
GeneSelector package vignette

Martin Slawski ∗

Anne-Laure Boulesteix †

Sylvia Lawry Centre, Hohenlindenerstr. 1, D-81677 Munich, Germany

1 Statistical and Bioinformatical background

One of the most important aspects of microarray data analysis is the detection of
genes that are differentially expressed, e.g., in different experimental conditions or in
individuals with different phenotypes. The results of microarray studies are usually
the starting point for further more expensive and time-consuming experiments, which
involve only a small number of candidate genes that turned out to be ’most promising’
in the previous step Aerts et al. [2006]. Considering the induced efforts and costs,
finding an accurate ranking of genes that reduces the fraction of false positives under
the top-ranking genes is a crucial challenge in microarray data analysis.

The name GeneSelector refers to the following filter mechanism: Starting from a
large set of candidate genes, it stepwise excludes more and more genes until one ends
up with a very sparse set, called ’selected’ genes. Its elements have the following
property. Given some threshold rank that is still considered biologically relevant, the
ranks of the selected genes are better than or at least equal to the threshold in all
rankings performed using different methods and different perturbed data sets. In a
word, they are consistently identified as differentially expressed.

Several rankings are generated using two approaches. On the one hand, the origi-
nal dataset is slightly perturbed, by randomly leaving one- or several array(s) out,
adding noise or swapping class labels. This procedure is repeated many times. On
the other hand, one can use several ranking methods or test statistics - the current
implementation now features fifteen different procedures, including both traditional
and modern approaches (see an overview in Section 2). The first approach tries to
mimic a changed data situation and is therefore helpful for assessing stability of the
results (Pavlidis et al. [2003], Qiu et al. [2007]), while the second one follows the spirit
of a ’sensitivity analysis’. Almost all of the considered test statistics rely on idealized
assumptions and it is hard to check whether they hold for a particular dataset at
hand. In this context, using several statistics is beneficial.

Furthermore, a major topic in GeneSelector is stability. If results tremendously
change when the data are slightly perturbed, they are little credible. We thank In
fact, microarray data are suspected to yield ’noise discovery’ Ioannidis [2005]. To gain
insight into stability, GeneSelector computes several stability measures as discussed
in the diploma thesis of Elisabeth Gnatowski with the title ’Stability of methods
for the analysis of differential gene expression’ Gnatowski [2007] which served as a
starting point in the development of GeneSelector.

Let X = (xji)j=1,...,p
i=1,...,n

denote the matrix of gene expression values (relative or absolute

∗Martin.Slawski@campus.lmu.de
†http://www.slcmsr.net/boulesteix

1

Martin.Slawski@campus.lmu.de
http://www.slcmsr.net/boulesteix

intensity values) and y = (yi) the vector of class labels with indices i = 1, . . . , n for
the observations (arrays) and j = 1, . . . , p for the genes. For notational convenience,
we set D = (X,y). All the procedures considered here return a triple t(D) = (s,p, r),
where

• s is a p× 1 vector of test statistics for each gene,

• p is the corresponding vector of p-values given the statistic provides one,

• r is a vector of ranks for each gene, where rank 1 is attributed to the gene being
’most distant’ from the null hypothesis, i.e. most differentially expressed.

In this context, t(·) can in general be applied to the independent two-sample case, the
paired two-sample case and the one-sample case.
In the GeneSelector package, the focus is on the ranks r. The idea behind GeneS-
elector is to exclude as many genes as possible from the subset of candidate genes
for differential expression, in order to avoid false positives. selected genes are those
present at the top of the ranking with various featured procedures t(·) as well as with
B perturbed data sets, which are denoted as {D̃}Bb=1. The GeneSelector package
creates perturbed data sets in order to take the stability of the findings into account.
By ’perturbed data sets’ we mean data sets that result from

• leaving out samples,

• swapping class labels (X̃ = X), but y changes),

• generating bootstrap replicates,

• adding noise.

Results from ’perturbed’ data sets and original dataset (D) can be aggregated in
GeneSelector (separately for each different procedure) in two ways (s. below), ob-
taining an aggregated ranking ragg(D; t(·)). After defining (or determining) some
’threshold rank’ 1 ≤ θ � p, the GeneSelector procedure can be stated as follows:

1. Choose a set of test procedures for differential expressions {tk(.)}Kk=1. For in-
stance, one may choose t1(.) as the ordinary t-test procedure and t2(.) as the
foldchange procedure.

2. Apply each tk(.) to the original dataset D and to different perturbed data sets
{D̃b}Bb=1

3. Aggregate the resulting rankings to obtain ragg
k , k = 1, . . . ,K.

4. Define an order on the set of test procedures t(1), . . . , t(K) so that t(1) is at-
tributed most importance, t(2) second most and so on.

5. The final ranking follows now the following criteria

(1) ’Selection’ in t(1)

...

(K) ’Selection’ in t(K)

(K+1) Rank in t(1)

...

(2K) Rank in t(K)

2

where ’Selection’ means that the respective rank is below θ

The parameter θ can be interpreted as the highest rank one is still interested in. For
instance, if one expects 10 differentially expressed genes, θ could be set to that value,
but it should usually taken higher, because the procedure outlined above will normally
produce less ’selected’ genes than θ.
Admittedly, the choice of θ is not easy. One possibilty of finding this value adaptively
consists of using multiple testing procedures (s. example below).

2 Overview of featured test procedures

There is a vast literature about test statistics to be used in the microarray setting.
Here, we provide a selection of 15 procedures. Of course, this selection is non-
exhaustive, but we have tried to include a good ’mixture’ of (sometimes completely
different) approaches. They can be categorized in the following way (the names of
the corresponding functions implementing them are written in typewriter):

• the naive approaches: Foldchange (RankingFC), a ’gap’ statistic (RankingGap)

• ’ordinary’ statistics: (usual) t-statistic (RankingTstat), Welch statistic (RankingWelch),
Wilcoxon statistic (RankingWilcoxon)

• hierarchical bayesian models: Baldi-Long t-statistic (RankingBaldiLong, Baldi and Long
[2001]), Fox-Dimmic t-statistic (RankingFoxDimmic, Fox and Dimmic [2006]),
the B-statistic (RankingBstat, Lönnstedt and Speed [2002]), ’moderated’ t-
statistic (RankingLimma, Smyth [2004])

• two mixture model approaches named RankingEbam and RankingWilcEbam, re-
spectively (Efron et al. [2001]; Efron and Tibshirani [2002]) that are connected
with Significance Analysis for Microarrays (SAM, Tusher et al. [2001]) that is
also included (RankingSam).

• permutation-based t-statistics (RankingPermutation)

• ’modified’ t-statistics: shrinkage t-statistic (RankingShrinkageT, Opgen-Rhein and Strimmer
[2007]), soft-threshold t-statistic (RankingSoftthresholdT, Wu [2005])

3 An artifical dataset example

3.1 Generating the data set

For demonstration purposes, we use a simulated datsets containing 2, 000 genes. It
can be characterized in the following manner.

• X is drawn from a multivariate normal distribution with zero mean vector and
covariance matrix Σ.

• Σ is drawn randomly from an Inverse Wishart distribution.

• y consists of ten samples for each class, in the following regarded as two inde-
pendent samples.

• The first 40 genes (rows) of X are differentially expressed, where the differences
∆j , j = 1, . . . , 40 in mean between the two classes were simulated independently
according to a normal distribution with variance 0.9.

3

We access the data using the lines:

> data(toydata)

> yy <- as.numeric(toydata[1,])

> xx <- as.matrix(toydata[-1,])

> dim(xx)

[1] 2000 20

> table(yy)

yy
1 2
10 10

Knowing that the first genes are actually differentially expressed, we make boxplots
of the first four genes:

> par(mfrow = c(2, 2))

> for (i in 1:4) boxplot(xx[i,] ~ yy, main = paste("Gene", i))

●

●

1 2

−
0.

5
0.

0
0.

5
1.

0

Gene 1

1 2

−
0.

5
0.

5
1.

5
2.

5

Gene 2

1 2

−
1.

0
0.

0
1.

0

Gene 3

1 2

−
0.

5
0.

5
1.

5
2.

5

Gene 4

3.2 Ranking the genes

We now peform 6 rankings from six methods: ordinaryT (ordinary t-test), Baldi-
LongT (Baldi-Long t-statistic), FoxDimmicT (Fox-Dimmic t-statistic), SAM, Wilcoxon,
WilcEbam and a modified version of the Wilcoxon statistic derived from a mixture
model.

4

> ordT <- RankingTstat(xx, yy, type = "unpaired")

> BaldiLongT <- RankingBaldiLong(xx, yy, type = "unpaired")

> FoxDimmicT <- RankingFoxDimmic(xx, yy, type = "unpaired")

> sam <- RankingSam(xx, yy, type = "unpaired")

> wilcox <- RankingWilcoxon(xx, yy, type = "unpaired", pvalues = TRUE)

> wilcoxefron <- RankingWilcEbam(xx, yy, type = "unpaired")

The resulting objects are all instances of the class GeneSelector.
To get some class information, we use the commands:

> class(ordT)

[1] "GeneRanking"
attr(,"package")
[1] "GeneSelector"

> getSlots("GeneRanking")

x y statistic ranking pval type
"matrix" "factor" "numeric" "numeric" "vector" "character"
method

"character"

> str(ordT)

Formal class 'GeneRanking' [package "GeneSelector"] with 7 slots
..@ x : num [1:2000, 1:20] 1 2.78 -1.18 2.79 -2.95 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:2000] "1" "2" "3" "4" ...
..$: chr [1:20] "arr1" "arr2" "arr3" "arr4" ...
..@ y : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
..@ statistic: Named num [1:2000] 13.09 10.4 9.53 -8.38 -7.93 ...
.. ..- attr(*, "names")= chr [1:2000] "4" "11" "2" "26" ...
..@ ranking : int [1:2000] 4 11 2 26 5 9 23 38 28 40 ...
..@ pval : Named num [1:2000] 1.23e-10 4.83e-09 1.85e-08 1.26e-07 2.79e-07 ...
.. ..- attr(*, "names")= chr [1:2000] "4" "11" "2" "26" ...
..@ type : chr "unpaired"
..@ method : chr "ordinaryT"

The following ’convenience’ methods are available:

> show(ordT)

Ranking by ordinaryT
number of genes: 2000

> summary(ordT)

statistic p_values
Min. -8.37800 1.233e-10
1st Qu. -1.00300 1.184e-01
Median -0.07951 3.616e-01
Mean -0.04111 4.042e-01
3rd Qu. 0.88980 6.671e-01
Max. 13.09000 9.992e-01

5

> toplist(ordT)

index statistic pvals
1 4 13.0879 1.232978e-10

The last command yields the top-ranking genes according to the chosen procedure.

3.3 Perturbed data sets

One major feature of the GeneSelector package is the incorporation of ’stability’
aspects. A procedure t(·) as defined above is called stable if it produces similar
results from perturbed data sets, i.e if

t(D) ≈ t(D̃1) ≈ . . . ≈ t(D̃B).

For stability assessment, we first generate a FoldMatrix.

> loo <- GenerateFoldMatrix(xx, yy, k = 1)

> show(loo)

number of removed samples per replicate: 1
number of replicates: 20
constraints: minimum classize for each class: 9

The last command produces data sets where one sample has been removed. We plug
this into the method GetRepeatRanking to repeat the ranking 20 times, i.e. for each
removed observation:

> loor_ordT <- GetRepeatRanking(ordT, loo)

> loor_BaldiLongT <- GetRepeatRanking(BaldiLongT, loo)

> loor_FoxDimmicT <- GetRepeatRanking(FoxDimmicT, loo)

> loor_sam <- GetRepeatRanking(sam, loo)

> loor_wilcox <- GetRepeatRanking(wilcox, loo)

> loor_wilcoxefron <- GetRepeatRanking(wilcoxefron, loo)

The object loo can also be used in the following manner:

> ex1r_ordT <- GetRepeatRanking(ordT, loo, scheme = "Labelexchange")

scheme = "Labelexchange" means that instead of leaving one observation out per
iteration, they are given the opposite class label.
We can also use bootstrapping, e.g. :

> boot <- GenerateBootMatrix(xx, yy, maxties = 3, minclassize = 5,

+ repl = 30)

> show(boot)

number of bootstrap replicates: 30
constraints: minimum classize for each class: 5

maximum number of ties per observation: 3

> boot_BaldiLongT <- GetRepeatRanking(BaldiLongT, boot)

6

... or add noise, e.g.:

> noise_ordT <- GetRepeatRanking(ordT, varlist = list(genewise = TRUE,

+ factor = 1/10))

Note that no matrix (Boot or Fold) is provided for the variant with added noise.
To get a toplist that takes into account all iterations, we can use:

> toplist(loor_ordT, show = FALSE)

original dataset:

index statistic pvals
4 4 13.087900 1.232978e-10
11 11 10.404717 4.833338e-09
2 2 9.533551 1.853162e-08
26 26 -8.378361 1.261238e-07
5 5 -7.927116 2.791221e-07
9 9 -7.744184 3.880996e-07
23 23 7.392767 7.402187e-07
38 38 -6.986973 1.592778e-06
28 28 -6.786421 2.345378e-06
40 40 6.421584 4.808461e-06

As an exploratory tool to examine the difference between original and perturbed data
sets, plot commands have been defined:

From figure 1, it is obvious that the top ranks are relatively stable as compared to
higher ranks. Unsurprisingly, stability depends massively on the method used to
create perturbed data sets. In this example, the bootstrap rankings are far more
scattered around the optimum least squares line than the Jackknife rankings.

To combine several schemes, one can use the ’join’ functionality

> perturb_ordT <- join(ex1r_ordT, noise_ordT)

> show(perturb_ordT)

30 rankings with scheme 'combined'
Method used: ordinaryT

3.4 Objective stability measures

Instead of using informal visual methods, one can compute several stability measures.

3.4.1 Multiple linear regression model

The preferred stability measure is based on a (multivariate) linear regression model

R = ZΓ + Ξ

where the p×B ’response’ matrix R = [r1, . . . , rB] contains in its columns the vector of
ranks resulting from the perturbed data sets D̃1, . . . , D̃B and the p×2 regressor matrix
Z is given as Z = [1, r(D)]. The ranking r(D) resulting from the original dataset is
thus considered as ’covariate’. The 2 × B matrix Γ of regression coefficients has to

7

> par(mfrow = c(2, 2))

> plot(loor_ordT, col = "blue", pch = ".", cex = 2.5)

> plot(ex1r_ordT, col = "blue", pch = ".", cex = 2.5)

> plot(boot_BaldiLongT, col = "blue", pch = ".", cex = 2.5)

> plot(noise_ordT, frac = 1/10, col = "blue", pch = ".", cex = 2.5)

5 10 15 20

0
10

20
30

40

Ranks in the orginal dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

5 10 15 20

0
10

20
30

40

Ranks in the orginal dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

5 10 15 20

0
10

20
30

40

Ranks in the orginal dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

0 50 100 150 200

0
10

0
30

0

Ranks in the orginal dataset

R
an

ks
 in

 p
er

tu
rb

ed
 d

at
as

et
s

Figure 1: Scatterplots of rankings from perturbed datasets vs. rankings from orig-
inal dataset. Top, left: Removal of one array per iteration (Jackknife). Top, right:
Exchange of one class label per iteration. Bottom, left: Bootstrap. Bottom, right:
Addition of noise.

be estimated. Additionally, a weight vector w is used to attribute more importance
to the top ranks. An estimator for Γ is obtained by minimizing the weighted least
squares criterion

Γ̂ = arg min

Γ∈R2×B tr((R−ZΓ)>W (R−ZΓ))

with W = diag(w). Stability is then measured via a goodness- of-fit criterion for
linear models.

> stab_lm_ordT <- GetStabilityLm(loor_ordT, decay = "linear")

> show(stab_lm_ordT)

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.9549876

> stab_lm_BaldiLongT <- GetStabilityLm(loor_BaldiLongT, decay = "linear")

> show(stab_lm_BaldiLongT)

8

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.9522463

> stab_lm_FoxDimmicT <- GetStabilityLm(loor_FoxDimmicT, decay = "linear")

> show(stab_lm_FoxDimmicT)

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.9405184

> stab_lm_sam <- GetStabilityLm(loor_sam, decay = "linear")

> show(stab_lm_sam)

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.9555079

> stab_lm_wilcox <- GetStabilityLm(loor_wilcox, decay = "linear")

> show(stab_lm_wilcox)

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.6866364

> stab_lm_wilcoxefron <- GetStabilityLm(loor_wilcoxefron, decay = "linear")

> show(stab_lm_wilcoxefron)

Stability measure: weighted linear regression,
weighting: based on ranks , linear weight decay
multivariate R2 is: 0.9147122

This shows that all six methods are of comparable stability.

3.4.2 Overlap score

As an alternative, the Overlap Score (Lottaz et al. [2006]) can be used.
Its computation depends on weights that decrease exponentially with the rank:

w(r) = exp(−αr)

One possible approach uses information from (adjusted) p-values incorporated in a
nonlinear least squares regression to find an appropriate value for α.

αopt = arg min
α

p∑
r=1

(p(r)− (1− exp(−αr)))2,

where p(r) is the p-value belonging to rank r.
To follow this procedure, we use the lines:

> ordT_adjpval <- AdjustPvalues(ordT@pval, method = "BH")

> plot(ordT@pval, ordT_adjpval, xlab = "raw p-values", ylab = "adjusted p-values")

9

●●●●●●●●●●●●●●●
●●●●
●●
●●
●
●●●●
●●●●●●●●●●
●●
●●●●●
●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●
●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●

●●
●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raw p−values

ad
ju

st
ed

 p
−

va
lu

es

We can then use adjusted p-values for a nonlinear least squares Regression

> alphaopt <- GetAlpha(ordT@ranking, ordT_adjpval)

> plot(1:length(ordT@ranking), 1 - exp(-alphaopt * (1:length(ordT@ranking))),

+ type = "l", xlab = "ranks", ylab = "")

> stab_overlap_ordT <- GetStabilityOverlap(loor_ordT, decay = "exponential",

+ alpha = alphaopt)

> plot(stab_overlap_ordT)

10

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

ranks

3.4.3 Recovery score

As a third stabilty measure, the Recovery Score (Pavlidis et al. [2003]) is implemented:

> rs_ordT <- RecoveryScore(loor_ordT, method = "BH")

> print(rs_ordT)

1 2 3 4 5 6 7 8
1.0000000 1.0000000 1.0000000 0.9047619 1.0000000 1.0000000 1.0000000 0.9090909

9 10 11 12 13 14 15 16
0.8076923 0.9545455 0.9500000 0.6562500 1.0000000 1.0000000 1.0000000 1.0000000

17 18 19 20
1.0000000 1.0000000 0.9500000 1.0000000

3.5 Aggregating the results from different procedures

After stability assessment, ranks from different perturbed data sets and the original
dataset can be aggregated in two ways.

3.5.1 Bayesian approach

The first method uses a bayesian model:

> agg_ordT <- AggregateBayes(loor_ordT, stab_lm_ordT, tau = 1)

> agg_BaldiLongT <- AggregateBayes(loor_BaldiLongT, stab_lm_BaldiLongT,

+ tau = 1)

> agg_FoxDimmicT <- AggregateBayes(loor_FoxDimmicT, stab_lm_FoxDimmicT,

11

+ tau = 1)

> agg_sam <- AggregateBayes(loor_sam, stab_lm_sam, tau = 1)

> agg_wilcox <- AggregateBayes(loor_wilcox, stab_lm_wilcox, tau = 1)

> agg_wilcoxefron <- AggregateBayes(loor_wilcoxefron, stab_lm_wilcoxefron,

+ tau = 1)

3.5.2 Simple aggregation

The hyperparameter tau controls the ’confidence’ in the ranking based on the original
dataset. For faster (and similar results), one uses ’AggregateSimple’:

> agg_simple <- AggregateSimple(loor_BaldiLongT, stab_lm_BaldiLongT,

+ aggregatefun = "mean")

3.5.3 Visualization via Heatmap

Different procedures t(·) can be visually compared using a heatmap, that clusters
genes and procedures simultaneously.

> statlist <- list(agg_ordT, agg_BaldiLongT, agg_FoxDimmicT, agg_sam,

+ agg_wilcox, agg_wilcoxefron)

> HeatmapMethods(statlist, ind = 1:100)

W
ilc

E
ba

m

W
ilc

ox
on

or
di

na
ry

T

F
ox

D
im

m
ic

T

S
am

B
al

di
Lo

ng
T

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

Note that the Heatmap depicts only the first 100 genes (argument ind) and that the
objects have to be collected in the list statlist.

12

3.6 The gene selector

As a last step, we run the GeneSelector. The idea is to select those genes which are
not well-ranked by all procedures.

Let us assume that SAM is our preferred statistic, followed by Wilcoxon, Baldi-
Long, FoxDimmic, OrdinaryT and WilcEbam, then the vector defining the order for
statlist has the following form:

> ordstat <- c(4, 5, 2, 3, 1, 6)

The ordstat vector defines the order of statistics in the procedure described in the
procedure described above. It is also used to establish a final ranking with respect to
’selection’ firstly and ranks secondly, with ’selection’ in the highest ranked statistic
counting most. We set the threshold θ to 50 (threshold = "user", maxrank = 50),
that is ’selection’ means that the gene is on the top 50 genes in all considered statistics.
This yields:

> gk50 <- GeneSelector(statlist, ind = NULL, indstatistic = ordstat,

+ threshold = "user", maxrank = 50)

We can also define the threshold based on a multiple testing procedure that is applied
to the raw pvalues of the first statistic in ordstat (here, this is SAM). The threshold
is then the number of genes with p-values ≥ maxpval.

> gpval <- GeneSelector(statlist, ind = NULL, indstatistic = ordstat,

+ threshold = "BH", maxpval = 0.05)

The results can now be visualized as follows:

> show(gk50)

GeneSelector run with gene rankings from the following statistics:
Sam
Wilcoxon
BaldiLongT
FoxDimmicT
ordinaryT
WilcEbam
Number of genes below threshold rank 50 in all statistics: 29

> show(gpval)

GeneSelector run with gene rankings from the following statistics:
Sam
Wilcoxon
BaldiLongT
FoxDimmicT
ordinaryT
WilcEbam
Number of genes below threshold rank 21 in all statistics: 11

> toplist(gpval)

13

index pvals
1 4 6.306192e-05

> SelectedGenes(gpval)

index pvals
1 4 6.306192e-05

The multiple testing procedure sets the threshold rank more strictly. Note that we
have still one positive gene in gkpval. The following plot shows (as a barplot) the
absolute relative distance for the top-ranked genes defined as

d`1((rj,t1 , . . . , rj,tK)) =
K∑
k=1

(rj,tk − 1),

an `1-distance from the best possible result, rank 1 for all considered procedures
t1(·), . . . , tK(·).

> plot(gpval)

GeneSelector relative distance plot

gene index

re
la

tiv
e

di
st

an
ce

0.
00

0
0.

00
2

0.
00

4
0.

00
6

4 11

5

2

26 28
9

7
29

30

If one wants to get information about a specific gene (here gene indexed 30) one uses:

> GeneInfoScreen(gpval, which = 30)

14

GeneInfoScreen for gene 30

+

selected ? statistic rank

WilcEbam 15

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

+

selected ? statistic rank

ordinaryT 15

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

+

selected ? statistic rank

FoxDimmicT 7

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

+

selected ? statistic rank

BaldiLongT 17

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

+

selected ? statistic rank

Wilcoxon 15

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000+

selected ? statistic rank

Sam 15

1 − 20
20 − 100
100 − 200
200 − 500
500 − 2000

References

S. Aerts, D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, F. DeSmet, L.-C.
Tranchevent, B. DeMoor, P. Marynen, B. Hassan, P. Carmeliet, and Y. Moreau.
Gene prioritization through genomic data fusion. Nature Biotechnology, pages 537–
544, 2006.

Pierre Baldi and Anthony D Long. A Bayesian framework for the analysis of microar-
ray expression data: regularized t-test and statistical inferences of gene changes.
Bioinformatics, 17:509–519, 2001.

Bradley Efron and Robert Tibshirani. Empirical Bayes Methods and False Discovery
Rates for Microarrays. Genetic Epidemiology, 23:70–86, 2002.

Bradley Efron, Robert Tibshirani, John D Storey, and Virginia Tusher. Empirical
Bayes Analysis of a Microarray Experiment. Journal of the American Statistical
Association, 96:1151–1160, 2001.

Richard J Fox and Matthew W Dimmic. A two sample Bayesian t-test for microarray
data. BMC Bioinformatics, 7:126, 2006.

E. Gnatowski. Stability of methods for the analysis of differential gene expression.
Diploma thesis, Department of Statistics, Ludwig-Maximimilians-University Mu-
nich, 2007.

J. P. A. Ioannidis. Microarrays and molecular research: noise discovery? The Lancet,
365:454–455, 2005.

Claudio Lottaz, Xinan Yang, Stefanie Scheid, and Rainer Spang. OrderedList - a
Bioconductor package for detecting similarity in ordered gene lists. Bioinformatics,
22:2315–2316, 2006.

15

Ingrid Lönnstedt and Terry Speed. Replicated Microarray Data. Statistica Sinica, 12:
31–46, 2002.

Rainer Opgen-Rhein and Korbinian Strimmer. Accurate Ranking of Differentially Ex-
pressed Genes by a Distribution-Free Shrinkage Approach. Statistical Applications
in Genetics and Molecular Biology, 6:Iss.1, Art.9, 2007.

P. Pavlidis, Q. Li, and W. Stafford Noble. The effect of replication on gene expression
microarray experiments. Bioinformatics, 19:1620–1627, 2003.

X. Qiu, Y. Xiao, A. Gordon, and A. Yakovlev. Assessing stability of gene selection in
microarray data analysis. BMC Bioinformatics, pages 7–50, 2007.

Gordon K Smyth. Linear models and empirical Bayes methods for assessing differen-
tial expression in microarray experiments. Statistical Applications in Genetics and
Molecular Biology, 3, 2004.

Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. Significance analysis of
microarrays applied to the ionizing radiation response. PNAS, 98:5116–5121, 2001.

Baolin Wu. Differential gene expression using penalized linear regression models: The
improved SAM statistic. Bioinformatics, 21:1565–1571, 2005.

16

	Statistical and Bioinformatical background
	Overview of featured test procedures
	An artifical dataset example
	Generating the data set
	Ranking the genes
	Perturbed data sets
	Objective stability measures
	Multiple linear regression model
	Overlap score
	Recovery score

	Aggregating the results from different procedures
	Bayesian approach
	Simple aggregation
	Visualization via Heatmap

	The gene selector

