1 Julia interfaces

Julia can be used in many different manners. This describes a few.

1.1 The REPL

Base Julia comes with a REPL package, which provides a means to interact with Julia at
the command line.

‘Error: UndefVarError: ImageFile not defined

The julia> prompt is where commands are typed. The return key will send a command
to the interpreter and the results are displayed in the REPL terminal.

The REPL has many features for editing, for interacting with the package manager, or
interaction with the shell. However it is command-line based, which no support for mouse
interaction. For that, other options are available.

1.2 IJulia

"Project Jupyter exists to develop open-source software, open-standards, and services for
interactive computing across dozens of programming languages.” The IJulia package allows
Julia to be one of these programming languages. This package must be installed prior to
use.

The Jupyter Project provides two web-based interfaces to Julia: the Jupyter notebook and
the newer JupyterLab. The juliabox project and the binder project use Juptyer notebooks
for their primary interface to Julia.

If not installed, these interfaces are available once IJulia is installed. The following com-
mand should do this:

|1 add IJulia

Should that not work, then this should as well:

using Pkg

Pkg.add ("PyCall")
Pkg.add("TJulia")

The notebook interface has "cells” where one or more commands can be entered:

‘Error: UndefVarError: ImageFile not defined

The notes have blocks of commands, as though they are entered in a notebook.


https://jupyter.org/
https://www.juliabox.com/
https://mybinder.org/

In IJulia, a block of commands is sent to the kernel (the Julia interpreter) by typing
"shift+return” or clicking on a "run” button. The output is printed below a cell, including
graphics.

When a cell is evaluating, the leading [] has an asterick ([*]) showing the notebook is
awaiting the results of the calculation.

Once a cell is evaluated, the leading [] has a number inserted (e.g., [1], as in the figure).
This number indicates the order of cell evaluation. Once a notebook is interacted with, the
state of the namespace need not reflect the top-to-bottom order of the notebook, but rather
reflects the order of cell evaluations.

To be specific, a variable like x may be redefined in a cell above where the variable is intially
defined and this redefinition will hold the current value known to the interpreter. As well, a
notebook, when reloaded, may have unevaluated cells with output showing. These will not
influence the state of the kernel until they are evaluated.

When a cell’s commands are evaluated, the last command executed is displayed. If it is
desirable that multiple values be displayed, they can be packed into a tuple. This is done
by using commas to separate values. IJulia will also display other means to print output
(e.g., @show, display, print, ...).

To run all cells in a notebook from top to bottom, the "run all” command under the "Cell”
menu is available.

If a calculation takes much longer than anticipated, the "kernel” can be interrupted through
a menu item of "Kernel”.

If the kernal appears unresponsive, it can be restarted through a menu item of "Kernel”.

Notebooks can be saved (as *.ipynb files) for sharing or for reuse. Notebooks can be printed
at HTML pages, and if the proper underlying software is available, as formatted pages.

JupyterLab has more features, commonly associated with an integrated development envi-
ronment (IDE).
‘Error: UndefVarError: ImageFile not defined

The figure shows a notebook and a menubar in the side menu. In addition to notebooks,
JupyterLab offers the change to edit source files, for example, for project development.

For an integrated development environment, where many features for project development
are included, there are two powerful ones being developed for Julia that leverage various
free-to-use projects.

1.2.1 Juno

Juno is a powerful, free environment for the Julia language. Juno is based on the cross-
platform, javascript-based Atom editor and provides interfaces for the repl, graphics, help
pages, debugging, project management, etc. Atom was developed by GitHub, since acquired
by Microsoft.


https://junolab.org/
https://atom.io/

1.2.2 VSCode

The VS Code extension provides support for the julia programming language for VS Code.
VS Code is an open-sourced code editor supported by Microsoft. Similar to Juno, VS
Code provides a cross-platform interface to Julia geared towards programming within the

language.


https://github.com/julia-vscode/julia-vscode
https://code.visualstudio.com/

	Julia interfaces
	The REPL
	IJulia
	Juno
	VSCode



