
ADDENDUM TO “TOPOLOGICAL COMPUTING OF

ARRANGEMENTS WITH (CO)CHAINS”

ALBERTO PAOLUZZI

Figure 1. Two images of the biggest 3-cell, whose outer 2-boundary coin-
cides with the (reversed) 2-boundary of the outer space (outer 3-cell).

Archimedes to Eratosthenes greeting. ... certain things first became clear
to me by a mechanical method, although they had to be demonstrated by
geometry afterwards because their investigation by the said method did not
furnish an actual demonstration. But it is of course easier, when we have
previously acquired by the method, some knowledge of the questions, to
supply the proof than it is to find it without any previous knowledge.

The Method

1. Introduction

The aims of this short essay are: (a) to give an example of the computational techniques
introduced with the paper “Topological computing of arrangements with (co)chains” [1],
submitted about two years ago to ACM Transactions on Spatial Algorithms and Systems
(TSAS), and (b) to produce some measures providing a benchmark of this approach.

Date: June 8, 2019.



ADDENDUM 2

We intend to illustrate here the input and the output data generated by our open-
source implementation1, when applied to a small collection of closed polyhedral surfaces,
so producing the arrangement (partition) of 3D space, described by the matrices of lin-
ear operators δ0, δ1, δ2 and their transposed operators ∂1, ∂3, ∂2, which go up and down,
respectively, between linear chain spaces C0, C1, C2 generated by the 3D partition.

For problem statement, motivation, definitions, discussions, algorithms, applications,
and further examples, the reader is referred to [1]. We discuss in the present paper the
Julia’s script solving the arrangement problem and the output generated, starting from five
randomly oriented and dimensioned cubes around the origin, which are shown in Figure 1.
Finally we compare the amount of data produced by this approach with the more crude
raw format of graphics applications, i.e. the boundary triangle mesh of generated 3-cells.

2. Computation of 3D arrangement example

2.1. Partition into solid cells. A chain complex is a short exact sequence of graded
linear spaces Cp of (co)chains, with linear boundary/coboundary maps ∂p and δp = ∂>p+1:

C• = (Cp, ∂p) := C3

δ2
←−−→
∂3

C2

δ1
←−−→
∂2

C1

δ0
←−−→
∂1

C0.

The cells of a space partition are one-to-one with the basis elements of chain spaces.
The chain maps (∂p or δp) fully describe the topology of the cellular arrangement.

The set of manifold 3-cells of the 3D arrangement produced by the surfaces in Figure 1
is shown in Figure 2. It is worthwhile to note that such solid cells may be non-convex and
non-contractible, i.e., non simply connected. Such properties extend to their 2-cell faces.

It may be interesting to notice also that cells may have different topological genuses,
i.e., any number of holes and tunnels. Look for this purpose at the fourth cell (from left)
of the second row (from top) of Figure 2. Other 3-cells have also smaller holes in the
faces and/or tunnels within. The boundary triangulation of 3-cells needed to generate
graphics on a display device or for 3D printing is also provided in our package repository
on github.com.

The geometric model of the arrangement is generated as a pair (Geometry, Topology),
where the first one is simply given by the embedding map V of vertices (0-cells), i.e. by
their coordinate matrix, given by columns:

julia> V

3x137 Array{Float64,2}:

1.01181 0.215639 0.516927 0.449016 ... 1.01221 1.30039 0.741732 1.02991

0.160033 0.06801 0.102833 0.094984 ... 0.816151 0.545669 1.51776 1.24728

0.196256 0.206963 0.202911 0.203825 ... 0.249344 0.985248 0.613139 1.34904

The cardinality of 0-, 1-, 2-, and 3-cell sets V, E, F, C are given as row and column
numbers of the sparse matrices of their signed incidence relations EV, FE, CF, that can be
interpreted as coboundary operators δ0 (from vertices to edges), δ1 (from edges to faces),
and δ2 (from faces to solid cells), respectively. The prefix cop stands for chain operator :

1See our Github.com repository,

https://github.com/cvdlab/LinearAlgebraicRepresentation.jl
https://github.com/cvdlab/LinearAlgebraicRepresentation.jl
https://github.com/cvdlab/LinearAlgebraicRepresentation.jl/tree/julia-1.0


ADDENDUM 3

Figure 2. The 3-cells of the arrangement of E3 generated by a collection of
five random 3-cubes. Their assembly provides the union of the five 3-cubes.
Each 3-cell is given by a column of the sparse matrix of map δ2 : C2 → C3.

julia> copEV

268x137 SparseMatrixCSC

with 536 stored entries:

[1 , 1] = -1

[5 , 1] = -1

[39 , 1] = -1

...

[258, 137] = 1

[260, 137] = 1

[268, 137] = 1

julia> copFE

157x268 SparseMatrixCSC

with 786 stored entries:

[1 , 1] = 1

[11 , 1] = 1

[2 , 2] = 1

...

[156, 267] = 1

[150, 268] = 1

[157, 268] = 1

julia> copCF

27x157 SparseMatrixCSC

with 314 stored entries:

[1 , 1] = -1

[19 , 1] = 1

[2 , 2] = -1

...

[21 , 156] = 1

[1 , 157] = 1

[21 , 157] = -1



ADDENDUM 4

2.2. The input collection of surfaces. The input data for the example of Figure 1 was
generated by a little script in Julia language, which is not of interest here. Conversely, we
provide below the full input, i.e. both the geometry V and the topology EV, FV. Such text
data amount to 2.1k bytes.

julia> @show V;

V = [1.01181 0.215639 0.91979 0.123616 1.02252 0.226347 0.930498 0.134324 0.0458309

-0.301827 0.348275 0.0006172 0.579367 0.23171 0.881811 0.534154 -0.0521776 0.627953

-0.190635 0.489496 -0.0233884 0.656742 -0.161846 0.518285 0.27652 -0.0875132 0.52527

0.161237 0.509324 0.145291 0.758074 0.394041 0.27631 0.564484 0.0058279 0.294002

1.01221 1.30039 0.741732 1.02991; 0.160033 0.0680099 0.956278 0.864255 0.160649

0.0686266 0.956895 0.864872 -0.200245 0.102199 0.417839 0.720283 -0.35354 -0.0510965

0.264543 0.566987 0.682359 0.543901 0.0592036 -0.0792537 0.956374 0.817917 0.333219

0.194762 -0.102028 0.146722 0.324834 0.573584 -0.16916 0.0795901 0.257702 0.506452

0.452356 0.181874 1.15396 0.883481 0.816151 0.545669 1.51776 1.24728; 0.196256

0.206963 0.196872 0.20758 0.997729 1.00844 0.998346 1.00905 0.0677451 0.601282

-0.0855504 0.447986 0.502301 1.03584 0.349005 0.882542 0.159301 0.18809 0.433316

0.462105 0.797002 0.825792 1.07102 1.09981 0.1446 0.377404 0.0774682 0.310272 0.580364

0.813168 0.513232 0.746036 0.403805 1.13971 0.767599 1.5035 0.249344 0.985248 0.613139

1.34904]

julia> @show FV,EV;

(FV,EV) = (Array{Int64,1}[[1,2,3,4],[5,6,7,8],[1,2,5,6],[3,4,7,8],[1,3,5,7],[2,4,6,8],

[9,10,11,12],[13,14,15,16],[9,10,13,14],[11,12,15,16],[9,11,13,15],[10,12,14,16],[17,

18,19,20],[21,22,23,24],[17,18,21,22],[19,20,23,24],[17,19,21,23],[18,20,22,24],[25,26,

27,28],[29,30,31,32],[25,26,29,30],[27,28,31,32],[25,27,29,31],[26,28,30,32],[33,34,35,

36],[37,38,39,40],[33,34,37,38],[35,36,39,40],[33,35,37,39],[34,36,38,40]],

Array{Int64,1}[[1,2],[3,4],[5,6],[7,8],[1,3],[2,4],[5,7],[6,8],[1,5],[2,6],[3,7],[4,8],

[9,10],[11,12],[13,14],[15,16],[9,11],[10,12],[13,15],[14,16],[9,13],[10,14],[11,15],

[12,16],[17,18],[19,20],[21,22],[23,24],[17,19],[18,20],[21,23],[22,24],[17,21],[18,

22],[19,23],[20,24],[25,26],[27,28],[29,30],[31,32],[25,27],[26,28],[29,31],[30,32],

[25,29],[26,30],[27,31],[28,32],[33,34],[35,36],[37,38],[39,40],[33,35],[34,36],[37,

39],[38,40],[33,37],[34,38],[35,39],[36,40]])

2.3. The generating script. Below we compute the cellular 3-complex of the E3 space
partition induced by the above collection of surfaces. In the current prototype implementa-
tion, some transformation of input data format is needed. A simpler API will be provided
soon. In particular, type Lar.Cells (array of arrays of integers) is converted to type
Lar.ChainOp, i.e., the Julia’s type SparseMatrixCSC{Int8,Int64} for sparse matrices.

cop_EV = Lar.coboundary_0(EV::Lar.Cells);

cop_EW = convert(Lar.ChainOp, cop_EV);

cop_FE = Lar.coboundary_1(V, FV::Lar.Cells, EV::Lar.Cells);

W = convert(Lar.Points, V’);

V, copEV, copFE, copCF = Lar.Arrangement.spatial_arrangement(

W::Lar.Points, cop_EW::Lar.ChainOp, cop_FE::Lar.ChainOp )



ADDENDUM 5

2.4. The output chain complex. It is easier to compare different data structures by
their data object numbers and file representation, without taking into account the actual
computational architecture and the memory occupancy.

Therefore, some comparison numbers follow: into the five (unconnected) boundaries of
the input Lar cubes there are 5× 8 = 40 vertices, 5× 6 = 30 quads, and 5× 12 = 60 edges.
For the computed space arrangement, 137 vertices and 953 triangles are contained within
the 27 cell groups of the output OBJ file. The arrays of vertices, edges, faces and 3-cells,
without any added data structure2, are given in Ref.3 and weight for 38 kB as text file.

The cellular 3-complex output with 137 0-cells, 268 1-cells, 157 2-cells, 27 3-cells, for a
total of 589 graded p-cells, is better represented as a geometric chain complex. In particular,
the textual values of V, of sparse matrices copEV, and copFE, computed by the Merge
algorithm [1], plus the sparse matrix copCF computed by the TGW algorithm [1] in 3D,
are given in github.com/4 for a file size of (16+2)k bytes.

It migth be interesting to note that the minimal and fairly crude OBJ file representation of
3-cells, also provided in 5, amounts to 15k bytes. But whereas this last format just contains
a bunch of triangles as triples of indices of vertices, without any storage of the assembly
and cells topology, the chain complex representation conversely allows for a complete un-
derstanding of topology and the direct querying of either single or multiple topological
features, using only sparse matrix-vector or sparse matrix-matrix multiplications.

3. Conclusion

In this short Addendum to Topological Computing of Arrangements with (Co)chains, a
small example of computation of a 3D arrangement has been presented and discussed. Our
main aim was to show the fairly general nature of generated 3-cells, that are connected
and non manifold, non contractible, and with any topological genus. We would like to
remark also the briefness and simplicity of this representation of geometric models as chain
complexes, and its great generality. This author hopes that the presented material may
help to better understand such a novel approach to geometric computing using algebraic
topological tools.

References

1. Alberto Paoluzzi, Vadim Shapiro, Antonio DiCarlo, Francesco Furiani, Giulio Martella, and Giorgio
Scorzelli, Topological computing of arrangements with (co)chains, submitted to Transactions on Spatial
Algorithms and Systems, ACM, New York, NY (August 2017).

2The incidence relations are computable on demand by product or transposition of sparse binary char-
acteristic matrices, as discussed in Reference [1]

3https://github.com/cvdlab/LinearAlgebraicRepresentation.jl/tree/julia-1.0/examples/3d/data,
4idem
5idem

https://github.com/cvdlab/LinearAlgebraicRepresentation.jl
https://github.com/cvdlab/LinearAlgebraicRepresentation.jl/tree/julia-1.0/examples/3d/data

	1. Introduction
	2. Computation of 3D arrangement example
	2.1. Partition into solid cells
	2.2. The input collection of surfaces
	2.3. The generating script
	2.4. The output chain complex

	3. Conclusion
	References

