1 Overview of Julia commands

Julia is a programming language that is freely available.
Launch Binder

We can use Julia without installation by clicking the "launch Binder” badge. The note-
book CalculusWithJulia.ipynb is a blank notebook except for the command to load the
CalculusWithJulia package.

Alternatively, the juliabox.com service provides access to Julia through the internet, though
the free access is slated to be discontinued. Both use the Jupyter notebook interface, which
we will assume, though many other means of interacting with Julia are available.

1.1 Commands

Commands are typed into a notebook cell in Jupyter. (Or at the command line.)

\2+2

4
Commands are executed by using shift-enter or the play button in Jupyter.

Commands may be separated by new lines or semicolons, allowing multiple commands per
cell.

On a line, anything after a # is a comment.

The results of the last line executed will be displayed in an output area. Separating values
by commas allows more than one value to be displayed. Explicit printing can be done to
output intermediate values.

1.2 Numbers, variable types

Julia has many different number types beyond the floating point type employed by most
calculators. These include

Floating point numbers: 0.5
o Integers: 2
« Rational numbers: 1//2

o Complex numbers 2 + 0im

As much as possible, operations involving certain types of numbers will produce output of
a given type. For example, both of these divisions produce a floating point answer, even
though mathematically, they need not:

|2/1, 1/2

http://www.julialang.org
https://mybinder.org/v2/gh/CalculusWithJulia/CwJScratchPad.git/master
https://www.juliabox.com
https://jupyter.org/

| (2.0, 0.5)

Some operations won’t work with integer types, but will with floating point types, as the
type of output can’t be assured.

Powers with negative bases, like (-3.0)~(1/3), are not defined. However, Julia provides
the special-case function cbrt (and sqrt) for handling these.

Integer operations may silently overflow, producing odd answers, at first glance:

\2*64
0

(Though the output is predictable, if overflow is taken into consideration appropriateley.)

When different types of numbers are mixed, Julia will usually promote the values to a
common type before the operation:

| (2 + 1//2) + 0.5

3.0

Julia will first add 2 and 1//2 converting 2 to rational before doing so. Then add the result,
5//2 to 0.5 by promoting 5//2 to the floating point number 2.5 before proceeding.

Julia uses a special type to store a handful of constants, of which both pi and e are used
here. Theh special type allows these to be treated without round off, until they mix with
other floating point numbers. There are some functions that require these be explicitly
promoted to floating point. This can be done by calling float.

The standard mathematical operations are implemented by +, -, *, /, =. Parentheses are
used for grouping.

1.2.1 Vectors

A vector is an indexed collection of similarly typed values. Vectors can be constructed with
square brackets (syntax for concatenation):

| [1,1,2,3,5,8]

6-element Array{Int64,1}:
1

Q0 O W N -

(Vectors are used as a return type so some familiarity is needed.)

Regular arithmetic sequences can be defined by either:

« Range operations: a:h:b or a:b which produces a generator of values starting at a
separated by h (h is 1 in the last form) until they reach b.

o range(a, b, length=n) which produces a generator of n values between a and b;
(range(a, stop=b, length=n) is needed for version v1.0.0 of ‘Julia.)

These constructs return range objects. A range object compactly stores the values it refer-

ences. To see all the values, they can be collected with the collect function, though this is
hardly needed in practice.

1.3 Variables

Values can be assigned variable names, with =. There are some variants

x =2
a_really_long_name = 3
a, b=1, 2

al = a2 =0

0

The names can be short, as above, or more verbose. They can’t start with a number, but
can include numbers. It can also be a fancy unicode or even an emoji.

We can then use the variables to reference the values:

‘x + a_really_long name + a - b

4

Names may be repurposed, even with values of different types (a dynamic language), save
for function names, which have some special rules and can only be redefined as an another
function. (Generic functions are central to Julia’s design. Generic functions use a method
table to dispatch on, so once a name is assigned to a generic function, it can not be used as
a variable name; the reverse is also true.

1.4 Functions

Functions in Julia are just regular objects. In these notes, we often pass them as arguments
to other functions. There are many built-in functions and it is easy to define new functions.

We 7call” a function by passing argument(s) to it, grouped by parentheses:

sqrt (10)
sin(pi/3)
log(5, 100)

2.8613531161467867

With out parentheses, the name (usually) refers to a generic name and the output lists the
number of available implementations.

../unicode.html

‘1og

‘log (generic function with 48 methods)

1.4.1 Built-in functions

Julia has numerous built-in mathematical functions, we review a few here:

Powers logs and roots Besides 7, there are sqrt and cbrt for powers. In addition basic
functions for exponential and logarithmic functions:

sqrt(x), cbrt(x)

exp (x)

log(x) # base e

logl10(x), log2(x), log(b, x)

Trigonometric functions The 6 standard trig functions are implemented; their imple-
mentation for degree arguments; their inverse functions; and the hyperbolic analogs.

sin, cos, tan, csc, sec, cot

asin, acos, atan, acsc, asec, acot

sinh, cosh, tanh, csch, sech, coth
asinh, acosh, atanh, acsch, asech, acoth

If degrees are preferred, the following are defined to work with degrees:

sind, cosd, tand, cscd, secd, cotd

Useful functions Other useful and familiar functions are defined:

abs (x): absolute value

o sign(x): is |z|/x except at z = 0, where it is 0.
e floor(x), ceil(x): greatest integer less or least integer greater
« max(a,b), min(a,b): larger (or smaller) of a or b

e maximum(xs), minimum(xs): largest or smallest of the collection referred to by xs

http://julia.readthedocs.io/

1.4.2 User-defined functions

Simple mathematical functions can be defined using standard mathematical notation:

|£(x) = -16x72 + 100x + 2

‘f (generic function with 1 method)

The argument x is passed into the body of function.

Other values are found from the environment where defined:

a=1

f(x) = 2%¥a + x
£(3)

a =4

£(3)

11

User defined functions can have 0, 1 or more arguments:

‘area(w, h) = w*h

‘area (generic function with 1 method)

Julia makes different methods for generic function names, so functions whose argument speci-
fication is different are different functions, even if the name is the same. This is polymorphism.
The practical use is that it means users need only remember a much smaller set of function
names.

Functions can be defined with keyword arguments that may have defaults specified:

f(x; m=1, b=0) = m*x + b
(1)

£(1, m=10)

f(1, m=10, b=5)

15

Longer functions can be defined using the function keyword, the last command executed
is returned:

function f(x)

y = X2
z=y -3
z

end

‘f (generic function with 1 method)

Functions without names, anonymous functions, are made with the -> syntax as in:

‘X -> cos(x)"2 - cos(2x)

‘#2 (generic function with 1 method)

These are useful when passing a function to another function or when writing a function
that returns a function.

1.5 Conditional statements

Julia provides the traditional if-else-end statements, but more conveniently has a ternary
operator for the simplest case:

‘our_abs(x) =(x<0)7?7-x:x

‘our_abs (generic function with 1 method)

1.6 Looping

[terating over a collection can be done with the traditional for loop. However, there are list
comprehensions to mimic the definition of a set:

‘[x‘2 for x in 1:10]

10-element Array{Int64,1}:
1
4
9
16
25
36
49
64
81
100

1.7 Broadcasting, mapping
A function can be applied to each element of a vector through mapping or broadcasting. The

latter is implemented in a succinct notation. Calling a function with a " before its opening
”(¢ will apply the function to each individual value in the argument:

6

xs = [1,2,3,4,5]
sin. (xs)

5-element Array{Float64,1}:
0.8414709848078965
0.9092974268256817
0.1411200080598672
-0.7568024953079282
-0.9589242746631385

1.8 Plotting

Plotting is nmot built-in to Julia, rather added through add-on packages. Julia’s Plots
package is an interface to several plotting packages. We mention plotly (built-in) for web
based graphics, and gr for other graphics.

To use an add-on package, it must have been installed and it must be loaded each ses-
sion. In these notes, the necessary packages are all loaded when an accompanying package,
CalculusWithJulia is loaded. Assuming it has been installed, this command will do so:

|using CalculusWithJulia

With Plots loaded, we can plot a function by passing the function object by name to plot,
specifying the range of x values to show, as follows:

‘plot(sin, 0, 2pi)

| Plot{Plots.PlotlyBackend() n=1}

This is in the form of the basic pattern employed: verb(function_object, arguments..
The verb in this example is plot, the object sin, the arguments 0, 2pi to specify [a,b]
domain to plot over.

Plotting more than one function over [a,b] is achieved through the plot! function, which
modifies the existing plot (plot creates a new one):

plot(sin, 0, 2pi)
plot!(cos, 0, 2pi)
plot!(zero, 0, 2pi)

‘Plot{Plots.PlotlyBackend() n=3}

Plotting an anonymous function is a bit more immediate:

‘plot(x -> exp(-x/pi) * sin(x), 0, 2pi)

‘Plot{Plots.PlotlyBackend() n=1}

The Plots package has other types of plots. Of note is scatter which is used to make a
scatter plot of two data sets.

1.9 Equations

Notation for Julia and math is similar for functions - but not for equations. In math, an
equation might look like:

22 +y? =3

In Julia the equals sign is only for assignment. The left-hand side of an equals sign in
Julia is reserved for a) variable assignment; b) function defintion (via £(x) = ...); and ¢)
indexed assignment to a vector or array. (Vectors are indexed by a number allow retrieval
and setting of the stored value in the container. The notation mentioned here would be
xs[2] = 3 to assign to the 2nd element a value 3.

1.10 Symbolic math

Symbolic math is available through an add-on package SymPy. As with Plots, this package
is also loaded with CalculusWithJulia. Once loaded, symbolic variables are created with
Q@vars:

using SymPy

Ovars x a b ¢

‘(X’ a, b’ C)

Symbolic expressions - unlike numeric expressions - are not immediately evaluated, though
they are simplified:

‘p = a*x"2 + b*x + c

ax’ +br +c

To substitute a value, we can use pair notation (variable=>value):

‘p(x=>2), p(x=>2, a=>3, b=>4, c=>1)

| (4%a + 2%b + c, 21)

This is convenient notation for calling the subs function.

SymPy expressions of a single free variable can be plotted directly:

|plot(64 - (1/2)*32 * x72, 0, 2)

| Plot{Plots.PlotlyBackend() n=1}

SymPy has functions for manipulating expressions: simplify, expand, together, factor,
cancel, apart, args, ...

SymPy has functions for basic math: factor, solve, ...

SymPy has functions for calculus: limit, diff, integrate

	Overview of Julia commands
	Commands
	Numbers, variable types
	Vectors

	Variables
	Functions
	Built-in functions
	User-defined functions

	Conditional statements
	Looping
	Broadcasting, mapping
	Plotting
	Equations
	Symbolic math

