1 The CalculusWithJulia package

To run the commands in these notes, some external packages must be installed and loaded.

All that is needed is to install the CalculusWithJulia package with:

|1 add CalculusWithJulia

This only needs to be done once.

However, for each new Julia session, the package must be loaded with the following com-
mand:

‘using CalculusWithJulia

‘using CalculusWithJulia.WeaveSupport

That is all. The rest of this page just provides some details for the interested reader.

1.1 The package concept

The Julia language provides the building blocks for the wider Julia ecosystem that enhance
and extend the language’s applicability.

Julia is extended through "packages.” Some of these, such as packages for certain math
constants and some linear algebra operations, are part of all Julia installations and must
simple by loaded to be used. Others, such as packages for finding integrals or (automatic)
derivatives are provided by uses and must first be installed before being used.

1.1.1 Package installation

Package installation is straightforward, as Julia has a package, Pkg, that facilitates this.
The command line and IJulia provide access to the function in Pkg through the escape
command ]. For example, to find the status of all currently installed packages, the following
command can be executed:

‘] status

External packages are typically installed from GitHub and if they are regisered, installation
is as easy as call add:

|1 add QuadGK

That command will consult Julia’s general regisrty for the location of the QuadGK package,
use this location to download the necessary files, if necessary will build or install dependencies,
and then make the package available for use.



For these notes, when the CalculusWithJulia package is installed it will also install all the
other packages that are needed.

Installing the CalculusWithJulia package is the only package necessary to install for
these notes.

See Pkg for more details, such as how to update the set of available packages.

1.1.2 Using a package
The features of an installed package are not available until the package is brought into the
current session. A package need only be installed once, but must be loaded each session.

To load a package, the using keyword is provided:

‘using QuadGK

The above command will make available all ezported function names from the QuadGK package
so they can be directly used, as in:

‘quadgk(sin, 0, pi)

‘(2.0, 1.7905676941154525e-12)

(A command to find an integral of f(z) = sin(z) over [0, 7].)

1.1.3 Package details

When a package if first loaded after installation, or some other change, it will go through a
pre-compilation process. Depending on the package size, this can take a moment to several
seconds. This won’t happen the second time a package is loaded.

However, subsequent times a package is loaded some further compilation is done, so it can
still take some time for a package to load. Mostly this is not noticeable, though with the
plotting package used in these notes, it is.

When a package is loaded, all of its dependent packages are also loaded, but their functions
are not immediately available to the user.

In typical Julia usage, each needed package is loaded on demand. This is faster and also
keeps the namespace (the collection of variable and function names) smaller to avoid colli-
sions. However, for these notes, the package CalculusWithJulia will load all the packages
needed for the entire set of notes, not just the current section. This is to make it easier for
the beginning user.

One issue with loading several packages is the possibility that more than one will export a
function with the same name, causing a collision.

The Julia language is designed around have several "generic” functions each with many
different methods depending on their usage. This design allows many different implemen-
tations for operations such as addition or multiplication yet the user only needs to call one


https://docs.julialang.org/en/v1/stdlib/Pkg/index.html

function name. Packages can easily extend these generic functions by providing their own
methods for their own new types of data. For example, SymPy, which adds symbolic math
features to Julia (using a Python package) extends both + and * for use with symbolic
objects.

This design works great when the "generic” usage matches the package authors needs, but
there are two common issues that arise:

o The extension of a generic is for a type defined outside the author’s package. This
is known as "type piracy” and is frowned on, as it can lead to subtle errors. The
CalculusWithJulia package practices this for one case: using ' to indicate derivatives
for Function objects.

o The generic function concept is not part of base Julia. An example might be the
solve function. This name has a well-defined mathematical usage (e.g., "solve for z.”),
but the generic concept is not part of base Julia. It is part of SymPy and it is part
of DifferentialEquations. That is, both package export this function name. For
the user, if both packages are loaded, then they user must qualify which package’s
solve function they mean, as in SymPy.solve or DifferentialEquations.solve.
(DifferentialEquations is not part of CalculusWithJulia and is just briefly used
in these notes, though is an incredible set of packages and a testament to the strengths
and power of Julia.)



	The CalculusWithJulia package
	The package concept
	Package installation
	Using a package
	Package details



