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Abs t rac t  
This paper describes a range of �minimum distance� methods used to compute new 
weights for large cross-sectional surveys used in microsimulation modelling. Extraneous 
information about a range of population variables is used for calibration purposes. An 
iterative solution procedure is described and numerical examples are given, involving 
comparisons among alternative distance functions. An application to the New Zealand 
Household Economic Survey (HES) is reported.  
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Survey Reweighting for Tax 
Microsimulation Modell ing  

1  In t roduc t ion  
Tax microsimulation models are based on large-scale cross-sectional survey data. Each 
individual or household has a sample weight provided by the statistical agency 
responsible for collecting the data. The typical starting point is to use weights that are 
inversely related to the probability of selecting the individual in a random sample, with 
some adjustment for non-response. It has become common for agencies, using �minimal� 
adjustments, to produce revised weights to ensure that, for example, the estimated 
population age/gender distributions match population totals obtained from other sources, 
in particular census data. Such calibration methods appear to be well known among 
survey statisticians, a highly influential paper being that by Deville and Särndal (1992).

1
  

Users of official data usually take the weights as given, when �grossing up� from the 
sample in order to obtain estimates of population values. This applies not only to simple 
aggregates, such as income taxation, or the number of recipients of a particular social 
transfer, or the number of people in a particular age group, but the weights are also used 
in the estimation of measures of population inequality or poverty. However, there is no 
guarantee that weights calibrated on demographic variables produce appropriate revenue, 
expenditure and income distribution results.  

One aim of this paper is therefore to describe the basic calibration approach to economic 
modellers who are not familiar with the survey literature but need to reweight their 
samples. This may arise, for example, if population aggregates, not used for official 
calibrations, are not sufficiently close to population values obtained from other data 
sources, such as tax and benefit administration data. A further important reason for 
wanting to reweight the data arises when a survey from one year is used to examine the 
likely implications of, say, a tax and transfer policy in a later year. This need can arise if 
cross-sectional surveys are not carried out every year or if there are long delays in 
releasing data. Nevertheless, other administrative data may be available at more frequent 
intervals. It is also useful to be able to allow for changes in, say, the age distribution of the 
population or in aggregate unemployment rates over time.  

                                                                 
1A detailed description of calibration and Generalised Regression (GREG) methods used in Belgium is given in Vanderhoeft (2001), 
which also describes the SPSS based program g-CALIB-S. Bell (2000) describes methods used in the Australian Bureau of Statistics 
household surveys, involving the SAS software GREGWT. Statistics Sweden uses the SAS software CLAN, described by Andersson 
and Nordberg (1998) and also used by the Finnish Labour Force Survey. All results in the present paper were obtained using Fortran 
programs written by the author. 
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The basic problem of obtaining �minimum distance� weights is described more formally in 
section 2. The chi-squared distance function has an explicit solution and this is derived in 
section 3.

2
 A more general class of distance measures is discussed in section 4, where 

iterative solutions are needed. These sections provide a simplified exposition, with 
derivations, of some of the results stated by Deville and Särndal (1992), whose more 
sophisticated and comprehensive treatment concentrated on statistical inference issues.

3
 

The use of Newton�s method for the solution of the nonlinear equations is explored. 
Numerical examples are used to compare alternative distance functions, based on a small 
hypothetical sample. Finally, in section 5 the methods are applied to New Zealand 
Household Economic Survey (HES) data. Brief conclusions are in section 6.  

2  The  p rob lem 
For each of K  individuals in a sample survey, information is available about J  variables; 
these are placed in the vector:  

1k

k

k J

x

x

x

 
 ,
 
 
 
 
 
 
 
 
 
 
 , 

.

.=

.
 (1) 

For present purposes these vectors contain only the variables of interest for the calibration 
exercise (rather than all measured variables). Many of the elements of kx  are likely to be 
0 1/  variables. For example 1k jx , =  if the k th individual is in a particular age group (or 

receives a particular type of social transfer), and zero otherwise. The sum 
1

K
k jk
x ,=∑  

therefore gives the number of individuals in the sample who are in the age group (or who 
receive the transfer payment).  

Let the sample design weights (provided by the statistical agency responsible for data 
collection) be denoted ks  for 1k K= ,..., . These weights can be used to produce 
estimated population totals, x st$  based on the sample, given by the J -element vector:  

1

K

k kx s
k
s xt

=

=∑$  (2) 

The problem examined in this paper can be stated as follows. Suppose that other data 
sources, for example census or social security administrative data, provide information 
about �true� population totals, xt . The problem is to compute new weights, kw ,  for 

1k K= ,...,  which are as close as possible to the design weights, ks ,  while satisfying the 
set of J  calibration equations:  

 
1

K

x k k
k

t w x
=

=∑  (3) 

                                                                 
2The link between this method and Generalised Regression estimators of population totals is discusssed briefly at the end of the 
section. See especially Särndal et al. (1992). 
3Deville and Särndal (1992) used fewer than two pages to state the results discussed here. 
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It is thus necessary to specify a criterion by which to judge the closeness of the two sets 
of weights.  

In general, denote the distance between kw  and ks  as ( )k kG w s, . The aggregate distance 
between the design and calibrated weights is thus:

4
  

( )
1

K

k k
k

D G w s
=

= ,∑  (4) 

The problem is therefore to minimise (4) subject to (3). The Lagrangean for this problem 
is:  

( )
1 1 1

K J K

k k j x j k k j
k j k

L G w s t w xλ
 
 
 , , 

= = = 

= , + −∑ ∑ ∑  (5) 

where jλ  for 1j J= ,...,  are the Lagrange multipliers. The following two sections consider 
methods of obtaining values of w  that minimise (5).  

3  An  exp l i c i t  so lu t ion  
The constrained minimisation problem stated above has an explicit solution for a distance 
function based on the chi-squared measure. This is discussed in subsection 1. A 
numerical example is examined in subsection 2.  

3 .1  The Chi -squared d is tance measure  

Consider the chi-squared type of distance measure, where the aggregate distance is 
given by:  

( )2

1

1
2

K
k k

k k

w s
D

s=

−
= ∑  (6) 

The Lagrangean in (5) can be written as:  

( )2

1 1 1

1
2

K J K
k k

j x j k k j
k j kk

w s
L t w x

s
λ

 
 
 , , 

= = = 

−
= + −∑ ∑ ∑  (7) 

where the jλ ,  for 1j J= ,..., , are the Lagrange multipliers, and x jt ,  represents the j th 

element of the vector of known population aggregates, xt .  

                                                                 
4Some authors, such as Folson and Singh (2000) write the distance to be minimised as ( )1

K
k k kk
s G w s

=
,∑ , but the present 

paper follows Deville and Särndal (1992). 
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Differentiation of (7) gives the set of K  first-order conditions:  

1
1 0

J
k

j k j
jk k

wL x
w s

λ ,
=

 ∂ = − − = ∂  
∑  (8) 

for 1k K= ,..., , along with the J  conditions in (3). Rewriting 
1

J
j k jj
xλ ,=∑  as kx λ′ , where 

the prime indicates transposition, and multiplication of each equation in (8) by ks  gives, 
after rearrangement:  

( )1k k kw s x λ′= +  (9) 

for 1k K= ,..., .  

To solve for the Lagrange multipliers, pre-multiply (9) by kx  and rearrange, so that:  

k k k k k k kw x s x s x x λ′− =  (10) 

Summing (10) over all K,  and making use of the calibration equations, gives:  

1

K

x k k kx s
k

t s x xt λ
 
 ′
 
 = 

− = ∑$  (11) 

where the term in brackets on the right hand side of (11) is a J  by J  square matrix. 
Hence, if this matrix can be inverted, the vector of Lagrange multipliers is given by:  

( )
1

1

K

k k k x x s
k
s x x t tλ

− 
 ′
 
 = 

= −∑ $  (12) 

The resulting values of λ  are substituted into (9) to obtain the new weights.
5
  

3 .2  A smal l  example  

The above procedure may be illustrated using a simple example. Suppose there are four 
variables, k jx ,  (for 1 4j = ,..., ), of concern, for which population values xt  are available. 
The hypothetical data, for a sample of 20 individuals, are shown in Table 1. Suppose 
variable 1 refers to age, so that 1 1kx , =  for those who are �young� and is zero otherwise, 

while 2 1kx , =  for those who are unemployed, and zero otherwise. Variable 3  measures 

                                                                 
5Write (9) as 1k k kw s xλ ′ 

 
 

= +  and (12) as ( ) 1
x x st Ttλ

′
′ −= −$  with T  as the symmetric matrix 

1

K
k k kk
s x x′

=∑ . 

Given sample observations on the variable 
ky ,  an estimate of the population total, 

yt$ , can be obtained as 
1

K
k kk
w y

=∑ . 

Substituting for 
kw  gives the result in Deville and Särndal (1992, p.377) that ( )1

K
k k xy x sk
s y t Bt t

′

=
= + −∑$ $ , where 

1
1

K
k k kk

B T s x y−
=

= ∑ . This provides the link between reweighting and the Generalised Regression (GREG) estimator. The 

production of asymptotic standard errors is often based on this estimator, in view of the result that other distance functions are 
asymptotically equivalent; see Deville and Särndal (1992, p.378). The present discussion concentrates only on reweighting. 
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earnings from employment, while variable 4  is another categorical variable referring to 
location ( 4 1kx , =  if the individual lives in a city, and is zero otherwise).

6
 Given the sample 

design weights shown in the penultimate column of Table 1, the estimated population 
totals are equal to [ ]44 24 213 32x st

′= , , ,$ .  

The symmetric matrix 
1

K
k k kk
s x x′

=∑  and its inverse are given in Table 2. The zero elements 

reflect the property of the basic data, that only individuals who work (for whom 2 0kx , = ) 

are assumed to receive positive earnings, 3kx , . Suppose that the known population totals 

are [ ]50 20 230 35xt
′= ,, , ,  reflecting a younger population than in the sample weights and a 

lower unemployment rate. The resulting calibrated weights are shown in the final column 
of Table 1. 

Table 1 � Sample values and calibrated weights 

k  ,1kx  ,2kx  ,3kx  ,4kx  ks kw
1 1 1 0 0 3 2.753
2 0 1 0 0 3 2.109
3 1 0 2 0 5 5.945
4 0 0 6 1 4 4.005
5 1 0 4 1 2 2.484
6 1 1 0 0 5 4.589
7 1 0 5 0 5 5.752
8 0 0 6 1 4 4.005
9 0 1 0 0 3 2.109

10 0 0 3 1 3 3.120
11 1 0 2 0 5 5.945
12 1 1 0 1 4 3.985
13 1 0 3 1 4 5.019
14 1 0 4 0 3 3.490
15 0 0 5 0 5 4.678
16 0 1 0 1 3 2.345
17 1 0 2 1 4 5.070
18 0 0 6 0 5 4.614
19 1 0 4 1 4 4.967
20 0 1 0 0 3 2.109

 

                                                                 
6The number of variables needed is of course one less than the number of categories of each type, otherwise singularity problems 
arise. 
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Table 2 � Matrix 
1

K
k k kk
s x x′

=∑  and its inverse 

1

K
k k kk
s x x′

=∑  

44.000 12.000 101.000 18.000 
12.000 24.000 0.000 7.000 

101.000 0.000 981.000 101.000 
18.000 7.000 101.000 32.000 

1

1

K
k k kk
s x x

− ′
 

=  
∑  

0.037 -0.016 -0.003 -0.008 
-0.016 0.053 0.003 -0.011 
-0.003 0.003 0.002 -0.005 
-0.008 -0.011 -0.005 0.053 

 

The required adjustments to the weights can clearly be seen to be consistent with 
expectations, given the calibration requirements and the characteristics of the individuals. 
For example, the weights for individuals 2, 9 and 20 fall by a relatively large amount (from 
3 to 2.109), since these individuals are all unemployed, old and living in rural locations, for 
all of which the aggregates are required to fall. The weights for individuals 1 and 6 do not 
drop so far because, although these are unemployed and in a rural location, they are 
young. The weight for person 12 falls by a small amount because, although unemployed, 
this person is young and in a city. The weights for individuals 13, 17 and 19 increase by 
relatively large amounts as they are young, employed and living in a city.  

4  A l te rna t i ve  D is tance  Func t ions  

The chi-squared distance function is convenient because it enables an explicit solution for 
the calibrated weights to be obtained, requiring only matrix inversion. However, a modified 
form of the same approach can be applied to a range of alternative distance functions, as 
shown in this section. These functions belong to a class of functions having two features: 
the first derivative with respect to w  can be expressed as a function of w s/  and its 
inverse can be obtained explicitly. An interactive solution procedure is required for the 
calculation of the Lagrange multipliers. The general case of this class is presented in 
subsection 1. An iterative approach based on Newton�s method is described in subsection 
2. Several weighting functions are described in subsection 3 and illustrated in subsection 
4.  

4 .1  The genera l  case  

The Lagrangean for the general case, stated in section 2, was written as:  

( )
1 1 1

K J K

k k j x j k k j
k j k

L G w s t w xλ
 
 
 , , 

= = = 

= , + −∑ ∑ ∑  (13) 
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Suppose that ( )k kG w s,  has the property, shared with the chi-square distance function, 

that the differential with respect to kw  can be expressed as a function of the ratio k kw s/ , 
so that:  

( )k k k

k k

G w s wg
w s

∂ ,  
=  ∂  

 (14) 

The K  first-order conditions for minimisation can therefore be written as:  

k
k

k

wg x
s

λ′ 
= 

 
 (15) 

Write the inverse function of g  as 1g − ,  so that if ( )k kg w s u/ = ,  say, then ( )1
k kw s g u−/ = . 

In the case of the chi-square distance function used above, ( ) 1k k k kg w s w s/ = / − , and the 

inverse takes a simple linear form. In general, from (15) the k  values of kw  are expressed 
as:  

( )1
k k kw s g x λ− ′=  (16) 

If the inverse function, 1g− ,  can be obtained explicitly, equation (16) can be used to 
compute the calibrated weights, given a solution for the vector, λ .  

As before, the Lagrange multipliers can be obtained by post-multiplying (16) by the vector 
kx , summing over all 1k K= ,...,  and using the calibration equations, so that:  

( )1

1 1

K K

x k k k k k
k k

t w x s g x xλ− ′

= =

= =∑ ∑  (17) 

Finally, subtracting 
1

K
k kx s k
s xt =

=∑$  from both sides of (17) gives:  

( ){ }1

1
1

K

x k k kx s
k

t s g x xt λ− ′

=

− = −∑$  (18) 

The term ( ){ }1 1k ks g x λ− ′ −  is of course a scalar, and the left hand side is a known vector. 

In general, (18) is nonlinear in the vector λ  and so must be solved using an iterative 
procedure, as described in the following subsection.  

4 .2  An i tera t ive procedure  

Writing x x st at− = ,$  the equations in (18) can be written as:  

( ){ }1

1
( ) 1 0

K

i i k k i k
k

f a s x g xλ λ− ′
,

=

= − − =∑  (19) 
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for 1i J= ,..., . The roots can be obtained using Newton�s method, described in the 
Appendix. This involves the following iterative sequence, where [ ]Iλ  denotes the value of 
λ  in the I th iteration:

7
  

( ) ( ) [ ]

[ ]

1
[ 1] [ ]

I

I

iI I f
f

λ
λ

λ
λ λ λ

λ

−

+ ∂ 
= −     ∂ l

 (20) 

The Hessian matrix ( )if λ λ 
  
∂ /∂ l  and the vector ( )f λ  on the right hand side of (20) are 

evaluated using [ ]Iλ .  

The elements ( )if λ λ∂ /∂ l  are given by:  

( ) ( )1

1

K
ki

k k i
k

g xf
s x

λλ
λ λ

− ′

,
=

∂∂
= −

∂ ∂∑
l l

 (21) 

which can be written as:  

( ) ( )
( )
1

1

K
ki

k k i k
k k

g xf
s x x

x

λλ
λ λ

− ′

, , ′
=

∂∂
= −

∂ ∂∑ l

l

 (22) 

Starting from arbitrary initial values, the matrix equation in (20) is used repeatedly to 
adjust the values until convergence is reached, where possible.  

As mentioned earlier, the application of the approach requires that it is limited to distance 
functions for which the form of the inverse function, ( )1g u− ,  can be obtained explicitly, 

given the specification for ( )G w s, . Hence, the Hessian can easily be evaluated at each 

step using an explicit expression for ( ) ( )1
k k kdg x d xλ λ− ′ ′/ . As these expressions avoid the 

need for the numerical evaluation of ( )1
kg x λ− ′  and ( ) ( )1

k k kdg x d xλ λ− ′ ′/  for each individual 

at each step, the calculation of the new weights can be expected to be relatively quick, 
even for large samples.

8
 However, it must be borne in mind that a solution does not 

necessarily exist, depending on the distance function used and the adjustment required to 
the vector x x st t− $ .  

4 .3  Some d is tance funct ions  

One reason why the chi-squared distance function produces a solution is that no 
constraints are placed on the size of the adjustment to each of the survey weights. It is 
therefore also possible for the calibrated weights to become negative. However, Deville 
and Särndal (1992) suggested the following simple modification to the chi-squared 
function, although the explicit solution for the chi-squared case is no longer available and 
the iterative method must be used.  

                                                                 
7The approach described here differs somewhat from other routines described in the literature, for example in Singh and Mohl (1996) 
and Vanderhoeft (2001). However, it provides extremely rapid convergence. 
8Using numerical methods to solve for each ( )1g u−  and ( )1dg u du− / ,  for 

ku x λ′= , for every individual in each iteration, 

would increase the computational burden substantially. 
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Suppose it is required to constrain the proportionate changes to certain limits, different for 
increases compared with decreases in the weights. Define Lr  and Ur  such that 

1L Ur r< < . The objective is to ensure that, for increases, the proportionate change, 
1w s/ − ,  is less than 1Ur − ,  or that Ur w s> / . For decreases, the aim is to ensure that 

1 w s− /  (or the negative of the proportional change) is less than 1 Lr− ,  so that Lr w s< / .  

For the chi-squared distance function, it has been seen that ( )1 1g u u− = + ,  where u x λ′=  

and ( )1g u−  solves for w s/ . Hence if ( )1g u w s− = /  is outside the specified range, it is 

necessary to set it to the relevant limit, either Ur  or Lr ,  rather than allow it to take the 

value generated. Since ( )1 1 1g u w s u− − = / − = , it is clear that the limits are exceeded if 

1Lu r< −  and if 1Uu r> − . In each case where the value of ( )1g u−  has to be set to the 

relevant limit, the corresponding value of ( )1dg u du− /  is zero. This approach ensures that 

weights are kept within the range, L k k U kr s w r s< < . Hence, negative values of w  are 
avoided simply by setting Lr  to be positive.

9
  

It has been seen above that the solution procedure requires only an explicit form for the 
inverse function ( )1g u− ,  from which its derivative can be obtained. It is not necessary to 

start from a specification of ( )G w s, . Deville and Särndal (1992) suggest the simple form: 

( )
2

1 1
2
ug u

−
−  = − 

 
 (23) 

The gradient function, ( )g w s/ ,  is given by solving (23) for u,  so that: 

1 2

2 1w wg u
s s

− /    = = −         
 (24) 

and the form of the distance function can be obtained by integrating (24).
10

 This is referred 
to as Case A, and its properties are given in the first row of Table 3. The second row of 
the table provides details of Case B, where ( ) ( ) 11 1g u u −− = − , and the final row gives the 
corresponding properties of the basic chi-squared function.

11
 A feature of these functions 

is that they do not require any parameters to be set. 

                                                                 
9This is much more convenient than imposing inequality constraints and applying the more complex Kuhn-Tucker conditions. Also, it is 
desirable to restrict the extent of proportional changes even where they produce positive weights. 
10Hence it is required to obtain ( ){ }1 22 1 2 2w

s dw w s w− /  
  
 

− = − ,∫  which can be written as 

2 2 2w s s w s 
  
 

+ − − , and dropping the last term, which is a constant, this is equal to 
2

2 w s 
  
 

− . 

11Deville and Särndal (1992) discuss the use of a normalisation whereby ( )1 0g− ′  is set to some specified value, but this is not 

necessary for the approach. 
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Table 3 � Alternative distance functions 
Case  ( )G w s,   ( )g w s/   ( )1g u−  ( )1dg u du− /

A  2
2 w s 
  
 

−   ( )( )1 22 1 w
s

− /− ( ) 2
21 u −− ( ) 3

21 u −−   

B  ( )log w
ss w s− + − ( ) 11 w

s
−−   ( ) 11 u −− ( ) 21 u −−   

Chi-
squared ( )2 2w s s− /   1w

s −   1 u+   1  

Deville and Särndal (1992) also suggest the use of an inverse function ( )1g u−  of the 
form:

12
  

( ) ( ) ( )
( ) ( )

1 1 1 exp
1 1 exp

L U U L

U L

r r r r u
g u

r r u
α

α
− − + −

=
− + −

 (25) 

where Lr  and Ur  are as defined above and:  

( ) ( )1 1
U L

L U

r r
r r

α −=
− −

 (26) 

Thus ( )1
Lg r− −∞ =  and ( )1

Ug r− ∞ = , so that the limits of w s/  are Lr  and Ur .  This function 
therefore has the property that adjustments to the weights are kept within the range, 
L k k U kr s w r s< < , although, unlike the chi-squared modification, no checks have to be 

made during computation.  

The derivative required in the computation of the Hessian is therefore:  

( ) ( ) ( ){ } ( )
( ) ( )

1
1 1 1 exp

1 1 exp
L

U
U L

dg u r u
g u r g u

du r r u
α α

α

−
− − −

= −
− + −

 (27) 

Since ( )1g u−  solves for w s/ ,  (25) can be rearranged, by collecting terms in exp uα , to 
give: 

exp
1 1

w w
L Us s

L U

r r u
r r

α− −
=

− −
 (28) 

so that the gradient of the distance function is: 

1 log log
1 1

w w
L Us s

L U

r rwg u
s r rα

   − −  = = −     − −      
 (29) 

The special nature of this gradient function is illustrated by the line D-S in Figure 1, which 
shows the profile of (29) for the wide range where 4 1Ur = .  and 0 01Ur = . . The first 
characteristic of the S-D function that is evident is the restriction of w s/  to the range 

                                                                 
12Singh and Mohl (1996), in reviewing alternative calibration estimators, refer to this �inverse logit-type transformation� as a 
Generalised Modified Discrimination Information method. 



 

W P  0 3 / 1 7  |  S U R V E Y  R E W E I G H T I N G  F O R  T A X  M I C R O S I M U L A T I O N  M O D E L L I N G  1 1  

specified. Figure 1 also shows the function ( )g w s/  for the other cases discussed above. 
In all cases, the slope is zero (corresponding to a turning point of the distance function) 
when 1w s/ = . Given the quadratic U-shaped nature of the chi-squared distance function, 
the gradient increases at a constant rate, being negative in the range 1w s/ < . Cases A 
and B also imply U-shaped distance functions, but with the gradient increasing more 
sharply for 1w s/ <  and more slowly than the chi-square function in the range 1w s/ > . 

Figure 1 � Alternative gradient functions 
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The distance function is given by integrating (29) with respect to w . It is most convenient 
to apply the variate transformation x w s= / , so that dw sdx= , and it is required to obtain: 

log log
1 1

UL

L U

r xx rs dx
r rα

    −− −   − −    
∫  (30) 
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Using the result that: 

( )log log 1x a x adx x a
b b
−  −    = − −        

∫  (31) 

and: 

( )log log 1a x a xdx a x
b b
−  −    = − − −        

∫  (32) 

substitution and rearrangement gives s α/  multiplied by: 

( ) log log
1 1

w w
U Ls s

U L
U L

r rw wG w s r r
s r s r

 
 
 
 
 

   − − , = − + −     − −    
 (33) 

plus a term ( )U Lr r s α− / , which, since it is a constant, may be dropped without loss.
13

 
Examples of this distance function are shown in Figure 2.

14
  

Figure 2 � Deville-Särndal distance functions 
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13Equation (33) is the result stated without proof by Deville and Särndal (1992, p. 378). 
14Folsom and Singh (2000) propose a variation on this, which they call a �generalised exponential model�, in which the limits are 
allowed to be unit-specific. In practice they suggest the use of three sets of bounds for low, medium and high initial weights. 
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4 .4  Fur ther  Numer ica l  Examples  

The application of the distance functions presented in the previous subsection to the 
hypothetical sample used earlier gives the results shown in Table 4, where the simple 
(unrestricted) chi-squared results are added for comparison. In cases where limits are 
imposed on the degree of adjustment of the weights, it cannot be expected that a solution 
will always be available. For this reason, care is needed in the choice of Lr  and Ur , as 
discussed below.  

The values of 3Ur =  and 0 2Lr = .  were initially selected as being well outside the range of 
ratios obtained using the other distance functions. When the range was reduced to the 
potentially restrictive values of 1 3Ur = .  and 0 8Lr = . , none of the ratios obtained was 
actually at the limits specified. Nevertheless, the change to the weighting function 
produces a different set of weights, as shown by comparisons in Table 4: some actually 
move further away from their initial, or survey, weights. 
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Table 4 � Revised weights using alternative distance functions 

k  ks  A B 3Ur =  

0.2Lr =  

1.3Ur =  

0.8Lr =  

1.25Ur =  

0.8Lr =  

Chi-squared 

1 3.000 2.674 2.654 2.706 2.513 2.483 2.753 
2 3.000 2.228 2.260 2.178 2.408 2.400 2.109 
3 5.000 5.998 6.012 5.976 6.162 6.187 5.945 
4 4.000 3.944 3.926 3.974 3.951 4.019 4.005 
5 2.000 2.514 2.521 2.501 2.534 2.493 2.484 
6 5.000 4.456 4.423 4.510 4.189 4.138 4.589 
7 5.000 5.729 5.717 5.747 5.911 6.094 5.752 
8 4.000 3.944 3.926 3.974 3.951 4.019 4.005 
9 3.000 2.228 2.260 2.178 2.408 2.400 2.109 
10 3.000 3.086 3.074 3.106 3.213 3.325 3.120 
11 5.000 5.998 6.012 5.976 6.162 6.187 5.945 
12 4.000 3.814 3.762 3.897 3.645 3.769 3.985 
13 4.000 5.108 5.136 5.065 5.094 4.990 5.019 
14 3.000 3.490 3.487 3.494 3.604 3.680 3.490 
15 5.000 4.665 4.666 4.665 4.442 4.314 4.678 
16 3.000 2.370 2.380 2.355 2.428 2.408 2.345 
17 4.000 5.191 5.232 5.128 5.115 4.993 5.070 
18 5.000 4.603 4.604 4.600 4.366 4.237 4.614 
19 4.000 5.028 5.043 5.001 5.069 4.986 4.967 
20 3.000 2.228 2.260 2.178 2.408 2.400 2.109 

 
The choice of 1 25Ur = .  and 0 8Lr = . , shown in the penultimate column of the table, 
actually places some adjustments to the weights at the lower limit of the range: for 
individuals 2, 9 and 20, the value of w s/  is equal to 0 8. . However, no adjustments are at 
the upper range specified. If Lr  is raised to 0 82.  (with Ur  unchanged), unreported results 
show that individual 16 is placed at the lower limit, along with 2, 9 and 20 as before; in 
addition individuals 5, 13, 17, 19 are pushed to the upper limit of 1 25. . The attempt to 
raise Lr  to 0 83.  means that no solution is possible. However, if Ur  is set to the higher 
value of 3 0. ,  then 0 83Lr = .  is found to be the highest value (where the range of variation 
is limited to the second decimal point) of Lr  for which a solution is possible. The two 
highest ratios needed in this case are for persons 13 and 17, who have w s/  values of 
1 328.  and 1 376.  respectively. If Lr  is kept at this value of 0 83. ,  the lowest value of Ur  for 
which a solution exists is 1 26Ur = . . In this case individuals 1, 2, 6, 9, 16 and 20 are 
placed at the lower limit and individuals 5, 13, 17 and 19 are placed at the upper limit. 
Clearly, some care needs to be exercised in the choice of upper and lower limits.  

While these examples help to explore the characteristics of the different approaches, it is 
necessary to examine the practical implementation of the method. This is carried out in 
the following section.  
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5  The  NZ Househo ld  Economic  Survey  

This section applies the above approaches to the New Zealand Household Economic 
Survey 2000/01, which is the latest survey available. The aim is to illustrate the application 
of the approach in a practical context, and to compare the performance of the alternative 
distance functions. At this point it may be useful to stress that reweighting may cause non-
calibrated variables to change in undesirable ways, so that various other checks need to 
be made.

15
  

The variation in the survey weights provided by Statistics NZ for the period 2000/01 is 
illustrated in Figure 3, where the weights are arranged in ascending order for a sample of 
2808 households.

16
 It can be seen that the majority of these weights are within a fairly 

narrow range, although some are substantially higher, suggesting a considerable degree 
of under-representation of these household types in the sample.  

For present purposes, new weights were obtained using calibration values for 2003/4, 
therefore allowing for population changes. A total of 36 calibration equations were used, 
covering the total numbers in the following categories for: 11 family composition types; 16 
age/sex types; 2 unemployment benefits; 2 Domestic Purpose Benefits; 2 invalidity 
benefits; 2 sickness benefits; and 1 widow�s benefits.

17
 

Figure 3 � Survey weights 
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15The precision of some survey estimates may also be lowered, particularly where many calibration constraints are used. Examples 
are given in Skinner (1999); see also Kalton and Flores-Cervantes (2003). 
16These are integrated weights, not the original weights. For a discussion of the use of integrated weighting, as described by Lemaître 
and Dufour (1987), by Statistics New Zealand, see StatsNZ (2001). 
17For each of these types, there is of course one additional category not used. The motivation for selecting these variables involved the 
use of the data for projecting taxes and benefit expenditures. For a general discussion of variable selection, see Nascimento Silva and 
Skinner (1997). 
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Figure 4 � Calibrated weights: Chi-Square 
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Figure 5 � Ratio of calibrated to survey Weights: Chi-Square 
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The calibrated weights obtained using the basic chi-square distance function are shown in 
Figure 4, where households are arranged in the same order as in Figure 3 (although the 
vertical axis has been truncated at 2,500). The corresponding ratios of calibrated to 
survey weights, w s/ , are displayed in increasing order in Figure 5. This clearly shows 
considerable variability in the weights, with some negative weights resulting. Using the 
modified chi-square distance function, allowing the ratio of weights, w s/ , to be restricted 
with the limits 3 0Ur = .  and 0 4Lr = . , resulted in values displayed in Figure 6. The effects 
of the adjustment can clearly be seen in the extent to which the new weights are restricted 



 

W P  0 3 / 1 7  |  S U R V E Y  R E W E I G H T I N G  F O R  T A X  M I C R O S I M U L A T I O N  M O D E L L I N G  1 7  

to a range of variation around the initial profile. The top and bottom of the profile in Figure 
6 are substantially �smoothed�; clearly a significant number are placed at the limits, 
particularly at the lower limit.  

The calibrated weights obtained using the distance function in (33), allowing for upper and 
lower limits to w s/  of 3Ur =  and 0 4Lr = .  are shown in Figure 7, and the ratios are shown 
in ascending order in Figure 8. In both cases where limits were imposed, the range shown 
is the narrowest for which a solution was obtained (that is, for which the iterative method 
used to obtain the Lagrange multipliers converged).

18
 The main difference between the 

modified chi-square case and the distance function in (33) is that the former appears to 
push more values to the lower edge of the profile. 

Figure 6 � Calibrated weights: Modified Chi-Squared function 
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18Where a solution was not available, the procedure �exploded� relatively quickly, after just a few iterations. Otherwise convergence 
was achieved rapidly. 
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Figure 7 � Calibrated weights: Deville-Särndal function 
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Figure 8 � Ratio of calibrated to survey weights: Deville-Sarndal function 
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The use of the other two distance functions failed to produce solutions. Comparing the 
results for the distance functions producing solutions, it seems that the only serious 
contenders are the two cases imposing constraints on the proportionate changes in 
weights. The numerical values of the limits which can be imposed, while still obtaining a 
solution, appear to be the same for the adjusted chi-squared function and the function in 
equation (33). Where solutions are available, there seems little to choose between those 
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two cases. However, in further experiments using a larger number of calibration 
equations, it was found that no solution was available using the distance function in (33), 
however wide the range of variation allowed. Nevertheless a solution could be obtained 
using the modified chi-squared distance function. The standard chi-squared function also 
gave a solution, as expected, but this produced a number of negative weights.  

6  Conc lus ions  

This paper has examined a range of minimum distance methods used to compute new 
weights for large cross-sectional surveys used in microsimulation modelling. The methods 
involve the use of extraneous information about a range of population variables, for 
calibration purposes. The distance functions were restricted to those for which the first 
derivative can be expressed as a function of the ratio of the new weights to the survey 
weights, and for which that function can be inverted explicitly. In general, an iterative 
solution procedure is required. An approach based on Newton�s method was described 
and numerical examples were given for several distance functions. Finally, the 
performance of the method was examined using the New Zealand Household Economic 
Survey. Rapid convergence of the iterations was obtained, although care needs to be 
taken when imposing limits on the proportional adjustments to sample weights. Since the 
same basic approach (and computer program) can easily examine a range of distance 
functions, and Newton�s method converges extremely quickly, it is relatively costless to 
consider the full range of distance measures. However, in practice, convergence cannot 
be expected using all measures.  

Finally it is worth remembering that reweighting may cause the distribution of important 
variables, in particular alternative sources of income, to change.

19
 Checks on changes in a 

range of distributions are therefore recommended.  

                                                                 
19This point is also made by Klevmarken (1998). 
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Append ix :  Newton �s  method  

Consider finding the root of the single equation in one variable, ( ) 0f x = , where ( )f x  
takes the form shown in Figure 9. Newton�s method involves taking an arbitrary starting 
point, 0x  and drawing the tangent, with slope ( )0f x′ . By approximating the function by the 
tangent, the new value is given by the point of intersection of this tangent with the x  axis, 
at 1x . Selecting 1x  as the next starting point leads quickly to the required root.  

Figure 9 � Newton�s method 
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From the triangle in Figure 9:  

 ( ) ( )0
0

0 1

f x
f x

x x
′ =

−
                                                                                                                (34) 

Hence, starting from 0I = , the sequence of iterations is:  

( ) ( )1

1I I I Ix x f x f x
−′ 

 +  
= −                                                                            (35) 

Convergence is reached when 1I Ix x ε+ − <  and ε  depends on the accuracy required. 

Newton�s method is easily adapted to deal with a set of equations, ( )if x ,  where x  is a 

vector. The method involves repeatedly solving the following matrix equation, where [ ]Ix  
now denotes the vector in the I th iteration and ( )f x  is a vector containing the ( )if x  
values. 

( ) ( ) [ ]

[ ]

1
[ 1] [ ]

I

I

iI I
x

x

f x
x x f x

x

−

+ ∂ 
= −     ∂ l

                                                          (36) 
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