Efficient genome searching with Biostrings and the BSgenome data packages

Hervé Pagès

November 11, 2009

Contents

1 The Biostrings-based genome data packages 1
2 Finding an arbitrary nucleotide pattern in a chromosome 2
3 Finding an arbitrary nucleotide pattern in an entire genome 5
4 Some precautions when using matchPattern 9
5 Masking the chromosome sequences 10
6 Hard masking 15
7 Injecting known SNPs in the chromosome sequences 15
8 Finding all the patterns of a constant width dictionary in an entire genome 15
9 Session info 17

1 The Biostrings-based genome data packages

The Bioconductor project provides data packages that contain the full genome sequences of a given organism. These packages are called Biostrings-based genome data packages because the sequences they contain are stored in some of the basic containers defined in the Biostrings package, like the DNAString, the DNAStringSet or the MaskedDNAString containers. Regardless of the particular sequence data that they contain, all the Biostrings-based genome data packages are very similar and can be manipulated in a consistent and easy way. They all require the BSgenome package in order to work properly. This package, unlike the Biostrings-based genome data packages, is a software package that provides the infrastructure needed to support them (this is why the Biostrings-based genome data packages are also called BSgenome data packages). The BSgenome package itself requires the Biostrings package.

See the man page for the available.genomes function (?available.genomes) for more information about how to get the list of all the BSgenome data packages currently available in your version of Bioconductor (you need an internet connection so that available.genomes can query the Bioconductor package repositories).

More genomes can be added if necessary. Note that the process of making a BSgenome data package is not yet documented but you are welcome to ask for help on the bioc-devel mailing list (http://bioconductor. org/docs/mailList.html) if you need a genome that is not yet available.

2 Finding an arbitrary nucleotide pattern in a chromosome

In this section we show how to find (or just count) the occurences of some arbitrary nucleotide pattern in a chromosome. The basic tool for this is the matchPattern (or countPattern) function from the Biostrings package.

First we need to install and load the BSgenome data package for the organism that we want to look at. In our case, we want to search chromosome I of Caenorhabditis elegans.

UCSC provides several versions of the C. elegans genome: ce1, ce2 and ce4. These versions correspond to different releases from WormBase, which are the WS100, WS120 and WS170 releases, respectively. See http://genome.ucsc.edu/FAQ/FAQreleases\#release1 for the list of all UCSC genome releases and for the correspondance between UCSC versions and release names.

The BSgenome data package for the ce2 genome is BSgenome.Celegans.UCSC.ce2. Note that ce1 and ce4 are not available in Bioconductor but they could be added if there is demand for them.

See ?available.genomes for how to install BSgenome.Celegans.UCSC.ce2. Then load the package and display the single object defined in it:

```
> library(BSgenome.Celegans.UCSC.ce2)
> ls("package:BSgenome.Celegans.UCSC.ce2")
[1] "Celegans"
> Celegans
Worm genome
|
| organism: Caenorhabditis elegans (Worm)
| provider: UCSC
| provider version: ce2
| release date: Mar. 2004
| release name: WormBase v. WS120
|
| single sequences (see '?seqnames'):
| chrI chrII chrIII chrIV chrV chrX chrM
|
| multiple sequences (see '?mseqnames'):
| upstream1000 upstream2000 upstream5000
I
| (use the '$' or '[[' operator to access a given sequence)
    Celegans is a BSgenome object:
> class(Celegans)
[1] "BSgenome"
attr(,"package")
[1] "BSgenome"
```

When displayed, some basic information about the origin of the genome is shown (organism, provider, provider version, etc...) followed by the index of single sequences and eventually an additional index of multiple sequences. Methods (adequately called accessor methods) are defined for individual access to this information:

```
> organism(Celegans)
```

```
> provider(Celegans)
```

[1] "UCSC"

```
> providerVersion(Celegans)
```

[1] "ce2"
> seqnames (Celegans)
[1] "chrI" "chrII" "chrIII" "chrIV" "chrV" "chrX" "chrM"
> mseqnames(Celegans)
[1] "upstream1000" "upstream2000" "upstream5000"

See the man page for the BSgenome class (?BSgenome) for a complete list of accessor methods and their descriptions.

Now we are ready to display chromosome I:

```
> Celegans$chrI
    15080483-letter "DNAString" instance
seq: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA. . .TTAGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC
```

Note that this chrI sequence corresponds to the forward strand (aka direct or sense or positive or plus strand) of chromosome I. UCSC, and genome providers in general, don't provide files containing the nucleotide sequence of the reverse strand (aka indirect or antisense or negative or minus or opposite strand) of the chromosomes because these sequences can be deduced from the forward sequences by taking their reverse complements. The BSgenome data packages are no exceptions: they only provide the forward strand sequence of every chromosome. See ?reverseComplement for more details about the reverse complement of a DNAString object. It is important to remember that, in practice, the reverse strand sequence is almost never needed. The reason is that, in fact, a reverse strand analysis can (and should) always be transposed into a forward strand analysis. Therefore trying to compute the reverse strand sequence of an entire chromosome by applying reverseComplement to its forward strand sequence is almost always a bad idea. See the Finding an arbitrary nucleotide pattern in an entire genome section of this document for how to find arbitrary patterns in the reverse strand of a chromosome.

The number of bases in this sequence can be retrieved with:

```
> chrI <- Celegans$chrI
> length(chrI)
```

[1] 15080483

Some basic stats:

```
> afI <- alphabetFrequency(chrI)
> afI
```

A	C	G	T	M	R	W	S	Y	K
4838561	2697177	2693544	4851201	0	0	0	0	0	0
V	H	D	B	N	-	+			
0	0	0	0	0	0	0			

```
> sum(afI) == length(chrI)
```

[1] TRUE
Count all exact matches of pattern "ACCCAGGGC":

```
> p1 <- "ACCCAGGGC"
> countPattern(p1, chrI)
```

[1] 0
Like most pattern matching functions in Biostrings, the countPattern and matchPattern functions support inexact matching. One form of inexact matching is to allow a few mismatching letters per match. Here we allow at most one:

```
> countPattern(p1, chrI, max.mismatch=1)
```

[1] 235
With the matchPattern function, the locations of the matches are stored in an XStringViews object:

```
> m1 <- matchPattern(p1, chrI, max.mismatch=1)
> m1[4:6]
    Views on a 15080483-letter DNAString subject
subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT. . .AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC
views:
    start end width
[1] 187350 187358 9 [ACCCAAGGC]
[2] 213236 213244 9 [ACCCAGGGG]
[3] 424133 424141 9 [ACCCAGGAC]
```

```
> class(m1)
```

> class(m1)
[1] "XStringViews"
attr(,"package")
[1] "Biostrings"

```

The mismatch function (new in Biostrings 2) returns the positions of the mismatching letters for each match:
```

> mismatch(p1, m1[4:6])
[[1]]
[1] 6
[[2]]
[1] }
[[3]]
[1] 8

```

Note: The mismatch method is in fact a particular case of a (vectorized) alignment function where only "replacements" are allowed. Current implementation is slow but this will be addressed.

It may happen that a match is out of limits like in this example:
```

> p2 <- DNAString("AAGCCTAAGCCTAAGCCTAA")
> m2 <- matchPattern(p2, chrI, max.mismatch=2)
> m2[1:4]
Views on a 15080483-letter DNAString subject
subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT. . .AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC
views:
start end width

[1]	-1	18	20	[GCCTAAGCCTAAGCCTAA]
[2]	5	24	20	[AAGCCTAAGCCTAAGCCTAA]
[3]	11	30	20	[AAGCCTAAGCCTAAGCCTAA]
[4]	17	36	20	[AAGCCTAAGCCTAAGCCTAA]

> p2 == m2[1:4]
[1] FALSE TRUE TRUE TRUE
> mismatch(p2, m2[1:4])
[[1]]
[1] 1 2
[[2]]
integer(0)
[[3]]
integer(0)
[[4]]
integer(0)

```

The list of exact matches and the list of inexact matches can both be obtained with:
```

> m2[p2 == m2]
> m2[p2 != m2]

```

Note that the length of \(m 2[p 2==m 2]\) should be equal to countPattern(p2, chrI, max.mismatch=0).

\section*{3 Finding an arbitrary nucleotide pattern in an entire genome}

Now we want to extend our analysis to the forward and reverse strands of all the C. elegans chromosomes. More precisely, here is the analysis we want to perform:
- The input dictionary: Our input is a dictionary of 50 patterns. Each pattern is a short nucleotide sequence of 15 to 25 bases (As, Cs, Gs and Ts only, no Ns). It is stored in a FASTA file called "ce2dict0.fa". See the Finding all the patterns of a constant width dictionary in an entire genome section of this document for a very efficient way to deal with the special case where all the patterns in the input dictionary have the same length.
- The target: Our target (or subject) is the forward and reverse strands of the seven C. elegans chromosomes ( 14 sequences in total). We want to find and report all occurences (or hits) of every pattern in the target. Note that a given pattern can have 0,1 or several hits in 0,1 or 2 strands of 0 , 1 or several chromosomes.
- Exact or inexact matching? We are interested in exact matches only (for now).
- The output: We want to put the results of this analysis in a file so we can send it to our collaborators for some post analysis work. Our collaborators are not necessarily familiar with R or Bioconductor so dumping a high-level R object (like a list or a data frame) into an .rda file is not an option. For maximum portability (one of our collaborators wants to use Microsoft Excel for the post analysis) we choose to put our results in a tabulated file where one line describes one hit. The columns (or fields) of this file will be (in this order):
- seqname: the name of the chromosome where the hit occurs.
- start: an integer giving the starting position of the hit.
- end: an integer giving the ending position of the hit.
- strand: a plus (+) for a hit in the positive strand or a minus ( - ) for a hit in the negative strand.
- patternID: we use the unique ID provided for every pattern in the "ce2dict0.fa" file.

Let's start by loading the input dictionary with:
```

> ce2dict0_file <- system.file("extdata", "ce2dict0.fa", package="BSgenome")
> ce2dict0 <- read.DNAStringSet(ce2dict0_file, "fasta")
> ce2dict0
A DNAStringSet instance of length 50
width seq names
[1] 18 GCGAAACTAGGAGAGGCT pattern01
[2] 25 CTGTTAGCTAATTTTAAAAATAAAT pattern02
[3] 24 ACTACCACCCAAATTTAGATATTC pattern03
[4] 24 AAATTTTTTTTGTTGCAAATTTGA pattern04
[5] 25 TCTTCTTGGCTTTGGTGGTACTTTT pattern05
[6] 16 AACAATTATCTATAAT pattern06
[7] 22 GGTTTTGGAGAGTGATGCACGT pattern07
[8] 21 TTTAATGAACCCCAGCAACTC pattern08
[9] 18 TACTGAAACTCCCGCGAG pattern09
...
[42] 22 AAAATAAGATTCTATTAAAATA pattern42
[43] 15 GTTTTAATTCTAATT pattern43
[44] 18 CATCGTTTCAACCGTTCG pattern44
[45] 19 TAAAAAATCAAAACTTTTG pattern45
[46] 24 TTTTGAACAAAGCATGTCTAACTA pattern46
[47] 20 TAAACGAATTTAGGATATAT pattern47
[48] 19 AAGGACCAGGATTGGCACG pattern48
[49] 24 AAATAACTGCGTAAAAACACAATA pattern49
[50] 22 AAAATGCCGGAGCATTTTAAAG pattern50

```

Here is how we can write the functions that will perform our analysis:
```

>riteHits <- function(seqname, matches, strand, file="", append=FALSE)

+ {
+ if (file.exists(file) \&\& !append)
+ warning("existing file ", file, " will be overwritten with 'append=FALSE'")
+ if (!file.exists(file) \&\& append)
+ warning("new file ", file, " will have no header with 'append=TRUE'")
+ hits <- data.frame(seqname=rep.int(seqname, length(matches)),

```
```

+ start=start(matches),
+ end=end(matches),
strand=rep.int(strand, length(matches)),
patternID=names(matches),
check.names=FALSE)
write.table(hits, file=file, append=append, quote=FALSE, sep="\t",
row.names=FALSE, col.names=!append)
+ }
runAnalysis1 <- function(dict0, outfile="")
+ {
library(BSgenome.Celegans.UCSC.ce2)
seqnames <- seqnames(Celegans)
seqnames_in1string <- paste(seqnames, collapse=", ")
cat("Target:", providerVersion(Celegans),
"chromosomes", seqnames_in1string, "\n")
append <- FALSE
for (seqname in seqnames) {
subject <- Celegans[[seqname]]
cat(">>> Finding all hits in chromosome", seqname, "...\n")
for (i in seq_len(length(dict0))) {
patternID <- names(dict0)[i]
pattern <- dictO[[i]]
plus_matches <- matchPattern(pattern, subject)
names(plus_matches) <- rep.int(patternID, length(plus_matches))
writeHits(seqname, plus_matches, "+", file=outfile, append=append)
append <- TRUE
rcpattern <- reverseComplement(pattern)
minus_matches <- matchPattern(rcpattern, subject)
names(minus_matches) <- rep.int(patternID, length(minus_matches))
writeHits(seqname, minus_matches, "-", file=outfile, append=append)
}
cat(">>> DONE\n")
}
}

```

Some important notes about the implementation of the runAnalysis1 function:
- subject <- Celegans[[seqname]] is the code that actually loads a chromosome sequence into memory. Using only one sequence at a time is a good practice to avoid memory allocation problems on a machine with a limited amount of memory. For example, loading all the human chromosome sequences in memory would require more than 3 GB of memory!
- We have 2 nested for loops: the outer loop walks thru the target ( 7 chromosomes) and the inner loop walks thru the set of patterns. Doing the other way around would be very inefficient, especially with a bigger number of patterns because this would require to load each chromosome sequence into memory as many times as the number of patterns. runAnalysis1 loads each sequence only once.
- We find the matches in the minus strand (minus_matches) by first taking the reverse complement of the current pattern (with rcpattern <- reverseComplement (pattern)) and NOT by taking the reverse complement of the current subject.

Now we are ready to run the analysis and put the results in the "ce2dict0_ana1.txt" file:
```

> runAnalysis1(ce2dict0, outfile="ce2dict0_ana1.txt")

```
```

Target: ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in chromosome chrI ...
>>> DONE
>>> Finding all hits in chromosome chrII ...
>>> DONE
>>> Finding all hits in chromosome chrIII ...
>>> DONE
>>> Finding all hits in chromosome chrIV ...
>>> DONE
>>> Finding all hits in chromosome chrV ...
>>> DONE
>>> Finding all hits in chromosome chrX ...
>>> DONE
>>> Finding all hits in chromosome chrM ...
>>> DONE

```

Here is some very simple example of post analysis:
- Get the total number of hits:
```

> hits1 <- read.table("ce2dict0_ana1.txt", header=TRUE)
> nrow(hits1)

```
[1] 79
- Get the number of hits per chromosome:
```

> table(hits1\$seqname)
chrI chrII chrIII

```
- Get the number of hits per pattern:
```

> hits1_table <- table(hits1\$patternID)
> hits1_table
pattern01 pattern02 pattern03 pattern04 pattern06 pattern07 pattern08 pattern09

```

```

pattern10 pattern11 pattern12 pattern13 pattern14 pattern15 pattern16 pattern17

```

```

pattern18 pattern19 pattern20 pattern21 pattern22 pattern23 pattern24 pattern25
pattern26 pattern27 pattern28 pattern29 pattern30 pattern31 pattern32 pattern33

```

```

pattern34 pattern35 pattern36 pattern37 pattern38 pattern39 pattern40 pattern41
pattern42 pattern43 pattern44 pattern45 pattern46 pattern47 pattern48 pattern49
1 5 5 1 1 1 < llllll
pattern50
1

```
- Get the pattern(s) with the higher number of hits:
```

> hits1_table[hits1_table == max(hits1_table)] \# pattern(s) with more hits
pattern21

```
10
- Get the pattern(s) with no hits:
```

> setdiff(names(ce2dict0), hits1\$patternID) \# pattern(s) with no hits
[1] "pattern05"

```
- And finally a function that can be used to plot the hits:
```

> plotGenomeHits <- function(bsgenome, seqnames, hits)

+ {
+ chrlengths <- seqlengths(bsgenome)[seqnames]
+ XMAX <- max(chrlengths)
+ YMAX <- length(seqnames)
+ plot.new()
+ plot.window(c(1, XMAX), c(0, YMAX))
+ axis(1)
+ axis(2, at=seq_len(length(seqnames)), labels=rev(seqnames), tick=FALSE, las=1)
+
Plot the chromosomes

+ for (i in seq_len(length(seqnames)))
+ lines(c(1, chrlengths[i]), c(YMAX + 1 - i, YMAX + 1 - i), type="l")
+
Plot the hits

+ for (i in seq_len(nrow(hits))) {
+ seqname <- hits\$seqname[i]
+ y0 <- YMAX + 1 - match(seqname, seqnames)
+ if (hits\$strand[i] == "+") {
+ y<- y0 + 0.05
+ col <- "red"
+ } else {
+ y <- y0 - 0.05
+ col <- "blue"
+ }
lines(c(hits$start[i], hits$end[i]), c(y, y), type="l", col=col, lwd=3)
+ }
+ }

```

Plot the hits found by runAnalysis1 with:
```

> plotGenomeHits(Celegans, seqnames(Celegans), hits1)

```

\section*{4 Some precautions when using matchPattern}

Improper use of matchPattern (or countPattern) can affect performance.
If needed, the matchPattern and countPattern methods convert their first argument (the pattern) to an object of the same class than their second argument (the subject) before they pass it to the subroutine that actually implements the fast search algorithm.

So if you need to reuse the same pattern a high number of times, it's a good idea to convert it before to pass it to the matchPattern or countPattern method. This way the conversion is done only once:
```

> library(hgu95av2probe)
> tmpseq <- DNAStringSet(hgu95av2probe\$sequence)
> someStats <- function(v)

+ {
+ GC <- DNAString("GC")
+ CG <- DNAString("CG")
+ sapply(seq_len(length(v)),
+ function(i) {
+ y <- v[[i]]
+ c(alphabetFrequency(y)[1:4],
+ GC=countPattern(GC, y),
+ CG=countPattern(CG, y))
+ }
+)
+ }
> someStats(tmpseq[1:10])

```
\begin{tabular}{lrrrrrrrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} & {\([, 5]\)} & {\([, 6]\)} & {\([, 7]\)} & {\([, 8]\)} & {\([, 9]\)} & {\([, 10]\)} \\
A & 1 & 5 & 6 & 4 & 4 & 2 & 4 & 5 & 9 & 2 \\
C & 10 & 5 & 4 & 7 & 5 & 7 & 10 & 8 & 7 & 10 \\
G & 6 & 5 & 3 & 8 & 8 & 6 & 4 & 5 & 4 & 4 \\
T & 8 & 10 & 12 & 6 & 8 & 10 & 7 & 7 & 5 & 9 \\
GC & 2 & 1 & 1 & 4 & 3 & 2 & 2 & 2 & 1 & 1 \\
GG & 0 & 0 & 0 & 2 & 1 & 1 & 0 & 0 & 0 & 0
\end{tabular}

\section*{5 Masking the chromosome sequences}

Starting with Bioconductor 2.2, the chromosome sequences in a BSgenome data package can have built-in masks. Starting with Bioconductor 2.3 , there can be up to 4 built-in masks per sequence. These will always be (in this order): (1) the mask of assembly gaps, (2) the mask of intra-contig ambiguities, (3) the mask of repeat regions that were determined by the RepeatMasker software, and (4) the mask of repeat regions that were determined by the Tandem Repeats Finder software (where only repeats with period less than or equal to 12 were kept).

For a given package, all the sequences will always have the same number of masks.
```

> library(BSgenome.Hsapiens.UCSC.hg18)
> chrY <- Hsapiens\$chrY
> chrY
57772954-letter "MaskedDNAString" instance (\# for masking)
seq: CTAACCCTAACCCTAACCCTAACCCTAACCCTAACC. . .GGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT
masks:
maskedwidth maskedratio active names desc
3 2 1 2 0 0 0 0 ~ 0 . 5 5 5 9 6 9 4 9 ~ T R U E ~ A G A P S ~ a s s e m b l y ~ g a p s
0.00000000 TRUE AMB intra-contig ambiguities (empty)
15884416 0.27494554 FALSE RM RepeatMasker
5 8 4 3 8 7 ~ 0 . 0 1 0 1 1 5 2 3 ~ F A L S E ~ T R F ~ T a n d e m ~ R e p e a t s ~ F i n d e r ~ [p e r i o d < = 1 2] ~
all masks together:
maskedwidth maskedratio
4 8 0 4 2 5 7 3 ~ 0 . 8 3 1 5 7 5 5
all active masks together:

```
```

 maskedwidth maskedratio
 32120000 0.5559695
 > chrM <- Hsapiens\$chrM
> chrM
16571-letter "MaskedDNAString" instance (\# for masking)
seq: GATCACAGGTCTATCACCCTATTAACCACTCACGGG. . . AGCCCACACGTTCCCCTTAAATAAGACATCACGATG
masks:
maskedwidth maskedratio active names desc
1 0 0.00000000 TRUE AGAPS assembly gaps (empty)
2 0 0.00000000 TRUE AMB intra-contig ambiguities (empty)
3 373 0.02250920 FALSE RM RepeatMasker
4 0 0.00000000 FALSE TRF Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio
373 0.02250920
all active masks together:
maskedwidth maskedratio
0 0

```

The built-in masks are named consistenly across all the BSgenome data packages available in Bioconductor:
\begin{tabular}{l|l|l|l}
\hline Name & Active by default & Short description & Long description \\
\hline AGAPS & yes & assembly gaps & Masks the big N-blocks that have been placed between the con \\
AMB & yes & intra-contig ambiguities & Masks any IUPAC ambiguity letter that was found in the conti \\
RM & no & RepeatMasker & Masks the repeat regions determined by the RepeatMasker soft \\
TRF & no & Tandem Repeats Finder & Masks the tandem repeat regions that were determined by the \\
\hline
\end{tabular}

Table 1: The built-in masks provided by the BSgenome data packages.

When displaying a masked sequence (here a MaskedDNAString object), the masked width and masked ratio are reported for each individual mask, as well as for all the masks together, and for all the active masks together. The masked width is the total number of nucleotide positions that are masked and the masked ratio is the masked width divided by the length of the sequence.

To activate a mask, use the active replacement method in conjonction with the masks method. For example, to activate the RepeatMasker mask, do:
```

> active(masks(chrY))["RM"] <- TRUE
> chrY
57772954-letter "MaskedDNAString" instance (\# for masking)
seq: \# . . .\#
masks:
maskedwidth maskedratio active names desc
1 32120000 0.55596949 TRUE AGAPS assembly gaps
2 0 0.00000000 TRUE AMB intra-contig ambiguities (empty)
3 15884416 0.27494554 TRUE RM RepeatMasker
4 584387 0.01011523 FALSE TRF Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio

```
```

 4 8 0 4 2 5 7 3 ~ 0 . 8 3 1 5 7 5 5
 all active masks together:
maskedwidth maskedratio
48004416 0.830915

```

As you can see, the masked width for all the active masks together (i.e. the total number of nucleotide positions that are masked by at least one active mask) is now the same as for the first mask. This represents a masked ratio of about \(83 \%\).

Now when we use a function that is mask aware, like alphabetFrequency, the masked regions of the input sequence are ignored:
```

> active(masks(chrY)) <- FALSE
> active(masks(chrY))["AGAPS"] <- TRUE
> alphabetFrequency(unmasked(chrY))

```
\begin{tabular}{rrrrllll} 
A & C & G & T & M & R & W & S \\
7667357 & 5099042 & 5153198 & 7733357 & 0 & 0 & 0 & 0 \\
Y & K & V & H & D & B & N & - \\
0 & 0 & 0 & 0 & 0 & 0 & 32120000 & 0 \\
+ & & & & & & &
\end{tabular}
> alphabetFrequency(chrY)
\begin{tabular}{rrrrrrrrrr} 
A & C & G & T & M & R & W & S & Y & K \\
7667357 & 5099042 & 5153198 & 7733357 & 0 & 0 & 0 & 0 & 0 & 0 \\
V & H & D & B & N & - & + & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & &
\end{tabular}

This output indicates that, for this chromosome, the assembly gaps correspond exactly to the regions in the sequence that were filled with the letter N. Note that this is not always the case: sometimes Ns, and other IUPAC ambiguity letters, can be found inside the contigs.

When coercing a MaskedXString object to an XStringViews object, each non-masked region in the original sequence is converted into a view on the sequence:
```

> as(chrY, "XStringViews")

```

Views on a 57772954-letter DNAString subject
subject: CTAACCCTAACCCTAACCCTAACCCTAACCCTAA. . . GTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT
views:
\begin{tabular}{lrrrl} 
& start & end & width & \\
[1] & 1 & 34821 & 34821 & [CTAACCCTAACCCTAACCCTAA...AGGTCTCATTGAGGACAGATA] \\
[2] & 84822 & 171384 & 86563 & [GATCCACCCATCTCGGTCTCCC...CGATCTCGTGACCTCGTGATC] \\
[3] & 201385 & 967557 & 766173 & [GATCGGGGTATCCCAGCTGCTA...GTGATCCAAGGGACTGAATTC] \\
[4] & 1017558 & 1054113 & 36556 & [ATTAAAGAAGGAGAGAGACTGG...GTGTGTGTGTGCATGCATGCT] \\
[5] & 1104114 & 1184234 & 80121 & [GATTGAACCAGCCCACTCCACG... CTGGCCAACATGGGGAAACCC] \\
[6] & 1274235 & 2028238 & 754004 & [ATCCACCTGCCTCGGCCTCCTA...GTCATAACAAGAACCAAGATC] \\
[7] & 2128239 & 8974955 & 6846717 & [CCCTTCCAGGATGGTCCTTCTC...GGGATATATTAGCCAAAGCTT] \\
[8] & 9024956 & 9301322 & 276367 & [GATCATGAGCTAAGGAGTTTGA...TTACTTTCTAATTCTGAATTC] \\
[9] & 9901323 & 10714553 & 813231 & [GAATTCGTTTTCTCTGCCTCCT...CAAAGAACTATGTCGGAATTC] \\
[10] & 11214554 & 11253954 & 39401 & [GACACATCACAAAGAAGTTTCT...CCATTCCTTTCCACTGAATTC] \\
[11] & 11653955 & 12208578 & 554624 & [GATCACATTTCTTTTCACTATT...TAATGGAATGGAATGGAATTC] \\
[12] & 12308579 & 22310816 & 10002238 & [GAATTCATTCGAATAGAATTGA...TTCAAAAACTTTATGGAATTC]
\end{tabular}
\begin{tabular}{lllrl} 
[13] & 22360817 & 27228749 & 4867933 & [AAGCTTTGGCTAATATATCTCT....GAGTGGTGCAGAGTGGAATTC] \\
[14] & 57228750 & 57327044 & 98295 & [GAATTCCATTCCATTCCAATCC...CCCTTCCATTCCAATGAATTC] \\
[15] & 57377045 & 57772954 & 395910 & [GAATTCAACATTATTCTTGTTT...GGTGTGGTGTGTGGGTGTGGT]
\end{tabular}

This can be used in conjonction with the gaps method to see the gaps between the views i.e. the masked regions themselves:
```

> gaps(as(chrY, "XStringViews"))

```

To extract the sizes of the assembly gaps:
```

> width(gaps(as(chrY, "XStringViews")))

```
\begin{tabular}{lrrrrrrrr} 
[1] & 50000 & 30000 & 50000 & 50000 & 90000 & 100000 & 50000 & 600000 \\
[9] & 500000 & 400000 & 100000 & 50000 & 30000000 & 50000 & &
\end{tabular}

Note that, if applied directly to chrY, gaps returns a MaskedDNAString object with a single mask masking the regions that are not masked in the original object:
```

> gaps(chrY)
57772954-letter "MaskedDNAString" instance (\# for masking)
seq: \#. . .\#
masks:
maskedwidth maskedratio active
1 25652954 0.4440305 TRUE
> alphabetFrequency(gaps(chrY))

```
\begin{tabular}{llllllll} 
A & C & G & T & M & R & W & S \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
Y & K & V & H & D & B & N & - \\
0 & 0 & 0 & 0 & 0 & 0 & 32120000 & 0 \\
+ & & & & & & \\
0 & & & & & &
\end{tabular}

In fact, for any MaskedDNAString object, the following should always be TRUE, whatever the masks are:
```

> afO <- alphabetFrequency(unmasked(chrY))
> af1 <- alphabetFrequency(chrY)
> af2 <- alphabetFrequency(gaps(chrY))
> all(afO == af1 + af2)

```
[1] TRUE
With all chrY masks active:
```

> active(masks(chrY)) <- TRUE
> af1 <- alphabetFrequency(chrY)
> af1

```
\begin{tabular}{rrrrrrrrrr} 
A & C & G & T & M & R & W & S & Y & K \\
2978843 & 1871661 & 1883042 & 2996835 & 0 & 0 & 0 & 0 & 0 & 0 \\
V & H & D & B & N & - & + & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & &
\end{tabular}
```

> gaps(chrY)
57772954-letter "MaskedDNAString" instance (\# for masking)
seq: CTAACCCTAACCCTAACCCTAACCCTAACCCTAACC. . .GGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGG\#
masks:
maskedwidth maskedratio active
1 9730381 0.1684245 TRUE
> af2 <- alphabetFrequency(gaps(chrY))
> af2

```
\begin{tabular}{rrrrllll} 
A & C & G & T & M & R & W & S \\
4688514 & 3227381 & 3270156 & 4736522 & 0 & 0 & 0 & 0 \\
Y & K & V & H & D & B & N & - \\
0 & 0 & 0 & 0 & 0 & 0 & 32120000 & 0 \\
+ & & & & & & & \\
0 & & & & & &
\end{tabular}
\(>\) all (af0 == af1 + af2)

\section*{[1] TRUE}

Now let's compare three different ways of finding all the occurences of the "CANNTG" consensus sequence in chrY. The Ns in this pattern need to be treated as wildcards i.e. they must match any letter in the subject.

Without the mask feature, the first way to do it would be to use the fixed=FALSE option in the call to matchPattern (or countPattern):
```

> Ebox <- "CANNTG"
> active(masks(chrY)) <- FALSE
> countPattern(Ebox, chrY, fixed=FALSE)

```

\section*{[1] 32258413}

The problem with this method is that the Ns in the subject are also treated as wildcards hence the abnormally high number of matches. A better method is to specify the side of the matching problem (i.e. pattern or subject) where the Ns should be treated as wildcards:
```

> countPattern(Ebox, chrY, fixed=c(pattern=FALSE,subject=TRUE))

```

\section*{[1] 138462}

Finally, countPattern being mask aware, this can be achieved more efficiently by just masking the assembly gaps and ambiguities:
```

> active(masks(chrY))[c("AGAPS", "AMB")] <- TRUE
> alphabetFrequency(chrY, baseOnly=TRUE) \# no ambiguities
A C G T other
766735750990425153198 7733357 0
> countPattern(Ebox, chrY, fixed=FALSE)

```
[1] 138462

Note that some chromosomes can have Ns outside the assembly gaps:
```

> chr2 <- Hsapiens\$chr2
> active(masks(chr2))[-2] <- FALSE
> alphabetFrequency(gaps(chr2))

A	C	G	T	M	R	W	S	Y	K	V	H	D	B	N	-
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2855	0

+

0

```
so it is recommended to always keep the AMB mask active (in addition to the AGAPS mask) whatever the sequence is.

Note that not all functions that work with an XString input are mask aware but more will be added in the near future. However, most of the times there is a alternate way to exclude some arbitrary regions from an analysis without having to use mask aware functions. This is described below in the Hard masking section.

\section*{6 Hard masking}
coming soon...

\section*{7 Injecting known SNPs in the chromosome sequences}
coming soon...

\section*{8 Finding all the patterns of a constant width dictionary in an entire genome}

The matchPDict function can be used instead of matchPattern for the kind of analysis described in the Finding an arbitrary nucleotide pattern in an entire genome section but it will be much faster (between 100 x and 10000 x faster depending on the size of the input dictionary). Note that a current limitation of matchPDict is that it only works with a dictionary of DNA patterns where all the patterns have the same number of nucleotides (constant width dictionary). See ?matchPDict for more information.

Here is how our runAnalysis1 function can be modified in order to use matchPDict instead of matchPattern:
```

> runOneStrandAnalysis <- function(dictO, bsgenome, seqnames, strand,
+

+ {
+
+
+ dict0 <- reverseComplement(dict0)
+ pdict <- PDict(dict0)
+ for (seqname in seqnames) {
+ subject <- bsgenome[[seqname]]
+ cat(">>> Finding all hits in strand", strand, "of chromosome", seqname, "...\n")
+ mindex <- matchPDict(pdict, subject)
+ matches <- extractAllMatches(subject, mindex)

```
```

+ writeHits(seqname, matches, strand, file=outfile, append=append)
+ append <- TRUE
+ cat(">>> DONE\n")
+ }
}
runAnalysis2 <- function(dict0, outfile="")
{
+ library(BSgenome.Celegans.UCSC.ce2)
+ seqnames <- seqnames(Celegans)
+ runOneStrandAnalysis(dict0, Celegans, seqnames, "+", outfile=outfile, append=FALSE)
+

}

```

Remember that matchPDict only works if all the patterns in the input dictionary have the same length so for this 2nd analysis, we will truncate the patterns in ce2dict0 to 15 nucleotides:
```

> ce2dictOcw15 <- DNAStringSet(ce2dict0, end=15)

```

Now we can run this 2nd analysis and put the results in the "ce2dict0cw15_ana2.txt" file:
```

> runAnalysis2(ce2dict0cw15, outfile="ce2dict0cw15_ana2.txt")
Target: strand + of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in strand + of chromosome chrI ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrII ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrIII ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrIV ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrV ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrX ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrM ...
>>> DONE
Target: strand - of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in strand - of chromosome chrI ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrII ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrIII ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrIV ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrV ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrX ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrM ...
>>> DONE

```

\section*{9 Session info}
```

> sessionInfo()
R version 2.9.2 (2009-08-24)
x86_64-unknown-linux-gnu
locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en
attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg18_1.3.14 hgu95av2probe_2.4.0
[3] AnnotationDbi_1.6.1 Biobase_2.4.1
[5] BSgenome.Celegans.UCSC.ce2_1.3.13 BSgenome_1.12.5
[7] Biostrings_2.12.10 IRanges_1.2.3
loaded via a namespace (and not attached):
[1] DBI_0.2-4 RSQLite_0.7-3

```
```

