1 Vectors

One of the first models learned in physics are the equations governing the laws of motion
with constant acceleration: z(t) = zo + vot + 1/2 - at®. This is a consequence of Newton’s
second law of motion applied to the constant acceleration case. A related formula for the
velocity is v(t) = vy + at. The following figure is produced using these formulas applied to
both the vertical position and the horizontal position:

XXX can not include “gif* file here

For the motion in the above figure, the object’s x and y values change according to the same
rule, but, as the acceleration is different in each direction, we get different formula, namely:
z(t) = zo + vout and y(t) = yo + vo,t — 1/2 - gt>.

It is common to work with both formulas at once. Mathematically, when graphing, we
naturally pair off two values using Cartesian coordinates (e.g., (z,v)). Another means of
combining related values is to use a vector. The notation for a vector varies, but to distinguish
them from a point we will use (z, y). With this notation, we can use it to represent the
position, the velocity, and the acceleration at time ¢ through:

7= (xo+ vost, — (1/2)9152 + voyt + Yo), (1)
U= (Vog, — gt +vgy), and (2)
a=(0, —g). (3)

Don’t spend time thinking about the formulas if they are unfamiliar. The point emphasized
here is that we have used the notation (z, y) to collect the two values into a single object,
which we indicate through a label on the variable name. These are vectors, and we shall see
they find use far beyond this application.

Initially, our primary use of vectors will be as containers, but it is worthwhile to spend some
time to discuss properties of vectors and their visualization.

A line segment in the plane connects two points (zg,vo) and (z1,y1). The length of a line

segment (its magnitude) is given by the distance formula \/ (x1 —20)2 + (11 — yo)?. A line
segment can be given a direction by assigning an initial point and a terminal point. A
directed line segment has both a direction and a magnitude. A vector is an abstraction
where just these two properties

o a direction and a magnitude - are intrinsic. While a directed line

segment can be represented by a vector, a single vector describes all such line segments found
by translation. That is, how the the vector is located when visualized is for convenience, it
is not a characteristic of the vector. In the figure above, all vectors are drawn with their
tails at the position of the projectile over time.

We can visualize a (two-dimensional) vector as an arrow in space. This arrow has two
components. We represent a vector than mathematically as (x, y). For example, the vector
connecting the point (xg, yo) to (x1,y1) is (1 — X0, Y1 — Yo)-

The magnitude of a vector comes from the distance formula applied to a line segment, and

is |7]] = V2% + 32

http://tinyurl.com/8ylk29t

Figure 1: A vector and its unit vector. They share the same direction, but the unit vector
has a standardized magnitude.
10r

08+

06+

044+

024

°%0 02 0.4 06 08 10

We call the values = and y of the vector v = (z, y) the components of the v.

Two operations on vectors are fundamental.

« Vectors can be multiplied by a scalar (a real number): ¢t = (cx, cy). Geometrically
this scales the vector by a factor of |¢| and switches the direction of the vector by 180
degree when ¢ < 0. A wunit vector is one with magnitude 1, and, except for the 0
vector, can be formed from ¢ by dividing ¢ by its magnitude. A vector’s two parts
are summarized by its direction given by a unit vector gives and its norm given by the
magnitude.

« Vectors can be added: ¥+ @ = (v, + w,, v, + w,). That is, each corresponding
component adds to form a new vector. Similarly for subtraction. The 0 vector then
would be just (0, 0) and would satisfy 0+ @ = @ for any vector . The vector addition
U + is visualized by placing the tail of @ at the tip of ¥ and then considering the
new vector with tail coming from ¢ and tip coming from the position of the tip of .
Subtraction is different, place both the tails of ¥ and w at the same place and the new
vector has tail at the tip of v and tip at the tip of .

The concept of scalar multiplication and addition, allow the decomposition of vectors into
standard vectors. The standard unit vectors in two dimensions are e, = (1, 0) and e, =
(0, 1). Any two dimensional vector can be written uniquely as ae, + be, for some pair of
scalars a and b (or as, (a,b)). This is true more generally where the two vectors are not the
standard unit vectors - they can be any two non-parallel vectors.

The two operations of scalar multiplication and vector addition are defined in a component-
by-component basis. We will see that there are many other circumstances where performing
the same action on each component in a vector is desirable.

When a vector is placed with its tail at the origin, it can be described in terms of the angle
it makes with the x axis, 6, and its length, . The following formulas apply:

Figure 2: The sum of two vectors can be visualized by placing the tail of one at the tip of

the other
10p

08}

06

04F

02F

090 02 0.4 06 08 10

Figure 3: The sum of two vectors can be visualized by placing the tail of one at the tip of

the other
10p

08}

06

04}

02}

090 02 0.4 06 08 10

Figure 4: The vector (4 3) is written as 2/3 (1,2) +5/3 -(2,1). Any vector ¢ can be written
uniquely as a-a + (3 - b provided @ and b are not parallel.

10¢ 2/3 a
08f
061
04t

02F

%0 02 04 06 08 10

r=1/z2+y%, tan(d) =y/z.

If we are given r and 6, then the vector is v = (r - cos(), r - sin()).

1.1 Vectors in Julia

A vector in Julia can be represented by its individual components, but it is more convenient
to combine them into a collection using the [,] notation:

x, y=1, 2
v = [x, y]

2-element Array{Int64,1}:
1
2

The basic vector operations are implemented for vector objects. For example, the vector v
has scalar multiplication defined for it:

‘10 * v

2-element Array{Int64,1}:
10
20

The norm function returns the magnitude of the vector (by default):

Figure 5: A vector (z,y) can be written as (r - cos(f),r - sin(f)) for values r and 6. The
value r is a magnitude, the direction parameterized by 6.
10r

08
06+
04k

- COs
02F

%0 02 04 06 08 10

import LinearAlgebra: norm
norm(v)

2.23606797749979

A unit vector is then found by scaling by the reciprocal of the magnitude:

‘v / norm(wv)

2-element Array{Float64,1}:
0.4472135954999579
0.8944271909999159

In addition, if w is another vector, we can add and subtract:

w = [3, 2]
v +w, Vv - 2w

| ([4, 41, [-5, -21)

We see above that scalar multiplication, addition, and subtraction can be done without new
notation. This is because the usual operators have methods defined for vectors.

Finally, to find an angle 6 from a vector (x, y), we can employ the atan function using two
arguments:

norm(v), atan(y, x)

‘ (2.23606797749979, 1.1071487177940904)

1.2 Higher dimensional vectors

Mathematically, vectors can be generalized to more than 2 dimensions. For example, us-
ing 3-dimensional vectors are common when modeling events happening in space, and 4-
dimensional vectors are common when modeling space and time.

In Julia there are many uses for vectors outside of physics applications. A vector in Julia
is just a one-dimensional collection of similarly typed values. Such objects find widespread
usage. For example:

o In plotting graphs with Julia, vectors are used to hold the x and y coordinates of a
collection of points to plot and connect with straight lines. There can be hundreds of
such points in a plot.

« Vectors are a natural container to hold the roots of a polynomial or zeros of a function.
« Vectors may be used to record the state of an iterative process.

« Vectors are naturally used to represent a data set, such as arise when collecting survey
data.

Creating higher-dimensional vectors is similar to creating a two-dimensional vector, we just
include more components:

| fibs = [1,1,2,3,5,8,13]

7-element Array{Int64,1}:
1

w o0 O wN -

1

Later we will discuss different ways to modify the values of a vector to create new ones,
similar to how scalar multiplication does.

As mentioned, vectors in Julia are comprised of elements of a similar type, but the type is
not limited to numeric values. For example, a vector of strings might be useful for text pro-
cessing, a vector of Boolean values can naturally arise, some applications are even naturally
represented in terms of vectors of vectors. Look at the output of these two vectors:

[llonell s lltwoﬂ s |lthreell:|

3-element Array{String,1}:
n one n
lltwo n
"three"

‘[true, false, truel

3-element Array{Bool,1}:
1

0

1

Finally, we mention that if Julia has values of different types it will promote them to a
common type if possible. Here we combine three types of numbers, and see that each is
promoted to Float64:

| [1, 2.0, 3//1]

3-element Array{Float64,1}:
1.0

2.0

3.0

Whereas, in this example where there is no common type to promote the values to, a catch-all
type of Any is used to hold the components.

‘[”one”, 2, 3.0, 4//1]

4-element Array{Any,1}:
"one
2
3.0
4//1

1.3 Indexing

Getting the components out of a vector can be done in a manner similar to multiple assign-
ment:

v =[1, 2]
X, y=v

2-element Array{Int64,1}:
1
2

When the same number of variable names are on the left hand side of the assignment as in
the container on the right, each is assigned in order.

Though this is convenient for small vectors, it is far from being so if the vector has a large
number of components. However, the vector is stored in order with a first, second, third,

. component. Julia allows these values to be referred to by indez. This too uses the []
notation, though differently. Here is how we get the second component of v:

‘V[Q]

2

The last value of a vector is usually denoted by v,,. In Julia, the length function will return
n, the number of items in the container. So v[length(v)] will refer to the last component.
However, the special keyword end will do so as well, when put into the context of indexing.
So v[end] is more idiomatic.

There is much more to indexing than just indexing by a single integer value. For example,
the following can be used for indexing:

a scalar integer (as seen)

e a range

a vector of integers

a boolean vector

Some add-on packages extend this further.

1.3.1 Assignment and indexing

This notation can also be used for assignment. The following expression replaces the second
component with a new value:

‘V[Q] = 10

10

The right hand side is returned, not the value for v. We can check that v is now (1, 10) by
showing it:

v

2-element Array{Int64,1}:
1
10

http://julia.readthedocs.org/en/latest/manual/arrays/#indexing

The assignment v[2] is different than the initial assignment v=[1,2] in that, v[2]=10
modifies the container that v points to, whereas v=[1,2] replaces the binding for v. The
indexed assignment is then more memory efficient when vectors are large. This point is also
of interest when passing vectors to functions, as a function may modify components of the
vector passed to it, though can’t replace the container itself.

1.4 Some functions useful when working with vectors.

As mentioned, the length function returns the number of components in a vector. It is one
of several useful functions for vectors.

The sum and prod function will add and multiply the elements in a vector:

v = [1:1:233’5:8]
sum(v), prod(v)

| (20, 240)

The unique function will throw out any duplicates:

‘unique(v)

5-element Array{Int64,1}:
1

Q0 o w N

The functions maximum and minimum will return the largest and smallest values of an appro-
priate vector.

v = [1:4:2,3]
maximum(v)

4

(These should not be confused with max and min which give the largest or smallest value
over all their arguments.)

The extrema function returns both the smallest and largest value of a collection:

‘extrema(v)

1, @

The sort function will rearrange the values in v:

‘sort(v)

4-element Array{Int64,1}:
1

2
3
4
The keyword argument, rev=false can be given to get values in decreasing order:

‘sort(v, rev=false)

4-element Array{Int64,1}:
1

2
3
4
For adding a new element to a vector the push! method can be used, as in

‘push!(v, 5)

5-element Array{Int64,1}:
1

g w N e

To append more than one value, the append! function can be used:

| append! (v, [6,8,71)

8-element Array{Int64,1}:
1

~N 00 O O W N D

These two functions modify or mutate the values stored within the vector v that passed as an
argument. In the push! example above, the value 5 is added to the vector of 4 elements. In

10

Julia, a convention is to name mutating functions with a trailing exclamation mark. (Again,
these do not mutate the binding of v to the container, but do mutate the contents of the
container.) There are functions with mutating and non-mutating definitions, an example is
sort and sort!.

If only a mutating function is available, like push!, and this is not desired a copy of the
vector can be made. It is not enough to copy by assignment, as with w = v. As both wand v
will be bound to the same memory location. Rather, you call copy to make a new container
with copied contents, as in w = copy(v).

Creating new vectors of a given size is common for programming, though not much use will
be made here. There are many different functions to do so: ones to make a vector of ones,
zeros to make a vector of zeros, trues and falses to make Boolean vectors of a given size,
and similar to make a similar-sized vector (with no particular values assigned).

1.5 Applying functions element by element to values in a vector
Functions such as sum or length are known as reductions as they reduce the "dimensionality”
of the data: a vector is in some sense 1-dimensional, the sum or length 0-dimensional.
Applying a reduction is straightforward, it is just a regular function call.

Other desired operations with vectors act differently. Rather than reduce a collection of
values using some formula, the goal is to apply some formula to each of the values, returning
a modified vector. A simple example might be to square each element, or subtract the
average value from each element. An example comes from statistics. When computing a
variance, we start with data xq,zs, ..., x, and along the way form the values (z; — 7)?, (22 —

)% ..., (v, — 7).

Such things can be done in many differents ways. Here we describe two, but will primarily
utilize the first.

1.5.1 Broadcasting a function call

If we have a vector, xs, and a function, £, to apply to each value, there is a simple means to
achieve this task. By adding a ”"dot” between the function name and the parenthesis that
enclose the arguments, instructs Julia to "broadcast” the function call. The details allow
for more flexibility, for this purpose, broadcasting will take each value in xs and apply f to
it, returning a vector of the same size as xs. When more than one argument is involved,
broadcasting will try to fill out different sized objects.

For example, the following will find, using sqrt, the square root each value in a vector:

xs = [1, 1, 3, 4, 7]
sqrt. (xs)

5-element Array{Float64,1}:
1.0

1.0

1.7320508075688772

2.0

11

‘ 2.6457513110645907

This would find the sine of each number in xs:

‘sin.(xs)

5-element Array{Float64,1}:
0.8414709848078965
0.8414709848078965
0.1411200080598672
-0.7568024953079282
0.6569865987187891

The ~ operator is an infix operator. It too can be broadcast by using the form .7, as in:

‘xs T2

5-element Array{Int64,1}:
1
1
9
16
49

Here is an example involving the logarithm of a set of numbers. In astronomy, a logarithm
with base 100%/° is used for star brightness. We can use broadcasting to find this value for
several values at once through:

xs = [1/5000, 1/500, 1/50, 1/5, 5, 50]
b = (100)~(1/5)
log. (b, xs)

6-element Array{Float64,1}:
-9.247425010840049
-6.747425010840047
-4.247425010840047
-1.747425010840047
1.747425010840047
4.247425010840047

Broadcasting with multiple arguments allows for mixing of vectors and scalar values, as
above, making it convenient when parameters are used.

As a final example, the task from statistics of centering and then squaring can be done with
broadcasting. We go a bit further, showing how to compute the (unbiased) sample variance
of a data set. This has the formula (1/(n — 1)) - ((x; — 2)®> + -+ + (2, + Z)?). It can be
computed, with broadcasting, through:

12

http://tinyurl.com/ycp7k8ay
http://tinyurl.com/p6wa4r8

import Statistics: mean

xs = [1, 1, 2, 3, 5, 8, 13]

n = length(xs)

(1/(n-1)) * sum(abs2.(xs .- mean(xs)))

19.57142857142857

This shows many of the manipulations that can be made with vectors. Rather than write
.72, we follow the defintion of var and chose the possibly more performant abs2 function
which, in general, efficiently finds |z|? for various number types. The .- uses broadcasting
to subtract a scalar (mean(xs)) from a vector (xs). Without the ., this would error.

The map function is very much related to broadcasting and similarly named functions
are found in many different programming languages. (The "dot” broadcast is mostly
limited to Julia and based on a similar usage of a dot in MATLAB.) For those familiar
with other programming languages, using map may seem more natural. Its syntax is
map(f, xs).

1.5.2 Comprehensions

In mathematics, set notation is often used to describe elements in a set.

For example, the first 5 cubed numbers can be described by:

{2* :2in 1,2,...,5}

Comprehension notation is similar. The above could be created in Julia with:

xs = [1,2,3,4,5]
[x"3 for x in xs]

5-element Array{Int64,1}:
1
8
27
64
125

Something similar can be done more succinctly:

‘xs .o 3

5-element Array{Int64,1}:
1
8
27
64
125

13

However, comprehensions have a value when more complicated expressions are desired as
they work with an expression of x, and not a pre-defined or user-defined function.

Another typical example of set notation might include a condition, such as, the numbers
divisible by 7 between 1 and 100. Set notation might be:

{z :rem(z,7) =0 for z in 1,2,...,100}.

This would be read: "the set of x such that the remainder on division by 7 is 0 for all x in
1,2,...,100”

In Julia, a comprehension can include an if clause to mirror, somewhat, the math notation.
For example, the above would become (using 1:100 as a means to create the numbers
1,2,...,100, as will be described in a later section):

‘[X for x in 1:100 if rem(x,7) == 0]

14-element Array{Int64,1}:
7
14
21
28
35
42
49
56
63
70
77
84
91
98

Comprehensions can be a convenient means to describe a collection of numbers, especially
when no function is defined, but the simplicity of the broadcast notation (just adding a

9999

judicious ") leads to its more common use in these notes.

Example: creating a ”T” table for creating a graph The process of plotting a
function is usually first taught by generating a "T” table: values of x and corresponding
values of y. These pairs are then plotted on a Cartesian grid and the points are connected
with lines to form the graph. Generating a "T” table in Julia is easy: create the z values,
then create the y values for each x.

To be concrete, let’s generate 7 points to plot f(z) = 2% over [—1,1].

The first task is to create the xs. We will see later, more convenient ways to generate
patterned data, but for now, we do this by hand:

a,b, n=-1, 1, 7
d = (b-a) // (n-1)
xs = [a, atd, a+2d, a+3d, a+4d, a+5d, a+6d]

14

7-element Array{Rational{Int64},1}:
-1//1
-2//3
-1//3
0//1
1//3
2//3
1//1

To get the corresponding y values, we can use a compression (or define a function and
broadcast):

‘ys = [x72 for x in xs]

7-element Array{Rational{Int64},1}:
1//1

4//9

1//9

0//1

1//9

4//9

1//1

Vectors can be compared together by combining them into a separate container, as follows:

‘[xs ys]

7x@*(2 Array(*@{Rational{Int64},2}:
-1//1 1//1
-2//3 4//9
-1//3 1//9
0//1 0//1
1//3 1//9
2//3 4//9
1//1 1//1

(If there is a space between objects they are horizontally combined. In our construction of
vectors using [] we used a comma for vertical combination. More generally we should use a
; for vertical concatenation.)

In the sequel, we will typically use broadcasting for this task using two steps: one to define
a function the second to broadcast it.

The style generally employed here is to use plural variable names for a collection of
values, such as the vector of y values and singular names when a single value is being
referred to, leading to expressions like "x in xs”.

15

1.6 Other container types

Vectors in Julia are a container, one of many different types. Another useful type for
programming purposes are tuples. If a vector if formed by placing comma-separated values
within a [] pair (e.g., [1,2,3]), a tuple is formed by placing comma-separated values withing
a () pair. I tuple of length 1 uses a convention of a trailing comma to distinguish it from a
parethesized expression (e.g. (1,) is a tuple, (1) is just the value 1).

Tuples are used in programming, as they don’t typically require memory to be used so they
can be faster. Internal usages are for function arguments and function return types. Unlike
vectors, tuples can be heterogeneous collections. (When commas are used to combine more
than one output into a cell, a tuple is being used.)

Also unlike vectors, tuples can have names which can be used for referening a value, similar
to indexing but possibly more convenient. Named tuples as similar to dictionaries which are
used to associate a key (like a name) with a value.

1.7 Questions

® Question
Which command will create the vector v = (4, 3)7

1. v = {4, 3}

2. v="43'

3. v = <4,3>

4. v = [4,3]

5. v = (4,3)
® Question

Which command will create the vector with components 74,3,2,177

1. v = [4,3,2,1]
2. v = (4,3,2,1)
3. v =<4,3,2,1>
4. v = {4,3,2,1}

5. v = '4, 3, 2, 1'

® Question
What is the magnitude of the vector ¥ = (10, 15)?

® Question
Which of the following is the unit vector in the direction of v = (3, 4)7?

1. [1.0, 1.33333]

16

2. [1, 1]
3. [0.6, 0.8]
4. [3, 4]

® Question
What vector is in the same direction as v = (3, 4) but is 10 times as long?

1. [9.48683, 12.6491]
2. [3, 4]

3. [10, 10]

4. [30, 40]

® Question
If 7= (3, 4) and @ = (1, 2) find 20+ 5.

1. [5, 10]

o

(4, 6]

@

(6, 8]
4. [11, 18]

® Question
Let v be defined by:

|v =11, 1, 2, 3, 5, 8, 13, 21]

What is the length of v7
What is the sum of v?
What is the prod of v?

® Question
From transum.org.

17

http://www.transum.org/Maths/Exam/Online_Exercise.asp?Topic=Vectors

VAN NNNNNN Y

JAVAVAVAVAVAVAVAVAW

JAVAVAVAVAVAVA

IVAVAVAVAVAVAV.

™/

The figure shows 5 vectors.

Express vector ¢ in terms of a and b:

1. a-b
2. 3a
3.a+b
4. b-a
5. 3b

Express vector d in terms of a and b:

1. 3b
2.a-b
3. 3a
4. b-a
5. a+b

Express vector e in terms of a and b:

1. 3b

18

2. 3a

3.a+b

4. b-a

5.a-b
® Question
If xs=[1, 2, 3, 4] and f(x) = x~2 which of these will not produce the vector [1, 4, 9,
1617

1. £.(xs)

2. map(f, xs)

3. [f(x) for x in xs]

4. All three of them work

® Question
Let f(z) = sin(z) and g(x) = cos(z). In the interval [0, 27] the zeros of g(x) are given by

|zs = [pi/2, 3pi/2]

2-element Array{Float64,1}:
1.5707963267948966
4.71238898038469

What construct will give the function values of f at the zeros of g7

1. sin(zs)
2. sin. (zs)
3. sin(.zs)

4. .sin(zs)

® Question

If zs = [1,4,9,16] which of these commands will return [1.0, 2.0, 3.0, 4.0]7
1. sqrt(zs)
2. sqrt.(zs)
3. zs7(1/2)

4. zs~(1./2)

19

	Vectors
	Vectors in Julia
	Higher dimensional vectors
	Indexing
	Assignment and indexing

	Some functions useful when working with vectors.
	Applying functions element by element to values in a vector
	Broadcasting a function call
	Comprehensions

	Other container types
	Questions

