
TRAINING DEEP LEARNERS AND OTHER ITERATIVE MODELS WITH MLJ
Anthony Blaom
Department of Computer Science, University of Auckland.

SUMMARY
MLJ.jl (A. D. Blaom et al., 2020) is a toolbox written in Julia
providing meta-algorithms for selecting, tuning, evaluating,
composing, and comparing over 160 machine learning models
written in Julia and other languages. We present a new wrapper
IteratedModel for controlling iterative supervised models, such as
a gradient tree booster or a neural network, and indicate some
applications.

BASIC DEMONSTRATION
The code below, an excert from (A. Blaom and Shridhar, 2021),
wraps an instance, clf, of MLJFlux.jl’s neural network
ImageClassifier model type, in a number of iteration controls.
Figures 1 and 2, generated by applying the wrapped model,
iterated_clf, to 500 images of the MNIST data set, show traces
initialized in the first code block.

losses = []

training_losses = []

param_means = Float32[]

to extract Flux params from an MLJFlux machine:

make1d(x) = reshape(x, length(x));

params(mach) = make1d.(Flux.params(fitted_params(mach)))

To update traces:

update_loss(loss) = push!(losses, loss)

update_training_loss(losses) = push!(training_losses,

losses[end])↪→

update_means(mach) = append!(param_means,

mean.(params(mach)))↪→

The iteration controls:

controls=[Step(2), # Step two epochs

Patience(3), # Stop if loss...

InvalidValue(), # Stop on "overflow"

TimeLimit(5/60), # Train 5 mins, max

Save("mnist.jlso"), # Save a snapshot

WithLossDo(), # Log loss to `Info`

WithLossDo(update_loss),

WithTrainingLossesDo(update_training_loss),

Callback(update_means)]

The wrapped model:

iterated_clf = IteratedModel(model=clf, controls=controls)

FIGURE 1

Comparison of training loss and out-of-sample loss in an image classifier with
Patience(3) early stopping.

FIGURE 2

Evolution of mean weights in the wrapped classifier model of Figure 1. Higher
numbers refer to deeper parameters.

IMPLEMENTATION
Iterative models in MLJ support warm restart of training, which
makes external control of these algorithms relatively
straightforward. In MLJ, an object called a machine points to the
model hyper-parameters, data, and updatable learned parameters
(the mach in the code above). A machine is controlled using the
author’s generic IterationControl.jl package. Stopping criterion,
such as Patience in the example above, are based on an
out-of-sample loss estimate. An optional key-word argument
specifies the proportion of data to be held back for the estimate, or
if all data is used and the training loss substituted for the
out-of-sample loss.

ITERATION CONTROL IS COMPOSITIONAL
All MLJ’s functionality, such as performance estimation, tuning and
model composition, can be applied to the wrapped model. By
default, the atomic iterative model is trained on all data once the
number of iterations has been determined in the controlled training
phase (which is restricted to a subset of the supplied data). In this
way, the iterated model is simply a new version of the original
model, but with the iteration parameter transformed from
hyper-parameter to learned parameter.

HYPER-PARAMETER OPTIMIZATION
In MLJ hyper-parameter optization (tuning) is also implemented as
a model wrapper, and is iterative. Tuning can therefore be
controlled externally using the IteratedModel wrapper. For
example, one can imagine a relatively straightforward
implementation of HyperBand optimization (Li et al., 2018), in
which several tuning jobs are run competitively in parallel, with
resources being gradually diverted to the best performers. A proof
of concept is offered at (A. Blaom, 2021).

REFERENCES
Blaom, Anthony (2021). A demonstration of controlling models competing in

parallel. Juptyer notebook. url:
https://github.com/JuliaAI/IterationControl.jl/blob/dev/examples/

competing_models/competing_models.ipynb.
Blaom, Anthony D. et al. (2020). “MLJ: A Julia package for composable machine

learning”. In: Journal of Open Source Software 5.55, p. 2704. doi:
10.21105/joss.02704. url: https://doi.org/10.21105/joss.02704.

Blaom, Anthony and Ayush Shridhar (2021). Using MLJ to classifiy the MNIST
image dataset. Juptyer notebook. url: https://github.com/FluxML/
MLJFlux.jl/blob/master/examples/mnist/mnist.ipynb.

Li, Lisha et al. (2018). “Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization”. In: Journal of Machine Learning Research
18.185, pp. 1–52. url: http://jmlr.org/papers/v18/16-558.html.

https://alan-turing-institute.github.io/MLJ.jl/dev/
https://alan-turing-institute.github.io/MLJ.jl/dev/controlling_iterative_models/
https://github.com/FluxML/MLJFlux.jl
https://github.com/JuliaAI/IterationControl.jl
https://github.com/JuliaAI/IterationControl.jl/blob/dev/examples/competing_models/competing_models.ipynb
https://github.com/JuliaAI/IterationControl.jl/blob/dev/examples/competing_models/competing_models.ipynb
https://doi.org/10.21105/joss.02704
https://doi.org/10.21105/joss.02704
https://github.com/FluxML/MLJFlux.jl/blob/master/examples/mnist/mnist.ipynb
https://github.com/FluxML/MLJFlux.jl/blob/master/examples/mnist/mnist.ipynb
http://jmlr.org/papers/v18/16-558.html

