juliacon

Proceedings of JuliaCon

StateSpaceModels.jl: a Julia Package for Time-Series
Analysis 1n a State-Space Framework

Raphael Saavedra' 2, Guilherme Bodin' 2, and Mario Souto'?

"Laboratory of Applied Mathematical Programming and Statistics (LAMPS)
2Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

ABSTRACT

StateSpaceModels. j1 is an open-source Julia package for mod-
eling, forecasting and simulating time series in a state-space frame-
work. The package represents a straightforward tool that can be
useful for a wide range of applications that deal with time series. In
addition, it contains features that are not present in related commer-
cial software, such as Monte Carlo simulation and the possibility of
setting any user-defined linear model.

Keywords

State-space models, time-series analysis, Kalman filter, forecasting,
Monte Carlo simulation

1. Motivation

State-space modeling is a classical framework in control engineer-
ing that represents a system through the definition of input, state,
and output variables [18]]. Input variables are external entities that
are inserted into the system and can serve as control inputs or
noise. State variables represent unobserved components that evolve
through time following a given state equation and also depending
on the values of the input variables. Finally, output variables result
from the realization of the state plus noise factors and represent the
observable outcome of the system. In general, state-space models
make use of the Kalman filter [8,|[17] to obtain predictive estimates
for the state.

Due to its comprehensive form and wide range of potential appli-
cations, state-space models found a niche in time-series modeling,
forecasting, and simulation, representing a flexible framework for
time-series analysis with time-varying parameters [S]. The ability
to conveniently define the evolution of a time series allows the char-
acterization of stochastic components, such as trend and seasonal-
ity, that are non-trivial to model in other frameworks.

There are several packages focused on state-space models for time-
series analysis in other languages, such as KFAS in R [6] and
Statsmodels in Python [16]], as well as commercial software such
as STAMP [9]. Among related Julia packages, we highlight:

— Kalman.jl [15], which implements Kalman filtering and
smoothing.

— StateSpace. jl1 [1], a control-oriented package with several
versions of the Kalman filter.

— ControlSystems. j1 [2], a package aimed at control applica-
tions with numerous features, including state-space modeling.

The contributions brought by these packages notwithstanding,
there are currently no state-space model packages aimed at
time-series analysis in Julia. Thus, the main objectives of
StateSpaceModels. j1 [14] are:

(1) to fill this gap by implementing a general and intuitive frame-
work in Julia for modeling, estimating, forecasting and simu-
lating time series with state-space models;

(2) to provide an open-source package that is capable of perform-
ing the same functions as related commercial software such as
STAMP and more;

(3) to develop a package for time-series analysis with state-space
models that is fully implemented in Julia, contrary to related
packages in other languages that depend on C or Fortran
routines [6]].

the Gaussian state-space framework is introduced. In Section
the procedures for model specification are presented. Section [d] ex-
plains the filtering, estimation and smoothing processes. Section 3]
discusses the available diagnostics to evaluate the model specifi-
cation and estimation. In Section[f] the forecasting and simulation
procedures are presented. Section [/| contains examples of applica-
tions that illustrate the use of the package. Finally, conclusions and
future work are provided in Section|[§]

The remainder of this paper is organized as follows. In Section%

2. Gaussian state-space framework

For the sake of consistency and readability, we utilize in the pack-
age the same notation as [3)]. Suppose we have a series of observa-
tions y1, . . ., Yn. In a state-space framework, it is assumed that the
observations depend on a set of unobserved components denomi-
nated states, or simply the state, and denoted by a4, ..., a,. The
state components often have physical interpretations, such as trend
and seasonality in a time-series context or position and speed in a
control setting.

The main idea behind state-space modeling is to define the evolu-
tion of the state and its relation with the observed variables. This is
done through the following two equations, denoted the observation
equation and the state equation, respectively:

Yt = Ziy + €4, e ~ N(0, Hy), (D

Qi1 = Eat + Rt77t7 ne ~ N(O7 Qt)7 (2)

where y, is a p x 1 vector of observations and a is an unobserved
m x 1 vector representing the state at instant ¢. Note that the be-

havior of the system over time is determined by o as defined in
Eq. (), but a; cannot be directly observed, contrary to y;.



Proceedings of JuliaCon

Matrices Z;, T;, and R, are the ones that define how the observa-
tions relate to the state and how the state evolves over time, and
are generally assumed to be known. The error terms €; and 7, are
supposed to be serially independent and independent of each other.
Finally, H; and @, are the covariance matrices of the error terms.
In this package, it is assumed that 7, R, H, and @ are not time-
varying, as this is the case for the vast majority of practical appli-
cations. Conversely, Z, is allowed to vary over time.

Next, for illustration purposes, we present an example model and
show how it can be inserted into the state-space framework. Con-
sider the following model, called the linear trend model:

Yt = Wt + E¢, gr ~ N(0,02), 3)
Het1 = pe + Ve + &, £tNN(07U§)7 @
Vig1 = + G, Gt NN(O,Ug)a 5)

where p; represents the trend component and v; the slope compo-
nent. Note that the we can rewrite this model in the framework of
Eq. (I)—@) in the following manner:

ye = [1 0] oy + &, g: ~ N(0,02), (6)

2
Q1 = {(1) ﬂ o + [(1) ﬂm, Mt NN(B} ﬁ)& Jog}) @)

Similarly, more complex and sophisticated models can also be
modeled in the state-space framework.

3. Model specification

Model specification is the step wherein the user defines the state-
space model they want to consider. This is done through the cre-
ation of a StateSpaceModel structure that contains the observa-
tions y, as well as matrices Z,;, T, and R.

3.1 Predefined models

A set of predefined classical models is available, namely the lo-
cal level model, the linear trend model, the basic structural model,
and the structural model with exogenous variables. These models
can be conveniently defined by calling a function and providing the
observations y;. Note that all models automatically extend to the
multivariate case.

3.1.1 Local level model. The local level model consists of a
stochastic level component that is defined by a random walk:

ye =+, e~ N(0,02), (3
Hepr = pe + &, ftNN(070§)~ C)

A local level StateSpaceModel can be created using:
model = local_level(y)

where y is an observation vector in the univariate case or a matrix
in column-wise fashion in the multivariate case, i.e., each column
representing a variable and each line representing a time period.
While very simple, the local level model can be successfully ap-
plied to a wide array of problems wherein one wants to estimate
some magnitude that varies over time. For instance, in [9], an illus-
trative example utilizes water inflow data from the river Nile.

3.1.2  Linear trend model. The linear trend model consists of a
local level model with the addition of a stochastic slope term,
as seen in Eq. (B)-@). Note that it differs from the local level

1(1), 2019

model due to the inclusion of the slope v; in @). A linear trend
StateSpaceModel can be created using:

model = linear_trend(y)

3.1.3  Structural model. The basic structural model consists of
three stochastic components: trend, slope, and seasonality, defined
in the following manner:

Yo =t +v+en e~ N(0,02), (10)
M1 = pi + v + &, & ~ N(0,0%), (11)
Vit1 = v + G, CtNN(OﬂTg)y (12)

s—1
Vo1 = Y Vs Hwr,  we~ N(0,02). (13)
j=1

In this model, there is a stochastic trend that contains a slope com-
ponent, exactly as the linear trend model. Furthermore, a stochastic
seasonal component is modeled such that its sum over the season-
ality period s is equal to zero except for a noise factor. A basic
structural StateSpaceModel can be created using:

model = structural(y, s)

The idea of the seasonal component is to account for effects that
have a periodic nature, such as monthly temperature over each year.
Additionally, a structural model can contain exogenous variables,
also known as explanatory variables. Exogenous variables repre-
sent external factors that are correlated to the phenomenon in ques-
tion and can, thus, be used to improve the estimation and forecast-
ing by increasing the available information. This model is identical
to (T0)—(T3) except for the observation equation, which has an ad-
ditional exogenous factor:

Y=+ + 0 Xy +er, & NN(O,US) (14)

A structural model with exogenous variables can be created with:
model = structural(y, s; X = X)

where X is a matrix containing the exogenous variables observa-
tions in column-wise fashion.

3.2 User-defined models

Apart from the well-known predefined models presented in Section
[31] the package allows the input of any user-defined linear model
through the definition of matrices Z;, T', and R through the follow-
ing constructor:

model = StateSpaceModel{Float64}(y, Z, T, R)

In the simpler case where Z, is constant, the argument Z can be in-
put as an Array{Float64, 2}. Conversely, if Z; is time-varying,
it must be input as an Array{Float64, 3} where the third dimen-
sion represents the time periods. Any desired float precision can be
employed within the model.



Proceedings of JuliaCon

4. Filtering, estimation, and smoothing

Next, the model needs to be estimated. In this step, values for the
covariance matrices H and @, initially assumed to be unknown,
are obtained via maximum likelihood estimation [4]. In order to do
that, the Kalman filter needs to be utilized. Additionally, a smoother
is applied in order to obtain the so-called smoothed estimates for
the state.

After specifying the model, the estimation step can be called with
the function statespace:

ss = statespace(model; verbose = 1)

In this step, the Kalman filtering, the maximum likelihood esti-
mation of the fixed parameters, and the smoothing are conducted.
The optional argument verbose, which defaults to 1, specifies the
verbosity: 0 for no output, 1 for some progress information, 2 for
progress information and summary of the optimization result and 3
for progress information as well as the full optimization log.

An example of the estimation log with default verbosity can be seen
below.

julia> ss = statespace(model)

StateSpaceModels.jl v0.2.0
(c) Raphael Saavedra, Guilherme Bodin, and Mario Souto, 2019

Starting state-space model estimation.
Initiating maximum likelihood estimation with 3 seeds.

| seed | log-likelihood | time (s) ||
I 0 | -16217.4939 | 0.21 Il
Il 1 | -1350.4763 | 2.65 Il
Il 2 | -1350.4763 | 4.08 Il
Il 3 | -1350.4763 | 5.69 Il

Maximum likelihood estimation complete.
Log-likelihood: -1350.4763
End of state-space model estimation.

4.1 Filtering

The filtering step computes the predictive and filtered states as well
as their covariance matrices at every time period via the Kalman
filter. The predictive state and its variance are given by

i1 = E[Oét+1|Yt]7 (15)
Py = V[a1|Yi], (16)
while the filtered state and its variance are given by
At = E[at|Yt]7 (17)
Pt\t = V[at|Yt]y (18)
where Y; denotes the set of time periods vy, . . ., Y:.

Furthermore, the filter also computes the innovations, or prediction
errors, as well as their covariance matrix at every time period:

v =y — Zay, (19)
Fy = V[uvg]. (20)

The package contains an implementation of the standard Kalman
filter and the square-root Kalman filter [S]]. The latter is a variant

1(1), 2019

which utilizes Cholesky decomposition to ensure that the computed
covariance matrices are positive semidefinite, thus avoiding numer-
ical errors.

Additionally, in order to provide a flexible framework, we allow
the utilization of any user-implemented variant of the Kalman filter
through an abstract type called AbstractFilter:

struct MyKalmanFilter <: AbstractFilter

The choice of the filter type must be done in the estimation step as
follows:

ss = statespace(model; filter_type = SquareRootFilter{Float64})

Filters allow any desired float precision. If no filter_type is pro-
vided, the standard type KalmanFilter{Float64} is utilized as
a default option. Further information on Kalman filtering can be
found in Chapter 4.3 of [5]].

4.2 Estimation

The Kalman filter is responsible for deriving estimates for the pre-
dictive state and for its covariance matrix at each time period, but it
is dependent on the values of the noise covariances H and Q. Thus,
these constant parameters need to be estimated via maximum like-
lihood [4]. The log-likelihood function is given by

n

n, 1
UYn) = =S log2m — 5 3 (log |Fi| +v] F'w), @1

t=1

which depends on the innovations and their covariance matrix at
each time period. Therefore, at each iteration of the optimization,
the Kalman filter needs to be executed to compute the objective
function.

The implemented optimization method RandomSeedsLBFGS gen-
erates random initial values for the parameters and then uses the
L-BFGS algorithm [10] to maximize the log-likelihood function
via the unconstrained optimization package Optim. j1 [12].
Additionally, similar to the filtering step, users are able to
define any desired optimization method through abstract type
AbstractOptimizationMethod:

struct MyOptimizationMethod <: AbstractOptimizationMethod

As with the filter type, the choice of optimization method must be
done in the estimation step:

ss = statespace(model; optimization_method = RandomSeedsLBFGS())

More advanced parameters, such as optimizer tolerances and the
number of seeds, can be set within the RandomSeedsLBFGS con-
structor.

4.3 Smoothing

The smoothing step is conducted after estimation is complete. It
consists in obtaining the so-called smoothed state and its covari-



Proceedings of JuliaCon

ance matrix at each time period, i.e.,

&t = E[at|Yn], (22)
Vi = V[a| V). 23)

Similar to the filtering step, the smoothing is conducted through an
iterative process. The procedure is done backwards, starting from
the final time period n. The smoothed state estimates are useful for
analyzing the behavior of the state components. Further informa-
tion on state smoothing can be found on Chapter 4.4 of [3].

4.4 Missing observations

One interesting property of the Kalman filter and smoother is their
ability to treat missing observations. Suppose we have a time se-
ries spanning time periods ¢ = 1,...,n, but for some periods
T,...,T* we have no observations available. This represents an ob-
stacle for estimating a model in several frameworks. Nonetheless,
the Kalman filter and smoother allow the derivation of minimum
variance linear unbiased estimates for the missing observations so
that a completion of the time series is possible. Conveniently, the
only necessary modification in the filtering and smoothing equa-
tions is considering Z; = 0 for the missing period.

In the package, this is implemented so that any NaN values in the ob-
servations are considered missing observations and automatically
treated in the filtering and smoothing steps. In this way, the estima-
tion is successfully conducted even when the time series of interest
is incomplete.

Consider the following simulated time series composed by a grow-
ing trend plus a Gaussian noise. Additionally, we remove observa-
tions 10 through 20 to treat them as missing:

# Create growing trend series with Gaussian noise
y = collect(1:0.25:20) + 0.5%randn(77)

# Remove observations 10 through 20

y[10:20] .=

# Specify the state-space model and estimate it
model = linear_trend(y)

ss = statespace(model)

The results of the estimation step are presented in Fig. [T} The
predictive, filtered, and smoothed state estimates can be accessed
in ss.filter.a, ss.filter.att, and ss.smoother.alpha,
respectively. It is clear in Fig.[T|that the filter and smoother are able
to effectively capture the growing linear trend of the series even in
the period where observations are missing.

4.5 Estimation outputs

At the end of the filtering, estimation, and smoothing routine ex-
ecuted by the statespace function, a StateSpace structure is
returned. It contains six fields:

— model: the previously defined StateSpaceModel.

— filter: a FilterQOutput structure representing the result of
the Kalman filter. It contains the predictive and filtered states as
well as the innovations and their covariance matrices at each time
period. Furthermore, there is a flag indicating if steady state was
attained and the time period when it was attained.

— smoother: a SmoothedState structure representing the result
of the smoothing procedure. It contains the smoothed state as
well as its covariance matrix at each time period.

— covariance: a StateSpaceCovariance structure which con-
tains the covariance matrices of the observation and state noises.

1(1), 2019

observations

15 filtered state

101

0 10 20 30 40 50 60 70

20—

observations

5 smoothed state

10+

Fig. 1. Automatic completion of missing observations in the filtering and
smoothing.

— filter_type: the defined filter type.
— optimization_method: the defined optimization method.

5. Diagnostics

As a way of evaluating the model specification and estimation, the
package contains basic statistical diagnostics that can be conducted
over the residuals. The available diagnostics are the Jarque-Bera
normality test [[7], the Ljung-Box independence test [3]], and an ho-
moscedasticity test [S]]. The diagnostics can be run through function
diagnostics.

An example of the diagnostics log can be seen below.

julia> diagnostics(ss)

Running diagnostics...

Jarque-Bera: p-value = 0.89683
Ljung-Box: p-value = 0.95855
Homoscedasticity: p-value = 0.30752

6. Forecasting and Simulation

Finally, after the model has been estimated, forecasting and Monte
Carlo simulation can be conducted. In the case of forecasting, es-
timates for the future values of the time series are computed along
with their probability distributions. Alternatively, it is possible to
simulate an arbitrary number of future scenarios of the series,
which is useful for a wide range of applications such as stochas-
tic optimization.

The minimum mean square error forecasts for y; can be obtained
by treating future values of y; as missing values. Forecasting is con-
ducted with the function forecast, which receives a StateSpace
structure coming from the estimation step and the number of time
periods ahead to be forecast, and outputs the minimum square error
forecasts and the predictive distributions of y; at each time period:

pred, dist = forecast(ss, N)

Alternatively, another powerful tool is the simulation of future sce-
narios, since these are used as input by several applications, such



Proceedings of JuliaCon

as certain stochastic optimization models. Performing Monte Carlo
simulation in a time-series state-space framework involves sam-
pling several scenarios for the observation and state errors utiliz-
ing the estimated variances H and () at each time period, and then
computing the state-space recursions for each scenario.

Monte Carlo simulation can be conducted with the use of the func-
tion simulate, which receives a StateSpace structure coming
from the estimation step, the number of time periods ahead IV, and
the number of scenarios S to be simulated, and outputs an N x .S
matrix of scenarios for y,:

scenarios = simulate(ss, N, S)

7. Applications

In this section, we present several practical applications
which can be addressed via state-space modeling. We utilize
StateSpaceModels. j1 to tackle the presented problems and pro-
vide the results. Furthermore, for the sake of reproducibility, the
code of some of the examples is in the folder examples in the
StateSpaceModels. j1 repository [14].

7.1 Airline passengers

As a first example, let us use the classical monthly airline passen-
gers time series. In order to avoid multiplicative effects, we use
the well-known approach of taking the log of the series [11]. Fig.
|Z| shows the log-airline passengers time series. We can estimate a
structural StateSpaceModel as follows.

# Load the AirPassengers dataset

AP = CSV.read("AirPassengers.csv")

# Take the log of the series

logAP = log.(Vector{Float64} (AP[:Passengers]))
# Specify the state-space model

model = structural(logAP, 12)

# Estimate the state-space model

ss = statespace(model)

By estimating a structural model, we can analyze the individual
components of the series, such as trend and seasonality. These com-
ponents are presented in Fig.[3]and represent dimensions 1 and 3 of
the smoothed state, respectively.

We can also forecast the following two years of the time series by
using the forecast function. The result is displayed in Fig.[2]

# Number of months ahead to be forecast
N =24

# Perform forecasting

pred, dist = forecast(ss, N)

7.2 Electricity consumption

Another practical example is the study of monthly electricity con-
sumption in a given area. In this example, we will use real data
from a Brazilian distribution company. In addition, we will con-
sider a temperature series, which is highly correlated to electricity
consumption in Brazil, as an exogenous variable. A similar study
using StateSpaceModels. j1 was conducted in [13].

In this case, our objective is to simulate a large set of future scenar-
ios that can be used as inputs in a stochastic optimization problem

1(1), 2019

6.5

Log- airline passengers
Forecast

Fig. 2. Log-airline passengers historical data and forecast for the follow-
ing two years.

6.00
550
5.25
5.00
NGRS BN N RN G ® & e F & N
& & EAIC A I FFH S S
02
01
00
-0l
J02}k

¥ v P \;QQ’ ESE I N S A I SR N G N

%
o VO K F E LS NS S
F PSS S S
AR AR M - S MR P

RN
Fig. 3. Smoothed trend and seasonal components of the log-airline pas-
sengers time series.

with the goal of obtaining the best contracting strategy for a distri-
bution company. To this end, the function simulate will be used to
perform Monte Carlo simulation. We will also use the square-root
Kalman filter for this application.

# Specify the state-space model

model = structural(consumption, 12; X = temperature)

# Estimate the state-space model

ss = statespace(model; filter_type = SquareRootFilter{Float64})
# Number of months ahead to be simulated

N =24
# Number of scenarios to be simulated
S = 1000

# Perform simulation
sim = simulate(ss, N, S)

The time series and the resulting simulation can be seen in Fig.
[l The future scenarios are graphically represented by their mean,
which is identical to the forecast at each time period, as well as the
5% and 95% quantiles.



Proceedings of JuliaCon

45x10 - /
Energy consumption

——— Mean of scenarios

— — — 5% quantile

[ 0/
4.0x1C - 95% quantile
3.5x10 -
3.0x10 -
2.5x10 [~

L L L L L L L L L L

Fig. 4. Monthly energy consumption historical data and simulation of fu-
ture scenarios.

7.3 Vehicle tracking

Finally, in order to illustrate one application that does not fall into
any of the predefined models, thus requiring a user-defined model,
let us consider an example from control theory. More precisely, we
are going to use StateSpaceModels. jl to track a vehicle from
noisy sensor data. In this case, y; is a 2 x 1 observation vector
representing the corrupted measurements of the vehicle’s position
on the two-dimensional plane in instant ¢. Since sensors collect the
observations with the presence of additive Gaussian noise, we need
to filter the observation in order to obtain a better estimate of the
vehicle’s position.

The position and speed in each dimension compose the state of the
(d)

vehicle. Let us refer to x; ' as the position on the axis d and to
.(d)

&, ’ as the speed on the axis d in instant ¢. Additionally, let nt(d> be
the input drive force on the axis d, which acts as state noise. For a
single dimension, we can describe the vehicle dynamics as

PA A
o=l (1 25+ S

2 24)
. (d . (d
m£+)1 =(1- p)fC,E ) + Atm
where A; is the time step and p is a known damping effect on
speed.
We can cast the dynamical system (24) as a state-space model in
the following manner:

1000
Ye=loo 1ot
2
0 “Z%Ft 0 0 2.
Q1 = 0 1 (1_%&) o + Ot %g Mts
0 0 0 (1-p) 0 A,
where oy = (x§1)7:t§1)7x§2)7jj§2))—r and n; = (77( )777152)) .

We can formulate the vehicle tracking problem in the
StateSpaceModels. j1 framework as:

# State transition matrix
T = kron(Matrix{Float64}(I, p, p), [1 (1 - p x A/ 2) *x /A
0 -p*xAD

1(1), 2019

# Input matrix

R = kron(Matrix{Float64}(I, p, p), [.5 * A"2; A])
# Output (measurement) matrix

Z = kron(Matrix{Float64}(I, p, p), [1 01)

# User defined model

model = StateSpaceModel{Float64}(y, Z, T, R)

# Estimate vehicle speed and position

ss = statespace(model)

In this example, we define the noise variances H and (), generate
the noises and simulate a random vehicle trajectory using the state-
space equations.

Generate random actuators
= .5 x Matrix{Float64}(I, q, q)
= MvNormal (zeros(q), Q)
Generate random measurement noise
= 2. x Matrix{Float64}(I, p, p)
= MvNormal (zeros(p), H)
Simulate vehicle trajectory
= Matrix{Float64}(undef, n + 1, m)
= Matrix{Float64}(undef, n, p)
or t in 1:n
ylt, :1 =2 *
alt + 1, :]1 =
end

Hhd O H# 00 I H#3 O H#

alt, :1 + rand(e)
T * aft, :] + R * rand(n)

An illustration of the results can be seen in Fig. 5] It can be seen that
the measurements are reasonably noisy when compared to the true
position. Furthermore, the estimated positions, represented by the
smoothed state, effectively estimate the true positions with small
inaccuracies.

Measured position
= True position
Estimated position

-200

-300 -

-400 —

Fig. 5. Vehicle tracking using a state-space model.

8. Conclusion

StateSpaceModels. j1 is a flexible package for time-series mod-
eling, forecasting, and simulating that is fully implemented in Ju-
lia. The package contains an implementation of the Kalman filter
and smoother as well as their square-root variants. Additionally,
users have the ability to use any implemented filter or optimiza-
tion method. Missing observations in the form of NaN values are
automatically treated in the filtering and smoothing steps.

Besides comprising several predefined classical models, it is also
possible to define any linear model with the StateSpaceModel



Proceedings of JuliaCon

constructor. Forecasting and Monte Carlo simulation of future sce-
narios are also available. Finally, the package documentation con-
tains a manual with straightforward examples that are simple to
reproduce.

9. References

(1]
(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

StateSpace.jl, [Online]. Available: https://github.com/
ElOceanografo/StateSpace. j1

Fredrik B. Carlson and Mattias Filt. ControlSystems.jl:
A Control Systems Toolbox for Julia, 2016 [Online].
Available: https://github.com/JuliaControl/
ControlSystems. j1

George EP Box and David A Pierce. Distribution of residual
autocorrelations in autoregressive-integrated moving average
time series models. Journal of the American statistical Asso-
ciation, 65(332):1509-1526, 1970.

George Casella and Roger L. Berger. Statistical Inference,
volume 2. Duxbury Pacific Grove, CA, 2002.

James Durbin and Siem Jan Koopman. Time Series Analysis
by State Space Methods. Oxford University Press, 2012.
Jouni Helske. KFAS: Exponential family state space models
in R. Journal of Statistical Software, 78(10):1-39, 2017.
Carlos M Jarque and Anil K Bera. Efficient tests for normal-
ity, homoscedasticity and serial independence of regression
residuals. Economics letters, 6(3):255-259, 1980.

Rudolph Emil Kalman. A new approach to linear filtering and
prediction problems. Journal of basic Engineering, 82(1):35—
45, 1960.

Siem Jan Koopman, Andrew C. Harvey, Jurgen A. Doornik,
and Neil Shephard. STAMP 6.0: Structural time series anal-
yser, modeller and predictor. London: Timberlake Consul-
tants, 2000.

Dong C. Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathematical
programming, 45(1-3):503-528, 1989.

Helmut Liitkepohl and Fang Xu. The role of the log trans-
formation in forecasting economic variables. Empirical Eco-
nomics, 42(3):619-638, 2012.

Patrick Kofod Mogensen and Asbjgrn Nilsen Riseth. Optim:
A mathematical optimization package for Julia. Journal of
Open Source Software, 3(24), 2018.

Raphael Saavedra, Guilherme Bodin, et al. Simulating low
and high-frequency energy demand scenarios in a unified
framework—Part I: Low-frequency simulation. In Proceedings
of the L Simpdsio Brasileiro de Pesquisa Operacional, 2018.
Raphael Saavedra, Guilherme Bodin, and Mario Souto.
StateSpaceModels.jl, [Online]. Available: https:
//github.com/LAMPSPUC/StateSpaceModels. j1

Moritz Schauer. Kalman.jl, [Online]. Available: https://
github.com/mschauer/Kalman. j1

Skipper Seabold and Josef Perktold. Statsmodels: Economet-
ric and statistical modeling with Python. In 9th Python in Sci-
ence Conference, 2010.

Greg Welch, Gary Bishop, et al. An introduction to the
Kalman filter. Technical report, Department of Computer Sci-
ence, University of North Carolina at Chapel Hill, 1995.
Lotfi Zadeh and Charles Desoer. Linear System Theory: The
State Space Approach. Courier Dover Publications, 2008.

1(1), 2019


https://github.com/ElOceanografo/StateSpace.jl
https://github.com/ElOceanografo/StateSpace.jl
https://github.com/JuliaControl/ControlSystems.jl
https://github.com/JuliaControl/ControlSystems.jl
https://github.com/LAMPSPUC/StateSpaceModels.jl
https://github.com/LAMPSPUC/StateSpaceModels.jl
https://github.com/mschauer/Kalman.jl
https://github.com/mschauer/Kalman.jl

	Motivation
	Gaussian state-space framework
	Model specification
	Predefined models
	Local level model
	Linear trend model
	Structural model

	User-defined models

	Filtering, estimation, and smoothing
	Filtering
	Estimation
	Smoothing
	Missing observations
	Estimation outputs

	Diagnostics
	Forecasting and Simulation
	Applications
	Airline passengers
	Electricity consumption
	Vehicle tracking

	Conclusion
	References

