
Figure 1: Screenshot of a calculator provided by the Google search engine.

1 Variables

1.1 Assignment

The Google calculator has a button Ans to refer to the answer to the previous evaluation.
This is a form of memory. The last answer is stored in a specific place in memory for retrieval
when Ans is used. In some calculators, more advanced memory features are possible. For
some, it is possible to push values onto a stack of values for them to be referred to at a later
time. This proves useful for complicated expressions, say, as the expression can be broken into
smaller intermediate steps to be computed. These values can then be appropriately combined.
This strategy is a good one, though the memory buttons can make its implementation a bit
cumbersome.
With Julia, as with other programming languages, it is very easy to refer to past evaluations.
This is done by assignment whereby a computed value stored in memory is associated with
a name. The name can be used to look up the value later.
Assignment in Julia is handled by the equals sign and takes the general form variable_name
= value. For example, here we assign values to the variables x and y

x = sqrt(2)
y = 42

42
In an assignment, the right hand side is returned, so it appears nothing has happened.
However, the values are there, as can be checked by typing their name

x

1 . 4 1 4 2 1 3 5 6 2 3 7 3 0 9 5 1

1

Just typing a variable name (without a trailing semicolon) causes the assigned value to be
displayed.
Variable names can be reused, as here, where we redefine x:

x = 2

2
Julia is referred to as a ”dynamic language” which means (in most cases) that a variable
can be reassigned with a value of a different type, as we did with x where first it was assigned
to a floating point value then to an integer value. (Though we meet some cases - generic
functions - where Julia balks at reassigning a variable if the type if different.)
More importantly than displaying a value, is the use of variables to build up more complicated
expressions. For example, to compute

1 + 2 · 34

5 − 6/7
we might break it into the grouped pieces implied by the mathematical notation:

top = 1 + 2*3^4
bottom = 5 - 6/7
top/bottom

3 9 . 3 4 4 8 2 7 5 8 6 2 0 6 8 9

1.1.1 Examples

Example Imagine we have the following complicated expression related to the trajectory
of a projectile with wind resistance:

(
g

kv0 cos(θ)
+ tan(θ)

)
x + g

k2 ln
(

1 − k

v0 cos(θ)
x

)
Here g is the gravitational constant 9.8 and v0, θ and k parameters, which we take to be 200,
45 degrees, and 1/2 respectively. With these values, the above expression can be computed
when x = 100:

g = 9.8
v0 = 200
theta = 45
k = 1/2
x = 100
a = v0 * cosd(theta)
(g/(k*a) + tand(theta))* x + (g/k^2) * log(1 - k/a*x)

9 6 . 7 5 7 7 1 7 9 1 6 3 2 1 6 1
By defining a new variable a to represent a value that is repeated a few times in the expression,
the last command is greatly simplified. Doing so makes it much easier to check for accuracy
against the expression to compute.

2

http://www.researchgate.net/publication/230963032_On_the_trajectories_of_projectiles_depicted_in_early_ballistic_woodcuts

Example A common expression in mathematics is a polynomial expression, for example
−16x2 + 32x − 12. Translating this to Julia at x = 3 we might have:

x = 3
-16*x^2 + 32*x - 12

-6 0
This looks nearly identical to the mathematical expression, but we inserted * to indicate
multiplication between the constant and the variable. In fact, this step is not needed as
Julia allows numeric literals to have an implied multiplication:

-16x^2 + 32x - 12

-6 0

1.2 Where math and computer notations diverge

It is important to recognize that = to Julia is not in analogy to how = is used in mathematical
notation. The following Julia code is not an equation:

x = x^2

9
What happens instead? The right hand side is evaluated (x is squared), the result is stored
and bound to the variable x (so that x will end up pointing to the new value 4 and not the
old one 2); finally the value computed on the right-hand side is returned and in this case
displayed, as there is no trailing semicolon to suppress the output.
This is completely unlike the mathematical equation x = x2 which is typically solved for
values of x that satisfy the equation (0 and 1).

Example Having = as assignment is usefully exploited when modeling sequences. For
example, an application of Newton’s method might end up with this expression:

xi+1 = xi − x2
i − 2
2xi

As a mathematical expression, for each i this defines a new value for xi+1 in terms of a known
value xi. This can be used to recursively generate a sequence, provided some starting point
is known, such as x0 = 2.
The above might be written instead with:

x = 2
x = x - (x^2 - 2) / (2x)

1 . 5

3

Repeating this last line will generate new values of x based on the previous one - no need
for subscripts. This is exactly what the mathematical notation indicates is to be done.

1.3 Context

The binding of a value to a variable name happens within some context. For our simple
illustrations, we are assigning values, as though they were typed at the command line. This
stores the binding in the Main module. Julia looks for variables in this module when it
encounters an expression and the value is substituted. Other uses, such as when variables
are defined within a function, involve different contexts which may not be visible within the
Main module.

The varinfo function will list the variables currently defined in the main workspace.
There is no mechanism to delete a single variable.

Shooting oneselves in the foot. Julia allows us to locally redefine variables that are
built in, such as the value for pi or the function object assigned to sin. For example,
this is a perfectly valid command sin=3. However, it will overwrite the typical value
of sin so that sin(3) will be an error. The binding to sin occurs in the Main module.
This shadows that value of sin bound in the Base module. Even if redefined in Main,
the value in base can be used by fully qualifying the name, as in Base.sin(pi). This
uses the convention module_name.variable_name to look up a binding in a module.

1.4 Variable names

Julia has a very wide set of possible names for variables. Variables are case sensitive and
their names can include many Unicode characters. Names must begin with a letter or an
appropriate Unicode value (but not a number). There are some reserved words, such as
try or else which can not be assigned to. However, many built-in names can be locally
overwritten. Conventionally, variable names are lower case. For compound names, it is not
unusual to see them squished together, joined with underscores, or written in camelCase.

value_1 = 1
a_long_winded_variable_name = 2
sinOfX = sind(45)
__private = 2 # a convention

2

1.4.1 Unicode names

Julia allows variable names to use Unicode identifiers. Such names allow julia notation to
mirror that of many mathematical texts. For example, in calculus the variable ϵ is often
used to represent some small number. We can assign to a symbol that looks like ϵ using
Julia’s LaTeX input mode. Typing \epsilon[tab] will replace the text with the symbol
within IJulia or the command line.

4

https://docs.julialang.org/en/stable/manual/variables/#Allowed-Variable-Names-1
http://en.wikipedia.org/wiki/List_of_Unicode_characters

ϵ = 1e-10

1 . 0 e - 1 0
Entering Unicode names follows the pattern of ”slash” + LaTeX name + [tab] key. Some
other ones that are useful are \delta[tab], \alpha[tab], and \beta[tab], though there
are hundreds of other values defined.
For example, we could have defined theta (\theta[tab]) and v0 (v_0[tab]) using Unicode
to make them match more closely the typeset math:

θ = 45; v_0 = 200

200

There is even support for tab-completion of emojis such as \:snowman:[tab] or \:koala:[tab]

Example As mentioned, as of Julia v"0.7.0", the value of e is bound to the unicode
value \euler[tab] and not the letter e, so Unicode entry is required to access this constant
This isn’t quite true. The MathConstants module defines e, as well as a few other values
accessed via unicode. This is loaded with the accompanying CalculusWithJulia package.
Alternatively, one can define e = exp(1) and use the variable as desired.

1.5 Tuple assignment

It is a common task to define more than one variable. Multiple definitions can be done in
one line, using semicolons to break up the commands, as with:

a = 1; b = 2; c=3

3
For convenience, Julia allows an alternate means to define more than one variable at a time.
The syntax is similar:

a, b, c = 1, 2, 3

(1, 2, 3)

This sets a=1, b=2, and c=3, as suggested. This construct relies on tuple destructuring. The
expression on the right hand side forms a tuple of values. A tuple is a container for different
types of values, and in this case the tuple has 3 values. When the same number of variables
match on the left-hand side as those in the container on the right, the names are assigned
one by one.
The value on the right hand side is evaluated, then the assignment occurs. The following
exploits this to swap the values assigned to a and b:

5

https://github.com/JuliaLang/julia/blob/master/stdlib/REPL/src/latex_symbols.jl
https://github.com/JuliaLang/julia/blob/master/stdlib/REPL/src/emoji_symbols.jl

a, b = b, a

(2, 1)

Example, finding the slope Find the slope of the line connecting the points (1, 2) and
(4, 6). We begin by defining the values and then applying the slope formula:

x0, y0 = 1, 2
x1, y1 = 4, 6
m = (y1 - y0) / (x1 - x0)

1 . 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Of course, this could be computed directly with (6-2) / (4-1), but by using familiar names
for the values we can be certain we apply the formula properly.

1.6 Questions

⊛ Question
Let a = 10, b = 2.3, and c = 8. Find the value of (a − b)/(a − c).
⊛ Question
Let x = 4. Compute y = 100 − 2x − x2. What is the value:
⊛ Question
What is the answer to this computation?

a = 3.2; b=2.3
a^b - b^a

⊛ Question
For longer computations, it can be convenient to do them in parts, as this makes it easier to
check for mistakes.
For example, to compute

p − q√
p(1 − p)

for p = 0.25 and q = 0.2 we might do:

p, q = 0.25, 0.2
top = p - q
bottom = sqrt(p*(1-p))
ans = top/bottom

What is the result of the above?

6

⊛ Question
Using variables to record the top and the bottom of the expression, compute the following
for x = 3:

y = x2 − 2x − 8
x2 − 9x − 20

.

⊛ Question
Which if these is not a valid variable name (identifier) in Julia:

1. fahrenheit451

2. aMiXeDcAsEnAmE

3. 5degreesbelowzero

4. some_really_long_name_that_is_no_fun_to_type

⊛ Question
Which of these symbols is one of Julia’s built-in math constants?

1. oo

2. E

3. I

4. pi

⊛ Question
What key sequence will produce this assignment

δ = 1/10

1. delta[tab] = 1/10

2. \delta[tab] = 1/10

3. $\\delta$ = 1/10

⊛ Question
Which of these three statements will not be a valid way to assign three variables at once:

1. a,b,c = 1,2,3

2. a=1, b=2, c=3

3. a=1; b=2; c=3

7

⊛ Question
The fact that assignment always returns the value of the right hand side and the fact that
the = sign associates from right to left means that the following idiom:

x = y = z = 3

Will always:

1. Throw an error

2. Create 3 linked values that will stay synced when any value changes

3. Assign all three variables at once to a value of 3

8

	Variables
	Assignment
	Examples

	Where math and computer notations diverge
	Context
	Variable names
	Unicode names

	Tuple assignment
	Questions

