1 The Mean Value Theorem and other facts about dif-
ferentiable functions.

A function is continuous at ¢ if f(c + h) — f(c) goes to 0 as h goes to 0, whereas it is
differentiable at c if the limit of (f(c+ h) — f(c))/h exists as h goes to 0.

We defined a function to be continuous on an interval I = (a,b) if it was continuous at each
point ¢ in I. Similarly, we define a function to be differentiable on the interval I it it is
differentiable at each point ¢ in I.

This section looks at properties of differentiable functions. As there is a more stringent
definitions, perhaps more properties are a consequence of the definition.

1.1 Differentiable is more restrictive than continuous.

Let f be a differentiable function on I = (a,b). For a differentiable function, the secant-line
expression defining the derivative has a denominator that goes to 0. For it to have a limit
then, the numerator must also go to 0. That is f(c¢+ h) — f(¢) — 0 for each ¢. This means
that:

A differentiable function on I = (a,b) is continuous on I.

Is it possible that all continuous functions are differentiable?

The fact that the derivative is related to the tangent line’s slope might give an indication
that this won’t be the case - we just need a function which is continuous but has a point
with no tangent line. The usual suspect is f(x) = |z| at 0.

using CalculusWithJulia
using Plots

f(x) = abs(x)

plot(f, -1,1)

‘Plot{Plots.PlotlyBackend() n=1}

We can see formally that the secant line expression will not have a limit when ¢ = 0 (the
left limit is —1, the right limit 1). But more insight is gained by looking a the shape of
the graph. At the origin, the graph always is vee-shaped. There is no linear function that
approximates this function well. The function is just not smooth enough, as it has a kink.

There are other functions that have kinks. These are often associated with powers. For
example, at x = 0 this function will not have a derivative:

f(x) = (x72)7(1/3)
plot(f, -1, 1)

| Plot{Plots.PlotlyBackend() n=1}



Other functions have tangent lines that become vertical. The natural slope would be oo, but
this isn’t a limiting answer (except in the extended sense we don’t apply to the definition of
derivatives). A candidate is the cube root function:

f(x) = cbrt(x)
plot(f, -1, 1)

‘Plot{Plots.PlotlyBackend() n=1}

The derivative at 0 would need to be +o00 to match the graph. This is implied by the formula
for the derivative from the power rule: f/(z) = 1/3 - 272/3 which has a vertical asymptote
at x = 0.

The cbrt function is used above, instead of f(x) = x~(1/3), as the latter is not defined
for negative x. Though it can be for the exact power 1/3, it can’t be for an exact power
like 1/2. This means the value of the argument is important in determining the type of
the output - and not just the type of the argument. Having type-stable functions is part
of the magic to making Julia run fast, so x“c is not defined for negative x and most
floating point exponents.

Lest you think that continuous functions always have derivatives except perhaps at excep-
tional points, this isn’t the case. The functions used to model the stock market are continuous
but have no points where they are differentiable.

1.2 Derivatives and maxima.

We have defined an absolute mazimum of f(x) over an interval to be a value f(c) for a point ¢
in the interval that is as large as any other value in the interval. Just specifying a function and
an interval does not guarantee an absolute maximum, but specifying a continuous function
and a closed interval does.

We say f(x) has a relative mazimum at c if there exists some interval I = (a,b) witha < c¢ < b
for which f(c) is an absolute maximum for f and I.

The difference is a bit subtle, for an absolute maximum the interval is specified ahead of
time, for a relative maximum there just needs to exist some interval, that can be really small,
but must be bigger than a point.

A hiker can appreciate the difference. A relative maximum would be the crest of any
hill, but an absolute maximum would be the summit.

What does this have to do with derivatives?

Fermat, perhaps with insight from Kepler, was interested in maxima of polynomial functions.
As a warm up, he considered a line segment AC' and a point F with the task of choosing
E so that (EF — A) x (C' — A) being a maximum. We might recognize this as finding the
maximum of f(z) = (x — A) - (C — z) for some A < C. Geometrically, we know this to be
at the midpoint, as the equation is a parabola, but Fermat was interested in an algebraic
solution that led to more generality.


http://tinyurl.com/cpdpheb
http://science.larouchepac.com/fermat/fermat-maxmin.pdf

Figure 1: Image number 32 from L’Hopitals calculus book (the first) showing that at a
relative minimum, the tangent line is parallel to the z-axis. This of course is true when the
tangent line is well defined by Fermat’s observation.
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He takes b = AC and a = AE. Then the product is a - (b — a) = ab — a*. He then perturbs
this writing AE = a + e, then this new product is (a +€) - (b — a — ¢). Equating the two,
and canceling like terms gives be = 2ae + 2. He cancels the e and basically comments that
this must be true for all e even as e goes to 0, so b = 2a and the value is at the midpoint.

In a more modern approach, this would be the same as looking at this expression:

flz+e) - f(z)

e

= 0.

Working on the left hand side, for non-zero e we can cancel the common e terms, and then
let e become 0. This becomes a problem in solving f'(x) = 0. Fermat could compute the
derivative for any polynomial by taking a limit, a task we would do now by the power rule
and the sum and difference of function rules.

This insight holds for other types of functions:

If f(c) is a relative maximum then either f’(¢) = 0 or the derivative at ¢ does
not exist.

When the derivative exists, this says the tangent line is flat. (If it had a slope, then the the
function would increase by moving left or right, as appropriate, a point we pursue later.)

For a continuous function f(x), call a point ¢ in the domain of f where either f’(c) =0 or
the derivative does not exist a critical point.

We can combine Bolzano’s extreme value theorem with Fermat’s insight to get the following:

A continuous function on [a, b] has an absolute maximum that occurs at a critical
point ¢, a < ¢ < b, or an endpoint, a or b.

A similar statement holds for an absolute minimum. This gives a restricted set of places to
look for absolute maximum and minimum values - all the critical points and the endpoints.



1.2.1 Numeric derivatives

The ForwardDiff package provides a means to numerically compute derivatives without
approximations at a point. In CalculusWithJulia this is extended to find derivatives of
functions and the ' notation is overloaded for function objects. (Through this definition
Base.adjoint (f: :Function)=x->ForwardDiff.derivative(f, float(x)).) Hence these
two give nearly identical answers:

f(x) = 3x73 - 2x
fp(x) = 9x72 - 2
£1(3), fp(3)

| (79.0, 79)
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Example For the function f(z) = 2*-e~* find the absolute maximum over the interval

[0, 5].

We have that f(x) is continuous on the closed interval of the question, and in fact differen-
tiable on (0,5), so any critical point will be a zero of the derivative. We can check for these
with:

f(x) = x72 * exp(-x)
cps = find_zeros(f', -1, 6)

2-element Array{Float64,1}:
0.0
1.9999999999999998

We get 0 and 2 are critical points. The endpoints are 0 and 5. So the absolute maximum
over this interval is either at 0, 2 or 5:

|£(0), £(2), £(5)

‘(0.0, 0.5413411329464508, 0.16844867497713667)

We see that f(2) is then the maximum.

A few things. First, find_zeros can miss some roots, in particular endpoints and roots that
just touch 0. We should graph to verify it didn’t. Second, it can be easier sometimes to
check the values using the "dot” notation. If £, a,b are the function and the interval, then
this would typically follow this pattern:

a, b =0, 5
cps = find_zeros(f', a, b)
f.(cps), £(a), £(b)



‘([0.0, 0.5413411329464508], 0.0, 0.16844867497713667)

For this problem, we have the left endpoint repeated, but in general this won’t be a point
where the derivative is zero.

If you don’t like how the output has the values at critical points in a vector, the following,
though a bit cryptic, could be done: £.( (cps..., a, b) )

Example For the function f(x) = e (2* —x) find the absolute maximum over the interval
0,2].

We follow the same pattern. Since f(z) is continuous on the closed interval and differentiable
on the open interval we know that the absolute maximum must occur at an endpoint (0 or
2) or a critical point where f’(c) = 0. To solve for these, we have again:

f(x) = exp(x) * (x73 - x)
cps = find_zeros(f', 0, 2)

1-element Array{Float64,1}:
0.675130870566646

And checking values gives:

|£.(cps), £(0), £(2)

‘([-0.7216901289290208], 0.0, 44.3343365935839)

Here the maximum occurs at an endpoint. The critical point ¢ = 0.67... does not produce
a maximum value. Rather f(0.67...) is an absolute minimum.

Absolute minimum We haven’t discussed the parallel problem of absolute minima
over a closed interval. By considering the function h(x) = —f(x), we see that the any
thing true for an absolute maximum should hold in a related manner for an absolute
minimum, in particular an absolute minimum on a closed interval will only occur at a
critical point or an end point.

1.3 Rolle’s Theorem

Let f(z) be differentiable on (a,b) and continuous on [a,b]. Then the absolute maximum
occurs at an endpoint or where the derivative is 0. This gives rise to:

Rolle’s Theorem: For such f, if f(a) = f(b), then there exists some ¢ in (a,b)
with f'(c) = 0.


http://en.wikipedia.org/wiki/Rolle%27s_theorem

We assume that f(a) = 0, otherwise consider g(x) = f(z) — f(a). By the extreme value
theorem, there must be an absolute maximum and minimum. If f(x) is ever positive, then
the absolute maximum occurs in (a,b) - not at an endpoint - so at a critical point where the
derivative is 0. Similarly if f(z) is ever negative. Finally, if f(z) is just 0, then take any ¢
in (a,b).

The statement in Rolle’s theorem speaks to existence. It doesn’t give a recipe to find c. It
just guarantees that there is one or more values in the interval (a,b) where the derivative is
0 if we assume differentiability on (a,b) and continuity on [a, b].

Example Let f(z) =¢e*-x-(x —1). We know f(0) = 0 and f(1) = 0, so on [0, 1] we
will find a zero of the derivative. In fact, this won’t be a simple zero (as we will see soon),
so Rolle’s theorem guarantees that this will find at least one answer (unless numeric issues
arise):

f(x) = exp(x) * x * (x-1)
find_zeros(f', 0, 1)

1-element Array{Float64,1}:
0.6180339887498948

This graph illustrates the lone value for ¢ for this problem

‘Plot{Plots.PlotlyBackend() n=2}

1.4 The Mean Value Theorem

We are driving south and in one hour cover 70 miles. If the speed limit is 65 miles per hour,
were we ever speeding? We'll we averaged more than the speed limit so we know the answer
is yes, but why? Speeding would mean our instantaneous speed was more than the speed
limit, yet we only know for sure our average speed was more than the speed limit. The mean
value tells us that if some conditions are met, then at some point (possibly more than one)
we must have that our instantaneous speed is equal to our average speed.

The mean value theorem is related to Rolle’s theorem, but sounds more general:

Mean Value Theorem. Let f(x) be differentiable on (a,b) and continuous on
[a,b]. Then there exists a value ¢ in (a,b) where f'(c) = (f(b) — f(a))/(b— a).

This says for any secant line between a < b there will be a parallel tangent line at some c
with a < ¢ < b (all provided f is differentiable on (a,b) and continuous on [a, b]).

This graph illustrates the theorem. The orange line is the secant line. A parallel line tangent
to the graph is guaranteed by the mean value theorem. In this figure, there are two such
lines, rendered using red.



| Plot{Plots.PlotlyBackend() n=5}

Like Rolle’s theorem this is a guarantee that something exists, not a recipe to find it. In
fact, the mean value theorem is just Rolle’s theorem applied to:

g(x) = f(x) = (f(a) + (f(b) = f(a)/(b—a) - (x —a))
That is the function f(x), minus the secant line between (a, f(a)) and (b, f(b)).

Example The mean value is an extremely useful tool for some proofs.

For example, suppose we have a function f(x) and we know that the derivative is always 0.
What can we say about the function?

Well, constant functions have derivatives that are constantly 0. But do others? Suppose
we know f'(x) = 0. Take any two values a and b. Since f'(x) always exists, f(x) is always
differentiable, and hence always continuous. So on [a,b] the conditions of the mean value
theorem apply. So there is a ¢ with (f(b) — f(a))/(b—a) = f'(¢) = 0. But this would imply
f(b) — f(a) = 0. That is f(x) is a constant, as for any a and b, as f(a) = f(b).

1.4.1 The Cauchy mean value theorem

Cauchy offered an extension to the mean value theorem above. Suppose both f and g satisfy
the conditions of the mean value theorem on [a, b] with g(b) — g(a) # 0, then there exists at
least one ¢ with a < ¢ < b such that

! - /C.f(b)_f(a)

The proof follows by considering h(z) = f(x) — r - g(x), with r chosen so that h(a) = h(D).
Then Rolle’s theorem applies so that there is a ¢ with A'(c) = 0, so f'(¢) = r¢'(c), but r can
be seen to be (f(b) — f(a))/(g(b) — g(a)), which proves the theorem.

Letting g(z) = = demonstrates that the mean value theorem is a special case.

Example Suppose f(x) and g(z) satisfy the Cauchy mean value theorem on [0, z|, ¢'(x)
is non-zero on (0,z), and f(0) = g(0) = 0. Then we have:

@) = 0) _ f&@) _ f1(o)

g(x) —g(0)  g(x) g(c)
For some ¢ in [0, z]. If lim, o f'(x)/¢'(xz) = L, then the right hand side will have a limit of
L, and hence the left hand side will too. That is, when the limit exists, we have under these

conditions that lim, o f(z)/g(x) = lim,o f'(x)/d (x).

This could be used to prove the limit of sin(z)/z as = goes to 0 just by showing the limit of
cos(z)/1 is 1, as is known by continuity.



http://en.wikipedia.org/wiki/Mean_value_theorem#Cauchy.27s_mean_value_theorem

1.4.2 Visualizing the Cauchy mean value theorem

The Cauchy mean value theorem can be visualized in terms of a tangent line and a parallel
secant line in a similar manner as the mean value theorem as long as a parametric graph is
used. A parametric graph plots the points (g(t), f(t)) for some range of ¢t. That is, it graphs
both functions at the same time. The following illustrates the construction of such a graph:

XXX can not include “gif* file here

With g(z) = sin(x) and f(x) = z, we can take I = [a,b] = [0,7/2]. In the figure below, the
secant line is drawn in red which connects (g(a), f(a)) with the point (g(b), f(b)), and hence
has slope Af/Ag. The parallel lines drawn show the tangent lines with slope f'(c)/¢'(c).
Two exist for this problem, the mean value theorem guarantees at least one will.

| Plot{Plots.PlotlyBackend() n=5}

1.5 Questions

® Question

The extreme value theorem is a guarantee of a value, but does not provide a recipe to find
it. For the function f(x) = sin(z) on I = [0, 7] find a value c satisfying the theorem for an
absolute maximum.

® Question

The extreme value theorem is a guarantee of a value, but does not provide a recipe to find
it. For the function f(z) = sin(z) on I = [r,37/2] find a value ¢ satisfying the theorem for
an absolute maximum.

® Question
Rolle’s theorem is a guarantee of a value, but does not provide a recipe to find it. For the
function 1 — z* over the interval [—5, 5], find a value ¢ that satisfies the result.

® Question
The mean value theorem is a guarantee of a value, but does not provide a recipe to find it.
For f(z) = 2% on [0,2] find a value of ¢ satisfying the theorem.

® Question
The Cauchy mean value theorem is a guarantee of a value, but does not provide a recipe to
find it. For f(x) = 2® and g(x) = 2? find a value c in the interval [1, 2]

® Question
Will the function f(z) = x + 1/x satisfy the conditions of the mean value theorem over
[—1/2,1/2]7

1. Yes
2. No

® Question

Just as it is a fact that f/(x) = 0 (for all x in I') implies f(x) is a constant, so too is it a fact
that if f'(z) = ¢'(z) that f(x) — g(x) is a constant. What function would you consider, if
you wanted to prove this with the mean value theorem?

8



2.
hz) = f(z) = (f(b) = f(a))/(b—a) - g(x)
3.
h(z) = f(z) — g(x)
4.
hz) = f'(z) — ¢'(z)
® Question

Suppose f”(x) > 0 on I. Why is it impossible that f’(z) = 0 at more than one value in 7

1. By the Rolle’s theorem, there is at least one, and perhaps more
2. Tt isn’t. The function f(z) = 2? has two zeros and f”(z) =2 >0
3. By the mean value theorem, we must have f’(b) — f’(a) > 0 when ever b > a. This

means f’(x) is increasing and can’t double back to have more than one zero.

® Question
Let f(z) =1/x. For 0 < a < b, find ¢ so that f'(c) = (f(b) — f(a))/(b— a).

1.
c=a+(vV5—1)/2-(b—a)
2.
c=1/(1/a+1/b)
3.
c=Vab
4.
c=(a+b)/2
® Question

Let f(z) = 2% For 0 < a < b, find ¢ so that f'(c) = (f(b) — f(a))/(b— a).

1.
c=1/(1/a+1/b)
2.
c=Vab
3.
c=a+(vV5—-1)/2-(b—a)
4.

c=(a+10)/2

9



® Question

In an example, we used the fact that if 0 < ¢ < x, for some ¢ given by the mean value
theorem and f(x) goes to 0 as x goes to zero then f(c) will also go to zero. Suppose we say
that ¢ = g(z) for some function c.

Why is it known that g(z) goes to 0 as x goes to zero (from the right)?

1. As f(x) goes to zero by Rolle’s theorem it must be that g(z) goes to 0.
2. The squeeze theorem applies, as 0 < g(z) < x.

3. This follows by the extreme value theorem, as there must be some ¢ in [0, x].

Since g(x) goes to zero, why is it true that if f(z) goes to L as = goes to zero that f(g(x))
must also have a limit L?

1. It isn’t true. The limit must be 0
2. The squeeze theorem applies, as 0 < g(z) < x

3. This follows from the limit rules for composition of functions

10
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