1 Line and Surface Integrals

This section discusses generalizations to the one- and two-dimensional definite integral.
These two integrals integrate a function over a one or two dimensional region (e.g., [a,b]
or [a,b] X [¢,d]). The generalization is to change this region to a one-dimensional piece of
path in R" or a two-dimensional surface in 3.

To fix notation, consider f;’ f(x)dx and f: fcdg(x, y)dydz. In defining both, a Riemann sum
is involved, these involve a partition of [a,b] or [a,b] X [c,d] and terms like f(c;)Ax; and
g(ci, dj)Az;Ay;. The As the diameter of an intervals I; or .J;. Consider now two parameter-
izations: 7(t) for t in [a, b] and ®(u,v) for (u,v) in [a,b] X [¢,d]. One is a parameterization
of a space curve, 7: R — R™; the other a parameterization of a surface, ® : R — R3. The
image of I; or I; x J; under 7 and @, respectively, will look almost linear if the intervals are
small enough, so, at least on the microscopic level. A Riemann term can be based around
this fact, provided it is understood how much the two parameterizations change the interval
I; or region I; x J;.

This chapter will quantify this change, describing it in terms of associated vectors to 7" and
® yielding formulas for an integral of a scalar function along a path or over a surface. Fur-
thermore, these integrals will be generalized to give meaning to physically useful interactions
between the path or surface and a vector field.

Before beginning, we will use many of the packages and functions provided by CalculusWithJulia.

using CalculusWithJulia
using Plots

1.1 Line integrals

In arc length a formula to give the arc-length of the graph of a univariate function or param-
eterized curve in 2 dimensions is given in terms of an integral. The intuitive approximation
involved segments of the curve. To review, let 7(t), a < t < b, describe a curve, C, in R",
n > 2. Partition [a,b] into a =ty <t < -+ <tp_1 <t,=0.

Consider the path segment connecting 7(¢;_;) to 7(t;). If the partition of [a, b] is microscop-
ically small, this path will be approzimated by 7(t;) — 7(t;—1). This difference in turn is
approximately 7'(¢;)(t; — t;i—1) = 7 (t;) At;, provided 7 is differentiable.

If f: R*" — R is a scalar function. Taking right-hand end points, we can consider the
Riemann sum Y (f o 7)(t;)||7"(¢;)||At;. For integrable functions, this sum converges to the
line integral defined as a one-dimensional integral for a given parameterization:

[ oI it

The weight ||7(t)|| can be interpreted by how much the parameterization stretches (or con-
tracts) an interval [t;_1,¢;] when mapped to its corresponding path segment.

The curve C' can be parameterized many different ways by introducing a function s(t) to
change the time. If we use the arc-length parameterization with v(0) = a and ~(l) = b,
where [ is the arc-length of C, then we have by change of variables ¢t = (s) that
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b . l . A7 /
[ 1@t = [ (oo @I o I (5)ds
But, by the chain rule:

d(r’ o) dr dry

du (S) = dt |t:7(5) %
Since 7 is increasing, 7' > 0, so we get:

[ s = [ orom @I as = ['(7orom(syas.

The last line, as the derivative is the unit tangent vector, T', with norm 1.

This shows that the line integral is not dependent on the parameterization. The notation
Jo fds is used to represent the line integral of a scalar function, the ds emphasizing an
implicit parameterization of C' by arc-length. When C'is a closed curve, the §. fds is used
to indicate that.

1.1.1 Example

When f is identically 1, the line integral returns the arc length. When f varies, then the
line integral can be interpreted a few ways. First, if f > 0 and we consider a sheet hung
from the curve f o7 and cut to just touch the ground, the line integral gives the area of this
sheet, in the same way an integral gives the area under a positive curve.

If the composition f o7 is viewed as a density of the arc (as though it were constructed out
of some non-uniform material), then the line integral can be seen to return the mass of the
arc.

Suppose p(z,y,z) = 5 — z gives the density of an arc where the arc is parameterized by
7(t) = (cos(t),0,sin(t)), 0 < ¢t < m. (A half-circular arc.) Find the mass of the arc.

rho(x,y,2z) =5 - z

rho(v) = rho(v...)

r(t) = [cos(t), 0, sin(t)]

@vars t

rp = diff. (r(t),t)

area = integrate((rho o r)(t) * norm(rp), (t, 0, PI))

—2+ 57

Continuing, we could find the center of mass by integrating [~ z(f o 7)|’||d¢t:

Mz = integrate(r(t)[3] * (rho o r)(t) * norm(rp), (t, 0, PI))
Mz



Finally, we get the center of mass by

‘Mz / area

10— 3
—2+ 57

Example Let f(x,y,2) = xsin(y)cos(z) and C the path described by 7(t) = (¢, * t%) for
0 <t < 7. Find the line integral [ fds.

We find the numeric value with:

f(x,y,2z) = x*sin(y)*cos(z)

f(v) = £(v...)

r(t) = [t, t72, t73]

integrand(t) = (f o r)(t) * norm(r'(t))
quadgk(integrand, 0, pi)

‘(-1.2230621144956229, 1.783298175794812e-8)

Example Imagine the z axis is a wire and in the z-y plane the unit circle is a path. If
there is a magnetic field, B, then the field will induce a current to flow along the wire.
[Ampere’s|https: //tinyurl.com /y4gl9pgu) circuital law states § B - Tds = pol, where jq is
a constant and I the current. If the magnetic field is given by B = (22 + y?)"/2(—y, x,0)
compute [ in terms of uy.

We have the path is parameterized by 7(¢) = {cos(t), sin(t), 0), and so T = (—sin(t), cos(t), 0)
and the integrand, B - T is

(2 + %)Y (—sin(t), cos(t), 0) - (—sin(t), cos(t),0) = (z* + y?)(—1/2),
which is 1 on the path C. So [ B - Tds = Jods = 2m. So the current satisfies 2m = o1, so
I=(2m)/po.

(Ampere’s law is more typically used to find B from an current, then I from B, for special
circumstances. The Biot-Savart does this more generally.)

1.1.2 Line integrals and vector fields; work and flow

As defined above, the line integral is defined for a scalar function, but this can be generalized.
If F: R* — R™is a vector field, then each component is a scalar function, so the integral
J(F o7)||7"||dt can be defined component by component to yield a vector.

However, it proves more interesting to define an integral incorporating how properties of
the path interact with the vector field. The key is 7 (t)dt = T'||7(t)||dt describes both the
magnitude of how the parameterization stretches an interval but also a direction the path is
taking. This direction allows interaction with the vector field.



The canonical example is work, which is a measure of a force times a distance. For an object
following a path, the work done is still a force times a distance, but only that force in the
direction of the motion is considered. (The constraint force keeping the object on the path
does no work.) Mathematically, T describes the direction of motion along a path, so the
work done in moving an object over a small segment of the path is (F - T)As. Adding up
incremental amounts of work leads to a Riemann sum for a line integral involving a vector

field.

The work done in moving an object along a path C' by a force field, F', is given
by the integral [ (F -T)ds = [, F -di = [*((F oF)- 45 (t)dt.

In the n = 2 case, there is another useful interpretation of the line integral. In this dimension
the normal vector, N, is well defined in terms of the tangent vector, 7', through a rotation:
(a,b)t = (b,—a)". (The negative, (—b,a) is also a candidate, the difference in this choice
would lead to a sign difference in in the answer.) This allows the definition of a different line
integral, called a flow integral, as detailed later:

The flow across a curve C'is given by [.(F - N)ds = [*(F o 7)(t) - (7 (t))dLt.

1.1.3 Examples

Example Let F(z,y,2) = (z —y,2* — y*, 2% — 2%) and 7(t) = (t,t*t*). Find the work
required to move an object along the curve described by 7° between 0 and 1.

F(x,y,2) = [x-y, x°2 - y°2, x72 - z72]
F(v) F(v...)
r(t) [t, t72, t73]

Ovars t real=true
integrate((F o r)(t) - diff.(r(t), t), (t, 0, 1))

Example Let C' be a closed curve. For a closed curve, the work integral is also termed
the circulation. For the vector field F(z,y) = (—y,x) compute the circulation around the
triangle with vertices (—1,0), (1,0), and (0, 1).

We have three integrals using 7 (t) = (=1 + 2t,0), 72(t) = (1 — t,t) and 75(¢) = (—t,1 — 1),
all from 0 to 1. (Check that the parameterization is counter clockwise.)

The circulation then is:

ri(t) = [-1 + 2t, 0]
r2(t) = [1-t, t]
r3(t) = [-t, 1-t]

F(x,y) = [-y, x]
F(v) = F(v...)


https://en.wikipedia.org/wiki/Work_(physics)

integrand(r) =t -> (F o r)(t) - r'(t)
Cl1 = quadgk(integrand(rl), 0, 1)[1]

C2 = quadgk(integrand(r2), 0, 1)[1]
C3 = quadgk(integrand(r3), 0, 1)[1]
Cl + C2 + C3

2.0

That this is non-zero reflects a feature of the vector field. In this case, the vector field spirals
around the origin, and the circulation is non zero.

Example Let F' be the force of gravity exerted by a mass M on a mass m a distance 7
away, that is F'(7) = —(GMm/||7]|*)?.

Let 7#(t) = (1 —¢,0,t), 0 <t < 1. For concreteness, we take GMm to be 10. Then the work
to move the mass is given by:

using QuadGK

uvec(v) = v/norm(v)

GMm = 10

F(r) = - GMm /norm(r)~2 * uvec(r)
r(t) = [1-t, 0, t]

quadgk(t -> (F o r)(t) - r'(t), 0, 1)

| (0.0, 0.0)

Hmm, a value of 0. That’s a bit surprising at first glance. Maybe it had something to do
with the specific path chosen. To investigate, we connect the start and endpoints with a
circular arc, instead of a straight line:

r(t) = [cos(t), 0, sin(t)]
quadgk(t -> (F o r)(t) - r'(t), 0, 1)

‘(—1.2493163125924272e—17, 2.7429251495998208e-17)

Still 0. We will see next that this is not surprising if something about F'is known.

The Washington Post had an article by Richard Panek with the quote "Well, yes —
depending on what we mean by ’attraction.” Two bodies of mass don’t actually exert
some mysterious tugging on each other. Newton himself tried to avoid the word ’attrac-
tion’ for this very reason. All (!) he was trying to do was find the math to describe
the motions both down here on Earth and up there among the planets (of which Earth,
thanks to Copernicus and Kepler and Galileo, was one).” The point being the formula
above is a mathematical description of the force, but not an explanation of how the force
actually is transferred.

Work in a conservative vector field Let f: R" — R be a scalar function. Its gradient,
V f is a vector field. For a scalar function, we have by the chain rule:


https://www.washingtonpost.com/outlook/everything-you-thought-you-knew-about-gravity-is-wrong/2019/08/01/627f3696-a723-11e9-a3a6-ab670962db05_story.html"

dfof) . .. dF
T VF(r(®)) - I
If we integrate, we see:
b dr bd(for
W= [ =) T = [ N2Day— (ror) = (7o) ~ (7 0 P(a),

using the Fundamental Theorem of Calculus.

The main point above is that if the vector field is the gradient of a scalar field, then the
work done depends only on the endpoints of the path and not the path itself.

Conservative vector field If F' is a vector field defined in an open region R; A
and B are points in R and if for any curve C' in R connecting A to B, the line
integral of F' - T over C depends only on the endpoint A and B and not the
path, then the line integral is called path indenpendent and the field is called a
conservative field.

The force of gravity is the gradient of a scalar field. As such, the two integrals above
which yield 0 could have been computed more directly. The particular scalar field is f =
—GMm/||7]|, which goes by the name the gravitational potential function. As seen, f
depends only on magnitude, and as the endpoints of the path in the example have the
same distance to the origin, the work integral, (f o 7)(b) — (f o 7)(a) will be 0.

Example Coulomb’s law states that the electrostatic force between two charged particles
is proportional to the product of their charges and inversely proportional to square of the
distance between the two particles. That is,

_ . 4% o
17112 7]
This is similar to gravitational force and is a conservative force. We saw that a line integral

for work in a conservative force depends only on the endpoints. Verify, that for a closed loop
the work integral will yield 0.

Take as a closed loop the unit circle, parameterized by arc-length by 7(t) = (cos(t),sin(t)).
The unit tangent will be 7' = 7(t) = (—sin(t),cos(t)). The work to move a particle of
charge qo about a partical of charge g at the origin around the unit circle would be computed
through:

Ovars k q q0 t

F(r) = kxq*q0 * r / norm(r)~3
r(t) = [cos(t), sin(t)]
T(r) = [-r[2], r[1]]

W = integrate(F(r(t)) - T(x(t)), (t, 0, 2PI))



1.1.4 Closed curves and regions;

There are technical assumptions about curves and regions that are necessary for some state-
ments to be made:

o Let C be a Jordan curve - a non-self-intersecting continuous loop in the plane. Such
a curve divides the plane into two regions, one bounded and one unbounded. The
normal to a Jordan curve is assumed to be in the direction of the unbounded part.

o Further, we will assume that our curves are piecewise smooth. That is comprised of
finitely many smooth pieces, continuously connected.

e The region enclosed by a closed curve has an interior, D, which we assume is an open
set (one for which every point in D has some "ball” about it entirely within D as well.)

o The region D is connected meaning between any two points there is a continuous path
in D between the two points.

o The region D is simply connected. This means it has no "holes.” Technically, any path
in D can be contracted to a point. Connected means one piece, simply connected
means no holes.

1.1.5 The fundamental theorem of line integrals

The fact that work in a potential field is path independent is a consequence of the Funda-
mental Theorem of Line Integrals:

Let U be an open subset of R, f : U — R a differentiable function and 7 :
R — R" a differentiable function such that the the path C' = 7(t), a <t < b is
contained in U. Then [, Vf-di = [PV f(7(t)) -7 (t)dt = f(F(D)) — f(7(a)).

That is, a line integral through a gradient field can be evaluated by evaluating the original
scalar field at the endpoints of the curve. In other words, line integrals through gradient
fields are conservative.

Are conservative fields gradient fields? The answer is yes.
Assume U is an open region in R™ and F' is a continuous and conservative vector field in U.
Let a in U be some fixed point. For Z in U, define:

dy
) = F-—dt,
9(7) /'V[a,f} dt

where 7 is any differentiable path in U connecting a to & (as a point in U). The function ¢
is uniquely defined, as the integral only depends on the endpoints, not the choice of path.

It is shown that the directional derivative V¢ - ¥ is equal to F' - ¥ by showing

¥+ t0) — o(¥ 1 dy
lim 2EF) =@ _ f/ F-Slit=F(#)- 7.
t—0 t t=0 t J5z,7+t0) dt

This is so for all U, so in particular for the coordinate vectors. So V¢ = F.
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Example Let Radial(z,y) = (z,y). This is a conservative field. Show the work integral
over the half circle in the upper half plane is the same as the work integral over the z axis
connecting —1 to 1.

We have:

Radial(x,y) = [x,y]
Radial(v) = Radial(v...)

r(t) = [-1 + t, 0]
quadgk(t -> Radial(r(t)) - r'(t), 0, 2)

| (0.0, 0.0)

Compared to

r(t) = [-cos(t), sin(t)]
quadgk(t -> Radial(r(t)) - r'(t), 0, pi)

| (0.0, 0.0)

Example

Not all vector fields are conservative. How can a vector field in U be identified as conser-
vative? For now, this would require either finding a scalar potential or showing all line
integrals are path independent.

In dimension 2 there is an easy to check method assuming U is simply connected: If F =
(F,, F,) is continuously differentiable in an simply connected region and 0F,/0x —O0F, /0y =
0 then F' is conservative. A similarly statement is available in dimension 3. The reasoning
behind this will come from the upcoming Green’s theorem.

1.1.6 Flow across a curve

The flow integral in the n = 2 case was

(7 Ryas = [[(For)- (7 )
where (a,b)! = (b, —a).

For a given section of C', the vector field breaks down into a tangential and normal component.
The tangential component moves along the curve and so doesn’t contribute to any flow across
the curve, only the normal component will contribute. Hence the F' - N integrand. The
following figure indicates the flow of a vector field by horizontal lines, the closeness of the
lines representing strength, though these are all evenly space. The two line segments have
equal length, but the one captures more flow than the other, as its normal vector is more
parallel to the flow lines:
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The flow integral is typically computed for a closed (Jordan) curve, measuring the total flow
out of a region. In this case, the integral is written §.(F - N)ds.

For a Jordan curve, the positive orientation of the curve is such that the normal direction
(proportional to ik ) points away from the bounded interior. For a non-closed path, the
choice of parameterization will determine the normal and the integral for flow across a
curve is dependent - up to its sign - on this choice.

Example The New York Times showed aerial photos to estimate the number of protest
marchers in Hong Kong. This is a more precise way to estimate crowd size, but requires a
drone or some such to take photos. If one is on the ground, the number of marchers could
be estimated by finding the flow of marchers across a given width. In the Times article, we
see "Protestors packed the width of Hennessy Road for more than 5 hours. If this road is 50
meters wide and the rate of the marchers is 3 kilometers per hour, estimate the number of
marchers.

The basic idea is to compute the rate of flow across a part of the street and then multiply
by time. For computational sake, say the marchers are on a grid of 1 meters (that is in a
40m wide street, there is room for 40 marchers at a time. In one minute, the marchers move
50 meters:

| 3000/60

50.0

This means the rate of marchers per minute is 40 * 50. If this is steady over 5 hours, this
simple count gives:


https://www.nytimes.com/interactive/2019/06/20/world/asia/hong-kong-protest-size.html

\40 * 50 * 5 * 60

600000

This is short of the estimate 2M marchers, but useful for a rough estimate. The point is from
rates of flow, which can be calculated locally, amounts over bigger scales can be computed.
The word "across” is used, as only the direction across the part of the street counts in the
computation. Were the marchers in total unison and then told to take a step to the left and
a step to the right, they would have motion, but since it wasn’t across the line in the road
(rather along the line) there would be no contribution to the count. The dot product with
the normal vector formalizes this.

Example Let a path C' be parameterized by 7(t) = (cos(t),2sin(¢)), 0 < ¢t < 7/2 and
F(z,y) = (cos(x),sin(zy)). Compute the flow across C'.

We have

r(t) = [cos(t), 2sin(t)]
F(x,y) = [cos(x), sin(x*y)]
F(v) = F(v...)

normal(a,b) = [b, -a]

G(t) = (F o r)(t) - normal(r(s)...)
a, b =0, pi/2

quadgk(G, a, b)[1]

1.0894497472261733

Example Example, let F(x,y) = (—y,z) be a vector field. (It represents an rotational
flow.) What is the flow across the unit circle?

Ovars t real=true

F(x,y) = [-y,x]

F(v) = F(v...)

r(t) [cos(t),sin(t)]

T(t) = diff.(z(t), t)

normal (a,b) = [b,-al

integrate((F o r)(t) - normal(T(t)...) , (t, O, 2PI))

Example Let F(z,y) = (z,y) be a vector field. (It represents a source.) What is the flow
across the unit circle?

Ovars t real=true
F(x,y) = [x, vyl

F(v) = F(v...)

r(t) [cos(t),sin(t)]
T(t) diff.(r(t), t)
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normal (a,b) = [b,-al
integrate((F o r)(t) - normal(T(t)...) , (t, O, 2PI))

2
Example Let F(z,y) = (z,y)/|{z,y)||*:

F(x,y) = [x,y] / norm([x,y])"2
F(v) = F(v...)

‘F (generic function with 3 methods)

Consider C' to be the square with vertices at (—1,—1), (1,—1), (1,1), and (—1,1). What is
the flow across C for this vector field? The region has simple outward pointing unit normals,
these being +2 and +7, the unit vectors in the z and y direction. The integral can be
computed in 4 parts. The first (along the bottom):

Ovars s real=true

r(s) = [-1 + s, -1]
n = [0,-1]
Al = integrate(F(r(s)) - n, (s, 0, 2))

The other three sides are related as each parameterization and normal is similar:

r(s) = [1, -1 + s]
n = [1, 0]
A2 = integrate(F(r(s)) - n, (s, 0, 2))

r(s) = [1 - s, 1]
n = [0, 1]
A3 = integrate(F(r(s)) - n, (s, 0, 2))

r(s) = [-1, 1-s]
n = [-1, 0]
A4 = integrate(F(r(s)) - n, (s, 0, 2))

Al + A2 + A3 + A4

21

As could have been anticipated by symmetry, the answer is simply 4A1 or 27. What likely is
not anticipated, is that this integral will be the same as that found by integrating over the
unit circle (an easier integral):
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Figure 1: The Anish Kapoor sculpture Cloud Gate maps the Cartesian grid formed by its
concrete resting pad onto a curved surface showing the local distortions. Knowing the areas
of the reflected grid after distortion would allow the computation of the surface area of the
sculpture through addition. (Wikipedia)

LIE IS

Ovars t real=true

r(t) = [cos(t), sin(t)]

N(t) = r(t)

integrate(F(r(t)) - N(t), (t, 0, 2PI))

21

This equivalence is a consequence of the upcoming Green’s theorem, as the vector field
satisfies a particular equation.

1.2 Surface integrals

We next turn attention to a generalization of line integrals to surface integrals. Surfaces
were described in one of three ways: directly through a function as z = f(x,y), as a level
curve through f(z,vy, z) = ¢, and parameterized through a function ® : R? — R3. The level
curve description is locally a function description, and the function description leads to a
parameterization (®(u,v) = (u,v, f(u,v))) so we restrict to the parameterized case.

Consider the figure of the surface described by ®(u,v) = (u, v, f(u,v)):

| Plot{Plots.PlotlyBackend) n=41}

The partitioning of the u—v plane into a grid, lends itself to a partitioning of the surface. To
compute the total surface area of the surface, it would be natural to begin by approzimating
the area of each cell of this partition and add. As with other sums, we would expect that
as the cells got smaller in diameter, the sum would approach an integral, in this case an
integral yielding the surface area.

Consider a single cell:

12



The figure shows that a cell on the grid in the u — v plane of area AuAv maps to a cell
of the partition with surface area AS which can be approzimated by a part of the tangent
plane described by two vectors v) = 0®/0u and v, = 0P /0v. These two vectors have cross
product which a) points in the direction of the normal vector, and b) has magnitude yielding
the approximation AS & ||, X Us||AuAv.

If we were to integrate the function G(z,y, z) over the surface S, then an approximating
Riemann sum could be produced by G(c)||0; x t2||Aulv, for some point ¢ on the surface.

In the limit a definition of an integral over a surface S in R? is found by a two-dimensional
integral over R in R%:

0 9D
/SG(m,y,z)dS—/RG(Q)(u,v))H% x S |dudv.

In the case that the surface is described by z = f(z,y), then the formula’s become v; =
(1,0,0f/0x) and Uy = (0,1, 0f/0y) with cross product v x th = (=0f/dx,—0f/y,1).

The value |22 x g—‘;” is called the surface element. As seen, it is the scaling between a unit
area in the u — v plane and the approximating area on the surface after the parameterization.

1.2.1 Examples

Let us see that the formula holds for some cases where the answer is known by other means.

A cone The surface area of cone is a known quantity. In cylindrical coordinates, the cone
may be described by z = a — br, so the parameterization (r,8) — (r cos(f), rsin(@),a — br)
maps 7' = [0,a/b] x [0, 27] onto the surface (less the bottom).

The surface element is the cross product (cos(6), sin(6), —b) and (—rsin(@), r cos(6), 0), which
Is:

Ovars R theta a b positive=true
n = [cos(theta), sin(theta), -b] x [-R*sin(theta), R*cos(theta), 0]
se = simplify(norm(n))

Rvb2+1

(To do this computationally, one might compute:

Phi(r, theta) = [r*cos(theta), r*sin(theta), a - bx*r]
Phi(R, theta).jacobian([R, theta])

cos () —Rsin(0)
sin (#)  Rcos(0)
—b 0

and from here pull out the two vectors to take a cross product.)

The surface area is then found by integrating G(Z) = 1:
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integrate(l * se, (R, 0, a/b), (theta, 0, 2PI))

ma’/b? + 1
12

A formula from a quick Google search is A = 7r(r? + v/h2 + r2. Does this match up?

R =a/b; h=a
pi * R * (R + sqrt(R"2 + h™2)) |> simplify

ra’ (\/b2 14+ 1)
b2

Nope, off by a summand of 7(a/b)? = 7r?, which may be recognized as the area of the base,
which we did not compute, but which the Google search did. So yes, the formulas do agree.

Example The sphere has known surface area 47r?. Let’s see if we can compute this. With
the parameterization from spherical coordinates (6, ¢) — (rsin ¢ cos@,rsin ¢sin@,r cos ¢),
we have approaching this numerically:

Rad = 1
Phi(theta, phi) = Rad * [sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)]
Phi(v) = Phi(v...)

function surface_element (pt)
Jac = ForwardDiff.jacobian(Phi, pt)
vl, v2 = Jacl[:,1], Jac[:,2]
norm(vl x v2)
end
out = hcubature(surface_element, (0, 0), (2pi, 1pi))
out[1] - 4pi*Rad™2 # *basically* zero

8.15347789284715e-13

Example In Surface area the following formula for the surface area of a surface of revolution
about the x axis is described by r = f(x) is given:

/ab27rf(3:) 1+ f(z)%d.

Consider the transformation (z,0) — (x, f(x)cos(#), f(z)sin(d). This maps the region
[a,b] x [0,27] onto the surface of revolution. As such, the surface element would be:

H = SymFunction("H")

Ovars x theta real=true

Phi(x, theta) = [x, H(x)*cos(theta), H(x)*sin(theta)]
Jac = Phi(x, theta).jacobian([x, thetal)

vl, v2 = Jac[:,1], Jac[:,2]

norm(vl x v2)

14


../integrals/surface_area.mmd

d H(x)

d H(z) + H(x) cos? (6)%

J |H () sin (9)| + | H () cos (9)]* + ‘H(m) sin® (0) -

We divide by H(x) and expect (and see) the square root of 1 plus the derivative:

‘norm((vl x v2)/H(x)) .|> simplify

2

d
+1

@H(ﬂf)

J

Example Consider the upper half sphere, S. Compute [g zdS.

Were the half sphere made of a thin uniform material, this would be computed to find the z
direction of the centroid.

We use the spherical coordinates to parameterize:

O(0,¢) = (cos(¢) cos(d), cos(¢) sin(f), sin(¢))

The Jacobian, and surface element can be computed:

Ovars theta phi real=true

Phi(theta, phi) = [cos(phi)*cos(theta), cos(phi)*sin(theta), sin(phi)]
Jac = Phi(theta,phi).jacobian([theta, phi])

vl, v2 = Jac[:,1], Jac[:,2]

SurfElement = norm(vl x v2) |> simplify

|cos (9)]

With this our integral becomes:

z = sin(phi)
integrate(z * SurfElement, (theta, 0, 2PI), (phi, 0, PI/2))

1.2.2 Orientation

A smooth surface S is orientable if it possible to define a unit normal vector, N that varies
continuously with position. For example, a sphere has a normal vector that does this. On
the other hand, a Mobius strip does not, as a normal when moved around the surface may
necessarily be reversed as it returns to its starting point. For a closed, orientable smooth
surface there are two possible choices for a normal, and convention chooses the one that
points away from the contained region, such as the outward pointing normal for the sphere
or torus.

15



1.2.3 Surface integrals in vector fields

Beyond finding surface area, surface integrals can also compute interesting physical phenom-
ena. These are often associated to a vector field (in this case a function F:R— R?), and
the typical case is the flur through a surface defined locally by F-N , that is the magnitude
of the projection of the field onto the unit normal vector.

Consider the flow of water through an opening in a time period At. The amount of water
mass to flow through would be the area of the opening times the velocity of the flow perpen-
dicular to the surface times the density times the time period; symbolically: dS-((p@)-N)-At.
Dividing by At gives a rate of flow as ((p7) - N)dS. With F = p#, the flux integral can be
seen as the rate of flow through a surface.

To find the normal for a surface element arising from a parameterization ®, we have the two
partial derivatives U; = 0®/0u and v = 9P/Jv, the two column vectors of the Jacobian
matrix of ®(u,v). These describe the tangent plane, and even more their cross product will
be a) normal to the tangent plane and b) have magnitude yielding the surface element of
the transformation.

From this, for a given parameterization, ®(u,v) : T'— S, the following formula is suggested
for orientable surfaces:

o 0P
/F NdS = / (u,v) (% X %)dudv

When the surface is described by a function, z = f(z,y), the parameterization is (u,v) —
(u,v, f(u,v)), and the two vectors are v, = (1,0,0f/0u) and U5 = (0,1,0f/0v) and their
cross product is vy X ) = (=0 f/0u, —0f/0v, 1).

Example Suppose a vector field F(x,y, z) = (0,y, —z) is given. Let S be the surface of the
paraboloid y = 2% + 2% between y = 0 and y = 4. Compute the surface integral [¢ F - NdS.

This is a surface of revolution about the y axis, so a parameterization is ®(y, 0) = (/y cos(8), y, \/ysin(0)).
The surface normal is given by:

Ovars y theta positive=true

Phi(y,theta) = [sqrt(y)*cos(theta), y, sqrt(y)*sin(theta)]
Jac = Phi(y, theta).jacobian([y, thetal)

vl, v2 = Jac[:,1], Jac[:,2]

Normal = vl X v2

VY cos (0)

__sin?(f) _ cos®(6)
2
VY sin (0)
With this, the surface integral becomes:
F(X,Y,Z) = [O; Yy _Z]

F(v) = F(v...)
integrate (F(Phi(y,theta)) - Normal, (theta, 0, 2PI), (y, 0, 4))

16



—167

Example Let S be the closed surface bounded by the cylinder 224 y? = 1, the plane z = 0,
and the plane z = 1 +x. Let F(x,y,2) = (1,y, —z). Compute §s F'- NdS.

F(x,y,z) = [1, y, z]
F(v) = F(v...)

‘F (generic function with 3 methods)

The surface has three faces, with different outward pointing normals for each. Let S; be the
unit disk in the z — y plane with normal —k; Sy be the top part, with normal ((—1,0,1)
(as the plane is —1z + Oy + 1z = 1); and S3 be the cylindrical part with outward pointing
normal 7.

Integrating over S;, we have the parameterization ®(r,0) = (r cos(f), rsin(6), 0):

Ovars R theta positive=true

Phi(r,theta) = [r*cos(theta), r*sin(theta), 0]
Jac = Phi(R, theta).jacobian([R, thetal)

vl, v2 Jac[:,1], Jacl:,2]

Normal = vl X v2 .[> simplify

e}

F(x,y,z)= [1, y, -Z]
Al = integrate(F(Phi(R, theta)) - (-Normal), (theta, 0, 2PI), (R, 0, 1))

0

Integrating over Sy we use the parameterization ®(r,0) = (r cos(8),rsin(0), 1 + r cos(0)).

Phi(r, theta) = [r*cos(theta), r*sin(theta), 1 + r*cos(theta)]
Jac = Phi(R, theta).jacobian([R, thetal)

vi, v2 Jac[:,1], Jac[:,2]

Normal = vl X v2 .[> simplify

e}

With this, the contribution for Sy is:

17



A2 = integrate(F(Phi(R, theta)) - (Normal), (theta, O, 2PI), (R, 0, 1))

—27

Finally for S3, the parameterization used is ®(z,0) = (cos(#),sin(d), z), but this is over a
non-rectangular region, as z is between 0 and 1 + z.

This parameterization gives a normal computed through:

Ovars z positive=true

Phi(z, theta) = [cos(theta), sin(theta), z]
Jac = Phi(z, theta).jacobian([z, thetal)
vl, v2 Jac[:,1], Jacl:,2]

Normal = vl X v2 .[> simplify

The contribution is

‘A3 = integrate(F(Phi(Rad, theta)) - (-Normal), (z, O, 1 + cos(theta)), (theta, O, 2PI))

21

In total, the surface integral is

|A1 + A2 + A3

Example Two point charges with charges ¢ and ¢y will exert an electrostatic force of
attraction or repulsion according to Coulomb’s law. The Coulomb force is kqqor/||7]|®. This
force is proportional to the product of the charges, qqy, and inversely proportional to the
square of the distance between them.

The electric field is a vector field is the field generated by the force on a test charge, and is
given by E = kqr/||7|3.

Let S be the unit sphere ||7]|> = 1. Compute the surface integral of the electric field over
the closed surface, S.

We have (using ¢ for a surface integral over a closed surface):

f S. NdS :j{ 'iqu . #dS :7{ ]iq2ds — kqqo - SA(S) = drkg
s s ||7] s [|7]

18
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Now consider the electric field generated by a point charge within the unit sphere, but not
at the origin. The integral now will not fall in place by symmetry considerations, so we will
approach the problem numerically.

E(r) = (1/norm(x)~2) * uvec(r)

Phi(theta, phi) = 1*[sin(phi)#*cos(theta), sin(phi) #* sin(theta), cos(phi)]
Phi(r) = Phi(r...)

normal (r) = Phi(r)/norm(Phi(xr))

function SE(r)
Jac = ForwardDiff.jacobian(Phi, r)
vl, v2 = Jacl[:,1], Jacl[:,2]
vl X v2

end

a = rand() * Phi(2pi*rand(), pi*rand())
A1 = hcubature(r -> E(Phi(r)-a) - normal(r) * norm(SE(r)), (0.0,0.0), (2pi, 1pi))
A1[1]

12.566370614220894

The answer is 4w, regardless of the choice of a, as long as it is inside the surface. (We see
above, some fussiness in the limits of integration. HCubature does some conversion of the
limits, but does not currently do well with mixed types, so in the above only floating point
values are used.)

When a is outside the surface, the answer is always:

a = 2 * Phi(2pi*rand(), pi*rand())

Al hcubature(r -> E(Phi(r)-a) - normal(r) * norm(SE(r)), (0.0,0.0), (2pi, pi/2))
A2 = hcubature(r -> E(Phi(r)-a) - normal(r) * norm(SE(r)), (0.0,pi/2), (2pi, 1pi))
A1[1] + A2[1]

2.1283474982425332e-11
Always 0.

This is a consequence of Gauss’s law, which states that for an electric field E, the electric
flux through a closed surface is proportional to the total charge contained. (Gauss’s law is
related to the upcoming divergence theorem.) When a is inside the surface, the total charge
is the same regardless of exactly where, so the integral’s value is always the same. When a
is outside the surface, the total charge inside the sphere is 0, so the flux integral is as well.

Gauss’s law is typically used to identify the electric field by choosing a judicious surface
where the surface integral can be computed. For example, suppose a ball of radius Ry has a
uniform charge. What is the electric field generated? Assuming it is dependent only on the
distance from the center of the charged ball, we can, first, take a sphere of radius R > R
and note that E(F) - N(r) = ||E(R)||, the magnitude a distance R away. So the surface
integral is simply || F(R)||47R* and by Gauss’s law a constant depending on the total charge.
So ||[E(R)|| 1/R%. When R < Ry, the same applies, but the total charge within the surface

will be like (R/Rp)?, so the result will be linear in R, as:
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R 3
4r|E(R)||R* = k4w () :
Ry

1.3 Questions

® Question
Let 7(t) = (€' cos(t), e " sin(t)).

What is ||7(1/2)]|?
What is the 2 (first) component of N(t) = T"(t)/||T"(t)|| at t = 1/2?

® Question
Let ®(u,v) = (u,v,u?+v?) parameterize a surface. Find the magnitude of ||0®/0u x 0P /Ov||

atu=1and v = 2.

® Question
For a plane ax + by + ¢z = d find the unit normal.

1.
(a,b,c)/[|{a,b, )l
2.
{a,b,c)
3.

d—a,d—b,d—c)/|{d - a,d—b,d— )|
Does it depend on d?

1. Yes. The gradient of F(z,y,z) = ax + by + cz will be normal to the level curve
F(z,y,z) = d, and so this will depend on d.

2. No. Moving d just shifts the plane up or down the z axis, but won’t change the normal
vector

3. Yes. Of course. Different values for d mean different values for x, y, and z are needed.

® Question
Let 7(t) = (cos(t),sin(t),t) and let F(z,y,z2) = (—y,z, 2)

Numerically compute [;" F(7(t)) - 7(t)dt.

Compute the value symbolically:

47

o + 272
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® Question
Let F(z,y) = (223y% xy* + 1). What is the work done in integrating I along the parabola
y = 2% between (—1,1) and (1,1)? Give a numeric answer:

® Question

Let F = Vf where f : R?> — R. The level curves of f are curves in the z — y plane where
f(z,y) = ¢, for some constant c¢. Suppose 7(t) describes a path on the level curve of f. What
is the value of [, F' - dr?

1. It will be 0, as V f is orthogonal to the level curve and 77 is tangent to the level curve
2. It will f(b) — f(a) for any b or a
® Question

Let F(xz,y) = (2 + y*)7*/%(2,y) be a radial field. The work integral around the unit circle
simplifies:

2pi
/ T / " L(1)M2 cos(t), sin(t)) - (= sin(t), cos(t))dt.
c dt 0
For any k, this integral will be:

® Question
Let f(z,y) = tan~!(y/z). We will integrate V f over the unit circle. The integrand wil be:

Ovars t real=true

f(x,y) = atan(y/x)

r(t) = [cos(t), sin(t)]

Vi = subs. (V(£(x,¥)), x .=> r(©)[1], y .=> r(£)[2]) .[> simplify
drdt = diff.(r(t), t)

Vi - drdt |> simplify

So [ Vf-dif = [Z"Vf - dif/dtdt = 27.
Why is this surprising?

1. The value of d/dt(f o) = 0, so the integral should be 0.

2. The field is a potential field, but the path integral around 0 is not path dependent.
The function FF =V f is

1. Not continuous everywhere

2. Continuous everywhere
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® Question
Let F(x,y) = (F,, F,) = (223y? zy* + 1). Compute

OF, oF,
ox oy
Is this 07
1. Yes
2. No
® Question

Let F(z,y) = (F,, F,) = (22*,y* + 1). Compute

oF, O,
Ox oy
Is this 07
1. Yes
2. No
® Question

It is not unusual to see a line integral, [ F'-dr, where F' = (M, N) expressed as [ Mdx+ Ndy.
This uses the notation for a differential form, so is familiar in some theoretical usages, but
does not readily lend itself to computation. It does yield pleasing formulas, such as ¢ zdy to
give the area of a two-dimensional region, D, in terms of a line integral around its perimeter.
To see that this is so, let 7(t) = (a cos(t),bsin(t)), 0 <t < 2w. This parameterizes an ellipse.
Let F(z,y) = (0,z). What does § xdy become when translated into [°(F o ) - #dt?

1.
/0 7r(a cos(t)) - (acos(t))dt
2. 2
/0 (acos(t)) - (beos(t))dt
3. .
/0 (—bsin(t)) - (beos(t))dt
® Question

Let a surface be parameterized by ®(u,v) = (ucos(v), usin(v), u).

Compute ) = 0P /0u

(cos(v), sin(v), 1)
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(—usin(v),u cos(v),0)

u{— cos(v), —sin(v), 1)

Compute v = 0P /Ju

1.
(cos(v),sin(v), 1)
2.
(—usin(v), ucos(v), 0)
3.

u(— cos(v), —sin(v), 1)

Compute U7 X U

1.
(cos(v),sin(v), 1)
2.
(—usin(v),u cos(v), 0)
3.
u({— cos(v), —sin(v), 1)
® Question

For the surface parameterized by ®(u,v) = (uv, u?v, uv?) for (u, v) in [0, 1]x [0, 1], numerically

find the surface area.
® Question

For the surface parameterized by ®(u,v) = (uv, u?v, uv?) for (u,v) in [0, 1] x [0, 1] and vector

field F(z,y,z) = (y% =, z(, numerically find [[4(F - N)dS.
® Question

Let F' = (0,0, 1) and S be the upper-half unit sphere, parameterized by ®(6, ¢) = (sin(¢) cos(f), sin(¢) sin(

Compute [fg(F - N )dS numerically. Choose the normal direction so that the answer is pos-
tive.

® Question

Let ¢(x,y,2z) = xy and S be the triangle x +y + 2z = 1, x,y,z > 0. The surface may be
described by z = f(z,y) =1 —(r+y), 0 <y <1—12,0 <z <1 is useful in describing the
surface. With this, the following integral will compute [q ¢dS:

= ar\® (of\’
/01/01 xy\ll—i—(@i) +<8£) dydzx.

Compute this.
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V2/24

2.
1/12
3.
2/V/24
® Question

Let ®(u,v) = (u?, uv,v?), (u,v) in [0,1] x [0,1] and F(z,y, z) = (z,3% 2%). Find [¢(F-N)dS

1/60
2.
7/36
3.
17/252
4.
0
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