1 Trigonometric functions

We have informally used some of the trigonometric functions in examples so far. In this
section we quickly review their definitions and some basic properties.

The trigonometric functions are used to describe relationships between triangles and circles
as well as oscillatory motions. With such a wide range of utility it is no wonder that they
pop up in many places and their origins date to Hipparcus and Ptolemy over 2000 years ago.

1.1 The 6 basic trigonometric functions

We measure angles in radians, where 360 degrees is 27 radians. By proportions, 180 degrees
is m radian, 90 degrees is m/2 radians, 60 degrees is w/3 radians, etc. In general, = degrees
is 27 - £/360 radians.

For a right triangle with angles 6, 7/2 — 0, and 7/2 we call the side opposite # the "op-
posite” side, the shorter adjacent side the "adjacent” side and the longer adjacent side the
hypotenuse.
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With these, the basic definitions for the primary trigonometric functions are

it

sin(6) = _OPPOSTE_ (the sine function) (1)

hypotenuse

djacent

cos(f) = _acjacent (the cosine function) (2)

hypotenuse

1t

tan(0) = m. (the tangent function) (3)


https://en.wikipedia.org/wiki/Trigonometric_functions#History

Many students remember these through SOH-CAH-TOA.

Some algebra shows that tan(6) = sin(#)/ cos(). There are also 3 reciprocal functions, the
cosecant, secant and cotangent.

These definitions in terms of sides only apply for 0 < 6 < 7/2. More generally, if we relate
any angle taken in the counter clockwise direction for the x-axis with a point (x,y) on the
unit circle, then we can extend these definitions - the point (z,y) is also (cos(), sin(f)).

XXX can not include ‘gif‘ file here

1.1.1 The trigonometric functions in Julia

Julia has the 6 basic trigonometric functions defined through the functions sin, cos, tan,
csc, sec, and cot.

Two right triangles - the one with equal, 7/4, angles; and the one with angles 7/6 and 7/3
can have the ratio of their sides computed from basic geometry. In particular, this leads to
the following values, which are usually committed to memory:

sin(0) =0, sin(n/6) = =, sin(7/4) = \éﬁ, sin(m/3) = ?, and sin(7/2) =1 (4)
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cos(0) =1, cos(m/6) = \é_, cos(m/4) = \g—, cos(m/3) = 3 and cos(w/2) =0. (5)
Using the circle definition allows these basic values to inform us of values throughout the
unit circle.

These all follow from the definition involving the unit circle:
 If the angle 6 corresponds to a point (z,y) on the unit circle, then the angle —@

corresponds to (x, —y). So sin(f) = —sin(—0) (an odd function), but cos() = cos(—6)
(an even function).

o If the angle 6 corresponds to a point (z,y) on the unit circle, then rotating by © moves

the points to (—z, —y). So cos(d) = x = — cos(f + ), and sin(f) = y = —sin(0 + 7).

o If the angle 6 corresponds to a point (x,y) on the unit circle, then rotating by /2
moves the points to (—y,z). So cos(f) =z = sin(f + 7/2).

The fact that 22 + y? = 1 for the unit circle leads to the "Pythagorean identity” for trigono-
metric functions:

sin(0)? + cos(#)* = 1.

This basic fact can be manipulated many ways. For example, dividing through by cos(f)?
gives the related identity: tan(6)? 4+ 1 = sec(6).

Julia’s functions can compute values for any angles, including these fundamental ones:


http://mathworld.wolfram.com/SOHCAHTOA.html

| [cos(theta) for theta in [0, pi/6, pi/4, pi/3, pi/2]]

5-element Array{Float64,1}:
1.0

0.8660254037844387
0.7071067811865476
0.5000000000000001
6.123233995736766e-17

These are floating point approximations, as can be seen clearly in the last value. Symbolic
math can be used if exactness matters:

using CalculusWithJulia
using Plots
cos. ([0, PI/6, PI/4, PI/3, PI/2])

c:wha“ﬁhwbh+~

For really large values, round off error can play a big role. For example, the ezact value
of sin(10000007) is 0, but the returned value is not quite 0 sin(1_000_000 * pi) =
-2.231912181360871e-10. For exact multiples of m with large multiples the sinpi and
cospi functions are useful.

(Both functions are computed by first employing periodicity to reduce the problem to
a smaller angle. However, for large multiples the floating-point roundoff becomes a
problem with the usual functions.)

Example Measuring the height of a tree may be a real-world task for some, but a typical
task for trigonometry students. How might it be done? If a right triangle can be formed
where the angle and adjacent side length are known, then the opposite side (the height of
the tree) can be solved for with the tangent function. For example, if standing 100 feet from
the base of the tree the tip makes a 15 degree angle the height is given by:

theta = 15 * 180/pi
adjacent = 100
opposite = adjacent * tan(theta)

-466.6470644343919

Having some means to compute an angle and then a tangent of that angle handy is not
a given, so the linked to article provides a few other methods taking advantage of similar
triangles.

You can also measure distance with your thumb or fist. How, the fist takes up about 10
degree of view when held straight out. So, pacing off backwards until the fist completely


https://lifehacker.com/5875184/is-there-an-easy-way-to-measure-the-height-of-a-tree
http://www.vendian.org/mncharity/dir3/bodyruler_angle/

occludes the tree will give the distance of the adjacent side of a right triangle. If that distance
is 30 paces what is the height of the tree? Well, we need some facts. Suppose your pace is
3 feet. Then the adjacent length is 90 feet. The multiplier is the tangent of 10 degrees, or:

| tan(10 * pi/180)

0.17632698070846498

Which for sake of memory we will say is 1/6 (a 5 percent error). So that answer is roughly
15 feet:
|30 * 3 / 6

15.0

Similarly, you can use your thumb instead of your first. To use your first you can multiply
by 1/6 the adjacent side, to use your thumb about 1/30 as this approximates the tangent of
2 degrees:

|1/30, tan(2*pi/180)

‘ (0.03333333333333333, 0.03492076949174773)

This could be reversed. If you know the height of something a distance away that is covered
by your thumb or fist, then you would multiply that height by the appropriate amount to
find your distance.

1.1.2 Basic properties
The sine function is defined for all real § and has a range of [—1,1]. Clearly as 6 winds

around the z-axis, the position of the y coordinate begins to repeat itself. We say the sine
function is periodic with period 27. A graph will illustrate:

‘plot(sin, 0, 4pi)
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The graph shows two periods. The wavy aspect of the graph is why this function is used to
model periodic motions, such as the amount of sunlight in a day, or the alternating current
powering a computer.

From this graph - or considering when the y coordinate is 0 - we see that the sine function
has zeros at any integer multiple of 7, or km, kin ..., —2,—1,0,1,2,....

The cosine function is similar, in that it has the same domain and range, but is "out of
phase” with the sine curve. A graph of both shows the two are related:

plot(sin, 0, 4pi)
plot!(cos, 0, 4pi)
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The cosine function is just a shift of the sine function (or vice versa). We see that the zeros
of the cosine function happen at points of the form 7/2 + kx, kin ..., —2,—1,0,1,2,....

The tangent function does not have all 6 for its domain, rather those points where division
by 0 occurs are excluded. These occur when the cosine is 0, or again at 7/2 + km, k in
...,—2,—1,0,1,2,.... The range of the tangent function will be all real y.

The tangent function is also periodic, but not with period 27, but rather just 7. A graph will
show this. Here we avoid the vertical asymptotes by keeping them out of the plot domain
and layering several plots.
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1.1.3 Functions using degrees

Trigonometric function are functions of angles which have two common descriptions: in terms
of degrees or radians. Degrees are common when right triangles are considered, radians much
more common in general, as the relationship with arc-length holds in that r = [, where r
is the radius of a circle and [ the length of the arc formed by angle 6.

The two are related, as a circle of 27 radians and 360 degrees. So to convert from degrees
into radians it takes multiplying by 27 /360 and to convert from radians to degrees it takes
multiplying by 360/(27). The deg2rad and rad2deg functions are available for this task.

In Julia, the functions sind, cosd, tand, cscd, secd, and cotd are available to simplify the
task of composing the two operations (that is sin(deg2rad(x)) is the same as sind(x)).

1.2 The sum-and-difference formulas

Consider the point on the unit circle (z,y) = (cos(),sin(d)). In terms of (x,y) (or 0)
is there a way to represent the angle found by rotating an additional 8, that is what is
(cos(26),sin(20))?

More generally, suppose we have two angles a and 3, can we represent the values of (cos(a +
B),sin(a + f)) using the values just involving 8 and a separately?

According to Wikipedia the following figure (from mathalino.com) has ideas that date to
Ptolemy:

To read this, there are three triangles: the bigger (green with pink part) has hypotenuse
1 (and adjacent and opposite sides that form the hypotenuses of the other two); the next


https://en.wikipedia.org/wiki/Trigonometric_functions#Identities
http://www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-sum-and-difference-of-two-angles

Figure 1: Geometric picture
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biggest (yellow) hypotenuse cos(3), adjacent side (of angle «) cos(3) - cos(a), and opposite
side cos(3) - sin(); and the smallest (pink) hypotenuse sin(f3), adjacent side (of angle «)
sin() - cos(a), and opposite side sin(3) sin(«).

This figure shows the following sum formula for sine and cosine:

sin(a + 3) = sin(a) cos(3) + sin(3) cos(a) (6)

cos(a + ) = cos(a) cos(f) — sin(«) sin(f). (7)

Using the fact that sin is an odd function and cos an even function, related formulas for
the difference a@ — 3 can be derived.

Taking a = [ we immediately get the "double-angle” formulas:

sin(2a) = 2sin(«) cos(a) (8)

cos(2a) = cos(a)? — sin(a)?. 9)

The latter looks like the Pythagorean identify, but has a minus sign. In fact, the Pythagorean
identify is often used to rewrite this, for example cos(2a) = 2cos(a)* — 1 or 1 — 2sin(a)?

Applying the above with a = /2, we get that cos(3) = 2cos(3/2)? — 1, which rearranged
yields the "half-angle” formula: cos(3/2)? = (1 4 cos(3))/2.

Example Consider the expressions cos((n + 1)f) and cos((n — 1)f). These can be re-
expressed as:



cos((n + 1)8) = cos(nb + 0) = cos(nd) cos(d) — sin(nh) sin(f), and (10)
cos((n — 1)) = cos(nf — 0) = cos(nd) cos(—0) — sin(nd) sin(—0). (11)

But cos(—6) = cos(f), whereas sin(—6) = —sin(f). Using this, we add the two formulas
above to get:

cos((n + 1)8) = 2 cos(nf) cos(f) — cos((n — 1)8).

That is the angle for a multiple of n + 1 can be expressed in terms of the angle with a
multiple of n and n— 1. This can be used recursively to find expressions for cos(nf) in terms
of polynomials in cos().

1.3 Inverse trigonometric functions

The trigonometric functions are all periodic. In particular they are not monotonic over their
entire domain. This means there is no inverse function applicable. However, by restricting
the domain to where the functions are monotonic, inverse functions can be defined:

 For sin(z), the restricted domain of [—7/2, 7/2] allows for the arcsine function to be
defined. In Julia this is implemented with asin.

« For cos(z), the restricted domain of [0, 7] allows for the arccosine function to be defined.
In Julia this is implemented with acos.

« For tan(x), the restricted domain of (—7/2,7/2) allows for the arctangent function to
be defined. In Julia this is implemented with atan.

For example, the arcsine function is defined for —1 < z < 1 and has a range of —7/2 to 7/2:

‘ plot(asin, -1, 1)
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The arctangent has domain of all real z. It has shape given by:

|plot(atan, -10, 10)
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The horizontal asymptotes are y = /2 and y = —7/2.

1.3.1 Implications of a restricted domain

Notice that sin(arcsin(z)) = « for any x in [—1, 1], but, of course, not for all x, as the output
of the sine function can’t be arbitrarily large.

However, arcsin(sin(x)) is defined for all z, but only equals x when x is in [—7/2,7/2]. The
output, or range, of the arcsin function is restricted to that interval.

This can be limiting at times. A common case is to find the angle in [0, 27) corresponding
to a point (z,y). In the simplest case (the first and fourth quadrants) this is just given by
arctan(y/x). But with some work, the correct angle can be found for any pair (z,y). As this
is a common desire, the atan function with two arguments, atan(y,x), is available. This
function returns a value in (—m, 7.

For example, this will not give back # without more work to identify the quadrant:

theta = 3pi/4
x,y = (cos(theta), sin(theta))
atan(y/x)

-0.7853981633974484
But,

‘atan(y, x)

2.356194490192345

Example A (white) light shining through a prism will be deflected depending on the
material of the prism and the angles involved (cf. the link for a figure). The relationship
can be analyzed by tracing a ray through the figure and utilizing Snell’s law. If the prism
has index of refraction n then the ray will deflect by an amount ¢ that depends on the angle,
« of the prism and the initial angle () according to:

1
d = 0y — a + arcsin(n sin(a — arcsin(—sin(6p)))).
n
If n=1.5 (glass), « = 7/3 and 6y = /6, find the deflection (in radians).
We have:

n, alpha, theta0 = 1.5, pi/3, pi/6
delta = theta0 - alpha + asin(n * sin(alpha - asin(sin(theta0O)/n)))

0.8219769749498015

For small 6y and « the deviation is approximated by (n — 1)a. Compare this approximation
to the actual value when 6y = 7/10 and o = 7/15.

We have:

11


http://tinyurl.com/y8sczg4t

n, alpha, theta0 = 1.5, pi/15, pi/10
delta = thetaO - alpha + asin(n * sin(alpha - asin(sin(theta0)/n)))
delta, (n-1)*alpha

‘(0.10763338241545499, 0.10471975511965977)

The approximation error is about 2.7 percent.

Example The AMS has an interesting column on rainbows the start of which uses some
formulas from the previous example. Click through to see a ray of light passing through a
spherical drop of water, as analyzed by Descartes. The deflection of the ray occurs when the
incident light hits the drop of water, then there is an internal deflection of the light, and
finally when the light leaves, there is another deflection. The total deflection (in radians) is
D= (i—r)+(r—2r)+(i—r) = 7 —2i—4r. However, the incident angle i and the refracted
angle r are related by Snell’s law: sin(i) = nsin(r). The value n is the index of refraction
and is 4/3 for water. (It was 3/2 for glass in the previous example.) This gives

1
D = 7w + 2i — 4arcsin(— sin(7)).
n
Graphing this for incident angles between 0 and 7/2 we have:
n = 4/3

D(i) = pi + 2i - 4 * asin(sin(i)/mn)
plot(D, 0, pi/2)
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http://www.ams.org/publicoutreach/feature-column/fcarc-rainbows

Descartes was interested in the minimum value of this graph, as it relates to where the light
concentrates. This is roughly at 1 radian or about 57 degrees:

| rad2deg(1.0)

57.29577951308232

(Using calculus it can be seen to be arccos(((n? — 1)/3)%/2).)

Example: The Chebyshev Polynomials Consider again this equation derived with the
sum-and-difference formula:

cos((n + 1)8) = 2 cos(nd) cos(f) — cos((n — 1)0).

Let T,,(x) = cos(narccos(x)). Calling # = arccos(z) for —1 < x < x we get a relation
between these functions:

Thi1(z) = 22T, (x) — T—1(x).

We can simplify a few: For example, when n = 0 we see immediately that To(x) = 1, the
constant function. Whereas with n = 1 we get Tj(x) = cos(arccos(x)) = z. Things get
more interesting as we get bigger n, for example using the equation above we get Ty(x) =
22Ty (z) — To(x) = 2z - & — 1 = 222 — 1. Continuing, we'd get T3(z) = 22Ts(z) — Ti(x) =
22(22% — 1) — x = 42 — 3.

A few things become clear from the above two representations:

« Starting from Ty(x) = 1 and Ti(z) = x and using the recursive defintion of 7, we
get a family of polynomials where T, () is a degree n polynomial. These are defined
for all z, not just —1 < x < 1.

« Using the initial definition, we see that the zeros of T,,(z) all occur within [—1, 1] and
happen when n arccos(x) = kn+m/2, or & = cos((2k+1)/n-nw/2) for k=0,1,...,n—1.

Other properties of this polynomial family are not at all obvious. One is that amongst all
polynomials of degree n with roots in [—1, 1], 7,,(z) will be the smallest in magnitude (after
we divide by the leading coefficient to make all polynomials considered to be monic). We
can check this for one case. Take n = 4, then we have: Ty(z) = 8z* — 82%+ 1. Compare this
with ¢(x) = (z +3/5)(x + 1/5)(z — 1/5)(z — 3/5) (evenly spaced zeros):

T4(x) = (8x74 - 8x"2 + 1) / 8

q(x) = (x+3/5)*(x+1/5)*(x-1/5)*(x-3/5)
plot(abs o T4, -1,1)

plot!(abs o q, -1,1)
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1.4 Hyperbolic trigonometric functions

Related to the trigonometric functions are the hyperbolic trigonometric functions. Instead
of associating a point (x,y) on the unit circle with an angle 6, we associate a point (z,y)
on the unit hyperbola (with z? — y* = 1. We define the hyperbolic sin (sinh) and hyperbolic
cosine (cosh) through (cosh(#),sinh(8)) = (z,y).

These can be expressed using the exponential function as:

sinh(z) = 5 (12)
cosh(z) = ea:_;e—x‘ (13)

The hyperbolic tangent is then the ratio of sinh and cosh. As well, three inverse hyperbolic
functions can be defined.

1.5 Questions

® Question
What is bigger sin(1.23456) or cos(6.54321)7

sin(1.23456)

14



cos(6.54321)

® Question
Let © = w/4. What is bigger cos(z) or z?

1.
cos(x)
2.
x
® Question

The cosine function is a simple tranformation of the sine function. Which one?

1.
cos(z) = sin(z + 7/2)
2.
cos(x) = /2 - sin(x)
3.
cos(z) = sin(xz — m/2)
® Question

Graph the secant function. The vertical asymptotes are at?

1. The values k7 for kin ..., —2,—1,0,1,2,...
2. The values 7/2 + k7 for kin ..., —2,—1,0,1,2,...
3. The values 2k7 for kin ..., —2,—1,0,1,2,...

® Question

A formula due to Bhaskara I dates to around 650AD and gives a rational function approxi-
mation to the sine function. In degrees, we have

in(z°) 4x(180 — z)
sin(z°) &~

40500 — (180 — )’
Plot both functions over [0,180]. What is the maximum difference between the two to
two decimal points? (You may need to plot the difference of the functions to read off an
approximate answer.)

0 <z < 180.

® Question
Solve the following equation for a value of x using acos:

cos(x/3) = 1/3.

15
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® Question
For any postive integer n the equation cos(x) —nz = 0 has a solution in [0, 7/2]. Graphically
estimate the value when n = 10.

® Question
The sine function is an odd function.

o The hyperbolic sine is:

1. odd
2. even

3. neither
e The hyperbolic cosine is:

1. odd
2. even

3. neither
e The hyperbolic tangent is:

1. odd
2. even

3. neither

® Question
The hyperbolic sine satisfies this formula:

sinh(6 + ) = sinh(f) cosh(3) + sinh() cosh(6).

Is this identical to the pattern for the regular sine function?

1. Yes
2. No

The hyperbolic cosine satisfies this formula:

cosh(0 + ) = cosh(0) cosh(S) + sinh(/3) sinh(0).

Is this identical to the pattern for the regular sine function?

1. Yes
2. No
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