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Abstract

Lotka (1925) and Volterra (1926) formulated
parameteric differential equations that
characterize the oscillating populations of
predators and prey. A statistical model to
account for measurement error and unexplained
variation uses the deterministic solutions to the
Lotka-Volterra equations as expected
population sizes. Stan is used to encode the
statistical model and perform full Bayesian
inference to solve the inverse problem of
inferring parameters from noisy data. The
model is fit to Canadian lynx  and snowshoe

hare  populations between 1900 and 1920, based

1  Predator: Canadian lynx 1
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on the number of pelts collected annually by the
Hudson’s Bay Company. Posterior predictive
checks for replicated data show the model fits
this data well. Full Bayesian inference may be
used to estimate future (or past) populations.

Data: Lynx and Hare Pelts in
Canada
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snowshoe haressnowshoe hares, an hervivorous cousin
of rabbits, and
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Canadian lynxesCanadian lynxes, a feline predator
whose diet consists largely of snowshoe
hares.

Rogers (2011) writes about the long history of
population dynamics,

The rise and fall in numbers of snowshoe
hares and Canada lynx was observed more
than two hundred years ago by trappers
working for Hudson’s Bay Company,
which was once heavily involved in the fur
trade. In the early 20th century, records of
the number of lynx and hare pelts traded
by Hudson’s Bay were analyzed by
biologist Charles Gordon Hewitt.

Following up on the original source, Hewitt
(1921) provides plots of the number of pelts
collected by the Hudson’s Bay Company, the
largest fur trapper in Canada, between the years
of 1821 and 1914.  Hewitt’s discussion ranges

over many natural factors affecting the

© 2009, Keith Williams, CC-BY
2.0

© 2013, D. Gordon E. Robertson,
CC-BY SA 3.0

 Prey: snowshoe hare 2

3  Graph from (Hewitt 1921)
showing the numbers of pelts
captured by the Hudson’s
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population sizes, such as plagues, migrations,
and weather-related events. Hewitt even
discusses measurement confounders such as the
fact that lynx are easier to trap when they are
hungry and weak, which is correlated with a
relative decline in the hare population. The
models we consider here for illustrative purposes
will not consider any of these factors, though
they could be extended to do so through the
usual strategy of the inclusion of covariates (see
the exercises). Hewitt also discusses many other
species; hares and lynxes occupy only a small
part of a single chapter.

Howard (2009) provides numerical data for the
number of pelts collected by the Hudson’s Bay
Company in the years 1900-1920, which we
have included in comma-separated value (CSV)
form in the source repository with the case
study.

lynx_hare_df <-
  read.csv("hudson-bay-lynx-hare.csv",
           comment.char="#")

year species pelts in thousands
1 1900 Lynx 4.0
2 1901 Lynx 6.1
21 1920 Lynx 8.6
22 1900 Hare 30.0
41 1919 Hare 16.2
42 1920 Hare 24.7

The plot makes it clear that the spikes in the
lynx population lag those in the hare population.
When the populations are plotted against one
another over time, the population dynamics
orbit in an apparently stable pattern. Volterra

© Scribner’s Sons 1921

Bay Company. The
fluctuations are irregular and
the linear growth in rabbits
after 1830 appears to be an
artifact of interpolation. 

Example rows (with
their indexes) from the
long-form data frame for
number of pelts taken by
the Hudson’s Bay
Company in the years
1900 to 1920 (in
thousands).

Plot of the number of lynx
and hare pelts (in thousands)



(1926) recognized that these population
oscillations could be modeled with a pair of
differential equations similar to that used to
describe springs.

Mechanistic Model: The Lotka-
Volterra Equations

The Lotka-Volterra equations (Lotka 1925;
Volterra 1926, 1927) are based on the
assumptions that

the predator population intrinsically
shrinks,

the prey population intrinsically grows,

a larger prey population leads to a
larger predator population, and

a larger predator population leads to a
smaller prey population.

More specifically, the rate of growth of the prey
population is proportional to the size of the prey
population, leading to exponential growth if
unchecked. The prey population simultaneously
shrinks at a rate proportional to the size of the
product of the prey and predator populations.
For the predator species, the direction of growth
is reversed. The predator population shrinks at a
rate proportional to its size and grows at a rate
proportional to the product of its size and the
prey population’s size.

Together, these dynamics lead to a cycle of
rising and falling populations. With a low lynx
population, the hare population grows. As the

collected by the Hudson’s
Bay Company between 1900
and 1920.

Plot of the number of pelts
collected for lynx versus hares
from 1900 to 1920. This plot
is similar to that of the
dynamics of a spring in phase
space (i.e., position
vs. momentum).



hare population grows, it allows the lynx
population to grow. Eventually, the lynx
population is large enough to start cutting down
on the hare population. That in turn puts
downward pressure on the lynx population. The
cycle then resumes from where it started.

The Lotka-Volterra equations (Volterra 1926,
1927; Lotka 1925) are a pair of first-order,
ordinary differential equations (ODEs)
describing the population dynamics of a pair of
species, one predator and one prey.

 is the population size of the
prey species at time , and

 is the population size of the
predator species.

Volterra modeled the temporal dynamics of the
two species (i.e., population sizes over times) in
terms of four parameters, , as

As usual in writing differential equations, 
and  are rendered as  and  to simplify
notation. The factor  is the growth rate of the
prey population, whereas  is the rate of
shrinkage relative to the product of the
population sizes. The factor  is the shrinkage
rate of the predator population and  is the
growth rate of the predator population as a
factor of the product of the population sizes.

4
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 Solutions to the Lotka-
Volterra equations for
predator and prey
population sizes. The
temporal trajectory of
populations forms a
stable orbit when plotted
in two dimensions
(Volterra 1926). 
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Positivitity constraint and extinction

As measures of population sizes, the values of 
 and  must be non-negative.  Nothing in

the differential equations here explicitly
enforces positivity. Nevertheless, as long as the
initial populations are non-negative, i.e., 

 and , the values  and  for
other times  must also be non-negative. This is
because the rate of change in each population is
a factor of the population size itself.

Although a population following the Lotka-
Volterra dynamics will never become extinct,

it may become arbitrarily small. In reality,
random events such as accidents can cause
extinction events as can not so random events
such as extensive hunting. Therefore, the
Lotka-Volterra model should not be expected
to adequately model the dynamics of small
populations.

Behavior in the limit

One way to understand systems of equations is
to consider their limiting behavior. In this case,
there are four behaviors, falling in two broad
classes.

1. If both population sizes are initially
positive, the populations will oscillate
in a fixed pattern indefinitely,
remaining positive.

2. If both population sizes are initially
zero, the population sizes will remain
zero.

3. If the predator population size is zero

u(t) v(t) 5  As in much of ecology,
undead are frowned
upon.

5

u(0) ≥ 0 v(0) ≥ 0 u(t) v(t)
t

6

1682, Sir Thomas Herbert, public domain.

 The dodo (right), in
1682, before the
population became
extinct. 
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and the prey population size positive,
the predator population size remains
zero and the prey population grows
without bound.

4. If the predator population size is
positive and the prey population size
zero, the prey population size remains
zero while the predator population
shrinks toward zero size (i.e., it
asymptotes at zero).

Statistical Model: Prior Knowledge and Unexplained
Variation

Solving the inverse problem

For a given legal value of the model parameters
and initial state, the Lotka-Volterra model
predicts population dynamics into the future
(and into the past). But given noisy data about
population dynamics, how do we solve the
inverse problem, that of inferring the values of
model parameters consistent with the data? The
general approach in Bayesian statistics is
somewhat counterintuitive, as it involves
formulating the forward model then using
general principles to solve the inverse problem.

Specifically, a Bayesian model requires a
mathematical model of what we know about
the parameters (i.e., a prior) and a model of
what we know about the data generating
process given the parameters (i.e., a sampling
distribution).

Mathematically, a prior density  over the
sequence of parameters  encapsulates our

7  The choice of prior is
no more or less
“subjective” than the
choice of sampling
distribution—both are

7
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knowledge of the parameters before seeing the
data. A sampling distribution,  which may have

a continuous, discrete or mixed probability
function,  characterizes the distribution of
observable data  given parameters .

Bayes’s rule gives us a general solution to the
inverse problem, expressing the posterior 
in terms of the prior  and likelihood .

Stan provides a form of Markov chain Monte
Carlo (MCMC) sampling that draws a sample 

 from the posterior to use for
computational inference.  Posterior quantities

of interest may be expressed as derived random
variables using functions  of parameters.
Such functions may be used for posterior
expectation calculations such as parameter
estimates that minimize expected square error
when , or event probabilities such as the
probability of the hare population falling below
some fraction of the lynx population, when 
is some indicator function.

Measurement Error and Unexplained
Variation

The Lotka-Volterra model is deterministic.
Given the system parameters and the initial
conditions, the solutions to the equations are
fully determined. Population measurements are
not so well behaved that they exactly follow the
model; there is residual, unexplained variation,
as well as measurement error.

There are factors that impact predator and prey
population size other than the current

mathematical
approximations to some
process of interest and as
such must be validated
for utility.

8

 The sampling
distribution  is
called a likelihood
function when
considered as a function 

 of the parameters 
for fixed data .

8

p(θ|y)

(θ) θ
y

p(y|θ)
y θ

p(θ|y)
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 Bayes’s rule for parameters 
 and observed data  is
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θ y
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=

=

∝
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 The matrix of 
values (parameter by
draw) is what is returned
by the extract()
function in Stan.

10 θ (m)

f (θ)

f (θ) = θ

f (θ)
11

 The convergence result (as
well as error bounds) follows
from the MCMC central
limit theorem when  are
drawn according to 
with an appropriate MCMC
algorithm,
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population size. There are variable
environmental effects, such as weather, which
will vary from season to season and year to year
and affect population sizes. Infectious diseases
occasionally spread through a population,
reducing its size (Hewitt 1921). There are also
more long-term environmental factors such as
carrying capacity.

In addition to factors that affect population
which are not modeled, there is typically noise
in the measurements. In this particular case, we
cannot even measure the population directly.
Instead, pelts are used as a noisy proxy for
population sizes.  Hewitt (1921) further noted

that animals are easier to trap when food is
scarce, making the population measurements
dependent on the population size. Even the
exact number of pelts taken is likely to be only
approximate, as they were collected in a range
of locations over an entire season. Here, the
number of pelts is rounded to the closest 100,
building in measurement error on the order of
1%.

A linear regression analogy

Like in a simple linear regression, we will
proceed by treating the underlying determinstic
model as providing an expected population
value around which there will be variation due
to both measurement error and simplifications
in the scientific model. Consider the typical
formulation of a linear regression, where  is an
observable scalar outcome,  is a row vector of
unmodeled predictors (aka covariates, features), 

12  Carrying capacity is
roughly the maximum
population that an
environment can sustain.
It is often modeled in the
system dynamics as an
asymptote on population
size.
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13  It would be possible to
combine Lotka-Volterra
dyanmics with
population models based
on mark-recapture data,
which are able to
estimate actual
population sizes, not just
relative changes in
proportions.
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14  Rounding can be
modeled explicitly by
allowing the true value
to be a parameter; for
instance if rounding is to
the closest 100, the
parameter can be
modeled as uniform over
the range  from the
measured value or even
greater if the
measurement on which
the rounding was based
may itself be in error.
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 is a coefficient vector parameter, and  is
the error scale,

The deterministic part of the equation is the
linear predictor  with predictor  (row  of
the data matrix ) and coefficient (column)
vector . The stochastic error term, , is
assigned a normal distribution located at zero
with scale parameter . . We typically

formulate this model without the latent error
variable  as follows,

Lotka-Volterra error model

Solutions to the Lotka-Volterra equations
replace the linear predictor , but we
maintain the error term to compensate for
measurement error and unexplained variation in
the data. In the case of population dynamics, the
data  consists of measurements of the prey 
and predator  populations at times .

The true population sizes at time  are
unknown—we only have measurements  and 

 of them. The true initial population sizes at
time  will be represented by a parameter 

, so that

Next, let  be the solutions to the

β σ > 0

yn

ϵn

=

∼

β +xn ϵn

-./012(0, σ)

βxn xn n
x

β ϵn

σ > 0 15  Gauss initially noted
that the maximum
likelihood estimate
derived from the normal
error model is identical
to the least square error
estimate derived by
minimizing the sum of
squared errors, .
With Markov, Gauss
further proved that it
was the lowest variance
unbiased estimator.
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ϵϵ⊤

ϵn
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 The latent error variable
may be defined in terms of , 
, and  as

.

16

x
y β

= − βϵn yn xn

∼ -./012( β, σ).yn xn

βxn

yn yn,1

yn,2 tn
17

 This model makes the
assumption that the
underlying population
sizes  and
measurements of it 
are continuous. This is a
very tight approximation
to counts when the
numbers are in the
thousands.
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=

=
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Lotka-Volterra differential equations at times 
 given initial conditions 

and parameters . Each  is a pair
of prey and predator population sizes at the
specified times,

The  are random variables, but they are
deterministic functions of the random variables
for the initial state  and system parameters 

.

The observed data is in the form of
measurements  of the initial population of
prey and predators, and subsequent
measurements  of the populations at times ,
where  and the  consist of a pair of
measured population sizes, for the prey and
predator species.

In summary, the measurements,  and , are
drawn indepently from a normal distribution
centered at the underlying population sizes, 
and , with noise scales . Each quantity here,
including the noise scale, is a pair consisting of
values for prey and predator.

Multiplicative error and the lognormal distribution

It is common to log transform positive-only
parameters so that they are no longer
constrained to be positive. On the log scale, we
can then take the error to be unconstrained and
additive, just as in linear regression.

, … ,t1 tN z(t = 0) = zinit

θ = (α, β, γ, δ) zn

zn,1

zn,2

=

=

u( )tn

v( ).tn

zn

zinit

α, β, γ, δ

yinit

yn tn

yinit yn

yinit yn

zinit

zn σ



where the  are the solutions to the Lotka-
Volterra equations at times  given
initial populations . The prey and predator
populations have error scales (on the log scale)
of  and .

With additive errors on the log transformed
scales, the result of transforming back to the
natural scale (by exponentiation) leads to
multiplicative errors,

Because  is positive and the underlying
population size  is positive, their product will
be positive. In other words, rather than the
measurement being plus or minus some value,
it’s plus or minus some percentage of the total.

This transform and its associated fractional error
is so common that they are jointly known as the
lognormal distribution, so that we can simplify
the above notation as we did with linear
regression and write

whenever

The  density accounts for the non-
linear change of variables through a Jacobian
adjustment.

log yn,k

ϵn,k

=

∼

log +zn,k ϵn,k

-./012(0, )σk

zn

, … ,t1 tN

zinit

σ1 σ2

The top figure shows the
density of a standard normal
variate, i.e., location (mean) 0
and scale (standard deviation)
1. The bottom figure the
corresponding standard
lognormal variate, i.e., log
location 0 and log scale 1.
The central 99.5% interval is
shown in both cases with a
dashed vertical line indicating
the median and dotted lines
the boundaries of the central
95% interval. The skew in the
lognormal plot is due to the
exponentiation—the range (2,
3) in the standard normal
plot, containing only 2% of
the total probability mass,
maps to (7, 20) in the
lognormal plot and still
contains only 2% of the
probability mass. If the
horizontal and vertical axes
were drawn to the same scale,
the areas under the two
curves would be identical.

yn,k =

=

exp(log + )zn,k ϵn,k

exp( )zn,k ϵn,k

exp( )ϵn,k

zn,k

∼ 4.5-./012( , ).yn,k zn,k σn

log ∼ -./012( , ).yn,k zn,k σn

4.5-./012
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Weakly informative priors

Our only remaining task is to formulate what
we know about the parameters as priors. In
general, we recommend at least weakly
informative priors on parameters.  In practice,

weakly informative priors inform the scale of
the answer, but have only a negligible effect on
the exact value; that is, they are not very
sensitive by design. While not being very
sensitive, they help enormously to ease
computation, as Stan might otherwise work
very hard to explore the outskirts of gnarly,
unregularized distributions. In order to
formulate such priors, we need to know the
rough scale on which to expect an answer.
Because this model is well understood and
widely used, as is the basic behavior of predator
and prey species such as lynxes and hares, the
parameter ranges leading to stable and realistic
population oscillations are well known.

Priors for system parameters

For the parameters, recall that  and  are
multipliers of  and  respectively in the state
equations, whereas  and  are multipliers of the
product . Combined with the fact that the
scale of  and  are roughly 10 as the data has
been encoded, we can formulate similar weakly
informative priors,

Prior for noise scale

chapter on changes of
variables works through
this particular example.

19  The Stan
Development Team, in a
Wiki on prior choice
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The noise scale is proportional, so the following
prior should be weakly informative, as a value
smaller than 0.05 or larger than 3 would be
unexpected. . Because values are positive, this

prior adopts the lognormal distribution.

Another reasonable prior choice would be a
broad half normal.

For the initial population of predator and prey,
the following priors are weakly informative.

Coding the Model: Stan Program

Coding the system dynamics

Whenever a general system of differential
equations is involved, the system equations must
be coded as a Stan function. In this case, the
model is relatively simple as the state is only two
dimensional and there are only four parameters.
Stan requires the system to be defined with
exactly the signature defined here for the
function dz_dt(), even if not all of them are
used. The first argument is for time, which is
not used here because the rates in the Lotka-
Voltarra equations do not depend on time. The
second argument is for the system state, coded as
an array . The third argument is for the
parameters of the equation, of which the Lotka-
Voltarra equations have four, which are coded
as . The fourth and fifth argument
are for data constants, but none are needed here,

20  The 95% interval is
approximately the mean
plus or minus two
standard deviations,
which here is 

 and 

20

exp(−1 − 2) ≈ 0.05
exp(−1 + 2) ≈ 3

21

 A lognormal prior on 
 is not consistent with

zero values of , but we
do not expect the data to
be consistent with values
of  near zero because
the model will is not
particularly accurate. It
makes well calibrated
predictions, but they are
not very sharp.

21

σ
σ

σ

σ ∼ 4.5-./012(−1, 1)

22

 An interval prior with
hard boundaries is not
recommended as it may
bias results if the data is
compatible with results
near the boundary.

22

Plot of lognormal(-1, 1)
prior. The median, 0.4, is
highlighted with a dashed
line and the central 95%
interval, (0.05, 2.7), with
dotted lines. This prior
density is not consistent with
values of sigma approaching
zero.

,   ∼  4.5-./012(log(10), 1)zinit
1 zinit

2

z = (u, v)

θ = (α, β, γ, δ)



so these arguments are unused.

After unpacking the variables from their
containers, the derivatives of population with
respect to time are defined just as in the
mathematical specification. The return value
uses braces to construct the two-element array
to return, which consists of the derivatives of
the system components with respect to time,

The data variables are coded following their
specifications,

as are the parameters,

real[] dz_dt(real t, real[] z, real[] theta,
             real[] x_r, int[] x_i) {
  real u = z[1];
  real v = z[2];

  real alpha = theta[1];
  real beta = theta[2];
  real gamma = theta[3];
  real delta = theta[4];

  real du_dt = (alpha - beta * v) * u;
  real dv_dt = (-gamma + delta * u) * v;
  return { du_dt, dv_dt };
}

data {
  int<lower = 0> N;           // num measurements
  real ts[N];                 // measurement times > 0
  real y_init[2];             // initial measured population
  real<lower = 0> y[N, 2];    // measured population at measurement times
}

parameters {
  real<lower = 0> theta[4];   // theta = { alpha, beta, gamma, delta }
  real<lower = 0> z_init[2];  // initial population

Plot of lognormal(log(10), 1)
prior. The median, 2.3, is
highlighted with a dashed
line and the 95% interval,
(1.4, 75), withdotted lines.
This prior suffices for both
predator and prey population
sizes.

z =  (u, v) =  ( u, v) .d
dt

d
dt

d
dt

d
dt



The solutions to the Lotka-Volterra equations
for a given initial state  are defined as
transformed parameters. This will allow them to
be used in the model and inspected in the
output (as we do in later graphs). It also makes it
clear that they are all functions of the initial
population and parameters (as well as the
solution times).

The required real and integer data arguments in
the second line are both given as constant size-
zero arrays. The last line provides relative and
absolute tolerances, along with the maximum
number of steps allowed in the solver before
rejecting.  For further efficiency, the tolerances

for the differential equation solver are relatively
loose for this example; usually tighter tolerances
are required (smaller numbers).

With the solutions in hand, the only thing left
are the prior and likelihood. As with the other
parts of the model, these directly follow the
notation in the mathematical specification.

  real<lower = 0> sigma[2];   // error scale
}

transformed parameters {
  real z[N, 2]
    = integrate_ode_rk45(dz_dt, z_init, 0, ts, theta,
                         rep_array(0.0, 0), rep_array(0, 0),
                         1e-6, 1e-5, 1e3);
}

model {
  theta[{1, 3}] ~ normal(1, 0.5);
  theta[{2, 4}] ~ normal(0.05, 0.05);
  sigma ~ lognormal(-1, 1);
  z_init ~ lognormal(log(10), 1);

zinit

23  Stan provides two
solvers, a Runge-Kutta
4th/5th-order solver
(_rk45) and a
backwards-
differentiation formula
solver (_bdf) for stiff
systems. The RK45
solver is twice as fast as
the BDF solver for this
data. The symptom of
stiffness is slow iterations
that may appear to be
hanging if a large
number of iterations is
permitted. If the solver
runs into stiffness and
more careful
initialization or prior
choice does not mitigate
the problem, the BDF
solver may be used to
adjust for the ill-
conditioned Jacobians at
the cost of increased
computation time.

23

24

 Rejections behave like
zero density points from
which no progress may
be made; in C++, the
behavior is to throw an
exception, which is
caught and displayed as
an error message by the
interfaces.

24



The multiple indexing theta[{1, 3}] indicates
that both theta[1] and theta[3] get the prior
normal(1, 0.5); it is both more efficient and
more compact to represent them this way. The
second sampling statement involving y[ , k] is
vectorized and amounts to the same thing as an
additional loop,

As with the prior, the vectorized form used in
the actual model block is much more efficient.
The y_init sampling statement could be pulled
out of the loop, but there is not much efficiency
gain as there are only two elements, so it is left
in this form for clarity.

Solving the Inverse Problem: Bayesian Inference in Stan

Fitting the Hudson’s Bay Company data

First, the data is munged into a form suitable for
Stan.

Next, the model is translated to C++ and
compiled.

  for (k in 1:2) {
    y_init[k] ~ lognormal(log(z_init[k]), sigma[k]);
    y[ , k] ~ lognormal(log(z[, k]), sigma[k]);
  }
}

for (n in 1:N)
  y[n, k] ~ lognormal(log(z[n, k]), sigma[k])

N <- length(lynx_hare_df$Year) - 1
ts <- 1:N
y_init <- c(lynx_hare_df$Hare[1], lynx_hare_df
y <- as.matrix(lynx_hare_df[2:(N + 1), 2:3]
y <- cbind(y[ , 2], y[ , 1]); # hare, lynx order
lynx_hare_data <- list(N, ts, y_init, y)



model <- stan_model("lotka-volterra.stan")

Finally, the compiled model and data are used
for sampling.  Stan’s default settings are

sufficient for this data set and model.

The output can be displayed in tabular form,
here limited to the median (0.5 quantile) and
80% interval (0.1 and 0.9 quantiles), and
restricted to the parameters of interest.

There were no divergent transitions  reported.

The  values are all near 1, which is consistent
with convergence. The effective sample size
estimates for each parameter are sufficient for
inference.  Thus we have reason to trust that

Stan has produced an adequate approximation
of the posterior.

fit <- sampling(model, data = lynx_hare_data

print(fit, pars=c("theta", "sigma", "z_init"
      probs=c(0.1, 0.5, 0.9), digits = 3)

Inference for Stan model: lotka-volterra.
4 chains, each with iter=2000; warmup=1000; thin=1; 
post-warmup draws per chain=1000, total post-warmup draws=4000.

            mean se_mean    sd    10%    50%    90% n_eff Rhat
theta[1]   0.549   0.002 0.065  0.469  0.545  0.636  1163    1
theta[2]   0.028   0.000 0.004  0.023  0.028  0.034  1281    1
theta[3]   0.797   0.003 0.091  0.684  0.791  0.918  1125    1
theta[4]   0.024   0.000 0.004  0.020  0.024  0.029  1170    1
sigma[1]   0.248   0.001 0.045  0.198  0.241  0.306  2625    1
sigma[2]   0.252   0.001 0.044  0.201  0.246  0.310  2808    1
z_init[1] 33.960   0.056 2.909 30.363 33.871 37.649  2684    1
z_init[2]  5.949   0.011 0.533  5.294  5.926  6.644  2235    1

Samples were drawn using NUTS(diag_e) at Sun Jan 28 13:52:39 2018.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at 
convergence, Rhat=1).

25  The independent steps
of compiling the Stan
model and running it are
highlighted here. These
two steps may be
composed into a single
call as
stan("lotka_volterra.stan",
data =
lynx_hare_dat, seed
= 123). Calling
rstan_options(auto_write
= TRUE) configures
stan_model() and
stan() to reuse a
compiled model if it
hasn’t changed.

25

26  Divergences occur
when Stan’s Hamiltonian
solver diverges from the
true Hamiltonian, which
must be conserved,
because of numerical
problems in the stepwise
gradient-based
approximation of the

26

R̂
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Comparing the fitted model to data

Using a non-statistically motivated error term
and optimization, Howard (2009, Figure 2.10)
provides the following point estimates for the
model parameters based on the data.

Our model produced the following point
estimates based on the posterior mean,

which are very close to Howard’s estimates.

The posterior intervals, which are quite wide
here, may be interpreted probabilistically,

The effect of these estimates is plotted later with
simulated population orbits.

Error scales for both populations have the same
posterior mean estimate,

and both have the same posterior 80% interval,
(0.20, 0.31).

Inference for population sizes

One inference we would like to make from our

curvature of the log
density.

 With effective sample
sizes of roughly one
thousand, standard errors
are roughly one thirtieth
the size of posterior
standard deviations,
being in an inverse
square root relation.

27

= 0.55,   = 0.028,   = 0.84,   = 0.026α∗ β∗ γ∗ δ∗

28  The posterior mean
minimizes expected
squared error, whereas
posterior medians
minimize expected
absolute error. Here, the
mean and median are the
same to within MCMC
standard error.

28

= 0.55,   = 0.028,   = 0.80,   = 0.024,α̂ β ̂ γ ̂ δ ̂

29

 Discrepancies are to be
expected in that we are
finding a posterior mean
wheras Howard is
finding a posterior mode.
We do not suspect the
priors have a strong
influence here, but this
could be checked by
varying them and
comparing results, i.e.,
performing a sensitivity
analysis.

29Pr[0.47 ≤ α ≤ 0.63]

Pr[0.23 ≤ β ≤ 0.33]
Pr[0.69 ≤ δ ≤ 0.91]

Pr[0.020 ≤ γ ≤ 0.029]

=

=
=
=

0.8

0.8
0.8
0.8

 =   =  0.25.σ ̂1 σ ̂2

30  This suggests they
may be completely
pooled and modeled
using a single parameter.

30



data is the size of the lynx and hare populations
over time. Technically, we can only estimate the
expected sizes of future pelt collections and
must assume the population is somehow directly
related to the numbers of pelts collected.
Howard (2009) plugs in optimization-derived
point estimates to derive population predictions.

Rather than plugging in point estimates to get
point predictions, we will follow the fully
Bayesian approach of adjusting for uncertainty.
This uncertainty takes two forms in inference.
First, there is estimation uncertainty, which is
fully characterized by the joint posterior density 

.

The second form of uncertainty stems from
measurement error and unexplained variation,
which are both rolled into a single sampling
distribution, . As in the
Stan implementation,  is the
solution to the differential equation conditioned
on the parameters  and initial
state .

Posterior predictive checks

We use posterior predictive checks to evaluate
how well our model fits the data from which it
was estimated.

The basic idea is to take the posterior for the
fitted model and use it to predict what the data
should’ve looked like. That is, we will be
replicating new  values that parallel the actual
observations . Becuase they are replicated
values, we write them as as . The

p(α, β, γ, δ, , σ ∣ y)zinit 31  In well-behaved
models in which the data
is broadly consistent with
the prior and likelihood,
estimation uncertainty is
reduced by larger
samples; as more data is
available, it will
overwhelm the fixed
priors and the posterior
will concentrate around
the true values of the
parameters.

31

log ∼ -./012(log , σ)yn zn

= ( , )zn un vn

θ = (α, β, γ, δ, σ)
zinit

32  This is “testing on the
training data” in machine
learning parlance, and
while we would not trust
it for final evaluation, it
is an easy way to spot
inconsistencies in the
implementation of
misspecification in the
model.

32
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distribution of these replicated values is given by
the posterior predictive distribution,

where  is the vector of
parameters for the model. Our two forms of
uncertainty are represented in the two terms in
the integral. The first is the sampling
distribution for the replications, , which
is the distribution of observations  given
parameters . This term encapsulates the
unexplained variance and measurement error.
The second term is the posterior , which
encapsulates our uncertainty in our parameter
estimates  given the observations . Here, the
integral takes a weighted average of the
sampling distribution, with weights given by the
posterior. In statistical terms, we are calculating
an expectation of a function of the parameters, 

, over the posterior , which
can be written concisely as a conditional
expectation,

Stan code for posterior predictive checks

Stan defines predictive quantities in the
generated quantities block, which is executed
once per iteration.  The code declares variables

at the top of the block, then defines them in a
loop over the species, then over the times.

generated quantities {
  real y_init_rep[2];
  real y_rep[N, 2];

p( |y) =  ∫ p( |θ) p(θ|y) dθ,yrep yrep

θ = (α, β, γ, δ, , σ)zinit

p( |θ)yrep

yrep

θ

p(θ|y)

θ y

f (θ) = p( |θ)yrep p(θ|y)

Posterior predictive checks,
including posterior means
and 50% intervals along with
the measured data. If the
model is well calibrated, as
this one appears to be, 50% of
the points are expected to fall
in their 50% intervals.

p( |y) =  &[ p( |θ)  y ] .yrep yrep ∣∣

33

 The log density and its
gradient are typically

33



The uncertainty due to parameter estimation is
rolled into the values of z_init, z, and sigma.
The uncertainty due to unexplained variation
and measurement error is captured through the
use of the lognormal pseudorandom number
generator, lognormal_rng. The additional noise
in the measurements y over that of the
underlying population predictions z is visualized
in the plots.

Conclusion: What are the
Population Dynamics?

Even with the strong assumption that the
number of pelts collected is proportional to the
population, we only know how the relative sizes
of the populations change, not their actual sizes.

Predicted population cycles

In the same way as Volterra (1926) plotted the
cycles of predator and prey populations, we can
select draws of  from the posterior and plot
them. The variation here is due to posterior
uncertainty in the value of the system
parameters  and the initial population 

.

Predicted measurements

In addition to the estimation uncertainty

  for (k in 1:2) {
    y_init_rep[k] = lognormal_rng(log(z_init[k]), sigma[k]);
    for (n in 1:N)
      y_rep[n, k] = lognormal_rng(log(z[n, k]), sigma[k]);
  }
}

evaluated many times per
iteration to follow the
Hamiltonian trajectory
of the parameters given
some initial momenta.

Plot of expected population
orbit for one hundred draws
from the posterior. Each
draw represents a different
orbit determined by the
differential equation system
parameters. Together they
provide a sketch of posterior
uncertainty for the expected
population dynamics. If the
ODE solutions were
extracted per month rather
than per year, the resulting
plots would appear fairly
smooth.

Plot of expected pelt
collection orbits for one
hundred draws of system
parameters from the
posterior. Even if plotted at
more fine-grained time
intervals, error would remove
any apparent smoothness.
Extreme draws as seen here
are typical when large values
have high error on the
multiplicative scale.

zrep

α, β, γ, δ
zinit



discussed in the previous section, there is also
the general error due to measurement error,
model misspecification, etc. In order to simulate
the number of pelts that are reported collected
(which may itself have error relative to the
actual number of pelts), we must additionally
consider the general error term. That is already
rolled into the variables , so we plot those
here.

Exercises and Extensions

The Lotka-Volterra model is easily extended for
realistic applications in several obvious ways. I
ran out of steam before turning this case study
into a book on Bayesian modeling. I leave the
next steps for this model to the dedicated
reader.  Even if you don’t plan to do the

exercises, they provide a concise description of
where this model can be taken.

1. Simulation-based calibration. Write a
Stan model to simulate data from this
model. First simulate parameters from
the prior (or pick ones consistent with
the priors). Then simulate data from
the parameters. Finally, fit the model in
Stan and compare the coverage as in
the last plot in the case study.

2. Forecasting and backcasting. Extend
predictions another 50 years into the
future and plot as in the last plot. This
can be done by extending the solution
points in the transformed parameters,
but is more efficiently done in the
generated quantities block. Next,
extend the predictions 50 years into the
past and plot.  Is there anything

yrep

34  If you complete a few
of these exercises and
write them up, please let
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me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me know

me knowme know. I’d be happy
to extend this case study
and add a co-author or
publish a follow-on case
study.

34

35  This basic
validation technique
was extended and
converted to a
statistical test of
MCMC algorithm
fit by Cook, Gelman
and Rubin (2006).
Their test of
Bayesian calibration
relies on data
simulated from the

35
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suspicious about the long-term
uncertainty measures?

3. Missing data. Suppose that several of the
measurements are missing. Write a
Stan program that uses only the
observed measurements. This will
require coding the data in long form

as

and coding the model as

Only this part of the model changes;
the ODE is set up and fit as before with
the complete set of time points. What
happens to the computation and
posterior inferences as increasing
amounts of data are missing? How can
the missing data points be imputed
using the generated quantities block?

4. Error model. Replace the lognormal
error with a simple normal error
model. What does this do to the z
estimates and to the basic parameter
estimates? Which error model fits
better?

5. Sensitivity analysis and prior choice.
Perform a sensitivity analysis on the
prior choices made for this model.
When the prior means or scales are
varied, how much does the posterior
vary? Does the model become easier or

int J;                  // num observations
int spec[J];            // species for obs j
real tt[J];             // time for obs j
real<lower = 0> yy[J];  // yy[j] == y[tt[j], spec[j]]

for (j in 1:J)
  yy[j] ~ normal(zz[tt[j], spec[j]], sigma[spec[j]]);

model being
calibrated by
construction in full
Bayesian posterior
inference. As extra
credit, apply this test
to validate the
model.

 Hint: the initial
time will have to be
changed in the call
to ode_integrate.

3637

 Long form is
known as “melted”
in R’s Tidyverse.

37

38  There is a chapter
on missing data with
more details in the
Stan manual.

38



harder to fit (in terms of effective
sample size per unit time or divergent
transitions) with different prior
choices? What does this imply about
the number of digits with which we
report results and thus the effective
sample sizes necessary for most
inferences?

6. Model misspecification. Swap the coding
of the lynx and hare in the input so that
the predator is modeled as prey and
vice-versa. How well does it fit the
data? How does this provide evidence
for the folk theorem?

7. Multiple species. Extend the model to
deal with more than one species. Treat
each species as as having a mixture of
predators and a mixture of prey
affecting its growth. Simulate data and
fit to your model. Do the equations
become stiff as more species and
interactions are added? How much data
is required to identify the model as the
number of species and their mixing
increases?

8. Covariates. Suppose we have measured
covariates such as temperature, water,
and plant abundance. Set up a model
where these have further effects on
populations modeled as unconstrained
multiplies of the existing species size.
Simulate data using your covariates.
What does the existence of covariates
do to the uncertainty estimates
compared to using a model without
covariates?

9. Joint mark-recapture modeling. Suppose
that we also have mark-recapture data
for each species over the same time
period. Find or simulate such data.

39  Folk Theorem
(Gelman) When
you have
computational
problems, often
there’s a problem
with your model.

39

40  Hint: see Michael
Betancourt’s case
study on mixture
models on the Stan
web site for general
advice on mixture
modeling.

40



Build a mark-recapture model such as
Cormack-Jolly-Seber and jointly
model the population in terms of the
CJS model and the Lotka-Volterra
model.  How can you scale the
population dynamics model in order to
work at the same scale as the mark-
recapture model? Does this reduce
uncertainty in the population
dynamics? Does the joint model
improve on fitting the mark-recapture
model or Lotka-Volterra models
separately?

10. Measurement error. Suppose the number
of lynx pelts collected is affected by the
size of the population. In particular,
suppose a larger proportion of lynx are
captured when they are hungry. How
cold this be included as a component of
the model? What parameter would be
introduced? Simulate data and see if
the true populations can be recovered
with the model.

11. Carrying capacity. How can a carrying
capacity (upper bound on population
size) be incorporated into the Lotka-
Volterra model? Formulate the model
in Stan and fit it to simulated data. If
the data is simulated near the carrying
capacity, how does it fit using the
simpler Lotka-Volterra model?

12. Cross-validation and predictive calibration.
Cross validation as such doesn’t make
much sense for time series.
Nevertheless, it is possible to fit data to
initial sequences of a time series and
predict the remaining sequence. How
could this be achieved here?  Do you

need to write more than one Stan

41  The Stan manual
chapter on latent
discrete parameters
describes how to
code the Cormack-
Jolly-Seber model
for mark-recapture
data.

41

42  Hint: Considier
using the loo
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looloo
package for leave-

42

http://mc-stan.org/loo/


model?
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Source code

All of the source code, data, text, and images for
this case study are available on GitHub at
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Complete Stan program

Here is the complete Stan program for solving
the inverse problem for the Lotka-Volterra
model, including posterior predictive checks.

functions {
  real[] dz_dt(real t,       // time
               real[] z,     // system state {prey, predator}
               real[] theta, // parameters
               real[] x_r,   // unused data
               int[] x_i) {
    real u = z[1];
    real v = z[2];

    real alpha = theta[1];
    real beta = theta[2];
    real gamma = theta[3];
    real delta = theta[4];

    real du_dt = (alpha - beta * v) * u;
    real dv_dt = (-gamma + delta * u) * v;

https://github.com/stan-dev/example-models/tree/master/knitr/lotka-volterra


Session information
sessionInfo()

    return { du_dt, dv_dt };
  }
}
data {
  int<lower = 0> N;          // number of measurement times
  real ts[N];                // measurement times > 0
  real y_init[2];            // initial measured populations
  real<lower = 0> y[N, 2];   // measured populations
}
parameters {
  real<lower = 0> theta[4];   // { alpha, beta, gamma, delta }
  real<lower = 0> z_init[2];  // initial population
  real<lower = 0> sigma[2];   // measurement errors
}
transformed parameters {
  real z[N, 2]
    = integrate_ode_rk45(dz_dt, z_init, 0, ts, theta,
                         rep_array(0.0, 0), rep_array(0, 0),
                         1e-5, 1e-3, 5e2);
}
model {
  theta[{1, 3}] ~ normal(1, 0.5);
  theta[{2, 4}] ~ normal(0.05, 0.05);
  sigma ~ lognormal(-1, 1);
  z_init ~ lognormal(10, 1);
  for (k in 1:2) {
    y_init[k] ~ lognormal(log(z_init[k]), sigma[k]);
    y[ , k] ~ lognormal(log(z[, k]), sigma[k]);
  }
}
generated quantities {
  real y_init_rep[2];
  real y_rep[N, 2];
  for (k in 1:2) {
    y_init_rep[k] = lognormal_rng(log(z_init[k]), sigma[k]);
    for (n in 1:N)
      y_rep[n, k] = lognormal_rng(log(z[n, k]), sigma[k]);
  }
}
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Licenses

Code © 2017–2018, Trustees of Columbia University

in New York, licensed under BSD-3.

Text © 2017–2018, Bob Carpenter, licensed under

CC-BY-NC 4.0.

Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X Yosemite 10.10.5

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] tufte_0.3          rstan_2.17.3       StanHeaders_2.17.2
[4] reshape_0.8.7      knitr_1.18         gridExtra_2.2.1   
[7] ggplot2_2.2.1     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.8      magrittr_1.5     munsell_0.4.3    colorspace_1.3-2
 [5] rlang_0.1.4      highr_0.6        stringr_1.1.0    plyr_1.8.4      
 [9] tools_3.3.2      parallel_3.3.2   grid_3.3.2       gtable_0.2.0    
[13] htmltools_0.3.6  yaml_2.1.14      lazyeval_0.2.0   rprojroot_1.2   
[17] digest_0.6.10    tibble_1.3.4     codetools_0.2-15 inline_0.3.14   
[21] evaluate_0.10    rmarkdown_1.5    labeling_0.3     stringi_1.1.2   
[25] scales_0.4.1     backports_1.0.5  stats4_3.3.2    


