1 Polar Coordinates and Curves

The description of the z-y plane via Cartesian coordinates is not the only possible way,
though one that is most familiar. Here we discuss a different means. Instead of talking
about over and up from an origin, we focus on a direction and a distance from the origin.

We begin by loading our package providing access to the necessary packages:

1.1 Definition of polar coordinates

Polar coordinates parameterize the plane though an angle # made from the positive ray of
the x axis and a radius 7.

To recover the Cartesian coordinates from the pair (r, ), we have these formulas from right
triangle geometry:

x =rcos(f), y=rsin(f).

Each point (z,y) corresponds to several possible values of (r,6), as any integer multiple of
21 added to 6 will describe the same point. Except for the origin, there is only one pair
when we restrict tor > 0 and 0 < 0 < 27.

For values in the first and fourth quadrants (the range of tan='(z)), we have:

r= /22 +y?, 0 =tan"'(y/z).

For the other two quadrants, the signs of y and x must be considered. This is done with the
function atan when two arguments are used.


http://en.wikipedia.org/wiki/Polar_coordinate_system#Converting_between_polar_and_Cartesian_coordinates

For example, (—3,4) would have polar coordinates:

X,y = -3, 4
rad, theta = sqrt(x”2 + y~2), atan(y, x)

‘(5.0, 2.214297435588181)

And reversing

‘rad*cos(theta), rad*sin(theta)

‘(-2.999999999999999, 4.000000000000001)

This figure illustrates:

(-3,4) Cartesian or (5, 2.21...) polar

-4 -2 0 2 4

The case where r < 0 is handled by going 180 degrees in the opposite direction, in other
words the point (r,0) can be described as well by (—r, 0 + 7).

1.2 Parameterizing curves using polar coordinates

If » = r(0), then the parameterized curve (r(f),60) is just the set of points generated as
6 ranges over some set of values. There are many examples of parameterized curves that
simplify what might be a complicated presentation in Cartesian coordinates.



For example, a circle has the form x?+1y? = R?. Whereas parameterized by polar coordinates
it is just r(f) = R, or a constant function.

The circle centered at (r9,7) (in polar coordinates) with radius R has a more involved
description in polar coordinates:

r(0) = rocos(0 — ) + \/R2 —rgsin?(0 — 7).
The case where ry > R will not be defined for all values of 6, only when |sin(0 —v)| < R/ry.

1.3 Examples

The Plots. j1 package provides a means to visualize polar plots through plot (thetas, rs,
proj=:polar). For example, to plot a circe with rq = 1/2 and v = 7/6 we would have:

using Plots

R, r0, gamma = 1, 1/2, pi/6

r(theta) = rO * cos(theta-gamma) + sqrt(R"2 - r0~2*sin(theta-gamma)~2)
ts = range(0, 2pi, length=100)

rs = r.(ts)

plot(ts, rs, proj=:polar, legend=false)

‘Plot{Plots.PlotlyBackend() n=1}

To avoid having to create values for € and values for r, the CalculusWithJulia package
provides a helper function, plot_polar. It is essentially this:

plot_polar(r, a, b; kwargs...) = plot(t -> r(t)*cos(t), t -> r(t)*sin(t), a, b;
kwargs...)

We will use this in the following, as the graphs are a bit more familiar and the calling pattern
similar to how we have plotted functions.

As Plots will make a parametric plot when called as plot (function, function, a,b), the
above function creates two such functions using the relationship x = r cos(#) and y = rsin(f).

Using plot_polar, we can plot circles with the following. We have to be a bit careful for
the general circle, as when center is farther away from the origin that the radius (R), then
not all angles will be acceptable and there are two functions needed to describe the radius,
as this comes from a quadratic equation and both the ”"plus” and "minus” terms are used.

R=4; r(t) = R;

function plot_general circle! (rO, gamma, R)

r(t) = r0 * cos(t - gamma) + sqrt(R"2 - r0"2*sin(t-gamma) ~2)
1(t) = r0 * cos(t - gamma) - sqrt(R"2 - r0~2*sin(t-gamma) "2)
if R < r0




theta = asin(R/r0)-1le-6
plot_polar!(r, gamma-theta, gamma+theta)
plot_polar!(l, gamma-theta, gamma+theta)
else
plot_polar!(r, 0, 2pi)
end
end

plot_polar(r, 0, 2pi, aspect_ratio=:equal, legend=false)
plot_general _circle! (2, 0, 2)
plot_general circle! (3, 0, 1)

‘Plot{Plots.PlotlyBackend() n=4}
There are many interesting examples of curves described by polar coordinates. An interesting

compilation of famous curves is found at the MacTutor History of Mathematics archive, many
of which have formulas in polar coordinates.

Example The rhodenea curve has

r(0) = asin(k0)

a, k=4, 5
r(theta) = a * sin(k * theta)
plot_polar(r, 0, pi)

‘Plot{Plots.PlotlyBackend() n=1}
This graph has radius 0 whenever sin(kf) = 0 or k# = nm. Solving means that it is 0 at
integer multiples of 7/k. In the above, with & = 5, there will 5 zeroes in [0, 7]. The entire

curve is traced out over this interval, the values from 7 to 27 yield negative value of r, so
are related to values within 0 to 7 via the relation (r, 7 + 60) = (—r,6).

Example The folium is a somewhat similar looking curve, but has this description:

r(0) = —bcos(0) + 4a cos(f) sin(26)

a, b=4, 2
r(theta) = -b * cos(theta) + 4a * cos(theta) * sin(2theta)
plot_polar(r, 0, 2pi)

‘Plot{Plots.PlotlyBackend() n=1}

The folium has radial part 0 when cos(f) = 0 or sin(20) = b/4a. This could be used to find
out what values correspond to which loop. For our choice of a and b this gives 7/2, 37/2
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or, as b/4a = 1/8, when sin(20) = 1/8 which happens at ap = sin"!(1/8)/2 = 0.0626... and
/2 — ag, ™+ ag and 37/2 — ag. The first folium can be plotted with:

a0 = (1/2) #* asin(1/8)
plot_polar(r, a0, pi/2 - a0)

‘Plot{Plots.PlotlyBackend() n=1}

The second - which is too small to appear in the initial plot without zooming in - with

‘plot_polar(r, pi/2 - a0, pi/2)

‘Plot{Plots.PlotlyBackend() n=1}

The third with

‘plot_polar(r, pi/2, pi + a0)

‘Plot{Plots.PlotlyBackend() n=1}

The plot repeats from there, so the initial plot could have been made over [0, 7 + ao].

Example The Limacon of Pascal has

7(0) = b+ 2acos(0)

a,b =4, 2
r(theta) = b + 2a*cos(theta)
plot_polar(r, 0, 2pi)

| Plot{Plots.PlotlyBackend() n=1}

Example Some curves require a longer parameterization, such as this where we plot over
[0, 87] so that the cosine term can range over an entire half period:

r(theta) = sqrt(abs(cos(theta/8)))
plot_polar(r, 0, 8pi)

| Plot{Plots.PlotlyBackend() n=1}


http://www-history.mcs.st-and.ac.uk/Curves/Limacon.html

1.4 Area of polar graphs

Consider the cardioid described by 7(0) = 2(1 + cos()):

r(theta) = 2(1 + cos(theta))
plot_polar(r, 0, 2pi)

‘ Plot{Plots.PlotlyBackend() n=1}

How much area is contained in the graph?

In some cases it might be possible to translate back into Cartesian coordinates and compute
from there. In practice, this is not usually the best solution.

The area can be approximated by wedges (not rectangles). For example, here we see that
the area over a given angle is well approximated by the wedge for each of the sectors:
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As well, see this part of a Wikipedia page for a figure.

Imagine we have a < b and a partition a = tg < t; < --- < t, =b. Let ¢; = (1/2)(t;_1 + t;)
be the midpoint. Then the wedge of radius r(¢;) with angle between ¢, _; and t; will have
area 77 ()% (t; — t;i_1)/(27) = (1/2)7(¢;)(t; — ti1), the ratio (t; —t;_1)/(27) being the angle
to the total angle of a circle. Summing the area of these wedges over the partition gives a
Riemann sum approximation for the integral (1/2) [’ r()2df. This limit of this sum defines
the area in polar coordinates.

Area of polar regions. Let R denote the region bounded by the curve r(#) and
bounded by the rays § = a and 8 = b with b — a < 27, then the area of R is
given by A =1 [Yr(6)2de.
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So the area of the cardioid, which is parameterized over [0, 27| is found by

using SymPy

r(theta) = 2(1 + cos(theta))

Ovars theta

(1//2) * integrate(r(theta)”2, (theta, 0, 2PI))

o

Example The folium has general formula r(0) = —bcos(0) +4a cos(9) sin(6)?. When a = 1
and b =1 a leaf of the folium is traced out between /6 and 7/2. What is the area of that
leaf?

An antiderivative exists for arbitrary a and b:

Ovars a b
r(theta) = -b*cos(theta) + 4a*cos(theta)*sin(theta) 2
integrate(r(theta) "2, theta) / 2

a?0sin® (0)  3a?0sin? (0) cos? () +3a28 sin® (0) cos” (0) | a*0 cos® (0) | a®sin® (A) cos (0) 4a”sin® () cos®

2 * 2 2 * 2 * 2 3

For our specific values, the answer can be computed with:

ex = integrate(r(theta)~2, (theta, PI/6, PI/2)) / 2
ex(a => 1, b=>1)

™
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® Example
Pascal’s limacon is like the cardioid, but contains an extra loop. When a =1 and b = 1 we
have this graph.


http://www-history.mcs.st-and.ac.uk/Curves/Limacon.html
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What is the area contained in the outer loop, that is not in the inner loop?

To answer, we need to find out what range of values in [0, 27| the inner and outer loops are
traced. This will be when r(#) = 0, which for the choice of a and b solves 1 + 2cos(f) = 0,
or cos(f) = —1/2. This is 7/2 4+ 7/6 and 37/2 — w/6. The inner loop is traversed between
those values and has area:

Ovars a b

r(theta) = b + 2a*cos(theta)

ex = integrate(r(theta)~2 / 2, (theta, PI/2 + PI/6, 3PI/2 - PI/6))
inner = ex(a=>1, b=>1)

The outer area (including the inner loop) is the integral from 0 to 7/2 4+ /6 plus that from
37/2 — /6 to 2m. These areas are equal, so we double the first:

ex = 2 x integrate(r(theta)”2 / 2, (theta, 0, PI/2 + PI/6))
outer = ex(a=>1, b=>1)

3v3

— 4+ 27

2

The answer is the difference:



outer - inner

T+ 3V3

1.5 Arc length

The length of the arc traced by a polar graph can also be expressed using an integral. Again,
we partition the interval [a, b] and consider the wedge from (r(t;_1),¢;_1) to (r(¢;),t;). The
curve this wedge approximates will have its arc length approximated by the line segment
connecting the points. Expressing the points in Cartesian coordinates and simplifying gives
the distance squared as:

d? = (r(t;) cos(t;) — r(t;_

1

1) cos(ti—1))? + (r(t;) sin(t;) — r(ti—1) sin(t;—1))? (1)
= r(t:)? — 2r(t;)r(tiy) cos(t; — ti1) + r(tiq)? (2)
~r(t)? — 2r(t)r(ti_)(1 — (1_27521)) +r(tii1)?  (ascos(z) ~ 1 —2%/2) (3)
= (r(0) = rltioa) P (8 rima) (0 — t ) ()

As was done with arc length we multiply d; by (t; — t;—1)/(t; — t;_1) and move the bottom
factor under the square root:

b —ti

4= d it )
| (@) = r(tiza))® | r(t)r(o) (i — ti1)?
- J (ti —ti1)? (t; — tiz1)? (= tio) (©6)
= \/(7”/(51))2 +r(t)r(ti—1) - (t; — ti—1). (the mean value theorem) (7)

Adding the approximations to the d; looks like a Riemann sum approximation to the
integral [ \/ (r'(0)2) + r(0)2d0 (with the extension to the Riemann sum formula needed to
derive the arc length for a parameterized curve). That is:

Arc length of a polar curve. The arc length of the curve described in polar

coordinates by r(0) for a < 6 < b is given by [7 /()2 + r(6)2d6.

We test this out on a circle with () = R, a constant. The integrand simplifies to just
vV R? and the integral is from 0 to 27, so the arc length is 2w R, precisely the formula for the
circumference.

Example A cardioid is described by r(0) = 2(1 4 cos(f)). What is the arc length from 0
to 277

The integrand is integrable



r(theta) = 2%(1 + cos(theta))
ds = sqrt(diff(r(theta), theta)~2 + r(theta)~2) [> simplify

24/2cos (0) + 2

with antiderivative 4,/2 cos(f) + 2-tan(6/2), but SymPy isn’t able to find it. Instead we give

a numeric answer:

‘quadgk(t => sqrt(r'(£)72 + r(t)~2), 0, 2pi)[1]

16.0

Example The equiangular spiral has polar representation

,r,(e) _ aee cot(b)

With a =1 and b = /4, find the arc length traced out from 6§ = 0 to 6 = 1.

a, b= 1, PI/4

r(theta) = a * exp(theta * cot(b))

ds = sqrt(diff(r(theta), theta)”2 + r(theta) 2)
integrate(ds, (theta, 0, 1))

—V2 4+ V2e

Example An Archimedean spiral is defined in polar form by

r(0) = a+ b

That is, the radius increases linearly. The crossings of the positive x axis occur at a + bn2m,
so are evenly spaced out by 27b. These could be a model for such things as coils of materials
of uniform thickness.

For example, a roll of toilet paper promises 1000 sheets with the smaller 4.1 x 3.7 inch
size. This 3700 inch long connected sheet of paper is wrapped around a paper tube in an
Archimedean spiral with 7(6) = diyner/2+b0. The entire roll must fit in a standard dimension,
so the outer diameter will be dyyer = 5 1/4 inches. Can we figure out b7

Let n be the number of windings and assume the starting and ending point is on the positive
x axis, 7(2mn) = douter/2 = dinner/2 + b(27n). Solving for n in terms of b we get: n =
(douter — dinner)/2/(2mb). With this, the following must hold as the total arc length is 3700
inches.

n-2mw
/ (6)2 + (6)2d6 = 3700
0

Numerically then we have:
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dinner = 1 + 5/8

douter = 5 + 1/4

r(b,t) = dinner/2 + bx*t
rp(b,t) = b

integrand(b,t) = sqrt((r(b,t))"2 + rp(b,t)"2)
n(b) = (douter - dinner)/2/(2*pi*b)
b = find_zero(b -> quadgk(t->integrand(b,t), 0, n(b)*2*pi)[1] - 3700, (1/100000, 1/100))

0.0008419553488281331

This gives a value in inches, in millimeters this is about a .02mm thickness per sheet:

|b * 25.4

0.02138566586023458

1.6 Questions

® Question

Let =3 and 0 = 7/8. In Cartesian coordinates what is z?
What is y?

® Question
A point in Cartesian coordinates is given by (—12, —5). In has a polar coordinate represen-
tation with an angle 6 in [0, 27| and 7 > 0. What is 77

What is 67
® Question

Does r(6) = asec(f — ) describe a line for 0 when a = 3 and y = 7/47?
1. Yes

2. No

If yes, what is the y intercept
What is slope of the line?
Does this seem likely: the slope is —1/tan(y)?

1. Yes
2. No
® Question

The polar curve r(0) = 2cos(f) has tangent lines at most points. This differential represen-
tation of the chain rule

dy dy dz

de ~ df’ do’

11



allows the slope to be computed when y and z are the Cartesian form of the polar curve.
For this curve, we have

dy d dx d

27— 29 ) 22— (24 . )
7 d9( cos(#) - cos(f)), and 7 d6( sin(f) - cos(0))
Numerically, what is the slope of the tangent line when § = 7 /47

® Question

For different values £ > 0 and e > 0 the polar equation

ke

r) = 1+ ecos(6)

has a familiar form. The value of £ is just a scale factor, but different values of e yield
different shapes.

When 0 < e < 1 what is the shape of the curve? (Answer by making a plot and guessing.)

—_

. an ellipse
2. a parabola
3. a hyperbola
4. a circle

5. a line

When e = 1 what is the shape of the curve?

1. an ellipse
2. a parabola
3. a hyperbola
4. a circle

5. a line

When 1 < e what is the shape of the curve?

—_

. an ellipse
2. a parabola
3. a hyperbola
4. a circle

5. a line
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® Question
Find the area of a lobe of the lemniscate curve traced out by r(0) = ,/cos(20) between —m /4
and 7/4. What is the answer?

1.
1
2.
1/2
3.
/2
® Question

Find the area of a lobe of the eight curve traced out by r(6) = cos(20) sec()* from —m/4 to
m/4. Do this numerically.
® Question

Find the arc length of a lobe of the lemniscate curve traced out by r(0) = y/cos(26) between
—m/4 and 7/4. What is the answer (numerically)?

® Question
Find the arc length of a lobe of the eight curve traced out by r(6) = cos(20) sec(6)* from
—m/4 to /4. Do this numerically.
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