
1 Number systems

In mathematics, there are many different number systems in common use. For example by
the end of pre-calculus, all of the following have been introduced:

• The integers, {. . . , −3, −2, −1, 0, 1, 2, 3, . . . };

• The rational numbers, {p/q : p, q are integers, q ̸= 0};

• The real numbers, {x : −∞ < x < ∞};

• The complex numbers, {a + bi : a, b are real numbers and i2 = −1}.

On top of these, we have special subsets, such as the natural numbers {0, 1, 2, . . . }, the even
numbers, the odd numbers, positive numbers, non-negative numbers, etc.
Mathematically, these number systems are naturally nested within each other as integers
are rational numbers which are real numbers, which can be viewed as part of the complex
numbers.
Calculators typically have just one type of number - floating point values. These model the
real numbers. Julia, on other other hand, has a rich type system, and within that has many
different number types. There are types that model each of the four main systems above,
and within each type, specializations for how these values are stored.
Most of the details will not be of interest to all, and will be described later.
For now, let’s consider the number 1. It can be viewed as either an integer, rational, real, or
complex number. To construct ”1” in each type within Julia we have these different styles:

1, 1.0, 1//1, 1 + 0im

(1, 1.0, 1//1, 1 + 0im)

The basic number types in Julia are Int, Float64, Rational and Complex, though in
fact there are many more, and the last two aren’t even concrete types. This distinction is
important, as the type of number dictates how it will be stored and how precisely the stored
value can be expected to be to the mathematical value it models.
Though there are explicit constructors for these types, these notes avoid them unless neces-
sary, as Julia’s parser can distinguish these types through an easy to understand syntax:

• integers have no decimal point;

• floating point numbers have a decimal point (or are in scientific notation);

• rationals are constructed from integers using the double division operator, //; and

• complex numbers are formed by including a term with the imaginary unit, im.

1

Heads up, the difference between 1 and 1.0 is subtle (and even more so, as 1. will parse
as 1.0).

Similarly, each type is printed slightly differently.
The key distinction is between integers and floating points. While floating point values
include integers, and so can be used exclusively on the calculator, the difference is that an
integer is guaranteed to be an exact value, whereas a floating point value is typically just an
approximate value - used to advantage, as floating point values can model a much wider set
of numbers.
Now in nearly all cases, the differences are not noticed. Take for instance this simple calcu-
lation involving mixed types.

1 + 1.25 + 3//2

3 . 7 5
The sum of an integer, a floating point number and rational number returns a floating point
number without a complaint.
This is because behind the scenes, Julia will often ”promote” a type to match, so for example
to compute 1 + 1.25 the integer 1 will be promoted to a floating point value and the two
values are then added. Similarly, with 2.25 + 3//2, where the fraction is promoted to the
floating point value 1.5 and addition is carried out.
As floating point numbers are approximations, some values are not quite what they would
be mathematically:

sqrt(2) * sqrt(2) - 2, sin(pi)

(4.440892098500626e-16, 1.2246467991473532e-16)

These values are very small numbers, but not exactly 0, as they are mathematically.

The only common issue is with powers. Julia tries to keep a predictable output from the
input types (not their values). Here are the two main cases that arise where this can cause
unexpected results:

• integer bases and integer exponents can easily overflow. Not only m^n is always an
integer, it is always an integer with a fixed storage size computed from the sizes of m
and n. So the powers can quickly get too big. This can be especially noticeable on
older 32-bit machines, where too big is 232 = 4, 294, 967, 296. On 64-bit machines, this
limit is present but much bigger.

Rather than give an error though, Julia gives seemingly arbitrary answers, as can be seen
in this example on a 64-bit machine:

2

2^62, 2^63

(4611686018427387904, -9223372036854775808)

This could be worked around, but it isn’t, as it would slow down this basic computation. So,
it is up to the user to be aware of cases where their integer values can grow to big. Again,
use floating point numbers in this domain, as they have more room, at the cost of often
being approximate values.

• the sqrt function will give a domain error for negative values:

sqrt(-1.0)

Error: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. T
ry sqrt(Complex(x)).

This is because for real-valued inputs Julia expects to return a real-valued output. Of
course, this is true in mathematics until the complex numbers are introduced. Similarly in
Julia - to take square roots of negative numbers, start with complex numbers:

sqrt(-1.0 + 0im)

0.0 + 1.0im

At one point, Julia had an issue with a third type of power: integer bases and negative
integer exponents. For example 2^(-1). This is now special cased. Historically, the
desire to keep a predictable type for the output (integer) led to defining this case as a
domain error.

1.1 Some more details.

What follows is only needed for those seeking more background.
Julia has abstract number types Integer, Real, and Number. All four types described above
are of type Number, but Complex is not of type Real.
However, a specific value is an instance of a concrete type. A concrete type will also include
information about how the value is stored. For example, the integer 1 could be stored using
64 bits as a signed integers, or, should storage be a concern, as an 8 bits signed or even
unsigned integer, etc.. If storage isn’t an issue, but exactness at all scales is, then it can be
stored in a manner that allows for the storage to grow using ”big” numbers.
These distinctions can be seen in how Julia parses these three values:

3

• 1234567890 will be a 64-bit integer (on newer machines), Int64

• 12345678901234567890 will be a 128 bit integer, Int128

• 1234567890123456789012345678901234567890 will be a big integer, BigInt

Having abstract types allows programmers to write functions that will work over a wide
range of input values that are similar, but have different implementation details.

1.1.1 Integers

Integers are often used casually, as they come about from parsing. As with a calculator,
floating point numbers could be used for integers, but in Julia - and other languages - it
proves useful to have numbers known to have exact values. In Julia there are built-in
number types for integers stored in 8, 16, 32, 64, and 128 bits and BigInts if the previous
aren’t large enough. (8 bits can hold 8 binary values representing 1 of 256 = 28 possibilities,
whereas the larger 128 bit can hold one of 2128 possibilities.) Smaller values can be more
efficiently used, and this is leveraged at the system level, but not a necessary distinction
with calculus where the default size along with an occasional usage of BigInt suffice.

1.1.2 Floating point numbers

Floating point numbers are a computational model for the real numbers. For floating point
numbers, 64 bits are used by default for both 32- and 64-bit systems, though other storage
sizes can be requested. This gives a large - but still finite - set of real numbers that can be
represented. However, there are infinitely many real numbers just between 0 and 1, so there
is no chance that all can be represented exactly on the computer with a floating point value.
Floating point then is necessarily an approximation for all but a subset of the real numbers.
Floating point values can be viewed in normalized scientific notation as a · 2b where a is the
significand and b is the exponent. Save for special values, the significand a is normalized to
satisfy 1 ≤ |a| < 2, the exponent can be taken to be an integer, possibly negative.
As per IEEE Standard 754, the Float64 type gives 52 bits to the precision (with an additional
implied one), 11 bits to the exponent and the other bit is used to represent the sign. Positive,
finite, floating point numbers have a range approximately between 10−308 and 10308, as 308
is about log10 ·21023. The numbers are not evenly spread out over this range, but, rather, are
much more concentrated closer to 0.

You can discover more about the range of floating point values provided by calling a few
different functions.

• typemax(0.0) gives the largest value for the type (Inf in this case).

• prevfloat(Inf) gives the largest finite one, in general prevfloat is the next
smallest floating point value.

• nextfloat(-Inf), similarly, gives the smallest finite floating point value, and in
general returns the next largest floating point value.

• nextfloat(0.0) gives the closest positive value to 0.

4

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Scientific_notation

• eps() gives the distance to the next floating point number bigger than 1.0. This
is sometimes referred to as machine precision.

Scientific notation Floating point numbers may print in a familiar manner:

x = 1.23

1 . 2 3
or may be represented in scientific notation:

6.23 * 10.0^23

6 . 2 3 e 2 3
The special coding aeb (or if the exponent is negative ae-b) is used to represent the number
a · 10b (1 ≤ a < 10). This notation can be used directly to specify a floating point value:

x = 6.23e23

6 . 2 3 e 2 3
The first way of representing this number required using 10.0 and not 10 as the integer
power will return an integer and even for 64-bit systems is only valid up to 10^18. Using
scientific notation avoids having to concentrate on such limitations.

Example Floating point values in scientific notation will always be normalized. This is
easy for the computer to do, but tedious to do by hand. Here we see:

4e30 * 3e40, 3e40 / 4e30

(1.2000000000000001e71, 7.5e9)

The power in the first is 71, not 70 = 30+40, as the product of 3 and 4 as 12 or 1.2e^1.
(We also see the artifact of 1.2 not being exactly representable in floating point.)

Special values: Inf, -Inf, NaN The coding of floating point numbers also allows for the
special values of Inf, -Inf to represent positive and negative infinity. As well, a special
value NaN (”not a number”) is used to represent a value that arises when an operation is not
closed (e.g., 0.0/0.0 yields NaN). Except for negative bases, the floating point numbers with
the addition of Inf and NaN are closed under the operations +, -, *, /, and ^. Here are some
computations that produce NaN:

0/0, Inf/Inf, Inf - Inf, 0 * Inf

5

(NaN, NaN, NaN, NaN)

Whereas, these produce an infinity

1/0, Inf + Inf, 1 * Inf

(Inf, Inf, Inf)

Finally, these are mathematically undefined, but still yield a finite value with Julia:

0^0, Inf^0

(1, 1.0)

Floating point numbers and real numbers Floating point numbers are an abstraction
for the real numbers. For the most part this abstraction works in the background, though
there are cases where one needs to have it in mind. Here are a few:

• For real and rational numbers, between any two numbers a < b, there is another real
number in between. This is not so for floating point numbers which have a finite
precision. (Julia has some functions for working with this distinction.)

• Floating point numbers are approximations for most values, even simple rational ones
like 1/3. This leads to oddities such as this value not being 0:

sqrt(2)*sqrt(2) - 2

4 . 4 4 0 8 9 2 0 9 8 5 0 0 6 2 6 e - 1 6
It is no surprise that an irrational number, like

√
2, can’t be represented exactly within

floating point, but it is perhaps surprising that simple numbers can not be, so 1/3, 1/5, . . .
are approximated. Here is a surprising-at-first consequence:

1/10 + 2/10 == 3/10

false
That is adding 1/10 and 2/10 is not exactly 3/10, as expected mathematically. Such differ-
ences are usually very small and are generally attributed to rounding error. The user needs
to be mindful when testing for equality, as is done above with the == operator.

• Floating point addition is not necessarily associative, that is the property a+(b+ c) =
(a + b) + c may not hold exactly. For example:

6

