1 2D and 3D plots in Julia with Plots

This covers plotting the typical 2D and 3D plots in Julia with the Plots package.

using Plots

using LinearAlgebra, ForwardDiff

import PyPlot

import Contour: contours, levels, level, lines, coordinates

We will make use of some helper functions that will simplify plotting. These will be described
in more detail in the following:

xs_ys(vs) = Tuple(eltype(vs[1]) [vs[i] [j] for i in 1:length(vs)] for j in eachindex(fir:
xs_ys(v,vs...) = xs_ys([v, vs...])
xs_ys(r::Function, a, b, n=100) = xs_ys(r.(range(a, stop=b, length=n)))

function arrow!(p, v; kwargs...)
if length(p) ==
quiver! (xs_ys([pl)..., quiver=Tuple(xs_ys([v])); kwargs...)
elseif length(p) ==
3d quiver needs support
https://github.com/JuliaPlots/Plots.jl/issues/319#issue-1569652535
headless arrow instead
plot!(xs_ys(p, pt+v)...; kwargs...)
end
end

We will also use the ForwardDiff for derivatives and use the "prime” notation:

using ForwardDiff

function D(f, n::Int=1)
n < 0 & throw(ArgumentError("n is a non-negative integer"))
n == 0 && return £
n == 1 && return t -> ForwardDiff.derivative(f, float(t))
D(D(f), n-1)

end

Base.adjoint(r: :Function) = D(r)

We will need to manipulate contours directly, so pull in the Contours package, using import
to avoid name collisions and explicitly listing the methods we will use:

import Contour: contours, levels, lines, coordinates
Finally, we need some features for vectors:

using LinearAlgebra

1.1 Parametrically described curves in space

Let 7(t) be a vector-valued function with values in R?, d being 2 or 3. A familiar example
is the equation for a line that travels in the direction of v and goes through the point P:
r(t) = P+t-9. A parametric plot over [a,b] is the collection of all points r(t) for a <t <b.

In Plots, parameterized curves can be plotted through two interfaces, here illustrated for
d = 2: plot(f1, £2, a, b) or plot(xs, ys). The former is convenient for some cases,
but typically we will have a function r(t) which is vector-valued, as opposed to a vector of
functions. As such, we only discuss the latter.

An example helps illustrate. Suppose r(t) = (sin(t), 2 cos(t)) and the goal is to plot the full
ellipse by plotting over 0 < ¢t < 2w. As with plotting of curves, the goal would be to take
many points between a and b and from there generate the x values and y values.

Let’s see this with 5 points, the first and last being identical due to the curve:

r(t) = [sin(t), 2cos(t)]
ts = range(0, stop=2pi, length=5)

Then we can create the 5 points easily through broadcasting:
vs = r.(ts)

This returns a vector of points (stored as vectors). The plotting function wants two col-
lections: the set of x values for the points and the set of y values. The data needs to be
generated differently or reshaped. The function xs_ys above takes data in this style and
returns the desired format, returning a tuple with the x values and y values pulled out:

xs_ys(vs)
To plot this, we "splat” the tuple so that plot gets the arguments separately:
plot(xs_ys(vs)...)

This basic plot is lacking, of course, as there are not enough points. Using more initially is a
remedy. Rather than generate the ts separately, xs_ys has a simple frontend xs_ys(r, a,
b) which does this work itself:

plot(xs_ys(r, 0, 2pi, 100)...)

1.1.1 Plotting a space curve in 3 dimensions

A parametrically described curve in 3D is similarly created. For example, a helix is described
mathematically by r(t) = (sin(t), cos(t),t). Here we graph two turns:

r(t) = [sin(t), cos(t), t]
plot(xs_ys(r, 0, 4pi)...)

