1 Vectors and matrices

In vectors we introduced the concept of a vector. A vector mathematically is a geometric
object with two attributes a magnitude and a direction. (The direction is undefined in the
case the magnitude is 0.) Vectors are typically visualized with an arrow, where the anchoring
of the arrow is context dependent and is not particular to a given vector.

Vectors and points are related, but distinct. Let’s focus on 3 dimensions. Mathematically,
the notation for a point is p = (z, vy, z) while the notation for a vector is ¥ = (z,y, z). The
1th component in a vector is referenced by a subscript: v;. With this, we may write a typical
vector as U = (vy, Vs, ..., v,) and a vector in n = 3 as ¥ = (vy, va,v3). The different grouping
notation distinguishes the two objects. As another example, the notation {z,y, z} indicates
a set. Vectors and points may be identified by anchoring the vector at the origin. Set’s are
quite different from both, as the order of their entries is not unique.

In Julia, the notation to define a point and a vector would be identical, using square
brackets to group like-type values: [x, y, z]. The notation (x,y,z) would form a tuple
which though similar in many respects, tuples do not have the operations associated with a
point or a vector defined for them.

The square bracket constructor has some subtleties:

e [x,y,z] calls vect and creates a 1-dimensional array

e [x; y; z] calls vcat to vertically concatenate values together. With simple numbers
the two are identical, but not in other cases. (For example, is A is a matrix then [A,A]
is a vector of matrices, [A;A] is a matrix combined from the two pieces.

e [x y z] calls hcat to horizontally concatenate values together. If x, y are numbers
then [x y] is not a vector, but rather a 2D array with a single row and two columns.

o finally [w x; y z] calls hvcat to horizontally and vertically concatenate values to-
gether to create a container in two dimensions, like a matrix.

(A vector, mathematically, is a one-dimensional collection of numbers, a matrix a two-
dimensional rectangular collection of numbers, and an array an n-dimensional rectangular-
like collection of numbers. In Julia, a vector can hold a collection of objects of arbitrary
type, though generally all of the same type.)

1.1 Vector addition, scalar multiplication

As seen earlier, vectors have some arithmetic operations defined for them. As a typical use of
vectors, mathematically, is to collect the x, y, and 2z (in 3D) components together, operations
like addition and subtraction operate component wise. With this, addition can be visualized
geometrically: put the tail of ¥ at the tip of @ and draw a vector from the tail of u to the tip
of ' and you have @+ v. This is identical by v+ @ as vector addition is commutative. Unless
u and U are parallel or one has 0 length, the addition will create a vector with a different
direction from the two.

Another operation for vectors is scalar multiplication. Geometrically this changes the mag-
nitude, but not the direction of a vector, when the scalar is positive. Scalar multiplication is

../precalc/vectors.html
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Euclidean_vector

defined component wise, like addition so the ith component of ¢v'is ¢ times the ith component
of . When the scalar is negative, the direction is "reversed.”

To illustrate we first load our package and define two 3D vectors:

using CalculusWithJulia
u, v = [1, 2, 3], [4, 3, 2]

| ([1, 2, 3], [4, 3, 2D)

The sum is component-wise summation (1+4, 2+3, 3+2):

lu + v

3-element Array{Int64,1}:
5
5
5

For addition, as the components must pair off, the two vectors being added must be the
same dimension.

Scalar multiplication by 2, say, multiplies each entry by 2:

‘2 * u

3-element Array{Int64,1}:
2
4
6

1.2 The length and direction of a vector

If a vector ¥ = (v, va,...,v,) then the norm (also Euclidean norm or length) of ¥ is defined
by:

13 = /o3 + 03 + - + 02,

The definition of a norm leads to a few properties. First, if ¢ is a scalar, ||cv|| = |¢|||V]| - which
says scalar multiplication by ¢ changes the length by |c|. (Sometimes, scalar multiplication
is described as "scaling by....”) The other property is an analog of the triangle inequality, in
which for any two vectors ||+ || < ||U|| + ||&]|. The right hand side is equal only when the
two vectors are parallel and addition is viewed as laying them end to end.

A vector with length 1 is called a unit vector. Dividing a non-zero vector by its norm will
yield a unit vector, a consequence of the first property above. Unit vectors are often written
with a "hat:” .

The direction indicated by ¥ can be visualized as an angle in 2 or 3 dimensions, but in higher
dimensions, visualization is harder. For 2-dimensions, we might associate with a vector, it’s
unit vector. This in turn may be identified with a point on the unit circle, which from
basic trigonometry can be associated with an angle. Something similar, can be done in 3
dimensions, using two angles. However, the ”direction” of a vector is best thought of in
terms of its associated unit vector. With this, we have a decomposition of a vector ¢ into a
magnitude scalar and a direction when we write ¥ = ||9]| - (¢/|7]|) = ||7]|0.

1.3 Visualization of vectors

Vectors may be visualized in 2 or 3 dimensions using Plots. In 2 dimensions, the quiver
function may be used. To graph a vector, it must have its tail placed at a point, so two
values are needed.

To plot u=[1,2] from p=[0,0] we have the following usage:

using Plots
gr()
quiver([0], [0], quiver=([1],[2]))

20 -

15

10

05

O'O_l 1 1 1 1
0.00 0.25 0.50 0.75 1.00

The cumbersome syntax is typical here. We naturally describe vectors and points using
[a,b,c] to combine them, but the plotting functions want to plot many such at a time and
expect vectors containing just the x values, just the y values, etc. The above usage looks a
bit odd, as these vectors of x and y values have only one entry. Converting from the one
representation to the other requires reshaping the data, which we will do with the following
function from the CalculusWithJulia package:

‘unzip(vs) = Tuple(eltype(first(vs)) [xyz[j] for xyz in vs] for j in eachindex(first(vs)))

This takes a vector of vectors, and returns a tuple containing the x values, the y values,
etc. So if u=[1,2,3], the unzip([u]) becomes ([1],[2],[3]). And if v=[4,5,6], then
unzip([u,v]) becomes ([1,4],[2,5],[3,6]), etc. (The zip function in base does essen-
tially the reverse operation.)

With unzip defined, we can plot a 2-D vector v anchored at point p through quiver (unzip([pl).. .,
quiver=unzip([v])).

To illustrate, the following defines 3 vectors (the third through addition), then graphs all
three, though in different starting points to emphasize the geometric interpretation of vector
addition.

u=[1, 2]
v =[4, 2]
Ww=u+v
p = [0,0]
quiver(unzip([p]) ..., quiver=unzip([ul]))
quiver! (unzip([ul)..., quiver=unzip([v]))
quiver! (unzip([pl)..., quiver=unzip([w]))
4_
3_
oL
1_
0_I 1 1 1 1 1
0 1 2 3 4 5

Plotting a 3-d vector is not supported in all toolkits with quiver. A line segment may
be substituted and can be produced with plot(unzip([p,p+v])...). To avoid all these
details, the CalculusWithJulia provides the arrow! function to add a vector to an existing
plot. The function requires a point, p, and the vector, v:

With this, the above simplifies to:

plot(legend=false)
arrow! (p, w)
arrow! (u, v)
arrow! (p, w)

The distinction between a point and a vector within Julia is only mental. We use the same
storage type. Mathematically, we can identify a point and a vector, by considering the
vector with its tail placed at the origin. In this case, the tip of the arrow is located at the
point. But this is only an identification, though a useful one. It allows us to "add” a point
and a vector (e.g., writing P + ¥) by imagining the point as a vector anchored at the origin.

To see that a unit vector has the same "direction” as the vector, we might draw them with
different widths:

using LinearAlgebra

v = [2, 3]
u =v / norm(v)
p = [0, 0]

plot(legend=false)
arrow! (p, v)
arrow! (p, u, linewidth=5)

The norm function is in the standard library, LinearAlgebra, which must be loaded first
through the command using LinearAlgebra. (Though here it is redundant, as that package
is loaded when the CalculusWithJulia package is loaded.)

1.4 Aside: review of Julia’s use of dots to work with containers

Julia makes use of the dot, ”.”, in a few ways to simplify usage when containers, such as
vectors, are involved:

o Splatting. The use of three dots, ”...”, to "splat” the values from a container like
a vector (or tuple) into arguments of a function can be very convenient. It was used
above in the definition for the arrow! function: essentially quiver! (unzip([pl)...,
quiver=unzip([v])). The quiver function expects 2 (or 3) arguments describing the
xs and ys (and sometimes zs). The unzip function returns these in a container, so
splatting is used to turn the values in the container into distinct arguments of the
function. Whereas the quiver argument expects a tuple of vectors, so no splatting
is used for that part of the definition. Another use of splatting we will see is with
functions of vectors. These can be defined in terms of the vector’s components or the
vector as a whole, as below:

f(x,y,2) = x72 + y°2 + 272
f(v) = v[1172 + v[2]72 + v[3]72

‘f (generic function with 2 methods)

The first uses the components and is arguably, much easier to read. The second uses indexing
in the function body to access the components. Both uses have their merits. If a function is
easier to write in terms of its components, but an interface expects a vector of components
as it argument, then splatting can be useful, to go from one style to another, similar to this:

g(x,y,2) = x"2 + y 2+ 272
g(v) = g(v...)

‘g (generic function with 2 methods)

The splatting will mean g(v) eventually calls g(x,y,z) through Julia’s multiple dispatch
machinery when v = [x,y,z].

(The three dots can also appear in the definition of the arguments to a function, but there
the usage is not splatting but rather a specification of a variable number of arguments.)

o Broadcasting. For a univariate function, £, and vector, xs, the call £. (xs) broadcasts
f over each value of xs and returns a container holding all the values. This is a compact
alternative to a comprehension when a function is defined. The map function is similar.
When f depends on more than one value, broadcasting can still be used: f.(xs, ys)
will broadcast £ over values formed from both xs and ys. The map function is similar,
but broadcasting has the extra feature of attempting to match up the shapes of xs and
ys when they are not identical. (See the help page for broadcast for more details.)

For example, if xs is a vector and ys a scalar, then the value in ys is repeated many times
to match up with the values of xs. Or if xs and ys have different dimensions, the values of
one will be repeated. Consider this:

xs = ys = [0, 1]
f(x,y) =x +y
f.(xs, ys)

2-element Array{Int64,1}:
0
2

This matches xs and ys to pass (0,0) and then (1,1) to £, returning 0 and 2. Now consider

xs = [0, 1]; ys = [0 1]
f.(xs, ys)

2x0@*(2 Array(*@{Int64,2}:
0 1
1 2

The two dimensions are different so for each value of xs the vector of ys is broadcast. This
returns a matrix now.

At times using the ”apply” notation: x |> £, in place of using f (x) is useful, as it can move
the wrapping function to the right of the expression. To broadcast, . |> is available.

At times the automatic broadcasting is not as desired. A case involving "pairs” will come
up where we want to broadcast the pair as a whole, not the two sides.

1.5 The dot product

There is no concept of multiplying two vectors, or for that matter dividing two vectors. How-
ever, there are two operations between vectors that are somewhat similar to multiplication,
these being the dot product and the cross product. Each has an algebraic definition, but
their geometric properties are what motivate their usage. We begin by discussing the dot
product.

The dot product between two vectors can be viewed algebraically in terms of the following
product. If 7 = (vq,vs,...,v,) and @ = (wy, ws, ..., w,), then the dot product of ¥ and 0 is
defined by:

U+ W = 0wy + VaWg + - - - + VpWy,.

From this, we can see the relationship between the norm, or Euclidean length of a vector:
7 -7 = ||7]|>. We can also see that the dot product is commutative, that is @ - @ = @ - 0.

The dot product has an important geometrical interpolation. Two (non-parallel) vectors will
lie in the same "plane”, even in higher dimensions. Within this plane, there will be an angle
between them within [0, 7]. Call this angle 6. (This means the angle between the two vectors
is the same regardless of their order of consideration.) Then

- = [|T]|[|] cos(8).
If we denoted © = ¥/||0]|, the unit vector in the direction of ¥, then by dividing, we see that

cos(f) = 0 - . That is the angle does not depend on the magnitude of the vectors involved.

The dot product is computed in Julia by the dot function, which is in the LinearAlgebra
package of the standard library. This must be loaded (as above) before its use either directly
or through the CalculusWithJulia package:

u = [1, 2]
v = [2, 1]
dot (u, v)
4
note
Note
In Julia, the unicode operator entered by \cdot [tab] can also be used to mirror
the math notation:
u - v

4

Continuing, to find the angle between « and ¥, we might do this:

ctheta = dot(u/norm(u), v/norm(v))
acos(ctheta)

0.6435011087932845

The cosine of 7/2 is 0, so two vectors which are at right angles to each other will have a dot
product of 0:

u = [1, 2]
v = [2, -1]
u - v

0

In two dimensions, we learn that a perpendicular line to a line with slope m will have slope
—1/m. From a 2-dimensional vector, say @ = (uy,us) the slope is us/u; so a perpendicular
vector to @ will be (ug, —u7), as above. For higher dimensions, where the angle is harder to
visualize, the dot product defines perpendicularness, or orthogonality.

For example, these two vectors are orthogonal, as their dot product is 0, even though we
can’t readily visualize them:

u=[1, 2, 3, 4, 5]
v = [-30, 4, 3, 2, 1]
u - v

0

Projection From right triangle trigonometry, we learn that cos(f) = adjacent /hypotenuse.
If we use a vector, h for the hypotenuse, and @ = (1,0), we have this picture:

h = [2, 3]

a=[1, 0]

h_hat = h / norm(h)
theta = acos(h_hat - a)

plot(legend=false)

arrow! ([0,0], h)

arrow! ([0,0], norm(h) * cos(theta) * a)
arrow! ([0,0], a, linewidth=3)

We used vectors to find the angle made by h, and from there, using the length of the hy-
potenuse is norm(h), we can identify the length of the adjacent side, it being the length of the
hypotenuse times the cosine of §. Geometrically, we call the vector norm(h) * cos(theta)
* a the projection of h onto a, the word coming from the shadow h would cast on the
direction of @ were there light coming perpendicular to da.

The projection can be made for any pair of vectors, and in any dimension n > 1. The
projection of @ on ¥ would be a vector of length @ (the hypotenuse) times the cosine of the
angle in the direction of ¥. In dot-product notation:

u-v v
[e

This can simplify. After cancelling, and expressing norms in terms of dot products, we have:

projs() = |||

S
<y

projz(u) = : —J = (u-0)0,
U

<y

where ¥ is the unit vector in the direction of v.

Example A pendulum, a bob on a string, swings back and forth due to the force of gravity.
When the bob is displaced from rest by an angle 6, then the tension force of the string on
the bob is directed along the string and has magnitude given by the projection of the force
due to gravity.

A force diagram is a useful visualization device of physics to illustrate the applied forces
involved in a scenario. In this case the bob has two forces acting on it: a force due to tension
in the string of unknown magnitude, but in the direction of the string; and a force due to
gravity. The latter is in the downward direction and has magnitude mg, g = 9.8m/sec?
being the gravitational constant.

theta = pi/12
mass, gravity = 1/9.8, 9.8

1 [-sin(theta), cos(theta)]

p=-1

Fg = [0, -mass*gravity]
plot(legend=false)

arrow! (p, 1)

arrow! (p, Fg)

scatter!(p[1:1], p[2:2], markersize=5)

https://en.wikipedia.org/wiki/Free_body_diagram

04 0.6 0.8 10 12

The magnitude of the tension force is exactly that of the force of gravity projected onto
ﬁ as the bob is not accelerating in that direction. The component of the gravity force in
the perpendicular direction is the part of the gravitational force that causes acceleration in
the pendulum. Here we find the projection onto [and visualize the two components of the
gravitational force.

plot(legend=false, aspect_ratio=:equal)
arrow! (p, 1)

arrow! (p, Fg)

scatter! (p[1:1], p[2:2], markersize=5)

proj = (Fg - 1) / (1 -1) %1
porth = Fg - proj

arrow! (p, proj)
arrow! (p, porth, linewidth=3)

Example Starting with three vectors, we can create three orthogonal vectors using projec-
tion and subtraction. The creation of porth above is the pattern we will exploit.

Let’s begin with three vectors in R?:

u-=[1, 2, 3]
v=1[1,1, 2]
w=[1, 2, 4]

10

3-element Array{Int64,1}:
1

2

4

We can find a vector from v orthogonal to u using:

unit_vec(u) = u / norm(u)
projection(u, v) = (u - unit_vec(v)) * unit_vec(v)

vorth = v - projection(v, u)
worth = w - projection(w, u) - projection(w, vorth)

3-element Array{Float64,1}:
-0.33333333333333265
-0.3333333333333336
0.33333333333333354

We can verify the orthogonality through:

‘u.~ vorth, u - worth, vorth - worth

‘(-3.3306690738754696e—16, 8.881784197001252e-16, 3.677613769070831e-16)

This only works when the three vectors do not all lie in the same plane. In general, this is
the beginnings of the Gram-Schmidt process for creating orthogonal vectors from a collection
of vectors.

Algebraic properties The dot product is similar to multiplication, but different, as it
is an operation defined between vectors of the same dimension. However, many algebraic
properties carry over:

<y

e commutative: @ -7 =7 -
o scalar multiplication: (cu) - v = c(u - v).
o distributive @ - (0+ W) =4 -0+ @ - W

The last two can be combined: i - (st + tw) = s(u - V) + t(@ - W).

But associative does not make sense, as (i - ¥) - @/ does not make sense as two dot products:
the result of the first is not a vector, but a scalar.

1.6 Matrices

Algebraically, the dot product of two vectors - pair off by components, multiply these, then
add - is a common operation. Take for example, the general equation of a line, or a plane:

11

https://en.wikipedia.org/wiki/Gram-Schmidt_process

