
1 Substitution

The technique of u-substitution is derived from reversing the chain rule: [f(g(x))]′ = f ′(g(x))g′(x).
Suppose that g and u′(x) are integrable functions. Then both these integrals are defined:

∫ b

a
g(u(t)) · u′(t)dt, and

∫ u(b)

u(a)
g(x)dx.

We wish to show they are equal.
Let G be an antiderivative of g, which exists as g is assumed to be continuous. (By the
Fundamental Theorem part I.) Consider the composition G ◦ u. The chain rule gives:

[G ◦ u]′(t) = G′(u(t)) · u′(t) = g(u(t)) · u′(t).

So,

∫ b

a
g(u(t)) · u′(t)dt =

∫ b

a
(G ◦ u)′(t)dt (1)

= (G ◦ u)(b) − (G ◦ u)(a) (the FTC, part II) (2)
= G(u(b)) − G(u(a)) (3)

=
∫ u(b)

u(a)
g(x)dx. (the FTC part II) (4)

That is, this substitution formula applies:

∫ b

a
g(u(x))u′(x)dx =

∫ u(b)

u(a)
g(x)dx.

We have seen a special case of substitution where u(x) = x − c in the formula
∫ b−c

a−c g(x)dx =∫ b
a g(x − c)dx.

The main use of this is to take complicated things inside of the function g out of the function
(the u(x)) by renaming them, then account for the change of name.
Some examples are in order.
Consider:

∫ π/2

0
cos(x)esin(x)dx.

Clearly the sin(x) inside the exponential is an issue. If we let u(x) = sin(x), then u′(x) =
cos(x), and this becomes

∫ u(π/2)

u(0)
exdx = ex

∣∣∣sin(π/2)

sin(0)
= e1 − e0.

This all worked as the problem was such that it was more or less obvious what to choose for
u and G.
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1.0.1 ”u” substitution

The process of identifying the result of the chain rule in the function to integrate is not
automatic, but rather a bit of an art. The basic step is to try some values. Typically, this
is taught by ”substituting” in some value for part of the expression (basically the u(x)) and
seeing what happens.

In the above problem,
∫ π/2

0 cos(x)esin(x)dx, we might just rename sin(x) to be u (suppressing
the ”of x part). Then we need to rewrite the ”dx” part of the integral. We know in this case
that du/dx = cos(x). In terms of differentials, this gives du = cos(x)dx. But this allows us
to substitute in with u and du as is possible:

∫ π/2

0
cos(x)esin(x)dx =

∫ π/2

0
esin(x) · cos(x)dx =

∫ u(π)

u(0)
eudu.

Let’s illustrate with a new problem:
∫ 2

0 4xex2
dx.

Again, we see that the x2 inside the exponential is a complication. Letting u = x2 we have
du = 2xdx. We have 4xdx in the original problem, so we will end up with 2du:

∫ 2

0
4xex2

dx = 2
∫ 2

0
ex2 · 2xdx = 2

∫ u(2)

u(0)
eudu = 2

∫ 4

0
eudu = 2eu

∣∣∣4
u=0

= 2(e4 − 1).

Consider now
∫ 1

0 2x2
√

1 + x3dx. Here we see that the 1 + x3 makes the square root term
complicated. If we call this u, then what is du? Clearly, du = 3x2dx, or (1/3)du = x2dx, so
we can rewrite this as:

∫ 1

0
2x2

√
1 + x3dx =

∫ u(1)

u(0)
2
√

u(1/3)du = 2/3 · u3/2

3/2
∣∣∣2
1

= 4
9

· (23/2 − 1).

Consider
∫ π

0 cos(x)3 sin(x)dx. The cos(x) function inside the x3 function is complicated. We
let u(x) = cos(x) and see what that implies: du = sin(x)dx, which we see is part of the
question. So the above becomes:

∫ π

0
cos(x)3 sin(x)dx =

∫ u(π)

u(0)
u3du = u4

4
∣∣∣0
0

= 0.

Changing limits leaves the two endpoints the same, which means the total area after sub-
stitution is 0. A graph of this function shows that about π/2 the function has odd-like
symmetry, so the answer of 0 is supported by the plot:

using CalculusWithJulia # loads `SymPy`, `QuadGK`
using Plots
f(x) = cos(x)^3 * sin(x)
plot(f, 0, 1pi)

Plot{Plots.PlotlyBackend() n=1}

Consider
∫ e

1 log(x)/xdx. There isn’t really an ”inside” function here, but instead just a tricky
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log(x). If we let u = log(x), what happens? We get du = 1/x · dx, which we see present in
the original. So with this, we have:

∫ e

1

log(x)
x

dx =
∫ u(e)

u(1)
udu = u2

2
∣∣∣1
0

= 1
2

.

Example: Transformations We say that the area intrinsically discussed in the definite
integral A =

∫ b
a f(x − c)dx is unaffected by shifts, in that A =

∫ b−c
a−c f(x)dx. What about

more general transformations? For example: if g(x) = (1/h) · f((x − c)/h) for values c and
h what is the integral over a to b in terms of the function f(x)?
If A =

∫ b
a (1/h) · f((x − c)/h)dx then we let u = (x − c)/h. With this, du = 1/h · dx. This

allows a straight substitution:

A =
∫ b

a

1
h

f(x − c

h
)dx =

∫ (b−c)/h

(a−c)/h
f(u)du.

So the answer is: the area under the transformed function over a to b is the area of the
function over the transformed region.
For example, consider the ”hat” function f(x) = 1 − |x| when −1 ≤ x ≤ 1 and 0 otherwise.
The area under f is just 1 - the graph forms a triangle with base of length 2 and height
1. If we take any values of c and h, what do we find for the area under the curve of the
transformed function?
Let u(x) = (x − c)/h and g(x) = hf(u(x)). Then, as du = 1/hdx

∫ c+h

c−h
g(x)dx =

∫ c+h

c−h
hf(u(x))dx (5)

=
∫ u(c+h)

u(c−h)
f(u)du (6)

=
∫ 1

−1
f(u)du (7)

= 1. (8)

So the area of this transformed function is still 1. The shifting by c we know doesn’t effect
the area, the scaling by h inside of f does, but is balanced out by the multiplication by h
outside of f .

Example: Speed versus velocity The ”velocity” of an object includes a sense of direc-
tion in addition to the sense of magnitude. The ”speed” just includes the sense of magnitude.
Speed is always non-negative, whereas velocity is a signed quantity.
As mentioned previously, position is the integral of velocity, as expressed precisely through
this equation:

x(t) =
∫ t

0
v(u)du − x(0).

What is the integral of speed?
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If v(t) is the velocity, the s(t) = |v(t)| is the speed. If integrating either s(t) or v(t), the
integrals would agree when v(t) ≥ 0. However, when v(t) ≤ 0, the position back tracks so
x(t) decreases, where the integral of s(t) would only increase.
This integral

td(t) =
∫ t

0
s(u)du =

∫ t

0
|v(u)|du,

Gives the total distance traveled.
To illustrate with a simple example, if a car drives East for one hour at 60 miles per hour,
then heads back West for an hour at 60 miles per hour, the car’s position after one hour is
x(2) = x(0), with a change in position x(2) − x(0) = 0. Whereas, the total distance traveled
is 120 miles. (Gas is paid on total distance, not change in position!). What are the formulas
for speed and velocity? Clearly s(t) = 60, a constant, whereas here v(t) = 60 for 0 ≤ t ≤ 1
and −60 for 1 < t ≤ 2.
Suppose v(t) is given by v(t) = (t − 2)3/3 − 4(t − 2)/3. If x(0) = 0 Find the position after 3
time units and the total distance traveled.
We let u(t) = t − 2 so du = dt. The position is given by

∫ 3

0
((t − 2)3/3 − 4(t − 2)/3)dt =

∫ u(3)

u(0)
(u3/3 − 4/3u)du = (u4

12
− 4

3
u2

2
)
∣∣∣1
−2

= 3
4

.

The speed is similar, but we have to work harder:

∫ 3

0
|v(t)|dt =

∫ 3

0
|((t − 2)3/3 − 4(t − 2)/3)|dt =

∫ 1

−2
|u3/3 − 4u/3|du.

But u3/3 − 4u/3 = (1/3) · u(u − 1)(u + 2), so between −2 and 0 it is positive and between
0 and 1 negative, so this integral is:

∫ 0

−2
(u3/3−4u/3)du+

∫ 1

0
−(u3/3−4u/3)du = (u4

12
−4

3
u2

2
)
∣∣∣0
−2

−(u4

12
−4

3
u2

2
)
∣∣∣1
0

= 4
3

−− 7
12

= 23
12

.

1.1 SymPy and substitution

The integrate function in SymPy can handle most problems which involve substitution.
Here are a few examples:

• This integral,
∫ 2

0 4x/
√

x2 + 1dx, involves a substitution for x2 + 1:

@vars x t real=true
f(x) = 4x / sqrt(x^2 + 1)
integrate(f(x), (x, 0, 2))

−4 + 4
√

5
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• This integral,
∫ e2

e 1/(x log(x))dx involves a substitution of u = log(x). Here we see the
answer:

f(x) = 1/(x*log(x))
integrate(f(x), (x, e, Sym(e)^2))

log (2)

(We used Sym(e) - and not e - to avoid a conversion to floating point, which would yield an
inexact answer.)
The antiderivative is interesting here:

integrate(f(x), x)

log (log (x))

The answer is an iterated logarithm.

1.1.1 Failures...

Not every integral problem lends itself to solution by substitution. For example, we can
use substitution to evaluate the integral of xe−x2 , but for e−x2 or x2e−x2 . The first has no
familiar antiderivative, the second is done by a different technique.
Even when substitution can be used, SymPy may not be able to algorithmically identify
it. The algorithm used can determine if expressions involving rational functions, radicals,
logarithms, and exponential functions is integrable. Missing from this list are absolute values,
so something as simple as

integrate(abs(x), (x, -2, 2))

4

is not found.
For such problems, we know how to help SymPy out - we can break the integral into pieces
where we know the sign of the expression.
For substitution problems, we can also help out. For example, find an antiderivative for

∫
(1 + log(x))

√
1 + (x log(x))2dx

A quick attempt with SymPy turns up nothing:
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f(x) = (1 + log(x)) * sqrt(1 + (x*log(x))^2 )
integrate(f(x), x)

∫ √
x2 log (x)2 + 1 (log (x) + 1) dx

But were we to try u = x log(x), we’d see that this simplifies to
∫ √

1 + u2du, which has
some hope of having an antiderivative.
We can help SymPy out by substitution:

u(x) = x * log(x)
@vars w dw
ex = f(x)
ex = ex(u(x) => w, diff(u(x),x) => dw)

dw
√

w2 + 1

This verifies the above. Can it be integrated in w? The ”dw” is only for familiarity, SymPy
doesn’t use this, so we set it to 1 then integrate:

ex = ex(dw => 1)
ex1 = integrate(ex, w)

w
√

w2 + 1
2

+ asinh (w)
2

Finally, we put back in the u(x) to get an antiderivative.

ex1(w => u(x))

x
√

x2 log (x)2 + 1 log (x)
2

+ asinh (x log (x))
2

Lest it be thought this is an issue with SymPy, but not other systems, this example was
borrowed from an illustration for helping Mathematica.

1.2 Trigonometric substitution

Wait, in the last example an antiderivative for
√

1 + u2 was found. But how? We haven’t
discussed this yet.
This can be found using trigonometric substitution. In this example, we know that 1+tan(θ)2

simplifies to sec(θ)2, so we might try a substitution of tan(u) = x. This would simplify√
1 + x2 to

√
1 + tan(u)2 =

√
sec(u)2 which is |sec(u)|. What of du? The chain rule gives

sec(u)2du = dx. In short we get:
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∫ √
1 + x2dx =

∫
sec(u)2|sec(u)|du =

∫
sec(u)3du

This leaves still the question of integrating sec(u)3, which we aren’t (yet) prepared to discuss,
but we see that this type of substitution can re-express an integral in a new way that may
pay off.

Examples Let’s see some examples where a trigonometric substitution is all that is needed.
Consider

∫
1/(1+x2)dx. This is an antiderivative of some function, but if that isn’t observed,

we might notice the 1 + x2 and try to simplify that. First, an attempt at a u-substitution:
Letting u = 1 + x2 we get du = 2xdx which gives

∫
1/u(2x)du. We aren’t able to address

the ”2x” part successfully, so this attempt is for naught.
Now we try the trigonometric substitution taking advantage of 1+tan(x)2 = sec(x)2. Letting
tan(u) = x yields sec(u)2du = dx and we get:

∫ 1
1 + x2 dx =

∫ 1
1 + tan(u)2 sec(u)2du =

∫
1du = u.

But tan(u) = x, so in terms of x, an antiderivative is just tan−1(x), or the arctangent. Here
we verify with SymPy:

integrate(1/(1+x^2), x)

atan (x)

The expression 1 − x2 can be attacked by the substitution sin(u) = x as then 1 − x2 =
1 − cos(u)2 = sin(u)2. Here we see this substitution being used successfully:

∫ 1√
9 − x2

dx =
∫ 1√

9 − (3 sin(u))2
·3 cos(u)du =

∫ 1
3

√
1 − sin(u)2

·3 cos(u)du =
∫

du = u = sin−1(x/3).

The expression x2 − 1 is a bit different, this lends itself to sec(u) = x for a substitution, for
sec(u)2 − 1 = tan(u)2. For example, we try sec(u) = x to integrate:

∫ 1√
x2 − 1

dx =
∫ 1√

sec(u)2 − 1
·sec(u) tan(u)du =

∫ 1
tan(u)

sec(u) tan(u)du =
∫

sec(u)du.

This doesn’t seem that helpful, but the antiderivative to sec(u) is log|(sec(u) + tan(u))|, so
we can proceed to get:

∫ 1√
x2 − 1

dx =
∫

sec(u)du = log|(sec(u) + tan(u))| = log|x +
√

x2 − 1|.

The equation of an ellipse is x2/a2 + y2/b2 = 1. Suppose a, b > 0. The area under the
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function b
√

1 − x2/a2 between −a and a will then be half the area of the ellipse. Find the
area enclosed by the ellipse.
We need to compute:

2
∫ a

−a
b
√

1 − x2/a2dx = 4b
∫ a

0

√
1 − x2/a2dx.

Letting sin(u) = x/a gives a cos(u)du = dx and an antiderivative is found with:

4b
∫ a

0

√
1 − x2/a2dx = 4b

∫ π/2

0

√
1 − u2a cos(u)du = 4ab

∫ π/2

0
cos(u)2du

The identify cos(u)2 = (1 + cos(2u))/2 makes this tractable:

4ab
∫

cos(u)2du = 4ab
∫ π/2

0
(1
2

+ cos(2u)
2

)du = 4ab(1
2

u+ sin(2u)
4

)
∣∣∣π/2

0
= 4ab(π/4+0) = πab.

Keeping in mind that that a circle with radius a is an ellipse with b = a, we see that this
gives the correct answer for a circle.

1.3 Questions

⊛ Question
For

∫
sin(x) cos(x)dx, let u = sin(x). What is the resulting substitution?

1. ∫
u cos(x)du

2. ∫
u(1 − u2)du

3. ∫
udu

⊛ Question
For

∫
tan(x)4 sec(x)2dx what u-substitution makes this easy?

1.
u = tan(x)

2.
u = tan(x)4

3.
u = sec(x)2

4.
u = sec(x)
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⊛ Question
For

∫
x
√

x2 − 1dx what u substitution makes this easy?

1.
u = x

2.
u = x2

3.
u =

√
x2 − 1

4.
u = x2 − 1

⊛ Question
For

∫
x2(1 − x)2dx will the substitution u = 1 − x prove effective?

1. Yes

2. No

What about expanding the factored polynomial to get a fourth degree polynomial, will this
prove effective?

1. Yes

2. No

⊛ Question
For

∫
(log(x))3/xdx the substitution u = log(x) reduces this to what?

1. ∫
u3du

2. ∫
udu

3. ∫
u3/xdu

⊛ Question
For

∫
tan(x)dx what substitution will prove effective?

1.
u = tan(x)

2.
u = cos(x)
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3.
u = sin(x)

⊛ Question
Integrating

∫ 1
0 x

√
1 − x2dx can be done by using the u-substitution u = 1 − x2. This yields

an integral

∫ b

a

−
√

u

2
du.

What are a and b?

1.
a = 0, b = 0

2.
a = 0, b = 1

3.
a = 1, b = 0

4.
a = 1, b = 1

⊛ Question
The integral

∫ √
1 − x2dx lends itself to what substitution?

1.
tan(u) = x

2.
sin(u) = x

3.
sec(u) = x

4.
u = 1 − x2

⊛ Question
The integral

∫
x/(1 + x2)dx lends itself to what substitution?

1.
sec(u) = x

2.
u = 1 + x2

3.
sin(u) = x
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4.
tan(u) = x

⊛ Question
The integral

∫
dx/

√
1 − x2 lends itself to what substitution?

1.
tan(u) = x

2.
sin(u) = x

3.
sec(u) = x

4.
u = 1 − x2

⊛ Question
The integral

∫
dx/

√
x2 − 16 lends itself to what substitution?

1.
4 sin(u) = x

2.
sin(u) = x

3.
sec(u) = x

4.
4 sec(u) = x

⊛ Question
The integral

∫
dx/(a2 + x2) lends itself to what substitution?

1.
a sec(u) = x

2.
sec(u) = x

3.
tan(u) = x

4.
tan(u) = x

11



⊛ Question
The integral

∫ 1
1/2

√
1 − x2dx can be approached with the substitution sin(u) = x giving:

∫ b

a
cos(u)2du.

What are a and b?

1.
a = 1/2, b = 1

2.
a = π/4, b = π/2

3.
a = π/3, b = π/2

4.
a = π/6, b = π/2

⊛ Question
How would we verify that log|(sec(u) + tan(u))| is an antiderivative for sec(u)?

1. We could differentiate sec(u).

2. We could differentiate log|(sec(u) + tan(u))|
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