
Package Guide for SolveDSGE v0.2.0

Richard Dennis∗

University of Glasgow

August 25, 2015

∗Email: richard.dennis@glasgow.ac.uk

1 Overview

SolveDSGE is a Julia package aimed at macroeconomics interested in solv-

ing Dynamic Stochastic General Equilibrium (DSGE) models. The package

provides routines for solving rational expectations models and for solving op-

timal policy problems. Using this package, DSGE models can be solved in

logs or levels to first- or second-order accuracy and optimal policy problems

can be solved under discretion, commitment, timeless-perspective commit-

ment, and quasi-commitment. Routines that solve robust-control versions

of these policy problems are in the works. Although there is much that this

package does not do, SolveDSGE offers a broad array of solution methods

that can be applied provided the DSGE model can be expressed in one of

several standard dynamic representations.

2 Installation

To install SolveDSGE you will need to type the following into the Julia

REPL

Pkg.add("SolveDSGE")

3 Solving rational expectations models

3.1 First-order-accurate solution methods

SolveDSGE provides a range of solution methods for computing first-order

accurate solutions. Exploiting Julia’s multiple dispatch all of these solution

methods are called via the single command solve_re(). From this single

command the particular solution method employed depends principally on

the model type that enters the solve_re() function call. Models are rep-

resented in various forms that are summarized by types. The model types

1

are

• Blanchard_Kahn_Form

• Klein_Form

• Sims_Form

• Binder_Pesaran_Form

3.1.1 Blanchard-Kahn form

The Blanchard-Kahn Form is given by[
xt+1
Etyt+1

]
= A

[
xt
yt

]
+C [εt+1] ,

εt ∼ i.i.d.[0,Σ], where xt is an nx × 1 vector of predetermined variables
and yt is an ny × 1 vector of non-predetermined variables. To solve models
of this form we first create the Blanchard_Kahn_Form type for the

model, then we use solve_re() to solve the model. The relevant lines of

code would be something like

cutoff = 1.0

model = Blanchard_Kahn_Form(nx,ny,a,c,sigma)

soln = solve_re(model,cutoff)

Here soln contains the solution, which is of the form

xt+1 = Pxt +Kεt+1,

yt = Fxt,

and information about the number of eigenvalues with modulus greater than

cutoff and whether the “solution” returned is determinate, indeterminate,

or explosive.

2

Models of the Blanchard_Kahn_Form type can also be solved using

an iterative method to solve a non-symmetric, continuous, algebraic, Riccati

equation. In this case the relevant lines of code might look like

tol = 1e-10

cutoff = 1.0

model = Blanchard_Kahn_Form(nx,ny,a,c,sigma)

soln = solve_re(model,cutoff,tol)

For this iterative method, the variable cutoff is still used to establish

determinacy, but is not used to order eigenvalues.

3.1.2 Klein form

The Klein Form for a model is given by

B

[
xt+1
Etyt+1

]
= A

[
xt
yt

]
+C [εt+1] ,

εt ∼ i.i.d.[0,Σ], where xt is an nx × 1 vector of predetermined variables, yt

is an ny×1 vector of non-predetermined variables, and B need not have full

rank. We can solve models of this form using the code

cutoff = 1.0

model = Klein_Form(nx,ny,a,b,c,sigma)

soln = solve_re(model,cutoff)

The composite type soln contains the solution which is of the form

xt+1 = Pxt +Kεt+1,

yt = Fxt,

as well as information about the number of eigenvalues that have modulus

greater than cutoff and whether the “solution” returned is determinate,

indeterminate, or explosive.

3

3.1.3 Sims form

An alternative model form is used by Sims (2000) and is given by

Γ0zt = Γ1zt−1 +C+Ψvt +Πηt,

where vt is a shock process, possibly serially correlated, with mean-zero

innovations whose variance-covarince matrix is given by Σ. To solve models

that are in this form we would do something like the following

cutoff = 1.0

model = Sims_Form(gamma0,gamma1,c,psi,pi,sigma)

soln = solve_re(model,cutoff)

Here the solution, summarized by soln, is of the form

zt = G1zt−1 + c+ impact× vt + ywt×
[
I− fmat× L−1

]−1 × fwt× vt+1.

3.1.4 Binder-Pesaran form

A model is in “structural form”if it is written as

Azt = A1zt−1 +BEtzt+1 +Cεt,

where εt ∼ i.i.d.[0,Σ]. We have two ways of solving structural form models.
The first recasts them in terms of the Klein form and here the relevant code

would look something like

cutoff = 1.0

model = Binder_Pesaran_Form(a,a1,b,c,sigma)

soln = solve_re(model,cutoff)

The second method is iterative, implementing Binder and Pesaran’s

“brute force”method; here the code would be something like

4

tol = 1e-10

cutoff = 1.0

model = Binder_Pesaran_Form(a,a1,b,c,sigma)

soln = solve_re(model,cutoff,tol)

Regardless of which of the two methods is used, the solution, summarized

in soln, has the form

zt = Pzt−1 +Kεt.

As earlier, soln is a composite type that in addition to the solution itself also

contains information about the number of eigenvalues with modulus greater

than cutoffand whether the solution returned is determinate, indeterminate,

or explosive.

3.2 Second-order-accurate solution methods

In addition to the first-order accurate solution methods documented above,

SolveDSGE also contains two methods form obtaining second-order-accurate

solutions to nonlinear DSGE models. As coded here, these two methods

employ the same model form but differ in how the solution is computed. To

employ either method the DSGE model is first expressed in the form

EtG (xt,yt,xt+1,yt+1) = 0.

With xt containing nx predetermined variables and yt containing ny non-

predetermined variables,G() is a vector containing nx+ny functions. Bundling

xt and yt into a new vector zt =
[

x
′
t y

′
t

]′
and bundling zt and zt+1 into

a new vector pt =
[

z
′
t z

′
t+1

]′
we get

EtG (pt) = 0.

We now approximate G (pt) around the deterministic steady state, p, using

a second-order Taylor expansion giving

G (pt) ' Gp (pt − p) + [I⊗ (pt − p)]
′
Gpp [I⊗ (pt − p)] = 0,

5

where Gp is a matrix of first-derivatives and Gpp is a matrix of stacked

Hessians, one Hessian for each of the nx + ny equations.

We now recognize that some elements of xt (usually the first s elements)

are shocks that have the form

st+1 = Λst + ηεt+1,

where εt ∼ i.i.d.[0,Σ]. The essential components required for a second-

order-accurate solution are now given by nx, ny, Gp, Gpp, η, and Σ.

The two model types that we consider for second-order-accurate solution

methods are

• Gomme_Klein_Form

• Lombardo_Sutherland_Form

3.2.1 Gomme-Klein form

To compute a second-order accurate solution using the Gomme and Klein

(2011) method we summarize the model in the form of theGomme_Klein_Form

composite type. Once this model type is constructed the model can be

solved. The code to compute the solution would be something like

cutoff = 1.0

model = Gomme_Klein_Form(nx,ny,Gp,Gpp,eta,sigma)

soln = solve_re(model,cutoff)

Here soln is a composite type that contains the solution, which is of the

form

xt+1 − x =
1

2
ssh+ hx (xt − x) +

1

2
[I⊗ (xt − x)]

′
hxx [I⊗ (xt − x)] + ηεt+1,

yt − y =
1

2
ssg + gx (xt − x) +

1

2
[I⊗ (xt − x)]

′
gxx [I⊗ (xt − x)] ,

6

where hxx and gxx are stacked matrices containing the second order coeffi -

cients for each of the nx and ny equations, respectively. soln also contains

information about the number of eigenvalues with modulus greater than

cutoff and the solution’s determinacy properties, where these properties are

associated with the model first-order dynamics.

3.2.2 Lombardo-Sutherland form

Implementing the Lombardo and Sutherland (2007) solution method is no

different than for Gomme and Klein (2010). The key difference is the form

in which the solution is presented. Ths code to implement the Lombardo-

Sutherland method would look something like

cutoff = 1.0

model = Lombardo_Sutherland_Form(nx,ny,Gp,Gpp,eta,sigma)

soln = solve_re(model,cutoff)

where now the solution has the form

xt+1 − x =
1

2
ssh+ hx (xt − x) +

1

2
hxx× vt + ηεt+1,

yt − y =
1

2
ssg + gx (xt − x) +

1

2
gxx× vt,

vt = Φvt−1 + Γvech
(
εtε
′
t

)
+Ψvec

(
xtε

′
t

)
,

with vt given by

vt = vech
(
xtx
′
t

)
.

The solution form produced by the Lombardo-Sutherland method can

be converted into that produced by the Gomme-Klein method by using the

convert_second_order function as follows

new_soln = convert_second_order(soln)

Where soln is of type Lombardo_Sutherland_Soln, new_soln is

of type Gomme_Klein_Soln.

7

4 Solving optimal policy problems

SolveDSGE provides routines for solving Linear-Quadratic (LQ) optimal

policy problems. These LQ problems allow policy to be conducted un-

der: discretion; commitment; quasi-commitment; and timeless-perspective

commitment. The solutions to these four policy problems are obtained us-

ing the commands solve_disc(), solve_commit(), solve_quasi(), and

solve_timeless(), respectively. The optimal policy routines are based

around four model types and two solution types. At this stage not all of

these policies are supported for all model-types. The four model-types and

the optimal policies that they support are documented below.

4.1 State space form

The LQ optimal policy problem in State_Space_Form is described by

the quadratic objective function

Loss = E

[∞∑
t=0

βt
(
z
′
tQzt + z

′
tUut + u

′
tU
′
zt + u

′
tRut

)]
,

and the linear constraints[
xt+1
Etyt+1

]
= A

[
xt
yt

]
+But +C [εt+1] ,

where xt contains nx predetermined variables, yt contains ny non-predetermined

variables, ut contains np policy instruments, and εt contains ns stochastic

innovations.

For this model form the following policies are supported:

• Discretion (st = xt)

• Commitment
(

st =

[
xt
λt

])

• Quasi-commitment
(

st =

[
xt
λt

])
8

• Timeless-perspective commitment

st =

 xt
xt−1
ut−1


For each policy the solution returned is of the form

st+1 = Pst +Kεt+1,

zt = Hst,

ut = Fst.

with this information summarized in the solution type, State_Space_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = State_Space_Objective(beta,q,u,r)

model = State_Space_Form(nx,ny,a,b,c,sigma)

tol = 1e-10

maxiters = 100

commit_prob = 0.75

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

soln_quasi = solve_quasi(model,obj,commit_prob,tol,maxiters)

soln_timeless = solve_timeless(model,obj,tol,maxiters)

4.2 Generalized state space form

The LQ optimal policy problem in Generalized_State_Space_Form is

described by the quadratic objective function

Loss = E

[∞∑
t=0

βt
(
z
′
tQzt + z

′
tUut + u

′
tU
′
zt + u

′
tRut

)]
,

9

and the linear constraints[
xt+1

A0Etyt+1

]
= A

[
xt
yt

]
+But +C [εt+1] ,

where xt contains nx predetermined variables, yt contains ny non-predetermined

variables, ut contains np policy instruments, and εt contains ns stochastic

innovations. The Generalized_State_Space_Form differs from the

State_Space_Form above through the presence of the (usually) singular

leading matrix A0.

For this model form the following policies are supported:

• Discretion (st = xt)

• Commitment
(

st =

[
xt
λt

])

• Quasi-commitment
(

st =

[
xt
λt

])

• Timeless-perspective commitment

st =

 xt
xt−1
ut−1


For each policy the solution returned is of the form

st+1 = Pst +Kεt+1,

zt = Hst,

ut = Fst.

with this information summarized in the solution type, State_Space_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = State_Space_Objective(beta,q,u,r)

model = Generalized_State_Space_Form(nx,ny,a0,a,b,c,sigma)

10

tol = 1e-10

maxiters = 100

commit_prob = 0.75

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

soln_quasi = solve_quasi(model,obj,commit_prob,tol,maxiters)

soln_timeless = solve_timeless(model,obj,tol,maxiters)

4.3 Structural form

The LQ optimal policy problem in Structural_Form is described by the

quadratic objective function

Loss = E

[∞∑
t=0

βt
(
y
′
tQyt + u

′
tRut

)]
,

and the linear constraints

A0yt = A1yt−1 +A2Etyt+1 +A3ut +A5εt,

where yt contains n variables, ut contains np policy instruments, and εt

contains ns stochastic innovarions.

For this model form the following policies are supported:

• Discretion (st−1 = yt−1)

• Commitment
(

st−1 =

[
yt−1
λt−1

])
For each policy the returned solution is of the form

st = Pst−1 +Kεt,

ut = Fst−1.

with this information contained in the solution type, Structural_Soln.

11

To solve a model for each of the policies above we would use code like

the following

obj = Structural_Objective(beta,q,r)

model = Structural_Form(a0,a1,a2,a3,a5,sigma)

tol = 1e-10

maxiters = 100

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

4.4 Generalized structural form

The LQ optimal policy problem in Generalized_Structural_Form is

described by the quadratic objective function

Loss = E

[∞∑
t=0

βt
(
y
′
tQyt + u

′
tRut

)]
,

and the linear constraints

A0yt = A1yt−1 +A2Etyt+1 +A3ut +A4Etut+1 +A5εt,

where yt contains n variables, ut contains np policy instruments, and εt

contains ns stochastic innovarions.

For this model form the following policies are supported:

• Discretion (st−1 = yt−1)

• Commitment
(

st−1 =

[
yt−1
λt−1

])
For each policy the returned solution is of the form

st = Pst−1 +Kεt,

ut = Fst−1.

12

with this information contained in the solution type, Structural_Soln.

To solve a model for each of the policies above we would use code like

the following

obj = Structural_Objective(beta,q,r)

model = Generalized_Structural_Form(a0,a1,a2,a3,a4,a5,sigma)

tol = 1e-10

maxiters = 100

soln_disc = solve_disc(model,obj,tol,maxiters)

soln_commit = solve_commit(model,obj,tol,maxiters)

References
[1] Binder, M., and H. Pesaran, (1995), “Multivariate Rational Expecta-

tions Models and Macroeconomic Modeling: A Review and Some New
Results,” in: Pesaran, H., M. Wickens, (Eds.), Handbook of Applied
Econometrics, Basil Blackwell, Oxford, pp.139—187.

[2] Blanchard, O., and C. Kahn, (1980), “The Solution to Linear Difference
Models under Rational Expectations,”Econometrica, 48, pp.1305—1311.

[3] Gomme, P., and P. Klein, (2011), “Second-Order Approximation of Dy-
namic Models Without the Use of Tensors,” Journal of Economic Dy-
namics and Control, 35, pp.604—615.

[4] Klein, P., (2000), “Using the Generalized Schur Form to Solve a Multi-
variate Linear Rational Expectations Model,”Journal of Economic Dy-
namics and Control, 24, pp.1405—1423.

[5] Lombardo, G., and A. Sutherland, (2007), “Computing Second-Order-
Accurate Solutions for Rational Expectations models Using Linear Solu-
tion Methods,”Journal of Economic Dynamics and Control, 31, pp.515—
530.

[6] Sims, C., (2001), “Solving Linear Rational Expectations Models,”Com-
putational Economics, 20, pp.1—20.

13

