Derivation on discretized differential operators on (ir)regular grids
with boundary conditions

February 14, 2019

1 Setup

e Define an irregular grid {zi}i ; with 21 = 2z and zp = Z. Denote the grid with the variable

name, i.e. z = {zi}il.

e Denote the distance between the grid points as the backwards difference

Aiy_Ezi—zi_l,forizl...,P (1)
Ai,+EZi+1—Zi,fOl"’iIl,...,P—l (2)
o Assume A; _ = Ay and Ap = Ap_, due to ghost points, zp and zp41 on both boundaries.

(i.e.he distance to the ghost nodes are the same as the distance to the closest nodes). Then
define the vector of backwards and forwards first differences as

o= ) o
| diff(2)
Av = [ZP — ZP—1:| @
e Reflecting barrier conditions:
&u(z) + 0.v(z) =0 (5)
&u(z) +0:v(z) = 0 (6)

Let L be the discretized backwards first differences and Lo be the discretized central differences
subject to the Neumann boundary conditions in (5) and (6) such that L] v(2) and Lyv(z) represent
the first and second derivatives of v(z) respectively at z. For second derivatives, we use the following
numerical scheme from Achdou et al. (2017):

Ai,_v(zi + Ai,+) — (Ai,—I— + AZ‘V_)’U(ZZ‘) + Ai,+v(zi — Az‘,_)

fori=1,...,P 7
%(AH + A )A A o @)

’U”(ZZ‘) ~

1.1 Regular grids

Suppose that the grids are regular, i.e., elements of diff(z) are all identical with A for some A > 0.
Using the backwards first-order difference, (5) implies

v(z) —v(z—-A)
A = —{u(z) (8)




at the lower bound.
Likewise, (6) under the forwards first-order difference yields

v(Z+A)—-v(Z) -
22—

at the upper bound.
The discretized central difference of second order under (5) at the lower bound is

vz +A)—202) +o(z=A)  vz+A)—v(z) 1o —v(z=A)

A2 A2 A A
S v(z+A)—v(z) 1
- A3 + x&v(@)
1
— E(—1 + Af)v(z) + EU(&‘F A)

Similarly, by (6), we have

vEZ+A)—20Z)+v(z-A4A) vzZ-A)—-vE) 1vE+A) -z

A2 = AZ tA A
FoA) —0@) 1
IRCEEVE RSV
1

= (-1 AD(E) + yu(E - A)

at the upper bound.
Thus, the corresponding discretized differential operator L, Lf, and Lo are defined as

1—-(14+£A) 0 0 0 0 0
. -1 10 0 0 0
Li=x : Do Do
0 00 ... =1 1 0
0 00 - 0o -11), ,
-1 1 0 0 0
. 0 -1 1 0 0 0
LTEZ : :
0 0 0 0 —1 I
0 0 0 0 0 —-1+01-E84)), p
-2+ (14&A) 1 0 ... 0 O 0
. 1 -2 1 0 0 0
L2=@ : 5 Do
0 0 0 1 -2 1
0 0 0 0 1 —2401-88)/),.p

1.2 Irregular grids

Using the backwards first-order difference, (5) implies

v(z) —v(z— A1)
A

)

= —§v(z2)

(16)



at the lower bound. Likewise, the forwards first-order difference under (6) yields

v(E+Apy) — v(3)
Ap.+

— —%(®)

at the upper bound.

Note that we have assumed that A;— = A; 4 and Ap; = Ap_ for the ghost notes.

discretized central difference of second order scheme at the lower bound under (5) is
Ay v(z+ A1) — (Arg + A1 )v(z) + Ay po(z — A )
S(A14 + A1 )AL LA -
v(z+Ary) —20(z) Fo(z — Ag)

A2
1,+
v(z+ALy) —v(z) 1 v(z) —v(z—Ag)
A7, A Ap
v(z+ Ary) —v(2) 1
= : + €v(z)
A%,-‘r AVEES

1 1
= A2 (—1+ A17+§)U(§) + A2 v(z + A1,-&-)
1,+ 1,4+

Similarly, by (6), we have

AR_U(Q + A]:H_) — (AP,+ + APV_)'U(E) -+ Apﬁ.@(? - AP7_)
$(Ap+ + Ap_)Ap Ap_
v(Z+Ap_) —2v(Z)+v(Z—Ap_)

A3 _
_ v(Z—-Ap_)—v(Z) N 1 v(Zz+Ap_)—v(z)
A%_ Apv_ AR_
v(Z—Ap_) —v(Z) R
= A%_ - AP,—g,U(Z)
(1= Ap B(E) + —v(E - Ap)
A3 ’ A% ’

at the upper bound.
Thus, the corresponding discretized differential operator L, Lf, and Lo are defined as

(20)

The



ATII-(1+€&A10)] 0 0 0 0 0
AT Ayl 0 0 0 0
Ly = : : : : : : (31)
0 0 0 —Apt, AR, 0
’ i —1
0 0 0 0 VNl
AL A;}l 0 0 0 0
0 AL AL 0 0 0
Ly = : : : : : : (32)
-1 -1
0 0 0 0 —Ap 14 . Aplig
0 0 0 0 0 Aphl-1+0-8Apy)]) ,
AT [-24(14€A1 )] AT 0 0 0 0
Ly = 0 2(Arg AL ) TATL —2AT AT (A A, )AL 0
0 0 0 0 AFE AR (-24(1-8ap )/ b p
(33)
1.3 Differential operators by basis
Define the following basis matrices:
1 00 0 0 0
-1 10 0 0 O
Ur=1: & 5 Do (34)
0 0 0 -1 1 0
0 00 0 -1 1),.,
-1 1 O 0 O 0
0 -1 1 0 O 0
uf=| SRR (35)
0 0 O 0 -1 1
0 0 0 o0 -1/, ,
(36)

and the boundary conditions for the reflecting conditions:



0O 0 .. 00
B=| i (37)
0 0 0 0
0 0 - 00/,
00 0 0
00 ... 0 0
Bp=|: : : (38)
00 0 0
00

0 (1-8Ap1)/) 40

1.3.1 Regular grids
For regular grids with the uniform distance of A > 0, (16) and (18) can be represented by

-1
Ly =xUr =B (39)
1
Lf = ZU1+ + Bp (40)
1 -
LZZE(UIJF—Ul )+Bl+BP (41)

1.3.2 Irregular grids

For notational brevity, for vectors with the same size, x1,x2, define xixo as the elementwise-
multiplied vector. Then, we have

Ly =diag(A_)'U; — By (42)

LT = diag(AL)"'U + Bp (43)
1 -1 1 -1
Ly = diag [2(A+ + A_)A+] U — diag [2(A+ + A_)A_] U +Bi1+Bp (44)

We can simplify this expression further by introducing a new notation. Let x~! be defined as the
elementwise inverse of a vector x that contains no zero element. Then, Ly can be represented as

Ly =2 [diag (Ay + AL)T'ATHY U — diag (A4 + AL) 'AZY U] + By + Bp (45)
= 2diag (A4 + A_)7) [diag (AL) Uy — diag (AZY) Uy | + By + Bp (46)

The diagonal elements of (46) are also identical with the one provided in (33) — to see this, note
that the diagonal elements of (46), modulo By and Bp, are

—2[(A + A)TIAT + (Ay + AL TIAT = —2(A + AL THATT + AT (47)
=2(A4y + A)THATIATH (AL + AL (48)
= —2(AT'ATY (49)

which is identical with diag(Ls) with Ly from (33) except the first row and last row that are affected
by B; and Bp.
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