
CUTEst: a Constrained and Unconstrained

Testing Environment with safe threads

Nicholas I. M. Gould,1,2 Dominique Orban3,4 and Philippe L. Toint5

ABSTRACT

We describe the most recent evolution of our constrained and unconstrained testing envi-

ronment and its accompanying SIF decoder. Code-named SIFDecode and CUTEst, these

updated versions feature dynamic memory allocation, a modern thread-safe Fortran mod-

ular design, a new Matlab interface and a revised installation procedure integrated with

GALAHAD.

1 Scientific Computing Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU.

Email: nick.gould@stfc.ac.uk .

Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.shtml”.

2 This work was supported by the EPSRC grant EP/I013067/1.

3 GERAD and Department of Mathematics and Industrial Engineering École Polytechnique de

Montréal, C. P. 6079, Succ. Centre Ville Montréal QC H3C 3A7, Canada.

Email : dominique.orban@gerad.ca .

4 This work was partially supported by an NSERC Discovery Grant.

5 Namur Center for Complex Systems (naXys) and Department of Mathematics,

University of Namur, 61, rue de Bruxelles, B-5000 Namur, Belgium, EU.

Email : philippe.toint@unamur.be .

Current reports available from “http://www.fundp.ac.be/∼phtoint/pht/publications.html”.

Scientific Computing Department

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

May 5, 2013

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 1

1 Introduction

The Constrained and Unconstrained Environment (CUTE) [3] and its associated set of

optimization examples have been widely adopted and used since its introduction in 1993.

The test set has grown over time and now numbers approximately 1150 examples, many of

them of variable dimension. In addition, since both the MPS linear programming format [6]

and its quadratic programming extensions [13,16,17] are compatible with CUTE’s Standard

Input Format (SIF) [5, Ch.7], CUTE and its successor CUTEr [11] provide access to other

test sets such as those from Netlib [9] and and Maros and Meszaros [16].

To set the scene, recall that a SIF file provides a portable description of group-partially

separable optimization problem [4]. Such a file is translated by the package SifDec to a

number of Fortran subroutines that compute values and derivatives of constituent element

and group functions, together with data that explains how the functions are glued together.

Armed with these components, CUTE(r) reassembles them to allow users to compute values

and derivatives of both the objective function and/or its constraints as required, as well

as providing static information such as bounds on variables and constraints.

The core (Fortran 77) routines behind CUTE(r) have not changed significantly since

their original release. A main limitation of standard Fortran 77 is that it offers no mecha-

nism for dynamic memory management, something programmers of other languages (par-

ticularly C) take for granted. This defect had a significant implication for CUTE and

CUTEr, namely that a one-size-fits-all set of array dimensions are set at compile time,

and CUTEr and its relatives return to the user if this choice is insufficient, with a recom-

mendation for recompilation with values that might be appropriate. Many CUTEr users

have learned to detest this inflexibility, and it is certainly the main source of complaint we

receive.

Of course, modern Fortran (90 and later) provide dynamic memory-allocation, and it

has mostly been the scale of the task of rewriting CUTEr to do this that has stopped

us; CUTEr (and its dependent SifDec) numbered roughly 50,000 lines of code. Now, we

have done so. The new, Fortran 2003 packages CUTEst and SIFDecode both request array

storage as needed. The data for any array that is not currently large enough is written

to temporary store (or, if there is insufficient room in memory, to disk), the array de-

allocated and re-allocated with some “elbow-room” and the existing data copied back. A

more general concern about the lack of freely-available reliable modern Fortran compilers

has also vanished with the arrival of both g95 and gFortran; there are of course many

excellent commercial Fortran compilers available.

An additional limitation of CUTE/CUTEr was that it relied on Fortran common blocks

to share data between tools. Some of this data, such as that required to describe the

structure of a problem, was fixed after calling “setup” routines, while the remainder was

constantly rewritten as problem function (and derivative) evaluations took place. This

use of common meant that the packages were not thread safe, and could not be used in a

multi-threaded (parallel) environment (for example to test branch-and-bound methods for

integer programming or global optimization). This deficiency has also been addressed in

2 N. I. M. Gould, D. Orban and Ph. L. Toint

CUTEst, and indeed the data is now split so that a single copy of the fixed data is available

to all threads, while dynamic data is stored on a per-thread basis.

We have also taken the opportunity to revise the way the packages are organised and in-

stalled. We have adopted the scheme we currently use within GALAHAD [12], and this leads

to some isolation of common components that are distributed separately. Since GALAHAD

was itself a major user of CUTEr, we have also updated components of GALAHAD to use

CUTEst packages. In addition, we have upgraded all of CUTEr’s interfaces to external

optimization packages—written in a variety of languages—that are still distributed (there

have been a few casualties since 2003), and have also provided interfaces of a number of

new ones. We have also considerably simplified the interface to Matlab.

This short paper is arranged as follows. We first describe how CUTEst is now organised,

and how it may be used to test external packages. We then give a few details of the new

features provided. A few words about the SIF decoder are followed by a description of the

instalation procedure.

2 New package organisation

CUTEst is provided as a series of directories and files, all lying beneath a root directory

that we shall refer to as $CUTEST. The directory structure is illustrated in Figure 2.1.

Before installation the sub-directories objects, modules, makefiles, versions and

bin/sys will all be empty. The script install_cutest prompts the user for the an-

swers to a series of questions aimed at determining what machine type, operating system

and compiler (from a large list of predefined possibilities encoded in a separate package,

archdefs, that is distributed with CUTEst, and shared with SIFDecode and GALAHAD) to

build CUTEst—we call this combination of a machine, operating system and compiler an

architecture. Each architecture is assigned a simple (mnemonic) architecture code name,

say architecture—for example a version for the NAG Fortran 95 compiler on a PC runing

Linux is coded pc.lnx.n95, while another for the IBM Fortran 95 compiler on an PowerPC

system running AIX is ppc.aix.x95. Having determined the architecture, the installation

script builds sub-directories of objects, modules and packages named architecture, as

well as further sub-directories double and single of these to hold architecture-dependent

compiled libraries, module file information and external package linking information if

required. In addition, architecture-dependent makefile information and environment vari-

ables for execution scripts are placed in files named architecture in the makefiles and

bin/sys sub-directories, and a file recording how the code is related to the architecture is

put in versions.

The source codes for each CUTEst package interface occurs in a separate sub-directory

of the src directory. The main CUTEst evaluation tools all lie in the sub-directory tools,

while a set of comprehensive test programs are available in test. The remaining sub-

directories contain interface programs between the tools and each of the external packages

supported. Each sub-directory contains the interface, a default options specification file,

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 3

$CUTEST

tools

algencan

. . . other packages . . .

matlab

test

src

makefiles

seds

objects

versions

include

modules

bin sys

doc pdf

man
man1

man3
sif

packages

architecture1

architecture2

. . . other architectures . . .

double

single

double

single

architecture

architecture2

. . . other architectures . . .

double

single

double

single

defaults

architecture

. . . other architectures . . .

double

single

Figure 2.1: Structure of the CUTEst directories

4 N. I. M. Gould, D. Orban and Ph. L. Toint

an example program that tests the interface without requiring the external package, a

README that explains what a user needs to do to make the external package work with

CUTEst, and a makefile. Since the order of compilation of Fortran modules is important,

and as we have seen there is a strong interdependency between the CUTEst packages, the

makefiles have to be carefully crafted. For this reason, we have chosen not to use variants

of tools such as imake to build and maintain the makefiles. A set of configuration files

that provides default link details between CUTEst and each external package is provided in

the directory packages/defaults, and users may copy and modify these to architecture

and dimension specific sub-directories of packages to override the default choices. Man

pages for CUTEst as a whole and each individual tool are provided sub-directories of the

man directory, and translations are also available in PDF format in the pdf sub-directory

of the documentation directory doc.

Once the correct directory structure is in place, the installation script builds a random-

access library of the required precision by visiting each of the sub-directories of src and

calling the Unix utility make. CUTEst package interfaces are all written in double precision,

but if a user prefers to use single precision, the makefiles call suitable Unix sed scripts

(stored in seds) to transform the source prior to compilation. A user may choose to

install all of CUTEst with or without Matlab support or just the tools themselves; the

tools for unconstrained and constrained optimization may also be installed separately.

Recompilation following updates is easily performed by issuing the command make from

the src directory, while make test from the same directory runs comprehensive tests of

all compiled components.

3 Interfaces to the CUTEst test set

To run one of the supported packages on an example stored in EXAMPLE.SIF, say, a user

needs to issue the command

runcutest -A architecture -p package -D EXAMPLE[.SIF]

where architecture is the architecture code discussed in §2, package defines the package

to be used—the manual page for runcutest gives a list of current possibilities—and the

suffix [.SIF] is optional. This command translates the SIF file into Fortran subroutines

and related data using the decoder provided in SIFDecode, and then calls the required

optimization package to solve the problem. A default architecture may be defined by

setting the environment variable $MYARCH, and if so the -A flag may be avoided. Once a

problem has been decoded, it may be re-used (perhaps with different options) using the

auxiliary command

runcutest -A architecture -p package

For Matlab use, the command

cutest2matlab EXAMPLE[.SIF]

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 5

may be used instead; since Matlab is very specific about the Fortran compilers it supports,

requests for a CUTEst-Matlab installation will adjust compiler options accordingly.

A few SIF examples are given in the sif directory, while the runcutest and cutest2-

matlab commands are in the bin sub-directory, and have man-page descriptions in the

man/man1 sub-directory.

4 Improvements

4.1 New features

As we mentioned in the introduction, CUTEst and SIFDecode both use the Fortran 2003

allocate/deallocate features to create and modify array storage. Each CUTEst tool uses a

module CUTEST that provides access to two derived types CUTEST_data_type and CUTEST_-

work_type used to store workspace arrays. The former collects data that describes problem

structure and is set prior to any problem function evaluation, and unchanged thereafter,

while the latter is used to hold data that may change at every evaluation. Data in these ar-

rays is made available to the tools through a scalar CUTEST_data_global of type CUTEST_-

data_type and an allocatable array CUTEST_work_global of type CUTEST_work_type.

All evaluation tools are available as both simple (unthreaded) and threaded versions.

For the latter, which may be distinguished by the suffix _threaded, CUTEST_work_global

is allocated to be large enough to hold all the threads that will be used by the setup

subroutines, and each evaluation call specifies access to CUTEST_work_global(i) for the

particular thread i required.

We give a list of all CUTEst tools and their functionality in Appendix A. Most are

rewritten version of their CUTEr counterparts, with argument-list changes to remove re-

dundant size parameters and occasional order changes to handle inconsistencies. An addi-

tional status argument has been added to each to report any fatal memory errors (such

as array allocation/deallocation failures) and inabilities to evaluate functions at specified

values; CUTEr dealt with such eventualities by terminating execution. We have added

termination tools to allow users to deallocate all storage created by the setup procedure

when they have no longer need for it. In addition, constraints may now be ordered so that

equalities precede or follow inequalities, or so that linear constraints precede or follow non-

linear ones, and variables so that those that only appear linearly in the problem precede

or follow those that appear nonlinearly. New tools have also been introduced to describe

the sparsity patterns of the Hessian of the objective and Lagrangian functions. Finally, a

new tool has been added to compute the sparse gradient of the objective function for con-

strained problems; this corrects an oversight since we already provide similar functionality

for the gradients of individual constraints.

6 N. I. M. Gould, D. Orban and Ph. L. Toint

4.2 New Matlab calls

The Matlab interface has been substantially revised and simplified. It is now entirely writ-

ten in C instead of Fortran to facilitate interaction with Matlab’s own API and usage of

its index types. The interface merges the constrained and unconstrained tools together so

users may use familiar and consistent function calls such as cutest_obj() to obtain the

objective function value and possibly its gradient regardless of the presence of constraints.

In this regard, the interface exploits Matlab’s ability to determine how many output ar-

guments are required by the user. This allows both f = cutest_obj(x) and [f,g] =

cutest_obj(x). Another example is the cuter_cons() function, which allows to evaluate

all or individual constraints and/or constraint gradients.

A problem is “loaded” into Matlab by calling a simple function with no arguments:

prob = cutest_setup(). The single output argument of the setup function is a Matlab

structure containing problem data such as the number of variables, number of constraints,

number of nonzeros in the Jacobian and Hessian, initial guess, bounds, initial multipliers,

and arrays indicating which constraints are linear and which are equality constraints. Those

fields may be accessed using the familiar dot notation, e.g., prob.n, prob.x, prob.cl, etc.

Help is included with all CUTEst tools, available to Matlab users by way of the familiar

help call. In particular, help cutest gives an overview of the tools available.

Finally, the current interface makes it easier to decode problems and build the cor-

responding MEX files from inside Matlab. For instance, the commands probname =

’LUBRIFC’; unix([’cutest2matlab ’, probname]) generate the MEX file correspond-

ing to problem LUBRIFC in the current directory.

See Appendix B for a complete description of the Matlab CUTEst tools and their

functionality.

4.3 New interfaces

In addition to the still-current packages supported by CUTEr, CUTEst provides new in-

terfaces to ALGENCAN [1], BOBYQA [19], Direct Search [7], filterSD [8], NEWUOA [18],

NLPQLP [21], NOMAD [15], PENNLP [14], QL [20], SPG [2] and SQIC [10], as well as various

new packages within GALAHAD [12].

Interfaces to the obsolete packages hsl_ve12, osl, va15, ve09 and ve14 supported in

CUTEr have been withdrawn.

4.4 New test examples

Almost 200 new examples have been added to the test-problem collection since the release

of CUTEr. These include large collections of problems arising from linear complementarity,

and of real-life quadratic programming problems.

All test problems are now under version control in the same way as the source code and

users may update their local repository easily when new problems are added or changes

are made to existing problems.

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 7

5 A revised SIF decoder

As we mentioned in the introduction, the lack of dynamic memory allocation affects the

SIF decoding package SifDec just as severely as it does CUTEr. A new stand-alone Fortran

package SIFDecode has been written to address this issue. All of the functionality of the

subroutines previously in SifDec have been subsumed into a single Fortran 2003 module

SIFDECODE. Since required array sizes are not known beforehand, default initial values

are increased as required as the package makes a single pass through the SIF file under

consideration; default initial values may be changed to make the processing more efficient,

but this is not crucial.

The distributed package is organised in the same way as CUTEst (see §2), although now

the src directory simply contains two source sub-directories, decode that holds the decoder

and its main program, and select containing the test-problem database interrogation tools

from CUTE [3, §2.3].

Once the package has been installed, the decoder is called by issuing the command

sifdecoder -A architecture EXAMPLE[.SIF]

where architecture and EXAMPLE.SIF are as before; the -A option may be omitted when

using the default architecture.

6 New installation procedures

The installation procedure has been updated to recognise that most users will need to

install both SIFDecode and CUTEst, and may also wish to integrate these with GALAHAD.

A single script, install_optsuite, prompts the user to describe what features are needed

and which architecture is desired. An opportunity to modify default compilation flags is

provided, after which the script will automatically download and install the software.

7 Obtaining the packages

All of the required and optional packages archdefs, SIFDecode, CUTEst and GALAHAD are

available from the CCPForge project, funded by The Joint Information Systems Commit-

tee (http://www.jisc.ac.uk) and maintained by the Scientific Computing Department of

the Science and Technology Facilities Council (http://www.stfc.ac.uk/SCD/default.aspx)

under the departmental SLA with EPSRC. See

http://ccpforge.cse.rl.ac.uk/gf/project/cutest/wiki/

for download details.

Both SIFDecode and CUTEst are distributed and made available under the terms of the

GNU Lesser General Public License. See

http://www.gnu.org/licenses/lgpl-3.0.txt

for details.

8 N. I. M. Gould, D. Orban and Ph. L. Toint

8 Conclusions and perspectives

We believe CUTEst is a considerable improvement over past versions because of its improved

modular and thread-safe design exploiting recent additions to the Fortran standard, dy-

namic allocation, simplified and unified tool calling sequences, improved Matlab interface

and, last but not least, the more user-friendly installation process. Despite the age of the

standard input format and the advent of more modern modeling languages, CUTE and

CUTEr remained widely-used tools in the optimization community and beyond, as illus-

trated by the large number of user comments and request that we receive and the associated

problem collection remains a staple of optimization software testing and benchmarking.

Since all packages and test problems are maintained and distributed via a source code

revision system, bug fixes, improvements and additions are easily available.

Acknowledgements

We are extremely grateful to Roger Fletcher, Philip Gill, Michal Kočvara, Michael Powell,

Klaus Schittkowski and Elizabeth Wong for making their latest codes available to us so

that we could build and test interfaces.

References

[1] E. G. Birgin, R. Castillo, and J. M. Martinez. Numerical comparison of augmented

Lagrangian algorithms for nonconvex problems. Computational Optimization and

Applications, 31(1):31–56, 2005.

[2] E. G. Birgin, J. M. Martinez, and M. Raydan. Algorithm 813: SPG—software

for convex-constrained optimization. ACM Transactions on Mathematical Software,

27:340–349, 2001.

[3] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and

unconstrained testing environment. ACM Transactions on Mathematical Software,

21(1):123–160, 1995.

[4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large

scale nonlinear optimization problems and the LANCELOT project. In R. Glowinski

and A. Lichnewsky, editors, Computing Methods in Applied Sciences and Engineering,

pages 42–51, Philadelphia, USA, 1990. SIAM.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for

Large-scale Nonlinear Optimization (Release A). Springer Series in Computational

Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 9

[6] International Business Machine Corporation. Mathematical programming system/360

version 2, linear and separable programming-user’s manual. Technical Report H20-

0476-2, IBM Corporation, 1969. MPS Standard.

[7] E. D. Dolan, A. P. Gurson, P. L. Shepherd, C. M. Siefert, V. J. Torczon, and A. Yates.

C++ direct searches. http://www.cs.wm.edu/˜va/software/DirectSearch/direct -

code/, 2001.

[8] R. Fletcher. A sequential linear constraint programming algorithm for NLP. SIAM

Journal on Optimization, 22(3):772–794, 2012.

[9] D. M. Gay. Electronic mail distribution of linear programming test problems.

Mathematical Programming Society COAL Newsletter, December 1985. See

http://www.netlib.org/lp/data/.

[10] P. E. Gill and E. Wong. Methods for convex and general quadratic programming.

Technical Report NA 10-1, Dept. of Mathematics, University of California, San Diego,

2013.

[11] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a Constrained and

Unconstrained Testing Environment, revisited. ACM Transactions on Mathematical

Software, 29(4):373–394, 2003.

[12] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe

fortran 90 packages for large-scale nonlinear optimization. ACM Transactions on

Mathematical Software, 29(4):353–372, 2003.

[13] IBM Optimization Solutions and Library. QP Solutions User Guide. IBM Corporta-

tion, 1998.

[14] M. Kocvara and M. Stingl. PENNON: A code for convex nonlinear and semidefinite

programming. Optimization Methods and Software, 18(3):317–333, 2003.

[15] S. Le Digabel. Algorithm 909: NOMAD: nonlinear optimization with the MADS

algorithm. ACM Transactions on Mathematical Software, 37(4):1–15, 2011.

[16] I. Maros and C. Meszaros. A repository of convex quadratic programming problems.

Optimization Methods and Software, 11-12:671–681, 1999.

[17] D. B. Ponceleón. Barrier methods for large-scale quadratic programming. PhD thesis,

Department of Computer Science, Stanford University, Stanford, California, USA,

1990.

[18] M. J. D. Powell. The NEWUOA software for unconstrained optimization without

derivatives. In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,

volume 83 of Nonconvex Optimization and Its Applications, pages 255–297, Heidel-

berg, Berlin, New York, 2006. Springer Verlag.

10 N. I. M. Gould, D. Orban and Ph. L. Toint

[19] M. J. D. Powell. The BOBYQA algorithm for bound constrained optimization without

derivatives. Technical Report DAMTP NA2009/06, Department of Applied Mathe-

matics and Theoretical Physics, Cambridge University, Cambridge, UK, 2009.

[20] K. Schittkowski. QL: A Fortran code for convex quadratic programming—User’s

guide, Version 2.11. Technical report, University of Bayreuth, Department of Com-

puter Science, 2005.

[21] K. Schittkowski. NLPQLP: A Fortran implementation of a sequential quadratic pro-

gramming algorithm with distributed and non-monotone line search. Technical report,

University of Bayreuth, Department of Computer Science, 2010.

Appendix A: available tools

Separate evaluation tools are provided for unconstrained and constrained problems. Both

unthreaded and threaded versions are available when this is relevant. See the appropriate

man page for full details.

Unconstrained problems:

cutest udimen (both threaded and unthreaded)

determine the number of variables.

cutest usetup (unthreaded) and cutest usetup threaded (threaded)

setup internal data structures and determine variable bounds.

cutest unames (both threaded and unthreaded)

determine the names of the problem and the variables.

cutest uvartype (both threaded and unthreaded)

determine whether the variables are continuous or discrete.

cutest udimsh (both threaded and unthreaded)

determine the number of nonzeros in the sparse Hessian.

cutest udimse (both threaded and unthreaded)

determine the number of nonzeros in the finite-element Hessian.

cutest ufn (unthreaded) and cutest ufn threaded (threaded)

evaluate the objective function value.

cutest ugr (unthreaded) and cutest ugr threaded (threaded)

evaluate the gradient of the objective function.

cutest uofg (unthreaded) and cutest uofg threaded (threaded)

evaluate both the values and gradients of the objective function.

cutest udh (unthreaded) and cutest udh threaded (threaded)

evaluate the Hessian of the objective function as a dense matrix.

cutest ugrdh (unthreaded) and cutest ugrdh threaded (threaded)

evaluate the objective gradient and dense Hessian.

cutest ushp (both threaded and unthreaded)

evaluate the sparsity pattern of the Hessian of the objective function.

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 11

cutest ush (unthreaded) and cutest ush threaded (threaded)

evaluate the Hessian of the objective function as a sparse matrix.

cutest ugrsh (unthreaded) and cutest ugrsh threaded (threaded)

evaluate the objective gradient and sparse Hessian.

cutest ueh (unthreaded) and cutest ueh threaded (threaded)

evaluate the Hessian of the objective function as a finite-element matrix.

cutest ugreh (unthreaded) and cutest ugreh threaded (threaded)

evaluate the objective gradient and finite-element Hessian.

cutest uhprod (unthreaded) and cutest uhprod threaded (threaded)

evaluate the product of the Hessian of the objective function with a vector.

cutest ubandh (unthreaded) and cutest ubandh threaded (threaded)

obtain the part of the Hessian of the objective that lies within a specified band.

cutest ureport (unthreaded) and cutest ureport threaded (threaded)

discover how many evaluations have occured and how long this has taken.

cutest uterminate (both unthreaded and threaded)

remove internal data structures when they are no longer needed.

Constrained problems:

cutest cdimen (both threaded and unthreaded)

determine the number of variables and constraints.

cutest csetup (unthreaded) and cutest csetup threaded (threaded)

setup internal data structures and determine variable and constraint bounds.

cutest cnames (both threaded and unthreaded)

determine the names of the problem, the variables and the constraints.

cutest connames (both threaded and unthreaded)

determine the names of the constraints.

cutest cvartype (both threaded and unthreaded)

determine whether the variables are continuous or discrete.

cutest cdimsj (both threaded and unthreaded)

determine the number of nonzeros in sparse constraint Jacobian.

cutest cdimsh (both threaded and unthreaded)

determine the number of nonzeros in the sparse Hessian.

cutest cdimse (both threaded and unthreaded)

determine the number of nonzeros in the finite-element Hessian.

cutest cfn (unthreaded) and cutest cfn threaded (threaded)

evaluate the objective function and constraint values.

cutest cgr (unthreaded) and cutest cgr threaded (threaded)

evaluate the gradients of the objective function and constraints.

cutest cofg (unthreaded) and cutest cofg threaded (threaded)

evaluate both the value and gradient of the objective function.

cutest cofsg (unthreaded) and cutest cofsg threaded (threaded)

evaluate both the value and sparse gradient of the objective function.

12 N. I. M. Gould, D. Orban and Ph. L. Toint

cutest csgr (unthreaded) and cutest csgr threaded (threaded)

evaluate the sparse gradients of the objective function and constraints.

cutest ccfg (unthreaded) and cutest ccfg threaded (threaded)

evaluate the values and gradients of the constraints.

cutest ccfsg (unthreaded) and cutest ccfsg threaded (threaded)

evaluate the values and sparse gradients of the constraints.

cutest ccifg (unthreaded) and cutest ccifg threaded (threaded)

evaluate the value and gradient of an individual constraint.

cutest ccifsg (unthreaded) and cutest ccifsg threaded (threaded)

evaluate the value and sparse gradient of an individual constraint.

cutest cdh (unthreaded) and cutest cdh threaded (threaded)

evaluate the Hessian of the Lagrangian function as a dense matrix.

cutest cidh (unthreaded) and cutest cidh threaded (threaded)

evaluate the Hessian of the objective function or an individual constraint

as a dense matrix.

cutest cgrdh (unthreaded) and cutest cgrdh threaded (threaded)

evaluate the constraint Jacobian and Hessian of the Lagrangian function

as dense matrices.

cutest cshp (both threaded and unthreaded)

evaluate the sparsity pattern of the Hessian of the Lagrangian function.

cutest csh (unthreaded) and cutest csh threaded (threaded)

evaluate the Hessian of the Lagrangian function as a sparse matrix.

cutest cshc (unthreaded) and cutest cshc threaded (threaded)

evaluate the Hessian of the Lagrangian function not including the

objective as a sparse matrix.

cutest cish (unthreaded) and cutest cish threaded (threaded)

evaluate the Hessian of the objective function or an individual constraint

as a sparse matrix.

cutest csgrsh (unthreaded) and cutest csgrsh threaded (threaded)

evaluate the constraint Jacobian and Hessian of the Lagrangian function

as sparse matrices.

cutest ceh (unthreaded) and cutest ceh threaded (threaded)

evaluate the Hessian of the Lagrangian function as a finite-element matrix.

cutest csgreh (unthreaded) and cutest csgreh threaded (threaded)

evaluate the constraint Jacobian as a sparse matrix and the Hessian of

the Lagrangian function as a finite-element matrix.

cutest chprod (unthreaded) and cutest chprod threaded (threaded)

evaluate the product of the Hessian of the Lagrangian function with a vector.

cutest chcprod (unthreaded) and cutest chcprod threaded (threaded)

evaluate the product of the Hessian of the Lagrangian function not

including the objective with a vector.

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads 13

cutest cjprod (unthreaded) and cutest cjprod threaded (threaded)

evaluate the product of the constraint Jacobian or its transpose with a vector.

cutest creport (unthreaded) and cutest creport threaded (threaded)

discover how many evaluations have occured and how long this has taken.

cutest cterminate (both unthreaded and threaded)

remove internal data structures when they are no longer needed.

Both unconstrained problems and constrained problems:

cutest probname (both threaded and unthreaded)

determine the name of the problem.

cutest varnames (both threaded and unthreaded)

determine the names of the variables.

A call to cutest u/csetup[threaded] must precede calls to any other evaluation tool with

the exception of cutest u/cdimen. Once cutest u/cterminate[threaded] has been called,

no further calls should be made without first recalling cutest u/csetup[threaded].

Appendix B: Matlab interfaces

Table B.1: Available Matlab tools

Matlab tool CUTEst tool(s) Purpose

cutest_dims cdimen Obtain problem dimensions

cutest_setup usetup/csetup Setup problem data structure

cutest_obj uofg/cofg Evaluate objective function value and its gradient

if requested

cutest_grad ugr/cgr Evaluate objective function gradient

cutest_sobj cofsg Evaluate objective function value and its gradient

as a sparse vector if requested

cutest_objcons cfn Evaluate objective and constraints

cutest_cons ccifg Evaluate constraint bodies and their gradients if

requested. Evaluate a single constraint value and

its gradient if requested

cutest_scons ccifsg Evaluate constraint bodies and Jacobian in sparse

format. Evaluate a single constraint value and its

gradient as a sparse vector

cutest_lagjac cgr Evaluate Jacobian and gradient of either objective

or Lagrangian

cutest_slagjac csgr Evaluate Jacobian in sparse format and gradient of

either objective or Lagrangian as a sparse vector

cutest_Jprod cjprod Evaluate the matrix-vector product between the

Jacobian and a vector

Continued on next page

14 N. I. M. Gould, D. Orban and Ph. L. Toint

Table B.1: Available Matlab tools (cont.)

Matlab tool CUTEst tool(s) Purpose

cutest_Jtprod cjprod Evaluate the matrix-vector product between the

transpose Jacobian and a vector

cutest_hess udh/cdh Evaluate the Hessian matrix of the Lagrangian, or

of the objective if the problem is unconstrained

cutest_ihess udh/cidh Evaluate the Hessian matrix of the i-th problem

function (i=0 is the objective function), or of the

objective if problem is unconstrained

cutest_hprod uhprod/chprod Evaluate the matrix-vector product between the

Hessian of the Lagrangian (or the objective if un-

constrained) and a vector

cutest_gradhess ugrdh/cgrdh Evaluate the gradient of either the objective or the

Lagrangian, the Jacobian (or its transpose) and

the Hessian of the Lagrangian in dense format

cutest_sphess ush/csh Evaluate the Hessian matrix of the Lagrangian, or

of the objective if the problem is unconstrained, in

sparse format

cutest_isphess ush/cish Evaluate the Hessian matrix of the i-th problem

function (i=0 is the objective function), or of the

objective if problem is unconstrained, in sparse for-

mat

cutest_varnames varnames Obtain variable names as a list of strings

cutest_connames cnames Obtain constraint names as a list of strings

cutest_terminate uterminate/

cterminate

Remove existing internal workspace

