
1 Polynomials

Polynomials are a particular class of expressions that are simple enough to have many prop-
erties that can be analyzed. In particular, the key concepts of calculus: limits, continuity,
derivatives, and integrals are all relatively trivial for polynomial functions. However, polyno-
mials are flexible enough that they can be used to approximate a wide variety of functions.
Indeed, though we don’t pursue this, we mention that Julia’s ApproxFun package exploits
this to great advantage.
Here we discuss some vocabulary and basic facts related to polynomials and show how the
add-on SymPy package can be used to model polynomial expressions within SymPy.
For our purposes, a monomial is simply a non-negative integer power of x (or some other
indeterminate symbol) possibly multiplied by a scalar constant. For example, 5x4 is a
monomial, as are constants, such as −2 = −2x0 and the symbol itself, as x = x1. In
general, one may consider restrictions on where the constants can come from, and consider
more than one symbol, but we won’t pursue this here, restricting ourselves to the case of a
single variable and real coefficients.
A polynomial is a sum of monomials. After combining terms with same powers, a non-zero
polynomial may be written uniquely as:

anxn + an−1x
n−1 + · · · a1x + a0, an ̸= 0

XXX can not include ‘.gif‘ file here
The numbers a0, a1, . . . , an are the coefficients of the polynomial. With the convention that
x = x1 and 1 = x0, the monomials above have their power match their coefficient’s index,
e.g., aix

i. Outside of the coefficient an, the other coefficients may be negative, positive, or
0. Except for the zero polynomial, the largest power n is called the degree. The degree
of the zero polynomial is typically not defined or defined to be −1, so as to make certain
statements easier to express. The term an is called the leading coefficient. When the
leading coefficient is 1, the polynomial is called a monic polynomial. The monomial anxn

is the leading term.
For example, the polynomial −16x2 − 32x + 100 has degree 2, leading coefficient −16 and
leading term −16x2. It is not monic, as the leading coefficient is not 1.
Lower degree polynomials have special names: a degree 0 polynomial (a0) is a non-zero
constant, a degree 1 polynomial (a0 +a1x) is called linear, a degree 2 polynomial is quadratic,
and a degree 3 polynomial is called cubic.

1.1 Linear polynomials

A special place is reserved for polynomials with degree 1. These are linear, as their graphs
are straight lines. The general form,

a1x + a0, a1 ̸= 0,

is often written as mx+b, which is the slope-intercept form. The slope of a line determines
how steeply it rises. The value of m can be found from two points through the well-known
formula:

1

https://en.wikipedia.org/wiki/Degree_of_a_polynomial
http://tinyurl.com/he6eg6s

m = y1 − y0

x1 − x0
= rise

run

XXX can not include ‘.gif‘ file here
The intercept, b, comes from the fact that when x = 0 the expression is b. That is the graph
of the function f(x) = mx + b will have (0, b) as a point on it.
More generally, we have the point-slope form of a line, written as a polynomial through

y0 + m · (x − x0).

The slope is m and the point (x0, y0). Again, the line graphing this as a function of x would
have the point (x0, y0) on it and have slope m. This form is more useful in calculus, as the
information we have convenient is more likely to be related to a specific value of x, not the
special value x = 0.
Thinking in terms of transformations, this looks like the function f(x) = x (whose graph
is a line with slope 1) stretched in the y direction by a factor of m then shifted right by
x0 units, and then shifted up by y0 units. When m > 1, this means the line grows faster.
When m < 0, the line f(x) = x is flipped through the x-axis so would head downwards, not
upwards like f(x) = x.

1.2 Symbolic math in Julia

The indeterminate value x (or some other symbol) in a polynomial, is like a variable in a
function and unlike a variable in Julia. Variables in Julia are identifiers, just a means to
look up a specific, already determined, value. Rather, the symbol x is not yet determined,
it is essentially a place holder for a future value. Although we have seen that Julia makes
it very easy to work with mathematical functions, it is not the case that base Julia makes
working with expressions of algebraic symbols easy. This makes sense, Julia is primarily
designed for technical computing, where numeric approaches rule the day. However, symbolic
math can be used from within Julia with an add-on package.
Symbolic math programs include well-known ones like the commercial programs Mathemat-
ica and Maple. Mathematica powers the popular WolframAlpha website, which turns ”natu-
ral” language into the specifics of a programming language. The open-source Sage project is
an alternative to these two commercial giants. It includes a wide-range of open-source math
projects available within its umbrella framework. (Julia can even be run from within the
free service cloud.sagemath.com.) A more focused project for symbolic math, is the SymPy
Python library. SymPy is also used within Sage. However, SymPy provides a self-contained
library that can be used standalone within a Python session. That is great for Julia users,
as the PyCall package glues Julia to Python in a seamless manner. This allows the Julia
package SymPy to provide functionality from SymPy within Julia.

SymPy is installed when the accompanying CalculusWithJulia package is installed. It
could also be installed directly. The package relies on both Python being installed and
SymPy being added to the installed Python. This is done automatically on installation,
if needed, when the PyCall package is installed.

2

www.wolframalpha.com
https://cloud.sagemath.com/projects
www.sympy.org

To use SymPy, we create symbolic objects to be our indeterminate symbols. The symbols
function does this and is used like:

using CalculusWithJulia # loads the `SymPy` package
using Plots
a,b,c = symbols("a,b,c")
x = symbols("x", real=true)

x

The first use, shows that multiple symbols can be defined at once. The second shows the extra
keyword argument real=true, which instructs SymPy to assume the x is real, as otherwise
it assumes it is possibly complex. There are many other assumptions that can be made.
The macro @vars is like the second usage, only it does not need assignment, as the variable
are created behind the scenes. This may be the easiest way to create symbolic values:

@vars h t

(h, t)

Macros in Julia are just transformations of the syntax into other synax. The @ indicates
they behave differently than regular function calls. For the @vars macro, the arguments
are not separated by commas, as a normal function cal would be.

The SymPy package does two basic things:

• It imports some of the functionality provided by SymPy, including the ability to create
symbolic variables.

• It overloads many Julia functions to work seamlessly with symbolic expressions. This
makes working with polynomials quite natural.

To illustrate, using the just defined x, here is how we can create the polynomial −16x2 +100:

p = -16x^2 + 100

100 − 16x2

That is, the expression is created just as you would create it within a function body. But
here the result is still a symbolic object. We have assigned this expression to a variable
p, and have not defined it as a function p(x). Mentally keeping the distinction between
expressions and functions is very important.
The typeof function shows that p is of a symbolic type (Sym):

3

http://docs.sympy.org/dev/modules/core.html#module-sympy.core.assumptions

typeof(p)

Sym

We can mix and match symbolic objects. This command creates an arbitrary quadratic
polynomial:

quad = a*x^2 + b*x + c

ax2 + bx + c

Again, this is entered in a manner nearly identical to how we see such expressions typeset
(ax2 + bx + c), though we must remember to explicitly place the multiplication operator, as
the symbols are not numeric literals.
We can apply many of Julia’s mathematical functions and the result will still be symbolic:

sin(a*(x - b*pi) + c)

sin (a (−πb + x) + c)

Another example, might be the following combination:

quad + quad^2 - quad^3

ax2 + bx + c −
(
ax2 + bx + c

)3
+

(
ax2 + bx + c

)2

1.3 Substitution: subs, replace

Algebraically working with symbolic expressions is straightforward. A different symbolic
task is substitution. For example, replacing each instance of x in a polynomial, with, say,
(x-1)^2. Substitution requires three things to be specified: an expression to work on, a
variable to substitute, and a value to substitute in.
SymPy provides its subs function for this. This function is available in Julia, but it is
easier to use notation reminiscent of function evaluation.
To illustrate, to do the task above for the polynomial −16x2 + 100 we could have:

p = -16x^2 + 100
p(x => (x-1)^2)

100 − 16 (x − 1)4

4

This ”call” notation takes pairs (designated by a=>b) where the left-hand side is the variable
to substitute for, and the right-hand side the new value. The value to substitute can depend
on the variable, as illustrated; be a different variable; or be a numeric value, such as 2:

y = p(x=>2)

36

The result will always be of a symbolic type, even if the answer is just a number:

typeof(y)

Sym

If there is just one free variable in an expression, the pair notation can be dropped:

p(4) # substitutes x=>4

−156

Example Suppose we have the polynomial p = ax2 + bx + c. What would it look like if
we shifted right by E units and up by F units?

@vars a b c E F
p = a*x^2 + b*x + c
p(x => x-E) + F

F + a (−E + x)2 + b (−E + x) + c

And expanded this becomes:

expand(p(x => x-E) + F)

E2a − 2Eax − Eb + F + ax2 + bx + c

1.3.1 Conversion of symbolic numbers to Julia numbers

In the above, we substituted 2 in for x to get y:

p = -16x^2 + 100
y = p(2)

5

36

The value, 36 is still symbolic, but clearly an integer. If we are just looking at the output, we
can easily translate from the symbolic value to an integer, as they print similarly. However
the conversion to an integer, or another type of number, does not happen automatically. If a
number is needed to pass along to another Julia function, it may need to be converted. In
general, conversions between different types are handled through various methods of convert.
However, with SymPy, the N function will attempt to do the conversion for you:

N(y)

36
Conversion by N also works for other types of data, such as Rational and Float64. For
getting more digits of accuracy, a precision can be passed to N. The following command will
take the symbolic value for π, PI, and produce about 60 digits worth as a BigFloat value:

N(PI, 60)

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7
5 1 0 5 8 2 0 9 7 4 9 3 9
Conversion will fail if the value to be converted contains free symbols, as would be expected.

1.4 Graphical properties of polynomials

Consider the graph of the polynomial x^5 - x + 1:

plot(x^5 - x + 1, -3/2, 3/2)

6

1.5 1.0 0.5 0.0 0.5 1.0 1.5
5.0

2.5

0.0

2.5

5.0

y1

(Plotting symbolic expressions is similar to plotting a function, in that the expression is
passed in as the first argument. The expression must have only one free variable, as above,
or an error will occur.)
This graph illustrates the key features of polynomial graphs:

• there may be values for x where the graph crosses the x axis (real roots of the polyno-
mial);

• there may be peaks and valleys (local maxima and local minima)

• except for constant polynomials, the ultimate behaviour for large values of |x| is either
both sides of the graph going to positive infinity, or negative infinity, or as in this
graph one to the positive infinity and one to negative infinity. In particular, there is
no horizontal asymptote.

To investigate this last point, let’s consider the case of the monomial xn. When n is even,
the following animation shows that larger values of n have greater growth once outside of
[−1, 1]:
XXX can not include ‘.gif‘ file here
Of course, this is expected, as, for example, 22 < 24 < 26 < · · · . The general shape of these
terms is similar - U shaped, and larger powers dominate the smaller powers as |x| gets big.
For odd powers of n, the graph of the monomial xn is no longer U shaped, but rather
constantly increasing. This graph of x5 is typical:

plot(x^5, -2, 2)

7

2 1 0 1 2

30

20

10

0

10

20

30 y1

Again, for larger powers the shape is similar, but the growth is faster.

1.4.1 Leading term dominates

To see the roots and/or the peaks and valleys of a polynomial requires a judicious choice
of viewing window, as ultimately the leading term will dominate the graph. The following
animation of the graph of (x − 5)(x − 3)(x − 2)(x − 1) illustrates. Subsequent images show
a widening of the plot window until the graph appears U-shaped.
XXX can not include ‘.gif‘ file here
The leading term in the animation is x4, so the graphic is U-shaped, were it an odd power,
then the left and right sides would each head off to different signs of infinity.
To illustrate analytically why the leading term dominates, consider the polynomial 2x5−x+1
and then factor out the largest power, x5, leaving a product:

x5 · (2 − 1
x4 + 1

x5).

For large |x|, the last two terms in the product on the right get close to 0, so this expression
is basically just 2x5 - the leading term.

Example Suppose p = anxn + · · · + a1x + a0 with an > 0. Then by the above, eventually
for large x > 0 we have p > 0, as that is the behaviour of anxn. Were an < 0, then eventually
for large x > 0, p < 0.
Now consider the related polynomial, q, where we multiply p by xn and substitute in 1/x
for x. This is the ”reversed” polynomial, as we see in this illustration for n = 2:

8

p = a*x^2 + b*x + c
n = 2 # the degree of p
q = expand(x^n * p(x => 1/x))

a + bx + cx2

In particular, from the reversal, the behavior of q for large x depends on the sign of x0. As
well, due to the 1/x, the behaviour of q for large x > 0 is the same as the behaviour of p for
small positive x. In particular if an > 0 but a0 < 0, then p is eventually positive and q is
eventually negative.
That is, if p has an > 0 but a0 < 0 then the graph of p must cross the x axis.
This observation is the start of Descartes’ rule of signs, which counts the change of signs of
the coefficients in p to say something about how many possible crossings there are of the x
axis by the graph of the polynomial p.

1.5 Factoring polynomials

Among others, there are two common ways of representing a non-zero polynomial: either in
an

• expanded form, as in anxn + an−1x
n−1 + · · · a1x + a0, an ̸= 0; or

• in factored form, as in a · (x − r1) · (x − r2) · · · (x − rn), a ̸= 0.

The latter writes p as a product of linear factors, though this is only possible in general if we
consider complex roots. With real roots only, then the factors are either linear or quadratic,
as will be discussed later.
There are values to each representation. One value of the expanded form is that doing arith-
metic with polynomials is much easier in expanded form. For example, adding polynomials
just requires matching up the monomials of similar powers. As for the factored format, the
one value is that it is easy to read off roots of the polynomial (values of x where p is 0), as a
product is 0 only if a term is 0, so any zero must be a zero of a factor. However, factored form
has other advantages. For example, the polynomial (x−1)1000 can be compactly represented
using the factored form, but would require 1001 coefficients to store in expanded form. (As
well, due to floating point differences, the two would evaluate quite differently as one would
require over a 1000 operations to compute, the other just two.)
Translating from factored form to expanded form can be done by carefully following the
distributive law of multiplication. For example, with some care it can be shown that:

(x − 1) · (x − 2) · (x − 3) = x3 − 6x2 + 11x − 6.

The SymPy function expand will perform these algebraic manipulations without fuss:

expand((x-1)*(x-2)*(x-3))

9

http://sepwww.stanford.edu/oldsep/stew/descartes.pdf

x3 − 6x2 + 11x − 6

Factoring a polynomial is several weeks worth of lessons, as there is no one-size-fits-all
algorithm to follow. There are some tricks that are taught: for example factoring differences
of perfect squares, completing the square, the rational root theorem, But in general the
solution is not automated. The SymPy function factor will find all rational factors (terms
like (qx − p)), but will leave terms that do not have rational factors alone. For example:

factor(x^3 - 6x^2 + 11x -6)

(x − 3) (x − 2) (x − 1)

Or

factor(x^5 - 5x^4 + 8x^3 - 8x^2 + 7x - 3)

(x − 3) (x − 1)2
(
x2 + 1

)
But will not factor things that are not hard to see:

x^2 - 2

x2 − 2

The factoring (x −
√

2) · (x +
√

2) is not found, as
√

2 is not rational.
(For those, it may be possible to solve to get the roots, which can then be used to produce
the factored form.)

1.5.1 Polynomial functions and polynomials.

Our definition of a polynomial is in terms of algebraic expressions which are easily represented
by SymPy objects, but not objects from base Julia. (Though there are the Polynomials
package and the AbstractAlbegra package for representing polynomials.)
However, polynomial functions are easily represented by Julia, for example,

f(x) = -16x^2 + 100

f (generic function with 1 method)

The distinction is subtle, the expression is turned into a function just by adding the f(x)
= preface. But to Julia there is a big distinction. The function form never does any

10

computation until after a value of x is passed to it. Whereas symbolic expressions can be
manipulated quite freely before any numeric values are specified.
It is easy to create a symbolic expression from a function - just evaluate the function on a
symbolic value:

f(x)

100 − 16x2

This is easy - but can also be confusing. The function object is f, the expression is f(x) - the
function evaluated on a symbolic object. SymPy provides an interface for a few commonly used
functions so that either will work. One such is plot, either plot(f, a, b) or plot(f(x),a,
b) will produce the same plot with Plots.
Symbolic polynomial expressions can be evaluated using the same syntax as a function call:

p = -16*x^2 + 100
p(2)

36

If desired, such expressions can be converted into a function using Julias convert function.

1.6 Questions

⊛ Question
Let p be the polynomial 3x2 − 2x + 5.
What is the degree of p?
What is the leading coefficient of p?
The graph of p would have what y-intercept?
Is p a monic polynomial?

1. Yes

2. No

Is p a quadratic polynomial?

1. Yes

2. No

The graph of p would be U -shaped?

11

1. Yes

2. No

What is the leading term of p?

1.
−2x

2. 3

3.
3x2

4.
5

⊛ Question
Let p = x3 − 2x2 + 3x − 4.
What is a2, using the standard numbering of coefficient?
What is an?
What is a0?
⊛ Question
The linear polynomial p = 2x + 3 is written in which form:

1. general form

2. point-slope form

3. slope-intercept form

⊛ Question
The polynomial p is defined in Julia as follows:

64 − 16x2

What command will return the value of the polynomial when x = 2?

1. p(x=>2)

2. p[2]

3. p_2

4. p*2

⊛ Question
In the large, the graph of p = x101 − x + 1 will

12

1. Be U -shaped, opening upward

2. Be U -shaped, opening downward

3. Overall, go upwards from −∞ to +∞

4. Overall, go downwards from +∞ to −∞

⊛ Question
In the large, the graph of p = x102 − x101 + x + 1 will

1. Be U -shaped, opening upward

2. Be U -shaped, opening downward

3. Overall, go upwards from −∞ to +∞

4. Overall, go downwards from +∞ to −∞

⊛ Question
In the large, the graph of p = −x10 + x9 + x8 + x7 + x6 will

1. Be U -shaped, opening upward

2. Be U -shaped, opening downward

3. Overall, go upwards from −∞ to +∞

4. Overall, go downwards from +∞ to −∞

⊛ Question
Use SymPy to factor the polynomial x11 − x. How many factors are found?
⊛ Question
Use SymPy to factor the polynomial x12 − 1. How many factors are found?
⊛ Question
What is the monic polynomial with roots x = −1, x = 0, and x = 2?

1. x^3 - x^2 - 2x

2. x^3 - 3x^2 + 2x

3. x^3 + x^2 + 2x

4. x^3 + x^2 - 2x

⊛ Question
Use expand to expand the expression ((x-h)^3 - x^3) / h where x and h are symbolic
constants. What is the value:

1. x^3 - x^3/h

2. h^3 + 3h^2x + 3hx^2 + x^3 -x^3/h

3. 0

4. -h^2 + 3hx - 3x^2

13

	Polynomials
	Linear polynomials
	Symbolic math in Julia
	Substitution: subs, replace
	Conversion of symbolic numbers to Julia numbers

	Graphical properties of polynomials
	Leading term dominates

	Factoring polynomials
	Polynomial functions and polynomials.

	Questions

