - NdA can be used to say:

ng-NdA:Z]gF-NdAzZ(V-F)AV;z///VV-FdV,

the last approximation through a Riemann sum approximation. This heuristic leads to:

The divergence theorem. Suppose V is a 3-dimensional volume which is bounded
(compact) and has a boundary, S, that is piecewise smooth. If F' is a continuously
differentiable vector field defined on an open set containing V', then:  [ff,(V -
F)dV = §4(F - N)dS.

That is, the volume integral of the divergence can be computed from the flux integral over
the boundary of V.

1.3.1 Examples

Example Verify the divergence theorem for the vector field F(z,y,z) = (zy,yz, zx) for
the cubic box centered at the origin with side lengths 2.
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We need to compute two terms and show they are equal. We begin with the volume integral:

F(x,y,2) = [x*xy, y*z, z*x]

Qvars x y z real=true

DivF = divergence(F(x,y,z), [x,y,z])
integrate(DivF, (x, -1,1), (y,-1,1), (z, -1,1))

0

The total integral is 0 by symmetry, not due to the divergence being 0, as it is x +y + 2.

As for the surface integral, we have 6 sides to consider. We take the sides with N being +i:

Nhat = [1,0,0]
integrate((F(x,y,z) - Nhat), (y, -1, 1), (z, -1,1))

0
In fact, all 6 sides will be 0, as in this case F' -7 = zy and at = 1 the surface integral is
just fil ffl ydydz = 0, as y is an odd function.
As such, the two sides of the Divergence theorem are both 0, so the theorem is verified.

® Example
(From Strang) If the temperature inside the sun is 7" = log(1/p) find the heat flow F' = —VT;
the source, V - F'; and the flux, [[ F'- NdS. Model the sun as a ball of radius py.

We have the heat flow is simply:

Ovars x y z real=true

R(x,y,2) = norm([x,y,z])
T(x,y,z) = log(1/R(x,y,2))
HeatFlow = -diff.(T(x,y,z), [x,y,z])

__z
x2 +y2 +Z2
Y
x2 +y2 Jer

z
Pyt 22
We may recognize this as p/||p||> = p/l|pll-

The source is

‘DivF = divergence(HeatFlow, [x,y,z]) |> simplify

1
x? 4 y? + 22

Which would simplify to 1/p%.
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Finally, the surface integral over the surface of the sun is an integral over a sphere of radius
po- We could use spherical coordinates to compute this, but note instead that the normal is
pso, F'- N=1 /p = 1/po over this surface. So the surface integral is simple the surface area
times 1/po: 4mpd/po = 47 po.

Finally, though F' is not continuous at the origin, the divergence theorem’s result holds.
Using spherical coordinates we have:

Ovars rho rho_0O phi theta real=true
Jac = rho”2 * sin(phi)
integrate(1/rho~2 * Jac, (rho, 0, rho_0), (theta, 0, 2PI), (phi, 0, PI))

4w po

Example: Continuity equation (Schey) Imagine a venue with a strict cap on the
number of persons at one time. Two ways to monitor this are: at given times, a count, or
census, of all the people in the venue can be made. Or, when possible, a count of people
coming in can be compared to a count of people coming out and the difference should yield
the number within. Either works well when access is limited and the venue small, but the
latter can also work well on a larger scale. For example, for the subway system of New York
it would be impractical to attempt to count all the people at a given time using a census,
but from turnstile data an accurate count can be had, as turnstiles can be used to track
people coming in and going out. But turnstiles can be restricting and cause long(ish) lines.
At some stores, new technology is allowing checkout-free shopping. Imagine if each customer
had an app on their phone that can be used to track location. As they enter a store, they
can be recorded, as they exit they can be recorded and if RFID tags are on each item in the
store, their "purchases” can be tallied up and billed through the app. (As an added bonus to
paying fewer cashiers, stores can also track on a step-by-step basis how a customer interacts
with the store.) In any of these three scenarios, a simple thing applies: the total number
of people in a confined region can be counted by counting how many crossed the boundary
(and in which direction) and the change in time of the count can be related to the change in
time of the people crossing.

For a more real world example, the New York Times ran an article about estimating the size
of a large protest in Hong Kong:

Crowd estimates for Hong Kong's large pro-democracy protests have been a
point of contention for years. The organizers and the police often release vastly
divergent estimates. This year’s annual pro-democracy protest on Monday, July
1, was no different. Organizers announced 550,000 people attended; the police
said 190,000 people were there at the peak.

But for the first time in the march’s history, a group of researchers combined
artificial intelligence and manual counting techniques to estimate the size of the
crowd, concluding that 265,000 people marched.

On Monday, the A.L. team attached seven iPads to two major footbridges along
the march route. Volunteers doing manual counts were also stationed next to
the cameras, to help verify the computer count.
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The article describes some issues in counting such a large group:

The high density of the crowd and the moving nature of these protests make
estimating the turnout very challenging. For more than a decade, groups have
stationed teams along the route and manually counted the rate of people passing
through to derive the total number of participants.

As there are no turnstiles to do an accurate count and too many points to come and go, this
technique can be too approximate. The article describes how artificial intelligence was used
to count the participants. The Times tried their own hand:

Analyzing a short video clip recorded on Monday, The Times’s model tried to
detect people based on color and shape, and then tracked the figures as they
moved across the screen. This method helps avoid double counting because the
crowd generally flowed in one direction.

The divergence theorem provides two means to compute a value, the point here is to illustrate
that there are (at least) two possible ways to compute crowd size. Which is better depends
on the situation.

Following Schey, we now consider a continuous analog to the crowd counting problem through
a flow with a non-uniform density that may vary in time. Let p(z,y, z;t) be the time-varying
density and v(x,y, z;t) be a vector field indicating the direction of flow. Consider some three-
dimensional volume, V', with boundary S (though two-dimensional would also be applicable).
Then these integrals have interpretations:

/ / / pdV Amount contained within V' (15)
v

9 / / / pdV = / / / %dv Change in time of amount contained within V' (16)
ot JJ)Jv v Ot

Moving the derivative inside the integral requires an assumption of continuity. Assume the
material is conserved, meaning that if the amount in the volume V' changes it must flow in
and out through the boundary. The flow out through S, the boundary of V| is

# (pv) - Nas,

using the customary outward pointing normal for the orientation of S.

So we have:

///vgfdvz_é(pv)'ﬁdsz—///vv'(pv)dv.

The last equality by the divergence theorem, the minus sign as a positive change in amount
within V' means flow opposite the outward pointing normal for S.

The volume V' was arbitrary. While it isn’t the case that two integrals being equal implies
the integrands are equal, it is the case that if the two integrals are equal for all volumes and
the two integrands are continuous, then they are equal.
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That is, under the assumptions that material is conserved and density is continuous a con-
tinuity equation can be derived from the divergence theorem:

dp
V. = ——.

(pv) = ——
Example: The divergence theorem can fail to apply The assumption of the diver-
gence theorem that the vector field by continuously differentiable is important, as otherwise
it may not hold. With R(z,y,2) = (z,v, z) take for example F' = (R/||R||)/||R]|?). This has
divergence

R(x,y,2) = [x,y,2]
F(x,y,z) = R(x,y,2z) / norm(R(x,y,z))"3

Ovars x y z real=true
divergence(F(x,y,z), [x,y,z]) |> simplify

0

The simplification done by SymPy masks the presence of R~°/? when taking the partial
derivatives, which means the field is not continuously differentiable at the origin.

Were the divergence theorem applicable, then the integral of F' over the unit sphere would

mean:
0—///VV~FdV—ng~NdS_ng}§H3-RdS_jildS_zlw.

Clearly, as 0 is not equal to 4w, the divergence theorem can not apply.

However, it does apply to any volume not enclosing the origin. So without any calculation,
if V' were shifted over by 2 units the volume integral over V' would be 0 and the surface
integral over S would be also.

As already seen, the inverse square law here arises in the electrostatic force formula, and this
same observation was made in the context of Gauss’s law.

1.4 Questions

® Question

chey at conditions on [ : — imply ~dr = Al is the area bounded by
Schey) Wh d F:R*— R? ly ¢ F -dir = A? (Ais th bounded b
the simple, closed curve C)

1. We must have curl(F) =1
2. We must have curl(F) =«
3. We must have curl(F) =0
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® Question
For C, a simple, closed curve parameterized by 7(t) = (z(t),y(t))
contained can be computed by [°x(t)y/(t)dt. Let 7(t) = sin(t) - (cos

< t < b. The area

Find the area inside C'

® Question
Let N = (cos(t),sin(t)) and T = (—sin(t), cos(?)). Then polar coordinates can be viewed as

the parametric curve 7(t) = r(t)N.

Applying Green’s theorem to the vector field F' = (—y, ) which along the curve is r(¢)T" we
know the area formula (1/2)([ zdy — [ ydz). What is this in polar coordinates (using ¢ = ¢?)
(Using (rN" =r'N +rN'"=1'N + 1T is useful.)

1.
(1/2) / rd
2.
/ rdf
3.
/ r2df
1.
(1/2) / 2
® Question

Let 7(t) = (cos3(t),sin3(t)), 0 < ¢ < 2w. (This describes hypocycloid.) Compute the area
enclosed by the curve C' using Green’s theorem.

1.
/2
2.
3m/8
3.
/4
® Question

Let F(x,y) = (y,x). We verify Green’s theorem holds when S is the unit square, [0, 1] x [0, 1].
The curl of F'is

1.

0
2.

1
3.

2
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As the curl is a constant, say ¢, we have [[¢(V x F)dS = c¢- 1. This is?

1.

0
2.

1
3.

2

To integrate around the boundary we have 4 terms: the path A connecting (0,0) to (1,0)
(on the z axis), the path B connecting (1,0) to (1,1), the path C' connecting (1,1) to (0,1),
and the path D connecting (0, 1) to (0,0) (along the y axis).

Which path has tangent ;7

1.

A
2.

B
3.

C
4.

D

Along path C, F(z,y) = [1,z] and T = —iso F-T'= —1. The path integral fC(F-T)ds =—-1
What is the value of the path integral over A?

1.
-1
2.
0
3.
1

What is the integral over the oriented boundary of S?

1.

0
2.

1
3.

2
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® Question

Suppose F : R? — R? is a vector field such that V - F = 0 ewxcept at the origin. Let C;
and C5 be the unit circle and circle with radius 2 centered at the origin, both parameterized
counterclockwise. What is the relationship between ¢, F - Nds and $o, I Nds?

1. They differ by a minus sign, as Green’s theorem applies to the area, S, between C}
and Cy so [[¢V - FdA = 0.

2. They are the same, as Green’s theorem applies to the area, S, between Cy and Cs so
[[¢V - FdA = 0.

® Question

Let F(x,y) = (z,y)/(2* + y?). Though this has divergence 0 away from the origin, the flow
integral around the unit circle, §.(F - N )ds, is 2w, as Green’s theorem in divergence form
does not apply. Consider the integral around the square centered at the origin, with side

lengths 2. What is the flow integral around this closed curve?

1. It is —2m, as Green’s theorem applies to the region formed by the square minus the
circle and so the overall flow integral around the boundary is 0, so the two will have
opposite signs, but the same magnitude.

2. Also 27, as Green’s theorem applies to the region formed by the square minus the
circle and so the overall flow integral around the boundary is 0, so the two will be the
same.

® Question
Using the divergence theorem, compute [[ F'- NdS where F(x,y,z) = (z,x,y) and V is the
unit sphere.

1.
s
2.
4/3m
3.
47
® Question

Using the divergence theorem, compute [f F - NdS where F(z,y,z) = (y,y,x) and V is the
unit cube [0, 1] x [0, 1] x [0, 1].

1.

1
2.

2
3.

3
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® Question
Let R(x,y,z2) = (z,y,2) and p = ||R||*. If F = 2R/p? then F is the gradient of a potential.
Which one?

1.
p
2.
log(p)
3.
1/p

Based on this information, for S a surface not including the origin with boundary C', a simple
closed curve, what is ¢, F - T'ds?

1. It is 2m, as this is the circumference of the unit circle

2. It is 0, as, by Stoke’s theorem, it is equivalent to [[4(V x V¢)dS = [[40dS = 0.

® Question

Consider the circle, C' in R® parameterized by (cos(t),sin(t),0). The upper half sphere and
the unit disc in the # — y plane are both surfaces with this boundary. Let F(z,y,z) =
(—y,z,z). Compute ¢ F - Tds using Stokes’ theorem. The value is:

1.
2
2.
0
3.
2T
® Question

From Illinois comes this advice to check if a vector field F : R® — R? is conservative:

e If V x F is non -zero the field is not conservative

o If V x F is zero and the domain of F is simply connected (e.g., all of B3, then F is
conservative

o If V x F'is zero but the domain of F'is not simply connected then ...
What should finish the last sentence?

1. the field is not conservative.

2. the field could be conservative or not. One must work harder to answer the question.
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3. the field is conservative

® Question
Knill provides the following chart showing what happens under the three main operations
on vector-valued functions:

1
1 ->grad > 1
1 ->grad -> 2 -> curl -> 1
1 ->grad -> 3 -> curl -> 3 -> div > 1

In the first row, the gradient is just the regular derivative and takes a function f : R — R!
into another such function, f' : R — R

In the second row, the gradient is an operation that takes a function f : R?> — R into one
Vf: R?— R? whereas the curl takes F': R? — R? into V x F : R? — R'.

In the third row, the gradient is an operation that takes a function f : R®> — R into one
Vf : R® — R3 whereas the curl takes F' : R® — R®into V x F : R® — R® and the
divergence takes F': R® — R3into V- F : R® — R.

The diagram emphasizes a few different things:

e The number of integral theorems is implied here. The ones for the gradient are the
fundamental theorem of line integrals, namely [~V f-di¥ = [, f, a short hand notation
for f evaluated at the end points.

The one for the curl in n = 2 is Green’s theorem: [[4V X FdA = 55 F - dr.

The one for the curl in n = 3 is Stoke’s theorem: [[ SV x FdA = §,¢ F' - dr. Finally, the
divergence for n = 3 is the divergence theorem [f,, V - FdV = [[;,, F'dS.

« Working left to right along a row of the diagram, applying two steps of these operations
yields:

1. The row number plus 1
2. Zero, by the vanishing properties of these operations

3. The maximum number in a row

® Question

Katz provides details on the history of Green, Gauss (divergence), and Stokes. The first
paragraph says that each theorem was not original to the attributed name. Part of the reason
being the origins dating back to the 17th century, their usage by Lagrange in Laplace in the
18th century, and their formalization in the 19th century. Other reasons are the applications
were different "Gauss was interested in the theory of magnetic attraction, Ostrogradsky in
the theory of heat, Green in electricity and magnetism, Poisson in elastic bodies, and Sarrus
in floating bodies.” Finally, in nearly all the cases the theorems were thought of as tools
toward some physical end.
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In 1846, Cauchy proved
dx dy dp Oq

& @) a :i// 9% ey,

/(pds+qu) ° <8y ox vy

This is a form of:

1. Green’s theorem
2. The divergence (Gauss’) theorem

3. Stokes’ theorem
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