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Abstract

Sparspak is a sparse matrix package that was implemented in the
late 1970’s. One of the important features of that package is an in-
terface which shields the user from the complicated calling sequences
common to most sparse matrix software. Modern programming lan-
guages such as Fortran 90 have important features that facilitate the
design of flexible and “user-friendly” interfaces for software packages.
These features include dynamic storage allocation, function name over-
loading, user-defined data types, and the ability to hide functions and
data from the user. A new version of Sparspak called Sparspak90
has been implemented in Fortran 90 . This guide described the inter-
face and features of the new package and explains how to use it.
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1 Introduction

It is assumed that the reader has a working knowledge of Fortran 90 . The
book by Metcalf and Reid [13] is a good reference for the language and its
use.

For definiteness, the problem to be solved will be denoted by Ax = b,
where A is an n X n sparse coeflicient matrix, and the method to be used is
Gaussian elimination.

Given a sparse linear system, reordering the matrix A may effect a sub-
stantial reduction in the cost of factorization and forward and backward
solution. Thus given A, one normally computes a factorization of PAQ,
where P and @ are row and column permutation matrices of the appropriate
sizes. So the new system becomes (PAQ)(Q 'z) = Pb.

For purposes of explaining the structure and features of Sparspak90 so
that the user can understand how to use it, it is sufficient to restrict the prob-
lems to be solved to sparse systems whose coefficient matrices are positive
definite and structurally symmetric, although they may not be numerically
symmetric. Once an understanding of the basic structure and features of
the package is established, it would be easy to extend this understanding
to include other classes of problems which Sparspak90 can handle. These
will be described in Sectionl3 in this guide.

With this restriction, it is possible to do symmetric reordering of A (i.e.,
Q = PT) without regard to numerical stability and before the numerical
factorization begins. In this way, the locations where fill will occur during
the factorization can be determined before any numerical factorization is
performed, and the data structures used to store the lower triangular factor
L and/or upper triangular factor U can be set up prior to the numerical
factorization. This process is called symbolic factorization.

Hence, the process of solving such sparse linear systems consists of a
number of steps:

1. Reordering of the matrix A

2. Symbolic factorization of the (reordered) matrix A and the creation
of the data structures for the factorization and forward and backward
substitution

3. Putting numerical values of A into the data structures
4. Numerical factorization of A

5. Forward and backward substitution (triangular solution)



There is no general “best method” for solving sparse systems of equa-
tions. Even if one restricts the basic algorithm to Gaussian elimination,
the way it is best implemented often depends on the characteristics of the
given sparse linear system. As a consequence, this sparse matrix package
is designed to accommodate a variety of methods, and allow for convenient
inclusion of methods yet to be developed.

Sparse systems arise in a variety of contexts. Sometimes many problems
having the same nonzero structure must be solved, and sometimes many
problems differing only in their right hand sides must be solved. Also, the
way in which their structure and numerical values become available is highly
variable. The package is able to handle these situations in a natural way.

2 Overall Structure and Basic Use of Sparspak90

This section describes the high-level structure of the package, with particular
emphasis on its user interface. Ounly the basic features of the various com-
ponents of the package will be discussed in this section. Discussion of more
sophisticated use of the package and additional features of it is postponed
until later sections.

Use of the package is “object-oriented”. Users can adopt the view that
the package provides two basic types of “objects” (user-defined data types
and subroutines which act on them): “problem” objects that contain a
problem (A, b and eventually the solution ), and “solver” objects that
accept as input a problem (in a problem object) and produce a solution to
Ax = b. In the sequel, “object” means an instance of a user-defined data
type together with subroutines that act upon it. An example appears in
Figure 1 to provide some concreteness to this somewhat abstract description.

In the example, the subroutine MakeTriDiagProblem generates a 5x5
symmetric positive definite tridiagonal system of equations. The subroutine
MakeTriDiagProblem is given in Figure 2 in the next subsection.

2.1 The Problem type

Regardless of the level of user sophistication, one task is fundamental and
ubiquitous; the user must communicate the sparse matrix problem to the
package. The task is complicated by the variety of ways in which the problem
may materialize, as well as by transformations that the user might want to
apply to the input. The different ways include:



Figure 1 Example of simple use of the Sparspak90 package.

program SimpleExample
use Sparspak90

type
type

call

call
call

call

call
call

(Problem) :: p
(SparseSpdSolver) :: s

MakeTriDiagProblem(p, 5)

Construct(s, p)
Solve(s, p)

PrintSolution(p)

Destruct(p)
Destruct(s)

end program SimpleExample

! make package available
! declare problem object
! declare solver object

! create test problem

! create solver object
! solve problem

! print solution

! release storage used by p
! release storage used by solver

the structure of the problem and its numerical values may become
available simultaneously or at differing times.

there may be many systems to be solved, differing only in their nu-
merical values.

there may be numerous problems that differ only in their right hand
sides; these may be available all at once, or each may be the result
of computations involving previous right hand side(s) in a sequence.
The latter circumstance arises naturally if the package is being used
in connection with solving a system of nonlinear equations.

given the matrix A, for testing purposes it may be desirable to gener-
ate a right hand side corresponding to a given solution, or given the
structure of A, it may be desirable to assign numerical values giving
A certain properties (random, symmetric, positive definite, diagonally
dominant, etc.). Such capabilities can be useful in developing and
testing software.

The list above is far from exhaustive, but serves to illustrate the variety
of situations which the package can handle.

With these considerations in mind, it is natural that the package provides
a type that can be viewed as the “problem repository.” This type is given



the name Problem since instances of this type contain the numerical values
and structure of the coefficient matrix, its right hand side, corresponding
solution vector, and related information pertaining to the problem.

The type Problem has associated with it various subroutines which op-
erate on its data. Roughly speaking, these routines fall into four categories:

1. procedures which provide for input of structural and numerical values,
such as InAij, InRow, InColumn and InRhs.

2. procedures which adjust the input such as ReplaceAij, ZeroMa-
trix, ZeroRhs, MakeStructureSymmetric, and MakeSymmet-
ric, (The last two procedures make the problem structurally and nu-
merically symmetric, respectively.)

3. procedures which retrieve and/or display information, such as GetRhs,
GetSolution, and PrintSolution.

4. procedures which provide information about the problem, such as Is-
Symmetric, IsStructureSymmetric, IsAijPresent. The first two
procedures determine whether the matrix is numerically and struc-
turally symmetric, respectively, while the latter determines whether
the 7j-th element of the matrix is present.

The Problem type can represent sparse matrix problems with square
or rectangular matrices, with symmetric, unsymmetric or triangular struc-
tures, and with symmetric or unsymmetric numerical values. However, it is
important to understand that the Problem type does not have any built-in
“intelligence”. It is simply a repository for whatever the user presents to
it. It does not attempt to identify or exploit special features of the problem
that might be present, and does not maintain any such information.

Figure 2 contains a Fortran 90 subroutine which generates an n X n
tri-diagonal matrix problem. The example provides an opportunity to elab-
orate on several design features of Sparspak90 . Extensive use is made
of the programming language feature known as function name overloading.
That is, different routines are allowed to have the same names, provided
that their parameter lists (“signatures”) differ. The compiler detects which
routines should be called by matching up the types and number of parame-
ters in the routines. Thus, routines which perform essentially the same role,
even though they may employ different internal data structures or operate
on different types, can still have the same name. This name overloading
capability helps to reduce the intellectual overhead in learning to use the
package.



Figure 2 Tridiagonal test problem generator.

subroutine MakeTriDiagProblem(p, n)
use Sparspak90
integer :: n, 1
type (Problem) :: p

call Construct(p)

doi=1, n-1

call InAij(p, i+1, i, —-1DO); call InAij(p, i, i, 4DO)
call InAij(p, i, i+1, -1DO); call InRhs(p, i, 1DO)
end do
call InAij(p, n, n, 4D0); call InRhs(p, n, 1DO)

end subroutine MakeTriDiagProblem

In the the example in Figure 2, an instance of the Problem type is
initialized by calling the function Construct. All user-defined types in the
package are initialized by calling a function whose name is Construct. Of
course the routine that is actually executed will depend on the type of the
first argument of the parameter list (which the compiler can detect). The key
point is that the user has to remember only one function name in connection
with creating new instances of a type (objects).

Another example demonstrating the convenience of overloading is illus-
trated by the function InAij in the example in Figure 2. As noted in the
previous section, the structure and the numerical values of the system of
equations can arrive at different times and in different aggregations. If the
user does not know the value of a;; but wishes to communicate the fact that
the (7, j)-th element of A is present, the function InAij is still used, but
the last parameter is omitted. Analogously overloaded input routines, e.g.,
InRow, InColumn are available in the event that the nonzeros (or perhaps
only their positions in the matrix) become available by rows or columns (or
parts thereof). Similar remarks apply to InRhs. The right hand side b
can be input one element at a time, as shown in the example in Figure 2,
or as a sub-array with an accompanying list of subscripts, or all at once.
In all cases a function with the same name is called. Thus, the user must
remember only a small number of function names to use Problem objects.



2.2 Solver objects

The second major type of object that the typical user of the package will
employ is a “solver” object. Loosely speaking, a Solver object accepts a
Problem object as input and produces a solution to the problem. The
package contains numerous different “solvers” for sparse systems of equa-
tions. That is, in addition to a type Problem in the package, there are
solver types, each consisting of a particular data structure (or structures)
with a default ordering algorithm and numerical factorization and triangu-
lar solution routines. Instances of these types can be regarded as “solver
objects”. The solver types implement a particular overall approach to solv-
ing a sparse system. For example, for symmetric positive definite systems,
there are several effective algorithms for finding a low fill ordering, there
are several efficient methods for storing Cholesky factors, and there are sev-
eral efficient ways of implementing the factorization using the same data
structure (left-looking, right-looking, multifrontal) [1, 9, 14]. Various solver
objects result from selecting different combinations of these options.

The multitude of solvers is necessary because problems vary in several
dimensions. They may or may not be square; if square, they may or may
not be structurally symmetric. If they are structurally symmetric, they may
or may not be numerically symmetric. Regardless of either shape or symme-
try, row and/or column interchanges may be necessary to ensure numerical
stability. In addition, for any particular combination of problem attributes
above, there may be more than one approach that will solve the problem.
Of course a solver that assumes no special features will cope with them all,
but generally not as efficiently as one that exploits special features that a
problem may possess.

2.3 Coarse structure of Sparspak90

At a basic level of resolution, the package can be regarded as providing just
two fundamental types of objects, namely problem objects and xxxSolver
objects, where xxx denotes one of the numerous possibilities mentioned in
the previous subsection. For example, Sparspak90 contains a solver for
symmetric positive definite problems that reorders the problem to reduce
fill. This solver type has the name SparseSpdSolver, standing for (Sparse
Symmetric positive-definite Solver). A simple example showing its use is
displayed in_Figure 1, where the subroutine in Figure 2 was used to create
a small symmetric positive definite tri-diagonal problem.

The package also contains a solver for symmetric positive definite prob-
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Figure 3 Example of simple use of the package involving a different solver
type.

program SimpleExample
use Sparspak90

type (Problem) :: p ! declare problem

type (EnvSpdSolver) :: s ! declare solver

call MakeTriDiagProblem(p, 5) | create test problem
call Construct(s, p) | create solver object
call Solve (s, p) | instruct s to solve p
call PrintSolution(p) ! print the solution
call Destruct(p) ! release storage for p
call Destruct(s) ! release storage for s

end program SimpleExample

lems that orders the problem so that it has a small envelope [9]. This solver
type has the name EnvSpdSolver, which stands for (Envelope-reducing
Symmetric positive-definite Solver). The only change necessary in the pro-
gram in Figure 1 in order to use this solver would be in line 4, where Spars-
eSpdSolver would be changed to EnvSpdSolver. The use of function
name overloading for Solve and Destruct means that no other changes
are required; of course different procedures will be invoked. The compiler
detects which procedures should be called by matching up the types and
numbers of parameters in the procedures. Thus, the new program would be
as shown in Figure 3.

Thus, from the perspective of a typical user, Sparspak90 can be viewed
as shown in Figure 4. Two types of objects are involved in its use, namely
Problem objects and solver objects.

Typically, a user would have a problem at hand. The first step is to create
a Problem object p by making a subroutine call, Construct(p), which
sets up and initializes the data structures for storing the problem matrix, the
right hand side and the solution. The Problem module provides subroutine
InAij(p, i, j, aij) for input of the entries in the matrix A to the Problem
object. The routine communicates to p that there is a nonzero at row i and

11



Figure 4 Coarse structure of Sparspak90

xxxSolver Problem
Construct(s, p) Construct(p)
Solve(s, p) InAij(p, i, j, aij)
Destruct(s) InRhs(p, i, bi)
PrintSolution(p)
' Destruct
(other utilities) (v)
. (many other utilities)
(There will be many of these
solvers, but their interface

function names are the same.)

column j in A with the numerical value aij. The subroutine InRhs(p, i,
bi) allows the user to input a value bi to the i** entry in the right hand side
vector b.

‘Important Notes | If InAij(p, i, j, aij) is called multiple times with the
same 1 and j, then the effect is additive, meaning that each time it is
called the value aij is added to the value at position (i, j) if one already

exists.

To solve the problem, a call to subroutine Construct(s, p) would create
a solver object, s, of a type specified by the user. Then a call to subroutine
Solve(s, p) would solve the system and the solution is stored in the Prob-
lem object p. To see the solution, the user would call PrintSolution(p).
Then calling Destruct(s) and Destruct(p) would release the storage used
by s and p.

3 Additional Features

3.1 Other ways to input a problem

There are subroutines in the Problem module which provide other ways of
inputting entries into either the matrix A or the right hand side b.

12



Important Notes‘ As mentioned before, with all input routines which
input a value, the effect of inputting to a location multiple times is
cumulative. This means that the new value is added to the existing
value. Therefore, if a user wants to input a new matrix A or a new right
hand side b, then the user must call ZeroMatrix(p) or ZeroRhs(p)
first which sets the relevant data structure of the Problem object p
to zero. Another point to note is that if a nonzero does not already
exist at a specified location then it is inserted.

InRow (p, rNum, nElements, colSubs, values) Execution of a call to
this routine lets the user add to the current values of nElements en-
tries in row rNum of the matrix A with column subscripts as specified
in the array colSubs. The array values contains the corresponding
numerical values for those entries. If the user wants to communicate to
the problem object that some locations in row rNum of A are nonzero
but the numerical values for these locations are not yet available, then
the last parameter values may be omitted.

InColumn(p, ¢cNum, nElements, rowSubs, values) is a column ana-
logue of InRow (p, rNum, nElements, colSubs, values).

InRhs(p, rhs) adds an array of values rhs to the existing values in the
right hand side of a Problem object.

InRhs(p, nElements, rowSubs, values) adds to the current values of
nElements entries in the right hand side whose positions are specified
in the array rowSubs. The values to be added are taken from the
corresponding values in the array values.

3.2 Retrieval of solution and problem data for use in further
computation

GetSolution(p, x) in the Problem module allows the user to retrieve the
solution vector and store it in an array x for use in further computa-
tion.

GetRhs(p, rhs) retrieves the right hand side and stores it in an array rhs.

3.3 Reinitializing data structures to zero

The Problem module offers the user the subroutines

13



ZeroMatrix(p)

ZeroRhs(p)

ZeroSolution(p)

ZeroDiagonal(p)

These routines set the relevant data structures of the Problem object p
to zero. This is helpful when solving systems with multiple right hand sides
or many problems with the same structure but different numerical values as
discussed in later sections as well as for testing purposes.

3.4 Solving many problems with the same nonzero structure

In certain applications, many problems which have the same sparsity struc-
ture but different numerical values must be solved. In this case, the structure
input, ordering, and data structure set-up need only be done once. The con-
trol sequence is depicted in Figure 5, where p is the Problem object and s
is the solver object.

To reuse the structure and ordering of an existing problem, the user must
call the subroutine ZeroProblem(p) which sets the values of A and b to
zero before inputting the new numerical values for A and b. After the new
numerical values for A and b have been input to p, the user need only call
Solve(s, p) again, reusing the same solver s. There is internal information
maintained by the solver which makes it aware that this is a new problem
with new numerical values so that it would input the new values from A
to the existing data structure, factor A and do the triangular solve again.
However it would skip the step that finds a reordering for the matrix A
and the symbolic factorization part of the solution process. An example of
reusing the ordering and data structure of a solver for two problems with
the same structure is given in Figure 6.

Note that if such problems must be solved over an extended time period
(i.e., in different runs), the user can use the Save and Restore facility on
the problem p and s as detailed in a later section and thus avoid the input
of the structure of A and the ordering part of work in subsequent equation
solutions.

14



Figure 5 Control sequence for solving many problems with the same struc-
ture.

Call Construct(p)

Input structure and values of A and values of b

Call Construct(s, p)

Call Solve(s, p)

Call ZeroProblem(p)

Input new numerical values of A and b |—

15



Figure 6 Example of solving two problems with the same structure.

program tSameStructure02
use Sparspak90

implicit none

type (Problem) :: p
type (SparseSpdSolver)
integer :: size

size = b5

call MakeGridProblem(p, size, size, "5pt")
! create a grid problem p
! make p numerically random

call MakeProblemRandom(p)
call MakeSymmetric(p)
call MakeDiagDominant (p)
call MakeRhs(p)

call Construct(s, p)
call Solve(s, p)
call PrintSolution(p, 10)

call MakeProblemRandom(p)
call MakeSymmetric(p)
call MakeDiagDominant (p)
call MakeRhs(p)

call Solve(s, p)
call PrintSolution(p, 10)

call Destruct(s)
call Destruct(p)
end program tSameStructure(2

! make p symmetric

! make p diagonally dominant

! set the right hand side of p
! such that the solution vector
! will be (1, 2, 3, ...)

! create solver object s

instruct s to solve p

! print part of the solution

! make p numerically random

! make p symmetric

! make p diagonally dominant

! set the right hand side of p
! such that the solution vector
! will be (1, 2, 3, ...)

instruct s to solve p

! print part of the solution

! release storage for s
! release storage for p




3.5 Solving many problems which differ only in their right
hand sides

In some applications, numerous problems which differ only in their right
hand sides must be solved. In this case, it is necessary to factor A into
LU or LL" only once, and use the factors repeatedly in the calculation of
@ for each different b. Again, Sparspak90 can handle this situation in a
straightforward manner, as illustrated by the flowcharts in Figure 7.

Both factorization and triangular solution are performed during the call
to Solve, with only the forward and backward substitution part performed
in each execution of TriangularSolve. There are two versions of the sub-
routine TriangularSolve. For the version which takes a Problem object
as the second parameter, the user must call ZeroRhs(p) first before putting
the new values for the right hand side in p and then calling Triangular-
Solve(s, p). For the version which takes an array rhs as the second pa-
rameter, the user need only put the new values of the right hand side in
rhs before calling TriangularSolve(s, rhs). The solution is returned in
the array rhsin this case. Examples demonstrating the two ways of solving
problems which differ only in their right hand sides are shown in Figures 8
and 9.

3.6 Symmetric coefficient matrices: saving storage using the
parameter mType

In certain contexts the Problem object p will be used to store a symmetric
matrix A. In order to conserve storage, the user may choose to input only
the lower triangular part of A. Certain subroutines and functions need to
know when a symmetric matrix is represented this way. The parameter used
to indicate this is called mType. It may have one of two valid values. A
“l” indicates to the routine that only the lower triangular
part is present. Among others, the subroutines FindScales and Comput-
eResidual in the Problem module require the use of this parameter when
only the lower triangular part of a symmetric matrix A is stored in the
Problem object p.

value of “L” or

3.7 Solving ATz =b

For unsymmetric solvers, Sparspak90 provides subroutines for solving A” a
b. If the matrix A has already been factored, then executing the calling se-
quence

Call TransposeTriangularSolve (s, p)

17



Figure 7 Control sequences for solving many problems which differ only in
their right hand sides

Call Construct(p)

Input structure and values of A and values of b

Call Construct(s, p)

Call Solve(s, p)

Call ZeroRhs(p) Put values of new b in rhs

Input new values of b Call TriangularSolve(s, Ths)

Call TriangularSolve(s, p)

18



Figure 8 Example of solving three problems which differ only in their right
hand sides by putting the new right hand sides into the problem object first.

program tDiffRhs02

use Sparspak90

implicit none

type (Problem) :: p
type (EnvSolver) :: s
integer :: i
real(double):: x(25)

call MakeGridProblem(p, 5, 5, ’5pt’)
call MakeStructureSymmetric(p)

call MakeProblemRandom(p)

call MakeDiagDominant (p)

call Makerhs(p)

call Construct(s, p)
call Solve( s, p )
call PrintSolution(p, 10)

x=( (1,i=1,25) /)
call MakeRhs(p, x)

call TriangularSolve(s, p)

call PrintSolution(p, 10)
x=( (Ci*xi, i =1, 26) /)
call MakeRhs(p, x)

call TriangularSolve(s, p)

call PrintSolution(p, 10)

call Destruct(s)
call Destruct(p)

end program tDiffRhs02

! create a grid problem p

! make p structurally symmetric
! make p numerically random

! make p diagonally dominant

! set the right hand side of p
! such that the solution vector
! will be (1, 2, 3, ...)

! create solver s from p

instruct s to solve p

! print part of the solution

! set the right hand side of p
! such that the solution vector
! will be equal to x

instruct s to do forward and

! backward substitution using
! the factors stored in s

! print part of the solution

! repeat the above with a new
! set of values for x

! release storage for s
! release storage for p

19



Figure 9 Example of solving three problems which differ only in their right
hand sides using a separate array for the new right hand sides and solutions.

program tDiffRhs02a

use Sparspak90
implicit none

type (Problem) :: p
type (EnvSolver) :: s
integer :: i
real (double) :: x(25), rhs(25)

call MakeGridProblem(p, 5, 5, ’5pt’)
call MakeStructureSymmetric(p)

call MakeProblemRandom(p)

call MakeDiagDominant (p)

call Makerhs(p)

call Construct(s, p)
call Solve( s, p )
call PrintSolution(p, 10)

x=( (1, i=1,26)/)
call MakeRhs(p, x)
call GetRhs(p, rhs)

call TriangularSolve(s, rhs)

call PrintVector(10, rhs, ’Solution’)

x=( (Ci*xi, i =1, 26) /)

call MakeRhs(p, x)

call GetRhs(p, rhs)

call TriangularSolve(s, rhs)

call PrintVector(10, rhs, ’Solution’)

call Destruct(s)
call Destruct(p)

end program tDiffRhs02a

! create a grid problem p

! make p structurally symmetric
! make p numerically random

! make p diagonally dominant

! set the right hand side of p
! such that the solution vector
! will be (1, 2, 3, ...)

! create solver s from p

instruct s to solve p

! print part of the solution

! set the right hand side of p

! such that the solution vector

! will be equal to x

! retrieve the right hand side

! of p and store in the array rhs

instruct s to do forward and

! backward substitution using
! the factors stored in s and
! the array rhs as the right
! hand side and store the

! solution back in rhs.

! print part of the solution
! stored in rhs

! repeat the above with a new
! set of values for x.

! release storage for s
! release storage for p
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will compute the solution to the system ATz = b using the factors stored in
the solver s. Here p is a problem object. There is an another version of this
routine - TransposeTriangularSolve(s, rhs) where s is a solver object
and rhs is an array in which the right-hand side is stored as input and the
solution is returned as output.

Otherwise, executing the statement

Call TransposeSolve (s, p)

will solve the transposed system from scratch.

3.8 Other features
3.8.1 Matrix norms

Matrix norms are often useful in the analysis of matrix algorithms. The
subroutines OneNorm(p, mType) and InfinityNorm(p, mType) in
the Problem module compute and return the one-norm and infinity-norm
respectively of the problem matrix in the Problem object p. Note that
the second parameter mType is required when the matrix A is symmetric
and only the lower triangular half of it is stored. Refer to subsection 3.6 for
details.

3.8.2 Computing the residual

If the user has an approximate solution for the Problem object p in the
array x, then the calling sequence

Call ComputeResidual (p, res, x, mType)

computes the difference between the right hand side b of the given problem
p and “Ax” and stores it in the array res. Again note that mType is
required when the matrix A is symmetric and only the lower triangular half
of it is stored. See subsection 3.6 for details.

3.8.3 Matrix property inquiry

The Problem module offers the users the following functions:

e IsStructureSymmetric

e IsLowerTriangular
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e IsUpperTriangular
e IsSymmetric

e IsDiagDominant

Their meaning is obvious from their names. Each of these functions
takes a single parameter p which is a Problem object and returns a logical
value. The function IsDiagDominant takes a second optional parameter
mType. See the subsection 3.6 for an explanation for its role.

3.8.4 Modifying a matrix

Sometimes, the user may want to change the numerical value of an entry
in the problem matrix A. The Problem module provides the following
subroutines for such purposes.

ReplaceAij(p, i, j, aij) A call to this routine sets the numerical value of
the (7,7)t" entry in the matrix A to aij. If a nonzero did not exist at
this location before this routine is called, then the value is inserted.

ReplaceColumn(p, cNum, nElements, rowSubs, values) A call to this
subroutine sets the numerical values of nElements entries in the col-
umn cNum of matrix A in the Problem object p. The user supplies
the row subscripts of the locations in the array rowSubs and the cor-
responding values in the array values. If a nonzero did not exist at a
location (as specified by cNum and rowSubs) before this routine is
called, then the value is inserted at that location.

ReplaceRow(p, rNum, nElements, colSubs, values) is a row counter-
part of ReplaceColumn(p, ¢cNum, nElements, rowSubs, val-
ues).

3.8.5 Inquiring whether a matrix entry is nonzero, and retrieving
its numerical value

AjjPresent(p, rNum, cNum) checks to see if the entry (rNum, cNum)
is present. If it is, the routine returns .true.; otherwise, .false. is
returned.

GetAijProblem(p, rNum, cNum) finds p’s matrix entry at (rNum, cNum)
and returns it. If none exists, zero is returned.
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4 Obtaining Information from Sparspak90

4.1 Displaying information about a problem object

The subroutine PrintStats(p) displays the number of rows, columns, edges,
diagonal edges in the graph of the matrix, nonzeros, diagonal nonzeros in
the matrix and any string of description or information (if any were provided
by the user) of the Problem object. Note that the edges in the graph of
the matrix refers to the structural nonzeros in the matrix A; diagonal edges
in the graph refers to the structural nonzero diagonal elements in A. By
contrast, the nonzeros in the matrix refers to the nonzero values in A and
the nonzero diagonal elements refers to the diagonal nonzero values in A.

4.2 Displaying information about a solver object

At times, it may be useful to see the contents of the data structures of the
solver object. Each solver module provides a subroutine for this purpose.
To use it, one would call Print(s) where s is the relevant solver object.

4.3 Displaying execution times

The subroutine PrintTimes(s) in each solver module displays the time
used for ordering, symbolic factorization, entering the matrix A from the
Problem object to the Solver object, factorization, triangular solution and
iterative refinement.

4.4 Messages produced by Sparspak90

In the package, a variable msgLevel which stands for “message level” is
provided. It governs the amount of information printed by Sparspak90 .
Its default value is 2, and for this value fatal errors, warnings and summary
information are printed. When msgLevel is set to 1 by the user, only
fatal error messages and summary information are printed. Setting the
value of msglLevel to 3 provides additional trace information about the
computation.

In many circumstances, Sparspak90 will be embedded as a toolbox in
another “super package” which models phenomena involving sparse matrix
problems. Messages printed by Sparspak90 may be useless or even con-
fusing to the ultimate users of the super package, or the super package may
wish to field the error conditions and perhaps take some corrective action
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which makes the error messages irrelevant. Thus, all of the printing by
Sparspak90 can be prevented by setting msgLevel to 0.
To summarize, we have

msgLevel output messages

no output.

fatal errors, summary information.

fatal errors, warnings, summary information.

fatal errors, warnings, trace and summary information.

W N = O

By setting msgLevel to 3, trace information about major subrou-

tines is printed as they are entered and exited during the computation.

4.5 Creating a log

If the user so chooses, it is possible to save the output printed by Sparspak90
to alog file. A subroutine SetLogFile(filename) is provided for the user to
supply a filename for the log file. Once this routine is called, all subsequent
output would be printed to the file specified in addition to being displayed
on the standard output unit.

5 Displaying Pictures of Objects

5.1 Displaying a picture of the nonzero structure of the ma-
trix A

The subroutine Picture(p) displays a picture of the nonzero structure of

the problem matrix A.

5.2 Displaying a picture of the data structure for the factor
L

The subroutine Picture(s) prints a “picture” of the data structure for the
factor L in the solver object s if symbolic factorization has been done.

5.3 Creating Tex files

Sparspak90 provides a facility for the user to create a file containing a
LaTeX picture environment of the matrix A contained in a Problem object
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p.- To do that a user would execute the statement
Call MakeTexFile (p, filename)

where filename is the name of the destination LaTeX file.

6 Scaling

Sparspak90 provides scaling facilities to scale the matrix A so that the
norms of its columns are all about one. Routines are also provided for
applying the appropriate scalings and un-scalings to the right hand side and
the solution. Typically a user would first execute the statement

Call FindScales (p, mType)

which computes the row and column scales. Refer to the subsection 3.6 for
the role served by the optional second parameter.
Then executing the statement

Call ScaleProblem (p)

would scale the matrix A and the right hand side b. After calling Solve(s,
p) to solve the scaled problem, the user must execute the statement

Call UnscaleSolution (p)

in order to obtain the solution to the original problem. If for some reason
the user wants to get back the original matrix A and the right hand side b,
he/she must execute the statement

Call UnscaleProblem (p)

which undoes the scaling of A and b.

An example showing the use of scaling is given in Figure 10. Refer
to section 10 for details on the subroutine HarwellBoeingRead used in the
example.

7 Iterative Refinement of the Solution

Sometimes, computed solutions may be improved by doing iterative refine-
ment. The package provides in each solver a subroutine Refine which does
extended precision iterative improvement. To use it, the user calls Refine(s,
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Figure 10 Example showing the use of scaling

program tScalingO1
use Sparspak90

implicit none
type (GPSolver) :: s
type (Problem) :: p

call MakeRandomProblem(p, 100,

call MakeRHS(p)

call FindScales(p)
call ScaleProblem(p)

call Construct(s, p);
call Solve(s, p)

call UnscaleSolution(p)
call PrintSolution(p, 10)

call Destruct(s)
call Destruct(p)
end program tScalingO1

100, 0.1_double)
create a random problem p
create a right hand side for p such that

! the solution vector is (1, 2, 3, ...)

find a scaling for p
scale p

create a solver s from p
instruct the solver to solve p

unscale the solution
print part of the solution

release storage for the solver
release storage for p
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Figure 11 Example illustrating the use of the subroutine Refine.

program tRefine0O1_bpt
use Sparspak90

implicit none

type (OneWaySpdSolver) :: s
type (Problem) :: p
integer :: n

n = 200
call MakeGridProblem(p, n, n, "5bpt") ! create a grid problem p

call Construct(s, p) ! create a solver s from p
call Solve(s, p) ! instruct s to solve p

call PrintSolution(p, 20) ! print part of the solution
call Refine(s, p, mType="L") ! do iterative refinement
call PrintSolution(p, 20) ! print part of the solution
call Destruct(p) ! release storage for p

call Destruct(s) ! release storage for s

end program tRefine01_bpt

p, mType, iter) where s is a solver object, p is a Problem object and,
iter (optional) is the maximum number of iterations to be performed. The
optional parameter mType is required when the matrix is symmetric and
only the lower triangular part of it is stored. See the subsection 3.6 for
details.

An example showing the use of the subroutine Refine is given in Fig-
ure 11.

8 Condition Number Estimation

For a square matrix A, Sparspak90 provides a subroutine CondEst which
computes an estimate of the one-norm condition number of A. It should be
noted that factorization must be done before CondEst is called. To use it,
execute the statement

Call CondEst (s, estimate, p, mType)

where s is a solver object, p is a problem object and estimate is an estimate
of the condition number. See Section 3.6 for the role of mType.
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For the KdeltaSolver type the estimated condition number re-
turned by CondEst is that of the augmented matrix

SI A
AT 51 )

Similarly, for the CLLSSolver type, the estimated condition number
returned by CondEst is that of the augmented matrix

I 0 A
O ul C
AT T 51

For these two solver types, the use of the parameter mType is not
required.

9 Saving and Restoring Problems and Solvers

Sparspak90 provides subroutines Save and Restore which allow the user
to stop the calculation at some point, save the results in an external se-
quential file, and then resume the calculation at exactly that point some
time later. To save the results of the computation done thus far, the user
executes the statement

Call Save (s, filename)

where filename is the name of the external file to which the results are to
be written, along with other information needed to restart the computation.
Here s is a solver object. If execution is then terminated, the state of the
computation can be re-established by executing the following statement.

Call Restore (s, filename)

Note that executing Save does not destroy any information; the compu-
tation can proceed just as if Save were not executed.
Similarly, execution of the statements

Call Save (p, filename)

and
Call Restore (p, filename)
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Figure 12 Example showing how a problem object and an envelope solver

are saved.

program tSaveEnvSolver01
use Sparspak90

implicit none

type (Problem) :: p
type (EnvSolver) :: s
integer :: size
real(double) :: d

size = 200
d = 0.5_double
call MakeRandomProblem(p, size, size, d)

call MakeStructureSymmetric(p)

call MakeProblemRandom(p)
call MakeDiagDominant (p)
call MakeRhs(p)

call Save(p, ’tSaveEnvSolver0Ol.Problem’)

call Construct(s, p)

call Print(s, ’EnvSolver before Save’)
call Save(s, ’tSaveEnvSolver01.EnvSolver’)

call Destruct(s)
call Destruct(p)
end program tSaveEnvSolver01

! create a random problem p
! make p structurally

! symmetric

! make p numerically random
! make p diagonally dominant
! set the right hand side

! such that the solution

! vector is (1, 2, 3, ...)

! save p to an external file

! create solver object s from
- P

! print the solver object

! save s to an external file

! release storage for s
! release storage for p

save and restore a Problem object p to and from an external sequential

file.

Examples showing how to save and restore a Problem object and a
EnvSolver (envelope solver) object are displayed in Figures 12 and 13.

10 Reading and Writing Harwell-Boeing Files

In Sparspak90 , a user can read in a problem stored in a file in the Harwell-

Boeing format [4] by executing the statement

Call HarwellBoeingRead (p, fileName)
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Figure 13 Example showing how a problem object and an envelope solver
are restored.

program tRestoreEnvSolver01
use Sparspak90

implicit none
type (Problem) :: p
type (EnvSolver) :: s

call Restore(p, ’tSaveEnvSolver01.Problem’)
call Restore(s, ’tSaveEnvSolver01.EnvSolver’)
call Print(s, ’EnvSolver after Restore’)

restore problem object p
restore solver object s
print data structures of
s

call Solve(s, p) ! instruct s to solve p
call PrintSolution(p, 10) ! print part of the

! solution
call Destruct(s) ! release storage for s
call Destruct(p) ! release storage for p

end program tRestoreEnvSolver01

where filename is the name of the file where the problem data is stored and
p is the Problem object created to store the problem read.

Conversely, if the user has a Problem object p which he/she wants to
save and store in a file in the Harwell-Boeing format, then

Call HarwellBoeingWrite (p, fileName, outfile, title)

would be the statement to call. Here filename is the name of the output file,
outfile is an optional unit number and title is an optional title to appear
at the top of the file.

Important Notes| There are restrictions on the type of Harwell-Boeing
format files which Sparspak90 can handle. Sparspak90 does not
handle files which store the problem matrix A in the elemental matrix
format. Also if there are multiple right-hand-sides, only the first one
is read in.

An example showing the use of the subroutine HarwellBoeingRead is
given in Figure 10.
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11 Creating Test Problems

11.1 Test problem generation

The Problem module provides some facilities for generating test problems.

MakeRandomProblem(p, nRows, nCols, density) generates a random
problem with nRows rows and nCols columns and density density.

MakeSPDProblem(p, nRows, density) creates a Problem object with
an nRows X nRows random matrix which is both symmetric and
positive-definite.

MakeTridiagProblem(p, n) creates a Problem object which is tri-diagonal.
The right hand side b is set so that the solution @ is all ones.

11.2 Right hand side generation

The Problem module has a subroutine MakeRhs(p, x, mType) which
constructs the right hand side of a problem given an x for the equation “Ax
= b”7. If x is not present, then a right hand side is constructed so that
(a,the) solution is 1,2,3,...m. See the subsection 3.6 for details of the role of
the optional parameter mType. This routine is useful for testing purposes.

11.3 Modification of a matrix so that it has certain proper-
ties

The Problem module has a number of subroutines that allow the user to
modify the matrix A so that it has certain desired properties. The following
subroutines are provided:

e MakeStructureSymmetric
This routine adds element positions (no numerical values) so that the
structure of the problem is symmetric.

e MakeSymmetric
This routine does the same as MakeStructureSymmetric, and in
addition, makes the problem numerically symmetric.

e MakeDiagDominant
This routine make the matrix column-diagonally dominant. It takes
an optional second parameter mType. See subsection 3.6 for details.
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e MakeSpd
This routine calls MakeSymmetric and then MakeDiagDominant.

o MakeProblemRandom This routine sets the elements of the matrix
to random elements drawn from a uniform random distribution on

(0,1).

12 More Sophisticated Use of Sparspak90 : Look-
ing Inside

12.1 One step at a time

The package is designed for ease of use so that once the Problem object
is constructed and the matrix A and the right hand side b are entered,
then all that the user needs to do is to pick an appropriate solver type,
call Construct(s) and then call Solve(s, p) to solve the system of linear
equations.

Internally, the call to Solve(s, p) involves a sequence of steps. First the
matrix A is ordered. Then symbolic factorization is done to find the nonzero
structure of the factor(s) and the relevant data structures for the factor(s)
are set up. Then the numerical values from the matrix A are input to the
data structures. Finally, the matrix A is factored followed by triangular
solution to find the solution corresponding to the right hand side.

In certain circumstances, the user may want to call the individual steps
directly instead of calling Solve. In that case, the user must make sure that
these steps are called in the right order although there are safeguards in the
package to prevent an improper processing sequence.

The solver type is designed so that it has built-in awareness of the current
stage of the solution process. This enables the solver to enforce the correct
execution sequence of the various interface routines. Before the actual exe-
cution of each interface routine, a check is made to ensure that all previous
interface modules have been successfully completed. This avoids produc-
ing erroneous results due to an improper processing sequence, or accidental
omission of steps.

When an error occurs during the execution of a phase, the execution of
all the subsequent phases is skipped, even if they are invoked by the user.

When Solve is called, it would find a reordering of the matrix and /or per-
form symbolic factorization only if they have not been done before. However
the other three steps (input of Problem matrix, factorization and substitu-
tion) are always executed regardless of whether they have been done before.
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So if the matrix A remains the same and the factorization has already been
done once, it is much more efficient to just call TriangularSolve (which
only does the forward and backward substitution) instead of calling Solve
again.

The names of the subroutines to call and the proper calling sequence are
as follows:

1. call FindOrder(s)

2. call SymbolicFactor(s)

3. call InMatrix(s, p)

4. call Factor(s)

5. call TriangularSolve(s, p)

An example demonstrating how to call the individual steps directly to
solve a system is given in Figure 14.

12.2 User-supplied ordering functions

Sparspak90 allows a user to provide his/her own ordering function; this is
achieved by calling the subroutine

FindOrder (s, OrderFunction = MyOrderRoutine)

directly with a reference to the ordering function being passed in as the last
parameter. A module containing a user-defined ordering function is shown in
Fig 15 and an example demonstrating the use of this user-provided ordering
method is given in Fig 16

For the solver types EnvSolver, EnvSpdSolver, SparseSolver, Spars-
eSpdSolver, GPSolver, KdeltaSolver, and CLLSSolver, a subroutine

FindOrder (s, perm)

where perm is a permutation vector is also provided to allow a user to
supply an ordering permutation. An example showing how to order the
problem matrix by supplying a permutation vector is given in Figure 17.

‘Important Notes ‘ The user should note that for the KdeltaSolver, and
CLLSSolver solver types, the ordering the user provides is applied
to the augmented matrices as described in subsection 8.

After the ordering is done, the user may choose to simply call Solve(s,
p) or to call the individual steps as previously described directly to solve
the system.
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Figure 14 Example showing how a user may call the individual steps for
solution directly.

program tRQTSolver0b
use Sparspak90

implicit none

type (Problem) :: p
type (RQTSolver) :: s
integer sze

sze = 200
call makeGridProblem(p, sze, sze, "9pt") ! create a grid problem p
call MakeStructureSymmetric(p) ! make p symmetric
call makeProblemRandom(p) ! make p numerically random
call makeDiagDominant (p) ! make p diagonally dominant
call makeRhs (p) ! create a right hand side
! so that the solution vector
'is (1, 2, 3, ...)
call Construct(s, p) ! create a solver s from p
call FindOrder(s) ! reorder the matrix
call SymbolicFactor(s) ! do symbolic factorization
call InMatrix(s, p) ! put the numerical values
! in the data structures.
call Factor(s) ! do numerical factorization
call TriangularSolve( s, p ) ! do forward and backward
! substitution
call printsolution(p, 20) ! print part of the solution
call Destruct(s) ! release storage for s
call Destruct(p) ! release storage for p

end program tRQTSolver05
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Figure 15 Example of a module as a container for a user-defined ordering
function

!'! The purpose of this module is to demonstrate how to incorporate a user-

'l supplied ordering when using Sparspak90.

D skeokeskeok sk s ok koo sk sk ok koo ok sk sk ok sk sk ok sk sk ks sk ok sk ok ke o s ok sk ok ks sk ok sk sk ok sk sk ok sk sk ks sk sk ok sk skok ks ok sk ok ok
module SpkMyOrder

D skeokeskeok sk s ok koo sk sk ok koo ok sk sk ok sk sk ok sk sk ks sk ok sk ok ke o s ok sk ok ks sk ok sk sk ok sk sk ok sk sk ks sk sk ok sk skok ks ok sk ok ok
use SpkGraph; use SpkOrdering

D skeokeskeok sk s ok koo sk sk ok koo ok sk sk ok sk sk ok sk sk ks sk ok sk ok ke o s ok sk ok ks sk ok sk sk ok sk sk ok sk sk ks sk sk ok sk skok ks ok sk ok ok

!'! Graph class:

'' nV - the number of vertices in the graph.

't (xadj, adj) - array pair storing the adjacency lists of the vertices.

'Y The adjacency lists of the graph are stored in consecutive locations
!'! in the array adj. The adjacency list for the i-th vertex in the graph
!! is stored in positions adj(k), k = xadj(i), .... xadj(i+1)-1.

!'! For convenience in accessing the lists, xadj is of length nV+1, with
'' xadj(nV+1) = nEdges+1.

!'! When the graph is symmetric, if vertex i is in vertex j’s adjacency

!'! then vertex j is in vertex i’s list. Using the representation above

!'! each edge in the graph is stored twice. There are no self-loops.

't (No "diagonal elements'.)

sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o
't Ordering class:

!'! nRows is the number of rows in the matrix

!'! nCols is the number of columns in the matrix

!'!  Ordering objects contain two permutations and their inverses:
!! rPerm is a row permutation: rPerm(i)=k means that the new position of
" row k is in position i in the new permutation.
'' rInvp is a row permutation satisfying rInvp(rPerm(i)) = i. Thus,
" rInvp(k) provides the position in the new ordering of the original
' row k.
!" cPerm and cInvp are analogous to rPerm and rInvp, except they apply
" to column permutations of the matrix.
sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o
contains
sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o
subroutine MyOrderRoutine ( g, order )
sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o
type (Graph) :: g
type (Ordering) :: order
sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o
call Construct(order, g¥nV)
! This creates identity permutations of size ginV.
! For purposes of illustration, the reverse ordering is used here.
orderYrperm = (/ (i, i = g¥nV, 1, -1) /)
orderf,cperm = orderrperm
orderrInvp(orderjrPerm) = (/ (i, i = 1, gknV) /)
orderi,cInvp = order¥rInvp 35
end subroutine myOrderRoutine
sk o ok ok ok ook o oK ok oK o KoK ok oK o KoK oK oK ok oK oK o oK ok ok oK ok oK o ok oK ok oK ok ok oK oK ok ok oK oK ok ok oK ook o ok ook ok ok ook o ok o ok ok o ok o

end module SpkMyOrder




Figure 16 Example showing how a user may use their own ordering method

in solving a system.

program tMyOrder01
use Sparspak90
use SpkMyOrder

implicit none
type (SparseSpdSolver)
type (Problem) :: p

call MakeGridProblem(p, 5, 5)

call Construct(s, p)

create a grid problem p
create solver object from p

call FindOrder(s, OrderFunction=MyOrderRoutine)

call Print(s¥%slvriorder)
call Solve(s, p)
call PrintSolution(p, 5)

call Construct(sl, p)

call Solve(sl, p)

call PrintSolution(p, 5)

call Destruct(p)

call Destruct(s)

call Destruct(sl)
end program tMyOrderO1

order the problem matrix

! using a user-suppplied
! function

instruct s to solve p
print part of the solution

create another solver object
si

instruct s1 to solve p
using the default ordering
method

print part of the solution

release storage for p
release storage for s
release storage for sl
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Figure 17 Example showing the use of a user-supplied permutation vector
in ordering a problem.

program tFindOrderPerm02
use Sparspak90

implicit none

type (Problem) :: p
type (EnvSolver) :: s
integer :: size, i
integer :: perm(16)

size = 4
call MakeGridProblem(p, size, size, "9pt")
! create a grid problem p

call MakeStructureSymmetric(p) ! make p structurally symmetric
call MakeProblemRandom(p) ! make p random numerically
call MakeDiagDominant (p) ! make p diagonally dominant
call MakeRhs (p) ! create a right hand side so
! that the solution is (1, 2, 3, ...)

! create a random permutation of the right size.
perm(1:16) = (/ (i, i = 1, 16) /)
call RandomPermutation(16, perm)

call Construct(s, p) ! create a solver s from p

call FindOrder(s, perm) ! order using random permutation
call Solve(s, p) ! instruct s to solve p

call PrintSolution(p, 10) ! print part of the solution
call Destruct(s) ! release storage for s

call Destruct(p) ! release storage for p

end program tFindOrderPerm02
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13 Solvers and How to Choose them

13.1 Square Non-Singular Linear Systems

It is mentioned in Section 1 that there are several solver types implement-
ing different methods of solution. For square non-singular linear systems,
there are four basic solver types together with their unsymmetric counter-
parts; the only distinction between the former and the latter being that
the former assumes the coefficient matrix A is symmetric, and the latter
assumes that A is unsymmetric. Two of the four basic solver types (RQT-
SpdSolver and OneWaySpdSolver) differ only in the ordering method
employed. Thus, for this problem class, Sparspak90 only provides three
essentially distinct methods, with each one having a symmetric and unsym-
metric version. Hence, in this section, the remarks will largely be confined
to the symmetric versions; comparative remarks about them will also apply
to their unsymmetric analogues.

The basic solver types are as follows; the remarks comparing them, and
the advice provided should be regarded as at best tentative. Characteristics
of sparse matrices vary a great deal.
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Solver Types

EnvSpdSolver

OneWaySpdSolver

RQTSpdSolver

Basic Strategy and References

The objective of this method is to reorder A so it has a small
bandwidth or profile[12]. The well-known reverse Cuthill-
McKee algorithm is used. For relatively small problems, say
n < 200, it is probably the best overall solver type to use.

The objective of this method is to reduce storage require-
ment, but the factorization time will usually be substantially
higher than the EnvSpdSolver or SparseSpdSolver methods.
Its storage requirement will usually be substantially less than
the SparseSpdSolver methods (unless n is very large). The
same remark is true about the relative solution times. Thus,
this method is often useful when storage is restricted, and/or
when many problems which differ only in the right hand side
must be solved (see Section 3.5). This solver uses the one-
way dissection ordering method. It is specifically tailored for
“finite element problems”, typical of those arising in struc-
tural analysis and the numerical solution of partial differential
equations[6].

The objective of this method is to reduce storage require-
ment, but the factorization time will usually be substantially
higher than the EnvSpdSolver or SparseSpdSolver methods.
Its storage requirement will usually be substantially less than
the SparseSpdsolver methods (unless n is very large). The
same remark is true about the relative solution times. Thus,
this method is often useful when storage is restricted, and/or
when many problems which differ only in the right hand side
must be solved (see Section 3.5). This solver uses the refined
quotient-tree ordering[7] and is effective for problem less spe-
cific than the “finite element problems” as mentioned above.

Continued on the next page.
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Solver Types Basic Strategy and References

SparseSpdSolver  This method attempts to find orderings which minimize fill-
in, and it exploits all zeroes. Its ordering times are almost
always greater than those above, but for moderate-to-large
problems the reduced factorization times usually are more
than compensatory. It uses a variant of the minimum de-
gree algorithm, and is suitable for all sparse problems[11].
For systems arising from “finite element problems” as men-
tioned above, an alternative ordering methods is the nested
dissection ordering [8]. This can be invoked by overriding
the default ordering routine by calling FindOrder(s, Or-
derFunction=ND) as mentioned in Subsection 12.2 since
this ordering method is provided as part of Sparspak90 .

To summarize, our tentative advice and guidelines for choosing a solver for
square non-singular linear systems are as follows:

1. For small problems, use the EnvSpdSolver.

2. For small to moderate size problems that have to be solved only once,
use the EnvSpdSolver if enough storage is available. If not, use the
OneWaySpdSolver or RQTSpdSolver. If the problem is quite large,
the SparseSpdSolver might be better.

3. For moderate to large problems, use either the OneWaySpdSolver,
RQTSpdSolver or SparseSpdSolver. If many problems differing only
in the right hand side must be solved, the OneWaySpdSolver or RQT-
SpdSolver may be the best. If the problem is quite large, and many
problems having the same structure, but different numerical values,
must be solved, then the SparseSpdSolver is probably the best. (See
Subsections 3.4 and 3.5.)

13.2 Linear Least Squares Problem Solvers
13.2.1 Regularized Least Square Problems

A matrix K is symmetric quasi-definite if there exists a permutation matrix
P such that PK P has the form

H A
K_<AT _G>7
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where H € R™*™ G € R™"*™ and both are symmetric and positive definite.

An important property of symmetric quasi-definite matrices K is that
PKP" always has an LDL" factorization for any permutation matrix P.
Such a factorization is also called the Cholesky factorization of a quasi-
definite system.

The strong factorizability of symmetric quasi-definite matrices makes
them attractive in solving a general linear system A® = b, where the ma-
trix A does not have special properties (symmetric, positive definite) or is
rectangular. The “KKT” method, or reqularized augmented system method,
is a particular example. The key idea of the KKT method is to handle gen-
eral systems while enjoying the advantages of symmetric positive definite
systems.

For a small scalar § > 0, consider the augmented system

k()= () wee k(0 A)

The matrix K is symmetric quasi-definite. For any é > 0 and any symmet-
ric permutation, PKsPT always has an LDL" factorization. A solution
to (1) provides a solution to the regularized least squares problem

| Az — b||* + [|6||".

If A is square and nonsingular or the system is rectangular but compatible,
the LDL” factorization of K5 can be treated as an approximate factoriza-
tion of K, where the matrix

0O A
KO:(AT 0)

is obtained from K by setting § = 0. Therefore, iterative refinement can

be used on the system
s b
wo(2)=(0)

to remove the effect of § and get a better approximate solution to Az = b.

Sparspak90 provides the KdeltaSolver type which creates an aug-
mented matrix as in (1) from the given matrix A and solves the augmented
system for an approximate solution to the system Ax = b where A has no
special properties (positive definite, diagonally dominant) or is rectangular.
It uses the SparseSpdSolver as an underlying solver.
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13.2.2 Constrained Least Square Problems

Consider
min || Az — b||,
e i3

where A € R™*" with m > n subject to
Cx=4d

where C € RPX" with p < n.
For small scalars 6 > 0 and p > 0, consider the augmented system

r b I O A
Ks|s|=1d where K, s=| 0 puI C |. (2)
0 AT CcT -1

Analogous to the matrix K in sectionl3.2.1, this matrix K s is sym-
metric quasi-definite. Hence, for any 6 > 0, ¢ > 0 and any symmetric
permutation, PKM(;PT always has an LDL” factorization. Thus, (2) is
equivalent to the least squares problem

VA Vb
min C x — d .
Vudl 0 .

A solution to (2) provides a solution to the constrained least squares problem

2

min [|[C — dlf; + ul| Az — blJ; + ud||;

The LDL” factorization of K5 can be treated as an approximate fac-
torization of K o, where the matrix

I 0O A
KOMZ (0 ,uI C
AT ¢’ o

is obtained from K ,s by setting § = 0. Therefore, iterative refinement can
be used on the system

r b
KMO S = d
@ 0

to remove the effect of ¢ and get a better solution to Ax =~ b subject to
Cz =d.

Sparspak90 provides the CLLSSolver type for solving constrained
linear least squares problems using the method outlined above. As in the
KdeltaSolver type, it uses the SparseSpdSolver as an underlying solver.
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13.3 Square Non-Singular Linear Systems Which Require
Pivoting

Let Az = b be a large sparse nonsingular system to be solved via Gaussian
elimination. If A has no special properties (positive definite, diagonally
dominant), some form of row and/or column interchanges are necessary to
ensure numerical stability. Given A, one normally obtains a factorization
of PAQ), where P and @ are permutation matrices of the appropriate size.
Thus, the process has two stages:

1. factor PAQ into the product of upper and lower triangular matrices

LU.

2. compute @ using L, U, P,Q and b: solve Ly = Pb and Uz = y, and
then set @ = Qz.

The coefficient matrix A normally suffers some fill; its factors will gener-
ally have nonzeros in positions that are zero in PAQ. The choice of the
permutations can dramatically affect the amount of fill that occurs. Thus,
when A is sparse, one or both of the permutations above are determined
during the factorization by a combination of (usually competing) numeri-
cal stability and sparsity requirements. Different matrices, though they may
have the same nonzero pattern, will usually yield different permutations and
therefore have factors with different sparsity patterns. In other words, for
general sparse matrices, it normally is not possible to predict where fill will
occur before the computation begins. Thus, some form of dynamic stor-
age scheme is required which allocates storage for fill as the computation
proceeds, which makes efficient implementation of Gaussian elimination for
such systems difficult.

The conventional approach to implementation uses both row and col-
umn interchanges during the factorization. The interchanges are chosen to
minimize the potential fill at each step, subject to the requirement that the
pivot element is above a certain threshold value. Thus, P and @ are deter-
mined during the numerical factorization. For details on this approach, see
[2, 3, 5].

Gilbert and Peierls[10] were the first to provide an implementation of
sparse Gaussian elimination whose run time can be shown to be propor-
tional to the amount of floating-point arithmetic done. The implementation
uses partial pivoting (row interchanges) only; it computes the factorization
PAQ = LU, for some permutation P that is chosen either in the normal
way, or by some form of threshold pivoting that selects row interchanges that
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limit fill while ensuring that the pivot element is not too small. The column
permutation ¢ is chosen in advance. This approach is referred to as the
G-P strategy.

Sparspak90 provides the GPSolver type for solving large sparse square
non-singular systems that has no special properties. The algorithm used is
based on the approach outlined above, which is basically Gaussian elimina-
tion with partial pivoting.
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